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A B S T R A C T

Background: Rapid and accurate identification of bacteria is required in order to develop effective treatment 
strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The 
Raman spectroscopy, due to its relatively cost-effectiveness, offers a promising alternative for bacterial identi
fication. However, its clinical utility still requires further validation.
Methods: In this study, the artificial intelligent Raman detection and identification system (AIRDIS) was imple
mented to identify bacterial species, including Staphylococcus aureus (n = 1290), Enterococcus faecium (n = 1020), 
Klebsiella pneumoniae (n = 1366), Pseudomonas aeruginosa (n = 1067), and Acinetobacter baumannii (n = 811). 
Raman spectra were collected, preprocessed, and analyzed by machine learning (ML).
Results: After training on 24,420 Raman spectra from 1221 isolates and testing on 4333 isolates, the AIRDIS 
demonstrated an area under the curve (AUC) of 0.99 for Gram classification, with accuracies of 97.64 % for 
Gram-positive bacteria and 98.86 % for Gram-negative bacteria. Spectral differences between Gram-positive and 
Gram-negative bacteria were linked to structural variations in their cell walls, such as peptidoglycan and lipo
polysaccharides. At the species level, S. aureus, E. faecium, K. pneumoniae, P. aeruginosa, and A. baumannii were 
identified with high accuracy, ranging from 94.76 % to 96.88 %, with all species achieving an AUC of 0.99.
Conclusions: Validation with a large number of clinical isolates demonstrated Raman spectroscopy combined with 
ML excels in identification of five bacterial species associated with multidrug resistance. This finding confirms 
the clinical utility of the system while laying a solid foundation for the future development of antimicrobial 
resistance prediction models.

1. Introduction

Bacterial infections have long been a critical issue in global public 
health and remain one of the leading causes of mortality worldwide. A 

systematic investigation conducted in 2019 revealed that 13.7 million 
deaths were associated with infectious diseases.1 Additional studies also 
indicate that over 20 % of annual global deaths are linked to in
fections.2,3 Therefore, reducing the mortality burden caused by 
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infections is an urgent priority for global public health. Rapid and ac
curate bacterial identification in clinical infections is essential for pre
cise diagnosis, effective treatment, and robust public health 
management. Traditionally, culture-based methods have been regarded 
as the gold standard for bacterial detection and identification.4 Although 
automated identification systems, such as VITEK® 2 (bioMe’rieux, 
Marcy l’Etoile, France) and BD Phoenix™ (Becton-Dickinson Microbi
ology Systems, Sparks, MD, USA), have improved throughput, they still 
require an additional 24–48 h for definitive identification.5

Matrix-assisted laser desorption ionization-time of flight mass spec
trometry (MALDI-TOF MS) rapidly ionizes bacterial proteins directly 
from cultured colonies using laser pulses, generating a species-specific 
protein fingerprint. This technology is now widely employed in clin
ical microbiology laboratories. Each sample analysis requires only 5–7 
min, typically allowing results to be available within 12–24 h after 
sample receipt.5 However, the MALDI-TOF MS system comes with an 
initial cost exceeding $300,000 USD, along with substantial annual 
maintenance expenses, making it a significant financial burden for small 
to medium-sized hospitals. Other identification methods, such as 
molecular-based approaches, offer shorter processing times but still 
require additional equipment or manual steps, thereby increasing the 
workload of clinical microbiologists.6 Given these challenges, there is an 
urgent need to develop a rapid, accurate, and cost-effective bacterial 
identification system.

Raman spectroscopy, due to its label-free, non-invasive nature and 
high sensitivity, is considered to hold significant potential for bacterial 
identification.7–9 When a monochromatic laser beam interacts with a 
sample, scattering occurs. If the photon energy of the scattered light is 
equal to that of the incident light, it is termed elastic scattering or 
Rayleigh scattering. However, if the energy of the scattered light differs 
from that of the incident light, it is referred to as inelastic scattering or 
Raman scattering.10 Raman scattering photons can either loss or gain 
energy. If the energy of the scattered photon is lower than that of the 
incident photon, the phenomenon is termed Stokes scattering. In 
contrast, if the scattered photon has higher energy, it is referred to as 
anti-Stokes scattering.11 The frequency difference between the incident 
and scattered photons is known as the Raman shift.12 The observation of 
Raman scattering is often limited by high fluorescence excitation in
tensity.13 To overcome this limitation, surface-enhanced Raman scat
tering (SERS) is employed to amplify Raman signals, thereby enhancing 
sensitivity. SERS achieves signal amplification through the enhance
ment of the electromagnetic field at metal surfaces and the 
charge-transfer interactions between the metal and the molecules.14

Due to the complexity of Raman spectra and the subtle differences 
between the spectra of different bacterial species, machine learning 
(ML) is often employed for data processing. Currently, several bacterial 
identification models combining Raman spectroscopy with deep 
learning techniques, such as convolutional neural networks (CNNs), 
have been developed.15 Numerous studies on these applications have 
been reported; however, they often fail to include clinically significant 
antibiotic-resistant species and typically involve a limited number of 
isolates.9,16,17

This study aims to develop a system, referred to as the Artificial 
Intelligent Raman Detection and Identification System (AIRDIS), which 
integrates Raman spectroscopy and ML to identify clinically significant 
bacterial species associated with multidrug resistance, including Staph
ylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudo
monas aeruginosa, and Acinetobacter baumannii. The system is designed to 
facilitate the future development of antimicrobial resistance prediction 
models.

2. Materials and methods

2.1. Bacterial isolates

To evaluate the clinical performance of the AIRDIS and its microbial 

identification software (ITRUST MedTech Inc., Hsinchu, Taiwan), this 
study tested five clinically most encountered bacterial species. These 
species isolates included S. aureus (n = 1290), E. faecium (n = 1020), 
K. pneumoniae (n = 1366), P. aeruginosa (n = 1067), and A. baumannii (n 
= 811) and were collected from positive blood cultures from clinical 
laboratory of China Medical University Hospital (CMUH) between 2021 
and 2023 (n = 2516) and from the Surveillance of Multicenter Antimi
crobial Resistance in Taiwan (SMART) between 2017 