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A B S T R A C T

Background: Ventilator-associated pneumonia (VAP) is one of the most important hospital acquired infections in 
patients requiring mechanical ventilation (MV) in the intensive care unit, but the effective and robust predictable 
tools for VAP prevention were relatively lacked.
Methods: This study aimed to establish a weighted risk scoring system to examine VAP risk among a two-stage 
VAP case-control study, and to evaluate the diagnostic performance of risk factor score (RFS) for VAP. We 
constructed a prediction model by least absolute shrinkage and selection operator (LASSO), random forest (RF), 
and extreme gradient boosting (XGBoost) models in 363 patients and 363 controls, and weighted RFS was 
calculated based on significant predictors. Finally, the diagnostic performance of the RFS was testified and 
further validated in another 177 pairs of VAP case-control study.
Results: LASSO, RF and XGBoost consistently revealed significant associations of length of stay before MV, MV 
time, surgery, tracheotomy, multiple drug resistant organism infection, C-reactive protein, PaO2, and APACHE II 
score with VAP. RFS was significantly linearly associated with VAP risk [odds ratio and 95 % confidence interval 
= 2.699 (2.347, 3.135)], and showed good discriminations for VAP both in discovery stage [area under the curve 
(AUC) = 0.857] and validation stage (AUC = 0.879).
Conclusions: Results of this study revealed co-occurrence of multiple predictors for VAP risk. The risk factor 
scoring system proposed is a potentially useful predictive tool for clinical targets for VAP prevention.

1. Introduction

Ventilator-associated pneumonia (VAP) is one of the major causes of 
hospital acquired infections developing 48 h or more after receiving 
mechanical ventilation (MV), with high morbidity and mortality.1 Pre-
vious clinical and histologic studies have shown about 5 %–40 % of 

patients put on MV developing VAP, and the mortality rate of VAP has 
been estimated at 10 %.2,3 Compared to patients with similar diseases 
without VAP, patients with VAP face a longer duration of MV, thereby 
increasing hospital course and healthcare costs.4,5 The incidence of VAP 
has become an important indicator of the quality of clinical diagnosis 
and treatment, infection prevention and control in intensive care units 
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(ICU).6

Although some VAP-related risk factors such as MV time and tra-
cheotomy have been widely studied,7,8 there is no established risk 
scoring system that integrates these factors to guide for VAP prevention. 
In addition, there is no VAP screening tool to facilitate patient risk 
stratification during the MV period. Identification of risk factors and 
establishment of prediction models associated with VAP could permit 
clinical staff to provide close infection surveillance and timely care for 
VAP.

Current studies on exploring risk factors of VAP mainly use tradi-
tional logistic regression, which neglects the mutual effect of multiple 
stressors.9,10 With the development of the statistical methodology for 
multi-exposure models, some novel statistical methods have been pro-
posed in epidemiologic studies for estimating the healthy effects, such as 
least absolute shrinkage and selection operator (LASSO) penalized 
regression,11 random forest (RF), and extreme gradient boosting 
(XGBoost).12 As the risk factors of VAP are not single, there is a need for 
identifying the independent predictors of VAP from a more compre-
hensive view of exposure-effect association, to capture and characterize 
the complexity of multiple risk factors.

In the present study, we first established a VAP prediction model by 
using three machine learning methods (LASSO, RF and XGBoost) in 363 
pairs of VAP case-control study, and was presented as a nomogram. We 
also examined the association of a weighted risk factor score (RFS) based 
on significant predictors selected by the three models with VAP risk. 
Finally, the diagnostic performance of the weighted RFS for VAP was 
testified and further validated in another 177 pairs of VAP case-control 
study.

2. Materials and methods

2.1. Study population

We performed a two-stage VAP case-control study in a total of 1080 
Chinese participants. The discovery stage comprised 363 VAP patients 
and 363 age- (±3 years-old) and gender-matched controls. The valida-
tion stage consisted of 177 VAP cases and 177 age- (±3 years-old) and 
gender-matched normal controls. All subjects were collected during 
January 2019 to December 2019 and January 2022 to December 2022, 
respectively, in general ICUs of two tertiary hospitals in Wuhan, China. 
Patients and controls who were at least 18 years-old, had been admitted 
to hospital and received MV for at least 48 h were included in the study. 
However, patients who developed VAP infection 48 h within intubation 
and those who with VAP at admission were excluded from the study. 
VAP was suspected in a patient that developed a new or persistent 
infiltrate on chest radiography, and with one of the following criteria: 
(1) purulent tracheal secretions, (2) fever, (3) increased or decreased 
white blood cell count. The diagnosis of VAP was confirmed by positive 
quantitative culture of a respiratory sample, and was confirmed both by 
hospital infection management physicians and clinicians.13,14 For each 
case, we matched one control that underwent MV at the same ICUs with 
cases during the study period and without postoperative VAP, thus 
ensuring that controls were drawn from the same source population as 
cases. Matching of controls was performed addressing each patient only 
once, if more than one control was available per case, we randomly 
selected one out of the matched eligible population.

Furthermore, VAP infections were defined as early if they occurred 
within 7 days after hospitalization, and as late if they occurred after 7 
days.13 The Ethics Committee of Union hospital, Tongji Medical College, 
Huazhong University of Science and Technology approved the study 
(Identifier: 2023 No. 0792), and all participants provided informed 
consent.

2.2. Data collection and definition

Data were retrospectively collected from the hospital’s complete 

electronic medical record and the surgical paper chart during the gen-
eral ICU stay. Variables assessed included basic demographics, lifestyle 
factors, medical history, surgery, medication and laboratory measure-
ments. Baseline clinical and biochemical indices were recorded as the 
first examination after admission. Surgery, tracheostomy, microbiolog-
ical and antibiotic treatment information were collected before the 
diagnosis of VAP for case groups. APACHE II score was measured by the 
clinician within 24 h of patient’s admission to ICU, and it is also before 
the diagnosis of VAP. To assess length of stay (LOS) and MV time as risk 
factors, we compared the interval from admission to MV (i.e., LOS before 
MV) for all subjects, and the duration from the start of MV to VAP 
diagnosis among cases to the overall duration of ventilation among 
controls, respectively. Multiple drug resistant organism (MDRO) was 
defined as non-susceptibility to three or more antimicrobial cate-
gories,15 and included methicillin-resistant Staphylococcus aureus 
(MRSA), carbapenem-resistant Enterobacteriaceae (CRE), 
Vancomycin-resistant Enterococcus faecium, carbapenem-resistant 
Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acineto-
bacter baumannii (CRAB). More detailed definition or basis of variables 
were described in Table S1.

2.3. VAP prediction model development

We first conducted a systematic literature review of previous pub-
lished VAP prediction models and evidence for their application in VAP 
diagnosis, aiming to identify candidate predictor variables. Then, the 
available clinical and laboratory data of all subjects were collected. 
Variables with missing value > 30 % were excluded in the database. 
Finally, we identified 30 possible variables to be included in the 
modeling process.

In the discovery stage, variance inflation factor (VIF) analysis was 
first used to analyze the collinearity of thirty variables, and the most 
colinear factor was deleted until no collinearity existed. As Zhang et al. 
suggested,16 factors with VIF >5 were excluded. Second, three different 
models (LASSO regression, RF, and XGBoost) were used for selection of 
significant variables.

2.3.1. LASSO regression
LASSO penalized regression analysis with a logit link and the 

Gaussian family was used to select independent predictors highly asso-
ciated with risk of VAP. The optimal value of λ was chosen by using 10- 
fold cross-validation.17 LASSO was used to improve the accuracy of the 
logistic model and avoid over-fitting by penalizing coefficients with 
large values. The logistic model derived from LASSO was reduced most 
of the coefficients to zero, and the features with non-zero coefficients 
were essential for predicting the target variables or patient labels.18

2.3.2. RF regression
RF uses bagging with random feature selection, and the randomness 

in the structure is useful for decreasing the variance of the model and the 
prediction is made by averaging the forecasts of the trees employed.19

The training procedure was employed as follows: (1) from the training 
dataset (70 % of all subjects in the discovery stage), a bootstrap sample 
was drawn as a randomized subset; (2) each individual tree was grown 
using the randomized subset of predictor variables; (3) repeat the step 
(2) until the number of trees was grown. Then the predicted results were 
aggregated by averaging them. The top 10 features were identified as 
significant predictors. Discriminations of the models both for training set 
and testing set were assessed using the area under the curve (AUC).

2.3.3. XGBoost
XGBoost is an extension of the gradient boosting algorithm that uses 

a different objective function and regularization techniques to improve 
generalization performance and prevent overfitting.20 As the tree 
structure, the final prediction was calculated by summing up the scores 
across all leaves. All subjects were randomly split into a training set (70 
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%) and an internal validation set (30 %) to execute XGBoost, which was 
the same as RF regression. Meanwhile, the top 10 features were recog-
nized as significant predictors. Discriminations of the models both for 
training set and testing set were also assessed using the AUC.

Finally, the intersection predictors of the above three models were 
used to establish prediction model of VAP. We also used conditional 
logistic regression model to assess the variable effects of selected pre-
dictors for the 1:1 paired case-control design.21 Then, VAP prediction 
nomogram was used to visually assess the probability of independent 

risk factors for predicting the occurrence of VAP. The calibration curve 
and the Harrell C-index were used to evaluate the calibration of VAP 
prediction model and the discrimination performance, respectively. 
Furthermore, decision curve analysis (DCA) was used to estimate the 
clinical usefulness of the VAP prediction model by quantifying the net 
benefits at different threshold probabilities.22

Table 1 
Characteristics of the subjects included in the discovery and validation stage.

Variables Discovery stage Validation stage

Cases (n = 363) Controls (n = 363) Pa Cases (n = 177) Controls (n = 177) Pa

Age, years-old 58.5 ± 13.9 58.5 ± 13.8 0.928 50.3 ± 15.9 50.4 ± 15.7 0.946
Gender   1.000   1.000

Males 239 (65.8) 239 (65.8)  133 (75.1) 133 (75.1) 
Females 124 (34.2) 124 (34.2)  44 (24.9) 44 (24.9) 

Smoking status   0.637   0.512
Ever smokers 125 (34.4) 118 (32.5)  64 (36.2) 71 (40.1) 
Never smokers 238 (65.6) 245 (67.5)  113 (63.8) 106 (59.9) 

Alcohol drinking status   1.000   0.109
Ever drinkers 110 (30.3) 109 (30.0)  63 (35.6) 48 (27.1) 
Never drinkers 253 (69.7) 254 (70.0)  114 (64.4) 129 (72.9) 

BMI, kg/m2 23.6 ± 4.3 24.6 ± 9.9 0.076 24.1 ± 4.0 23.8 ± 4.4 0.614
Chronic disease

COPD 8 (2.2) 12 (3.3) 0.496 6 (3.4) 4 (2.3) 0.748
Emphysema 6 (1.7) 10 (2.8) 0.448 4 (2.3) 1 (0.6) 0.368
CHD 63 (17.4) 63 (17.4) 1.000 22 (12.4) 22 (12.4) 1.000
Hypertension 187 (51.5) 167 (46.0) 0.158 81 (45.8) 81 (45.8) 1.000
Diabetes mellitus 60 (16.5) 52 (14.3) 0.472 29 (16.5) 41 (23.2) 0.149
Cancer 29 (8.0) 36 (9.9) 0.435 15 (8.5) 11 (6.2) 0.541

LOS before MV, days 3.6 (0.7, 10.9) 6.3 (0.9, 13.1) 0.009 1.3 (0.2, 9.3) 4.3 (0.7, 14.2) 0.001
MV time, days 7.5 (5.8, 11.1) 5.0 (3.0, 7.0) <0.001 5.1 (3.4, 7.8) 4.0 (3.0, 7.0) 0.011
Surgery   0.047   0.573

Yes 260 (71.6) 234 (64.5)  115 (65.0) 121 (68.4) 
No 103 (28.4) 129 (35.5)  62 (35.0) 56 (31.6) 

Tracheotomy   <0.001   0.002
Yes 110 (30.3) 49 (13.5)  65 (36.7) 37 (20.9) 
No 253 (69.7) 314 (86.5)  112 (63.3) 140 (79.1) 

Combination of antibiotics   <0.001   0.572
Yes 349 (96.1) 316 (87.1)  172 (97.2) 169 (95.5) 
No 14 (3.9) 47 (12.9)  5 (2.8) 8 (4.5) 

MDRO infection   <0.001   <0.001
Yes 276 (76.0) 102 (28.1)  132 (74.6) 69 (39.0) 
No 87 (24.0) 261 (71.9)  45 (25.4) 108 (61.0) 

Clinical biochemical index
Hemoglobin, g/L 118.00 (98.00, 134.00) 116.00 (95.00, 132.00) 0.188 112.00 (89.00, 130.00) 114.00 (93.00, 127.00) 0.961
Platelet, g/L 166.00 (117.50, 215.00) 175.00 (128.00, 231.00) 0.213 166.00 (110.00, 227.00) 169.00 (118.00, 222.00) 0.717
CRP, mg/L 53.60 (8.78, 143.00) 49.85 (3.91, 128.00) 0.101 69.70 (15.20, 155.00) 51.40 (11.10, 127.00) 0.073
Total protein, g/L 59.30 (53.70, 64.35) 59.60 (54.40, 65.25) 0.385 58.60 (50.10, 64.90) 58.40 (53.30, 63.40) 0.627
Albumin, g/L 34.70 (29.60, 38.35) 35.10 (29.15, 38.70) 0.676 32.80 (27.80, 38.00) 33.70 (29.30, 37.40) 0.441
Creatinine, μmol/L 77.65 (61.33, 120.62) 74.00 (61.10, 103.00) 0.244 78.90 (64.70, 121.00) 78.10 (60.70, 120.80) 0.705
Fasting blood-glucose, mmol/L 6.15 (4.90, 8.20) 6.16 (4.97, 7.54) 0.847 6.65 (5.10, 8.28) 6.10 (4.90, 8.00) 0.096
Na, mmol/L 140.80 (138.40, 142.95) 140.80 (138.10, 143.00) 0.902 140.10 (137.70, 143.20) 140.90 (138.00, 143.30) 0.385
K, mmol/L 3.99 (3.64, 5.25) 4.01 (3.71, 4.36) 0.265 4.04 (3.69, 4.36) 3.94 (3.66, 4.38) 0.443

Arterial blood gas
pH 7.40 (7.35, 7.45) 7.41 (7.34, 7.45) 0.595 7.38 (7.34, 7.45) 7.40 (7.34, 7.45) 0.423
PaCO2, mmHg 36.60 (32.00, 42.40) 35.70 (31.05, 41.70) 0.264 38.10 (32.83, 43.93) 36.20 (32.00, 42.75) 0.158
PaO2, mmHg 97.15 (74.95, 141.75) 111.00 (83.22, 155.00) 0.001 100.00 (82.75, 135.50) 99.55 (78.28, 142.00) 0.732
SaO2, % 98.40 (95.40, 100.00) 99.00 (96.10, 100.00) 0.032 99.00 (97.00, 100.00) 98.60 (96.00, 100.00) 0.614
Serum bicarbonate, mmol/L 22.35 (18.90, 26.00) 21.90 (18.35, 25.70) 0.974 22.95 (19.27, 24.95) 21.00 (16.80, 25.10) 0.133

APACHE II score 24.00 (20.00, 29.00) 22.00 (15.25, 26.00) 0.006 23.00 (20.00, 27.00) 18.00 (13.75, 23.00) 0.002
Following outcome

LOS, days 30.0 (19.8, 41.6) 19.9 (11.3, 31.8) <0.001 25.8 (16.8, 42.9) 21.0 (15.2, 35.0) 0.027
Type of VAP      

Early VAP 120 (33.1)   69 (39.0)  
Late VAP 243 (66.9)   108 (61.0)  

Abbreviations: APACHE II, Acute Physiology and Chronic Health Evaluation II; BMI, body mass index; CHD, coronary heart disease; COPD, chronic obstructive 
pulmonary disease; CRP, C-reactive protein; LOS, length of stay; LOS before MV, length of stay before mechanical ventilation; MDRO, multiple drug resistant organism; 
MV, mechanical ventilation; PaCO2, arterial partial pressure of carbon dioxide; PaO2, arterial partial pressure of oxygen; SaO2, arterial oxygen saturation; VAP, 
ventilator-associated pneumonia.
Note.

a P values were calculated by using Student’s t-test or nonparametric test for continuous variables and Chi-square test for categorical variable.
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2.4. Diagnostic performance of RFS for VAP risk

We estimate the joint effect of the above selected VAP risk factors 
based on weighted RFS. For all predictors with significant association 
with risk of VAP, the weighted RFS was calculated as the sum of their 
coefficients with VAP risk multiplied by values. The calculation formula 
was listed as follows: 

weighted RFS = β1X1 + β2X2 +β3X3 + … +βnXn                                   

where β represented the estimated regression coefficient of the pre-
dictors derived from the conditional logistic regression analysis, and X 
represented the value of each predictor. The weighted RFS were log2- 
transformed to approximate normal distribution. The association be-
tween RFS and risk of VAP was assessed by conditional logistic regres-
sion model and restricted cubic spline analysis, with adjustment for age, 
gender. Furthermore, to test the robustness of the association, we con-
ducted stratification analyses according to age (≤60 years-old, >60 
years-old), gender, and BMI (≤25 kg/m2, >25 kg/m2), and interaction 
effects were carried out by including a multiplicative interaction term 
(RFS × stratification variable) into the above model.

Finally, the diagnostic performance of the weighted RFS for all, 
early, and late VAP was further assessed based on the AUC in receiver 
operator characteristic (ROC) curve in the discovery stage, and further 
validated in the validation stage.

2.5. Statistical analysis

Data were presented as mean ± standard deviation (SD) or median 
(interquartile range, IQR) for continuous variables and number 
(percent) for categorical variables. Differences between VAP cases and 
controls were compared using T test or Mann-Whitney U test for 
continuous variables, and Fisher’s exact test or χ2 test for categorical 
variables, as appropriate. The features were considered as odds ratio 
(OR) having 95 % confidence interval (CI) and a P value. Differences 
with 2-sided P values < 0.05 were considered as statistically significant.

In this study, the statistical analyses were performed with R software 
(version 3.6.0, The R Foundation for Statistical Computing), and SAS 
program (version 9.4, SAS Institute, Carry, NC).

3. Results

3.1. Characteristics of study populations

Among this study, 726 and 354 subjects were included in the dis-
covery and validation stage, respectively. The general characteristics of 
all participants were presented in Table 1. In the discovery stage, the 
mean age for the VAP cases and controls were both 58.5 years-old, the 
demographic and baseline characteristics, chronic comorbidities, and 
clinical biochemical index were comparable between VAP cases and 
controls. The exceptions were a significantly shorter LOS before MV (3.6 
vs. 6.3 days, P = 0.009), but longer MV time (7.5 vs. 5.0 days, P < 0.001), 
and higher APACHE II score (24.00 vs. 22.00, P = 0.006). The case group 
had higher proportion of surgery, tracheotomy, MDRO infection, com-
bination of antibiotics, and lower baseline PaO2and SaO2 (all P < 0.05). 
As a result, the LOS was significantly longer in the case group than in the 
control group (30.0 vs.19.9 days, P < 0.001). Among 363 VAP cases, the 
number of early VAP and late VAP were 120 (33.1 %) and 243 (66.9 %), 
respectively.

In the validation stage, the mean age for the VAP cases and controls 
were 50.3 and 50.4 years-old, respectively. Compared to the control 
group, VAP patients also had significantly shorter LOS before MV (1.3 vs. 
4.3 days, P = 0.001), but longer MV time (5.1 vs. 4.0 days, P = 0.011) 
and longer LOS (25.8 vs.21.0 days, P = 0.027), higher proportions of 
tracheotomy, MDRO infection, and higher APACHE II score (all P <
0.05, Table 1), and marginally higher baseline CRP (P = 0.073). Among 

177 VAP cases, the number of early VAP and late VAP were 69 (39.0 %) 
and 108 (61.0 %), respectively. The flowchart of the study was shown in 
Fig. S1.

3.2. VAP prediction model development

Considering the multicollinearity of certain variables (Fig. S2), four 
factors (albumin, fasting blood-glucose, PaCO2, and serum bicarbonate) 
were excluded owing to collinearity existed (VIF >5). 26 variables were 
initially included to perform further analysis, and their VIFs were shown 
at Table S2. As shown in Fig. 1A and B, LASSO regression revealed that 
0.016 was the optimal value of λ, at which MDRO infection, surgery, 
tracheotomy, combination of antibiotics, APACHE II score, MV time, 
hemoglobin, creatinine, CRP, PaO2, and LOS before MV were identified 
as candidate predictors. As shown in Fig. 1C, the top 10 essential fea-
tures in RF regression were APACHE II score, MV time, MDRO infection, 
PaO2, surgery, tracheotomy, CRP, LOS before MV, SaO2, and Na; the RF 
model reached an AUC of 0.981 in training set and 0.975 in the testing 
set (Fig. S3A). Fig. 1D revealed that the 10 most essential features in 
XGBoost were APACHE II score, MV time, MDRO infection, tracheot-
omy, CRP, pH, LOS before MV, surgery, platelet, and PaO2; the XGBoost 
reached an AUC of 1.000 in training set and 0.983 in the testing set 
(Fig. S3B). Eight variables (LOS before MV, MV time, surgery, trache-
otomy, MDRO infection, CRP, PaO2, and APACHE II score) in the 
intersection set were finally selected as significant predictors for VAP 
risk (Fig. 1E). The model that incorporated the above independent 
predictors was developed and was presented as a risk nomogram 
(Fig. 2).

Furthermore, the calibration curve of the nomogram for predicting 
the risk of VAP in ICU patients demonstrated good agreement in this trial 
(Fig. S4A). The C-index for the prediction nomogram was 0.857 (95 % 
CI = 0.830, 0.884) for this clinical dataset, suggesting proper discrimi-
nation by the model. A DCA analysis for the VAP prediction nomogram 
was presented in Fig. S4B, which showed that if the threshold proba-
bility of a patient is set between 10 % and 93 %, then the use of this VAP 
prediction nomogram is more beneficial to patients compared with the 
extreme situation of diagnosing VAP in all patients or none. These 
findings indicated that the present model provided a higher net benefit 
across a reasonably wide range of threshold probabilities for predicting 
VAP development, and thus had good clinical utility.

Then, we fitted conditional logistic regression model to estimate the 
variable effects between the above significant predictors and VAP risk 
(Table S3). In the conditional logistic analysis, the positive associations 
of MV time, surgery, tracheotomy, MDRO infection, APACHE II score 
[OR (95 % CI) = 2.134 (1.410, 3.242), 2.568 (1.666, 4.001), 1.690 
(1.049, 2.738), 6.642 (4.538, 9.827), and 1.399 (1.280, 1.539), 
respectively], and the negative associations of LOS before MV, PaO2 [OR 
(95 % CI) = 0.636 (0.420, 0.960), 0.993 (0.989, 0.997), respectively] 
remained significant with VAP. However, the association of CRP with 
VAP risk was marginally significant in the conditional logistic analysis 
[(OR (95 % CI) = 1.002 (0.999, 1.003), P = 0.081].

3.3. Association of RFS with VAP risk

To estimate the joint effects of LOS before MV, MV time, surgery, 
tracheotomy, MDRO infection, CRP, PaO2, and APACHE II score on VAP, 
we calculated weighted RFS for the eight predictors. Each one-fold in-
crease in RFS was significantly associated with 1.699-fold increased risk 
of VAP [(OR (95 % CI) = 2.699 (2.347, 3.135), P < 0.001, Table 2]. BMI 
marginally modified this association (Pinteraction = 0.082). Restricted 
cubic spline regression analysis indicated a significant linear relation-
ship between RFS and VAP risk (P < 0.001, Fig. 3), with a p-value of 
nonlinearity of 0.891.
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3.4. Diagnostic performance of RFS for VAP risk

In the discovery stage, the RFS consistently demonstrated good 
predictive performance for all, early and late VAP patients [AUC (95 % 
CI) = 0.857 (0.830, 0.884), 0.877 (0.832, 0.922), 0.847 (0.813, 0.882), 
Fig. 4A], and there was no difference of discrimination for early and late 
VAP (P = 0.299). Furthermore, we validated the diagnostic value of RFS 
among another independent VAP case-control study, and the model had 
similar classification performance for all, early, and late VAP [AUC (95 
% CI) = 0.879 (0.843, 0.914), 0.879 (0.822, 0.937), 0.876 (0.830, 
0.922), Fig. 4B], and there was no difference of discrimination for early 
and late VAP (P = 0.930).

4. Discussion

To our knowledge, this is the first study to develop a weighted risk 
scoring system to examine VAP by LASSO regression, RF regression, and 
XGBoost model among a two-stage VAP case-control design. The RFS 
comprised eight reproducible and part of modifiable predictors (iden-
tified by the above three models together) for VAP risk, which included 
LOS before MV, MV time, surgery, tracheotomy, MDRO infection, CRP, 
PaO2, and APACHE II score, and was significantly linearly related to 
VAP risk. More importantly, the prediction model of RFS showed good 
discriminative power for all, early, and late VAP, as indicated by the 

AUC of 85.7 %, 87.7 %, and 84.7 % in the discovery stage and replicated 
successfully with AUC of 87.9 %, 87.9 %, and 87.6 % among the vali-
dation stage.

VAP is a clinically important, potentially preventable complication 
of MV, with various related risk factors.13,23 Each factor is not only an 
independent risk factor of VAP, but also has an influence on each other. 
Therefore, it is necessary to identify risk factors of VAP by using the 
models applicable with multiple exposures, which can account for po-
tential confounding effects of multiple variables co-exposure. In the 
current study, LASSO, RF and XGBoost consistently indicated LOS before 
MV, MV time, surgery, tracheotomy, MDRO infection, CRP, PaO2, and 
APACHE II score as independent predictors for risk of VAP. Compared 
with the traditional logistic regression method that neglects the mixed 
and complex relationships between the variables, the novel LASSO 
regression is an advanced and robust variable selection algorithm, since 
it adds a penalization on the effect sizes in the objective function to 
perform the variable selection by shrinking irrelevant variables to zero; 
18RF is an integrated learning algorithm belonging to the tree model, 
which makes predictions and assesses feature importance by con-
structing multiple decision trees; while XGBoost has received wide-
spread attention in clinical prediction model research due to its fast 
computational speed, strong generalization ability, and high prediction 
performance. Our study highlighted the importance of applying 
different and novel statistical methods for hazard assessment of complex 

Fig. 1. The significant variables chosen by three models (A–D) and the intersection set of these variables (E). (A–B) The LASSO regression analysis for screening the 
risk factors of VAP. Note: The black dotted and its error bars represent the cross-validation curve at different values of λ. The red solid line represented the optimal 
value of λ. Adjustment factors included age, and gender. (C) The importance ranking of variables identified by RF analysis. (D) The importance ranking of variables 
identified by XGBoost analysis. (E) The intersection set of these models revealed eight variables (LOS before MV, MV time, surgery, tracheotomy, MDRO infection, 
CRP, PaO2, APACHE II score) were associated with VAP risk. 
Abbreviations: APACHE II, Acute Physiology and Chronic Health Evaluation II; CRP, C-reactive protein; LASSO, least absolute shrinkage and selection operator; LOS 
before MV, length of stay before mechanical ventilation; MDRO, multiple drug resistant organism; MSE, mean squared error; MV, mechanical ventilation; PaCO2, 
arterial partial pressure of carbon dioxide; RF, random forest; VAP, ventilator-associated pneumonia; XGBoost, extreme gradient boosting.

H. Meng et al.                                                                                                                                                                                                                                   Journal of Microbiology, Immunology and Infection 58 (2025) 94–102 

98 



exposures in epidemiological researches.
In this study, we calculated weighted RFS of the above nine signifi-

cant predictors, and then evaluated its diagnostic performance for VAP 
risk. Of which, increased MV time and tracheotomy, as the interna-
tionally recognized factors,24,25 are also identified to be associated with 
increased risk of VAP in our and other previous studies. However, Nseir 
et al. revealed tracheotomy as an independent protective factor for VAP, 
they found that tracheotomy was associated with 82 % reduction in risk 
of VAP [OR (95 % CI) = 0.18 (0.10, 0.30)],26 which was contrary to our 
result, the reason may be that different timing of tracheotomy leads to 
difference in risk of VAP. Previous studies usually revealed positive 
relationship between total LOS with VAP risk, however in this study, we 
first found significant effect of LOS before MV on reducing risk of VAP, 
which means that it is very important to define ventilation duration 
when considering it as a predictor for VAP development. Few studies 
have explored the association of LOS before MV with VAP risk. Tobin 
et al. thought that selection of timing of intubation needed caution and it 
was not always better to intubate earlier.27 Additionally, earlier need for 

intubation was more likely precipitated by severer underlying illness. In 
deciding when to intubate, clinicians must balance the risk of premature 
exposure to ventilation against the potential harms of unassisted 
breathing, including disease progression and worsening of multiorgan 
failure.28

MDRO, such as MRSA, CRE, CRAB and CRPA, have been categorized 
as urgent threats for antibiotic therapy by The World Health Organiza-
tion.29,30 MDRO infection may result in difficulty for VAP treatment and 
increased mortality.2,31 Few previous studies have found that patients 
who have undergone surgery usually need long-time MV, and they 

Fig. 2. A nomogram for predicting the risk of VAP. 
Note: LOS before MV, MV time, surgery, tracheotomy, MDRO infection, CRP, PaO2, and APACHE II score are eight variable axes, the sum of each variable axis is the 
total points, which correspond to the risk of VAP. The categories of CRP in “0”, “1”, “2” represented “<10 mg/L”, “10–100 mg/L”, and “≥100 mg/L”, respectively. 
For example, a mechanically ventilated subject with LOS before MV < 5 days, MV time ≥7 days, MDRO infection, CRP <10 mg/L, APACHE II score of 24, PaO2 of 
97.4 mmHg, receiving tracheotomy and surgery, then the total score of VAP was 404, corresponding to the probability of VAP is 93.7 %.

Table 2 
Associations of RFS with risk of VAP in the discovery stage.

Variables n (cases/controls) OR (95 % CI)a P

All subjects 363/363 2.699 (2.347, 3.135) <0.001
Age, years-old
≤60 194/191 2.770 (2.291, 3.414) <0.001
>60 169/172 2.619 (2.145, 3.269) <0.001

Pinteraction
b   0.371

Gender
Males 239/239 2.692 (2.273, 3.237) <0.001
Females 124/124 2.727 (2.147, 3.568) <0.001

Pinteraction
b   0.964

BMI, kg/m2

≤25 244/243 2.524 (2.144, 3.016) <0.001
>25 119/120 3.132 (2.421, 4.199) <0.001
Pinteraction

b   0.082

Abbreviations: CI, confidence interval; OR, odds ratio; RFS, risk factor score.
a Conditional logistic regression model with the log2-transformed RFS as an 

independent variable and adjusted for age, gender (variables that were stratified 
were not adjusted).

b Interaction effects were carried out by including a multiplicative interaction 
term into the models for the stratification analysis.

Fig. 3. The restricted cubic spline for the association between RFS and VAP 
risk. 
Abbreviations: CI, confidence interval; OR, odds ratio; RFS, risk factor score. 
Note: The red line represents adjusted OR, based on restricted cubic splines for 
the log2-transformed RFS in the logistic regression model. Knots were placed at 
the 25th, 50th, and 75th percentiles of the RFS distribution, and the reference 
value was set at the 50th percentile. Adjustment factors included age, gender. 
The bars represent histograms of RFS among the discovery stage.
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represent a special subpopulation at high risk for infection.32 However, 
limited information exists regarding the clinical characteristics of VAP 
in this setting. APACHE II is a severity-of-disease classification system, 
and it was designed to measure the severity of disease for adult patients 
admitted to the ICU.33,34 Zhou et al. revealed that APACHE II scores 
were significantly higher in VAP patients compared with non-VAP 
subjects (23.1 ± 4.8 vs. 16.7 ± 4.6; P < 0.001).35 CRP belongs to a 
family of proteins named pentraxins, suggesting a central role in 
immunological response. CRP was a helpful biomarker for early iden-
tification of infection of VAP.36,37 A multicenter retrospective study 
revealed increased CRP as a potential risk factor of pneumonia.38 PaO2 
in arterial blood gas analysis represents the degree of hypoxia directly, 
and hypoxia state usually means more susceptible to lung infections by 
weakening immunity. Previous studies revealed that hypoxia was 
associated with VAP, and was one of the most frequently used clinical 
symptom and diagnostic criteria of VAP.37,39

Current practice in VAP prediction and prevention is reactive. We 
advocate for a more proactive approach that includes risk-based 
screening and early prevention to mitigate the development of VAP. 
For those patients receiving MV, the VAP risk scoring system serves as a 
functional predictive tool that provides guidance for early intervention 
to reduce VAP risk,40 by methods such as trying to delay using intuba-
tion, shortening MV time, avoiding unnecessary tracheotomy, timely 
treatment of inflammation or hypoxia, and so on. Early preventive and 
anticipatory guidance may be the key to addressing the VAP epidemic 

and decreasing VAP-related mortality. An excellent prediction model 
would have beneficial consequence for clinical decision making by 
assisting in early identifying the risk of VAP.41 In our current study, the 
prediction model established by RFS showed uniformly good discrimi-
native power for both early and late VAP, with AUC of 87.7 % and 84.7 
% in the discovery study and of 87.9 % and 87.6 % among the replicated 
study. Our findings provide convincing evidence that the prediction 
model improved prediction of VAP risk.

The current study has several strengths. First, this study was the first 
to establish a novel and modifiable risk factor scoring system by three 
models (LASSO, RF and XGBoost) in a two-stage VAP case-control study. 
Since the use of the weighted risk score method revealed results that 
considers the weights of different variables, improvements for the larger 
weights will yield better preventive effect. The association between a 
higher RFS and a higher VAP risk suggests the relevance and potential 
use of this risk scoring assessment tool in those receiving MV. On the 
other hand, the applications of novel machine learning models could 
overcome the statistical limitations of the traditional logistic regression 
approach. More importantly, the diagnostic performance of the predic-
tion model was further validated successfully in another independent 
VAP case-control study. However, several limitations should also be 
acknowledged. First, the cross-sectional design of the study could not 
establish the causal inferences between risk factors and VAP risk. Future 
prospective studies are warranted to disclosure the biological causality. 
Second, previous studies have also predicted the risk of VAP, and some 

Fig. 4. Diagnostic performance of RFS for all, early, and late VAP in the discovery stage (A) and validation stage (B). 
Note: AUC, area under the curve.
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of the predictors identified in this study have previously been associated 
with VAP.32,42 However, our design based on two-stage case-control 
study and usage of three machine learning models are novel and robust. 
Third, VAP is known to lead to severe lung injury, other related factors 
that could reflect lung injury, such as driving pressure and mechanical 
power,43 were not analyzed in the current research but need to be 
accessed in the further studies. Finally, our study only collected data for 
the duration of inpatient stay, which ignored relevant data related to 
patient outcomes after discharge, such as functional outcomes, 30-day 
morbidity, and mortality or related re-admissions.

5. Conclusion

In this two-stage VAP case-control study, we proposed a novel risk 
scoring tool for VAP that was based on eight risk factors, including LOS 
before MV, MV time, surgery, tracheotomy, MDRO infection, CRP, PaO2, 
and APACHE II score, which was selected by LASSO, RF, and XGBoost 
models. The RFS was linearly associated with increased risk of VAP and 
could predict VAP risk, as indicated by the AUC of 85.7 % in the dis-
covery stage and replicated successfully with AUC of 87.9 % among the 
validation stage. Our results may gain insights into the occurrence of 
VAP and reveal potential clinical targets for VAP prevention.
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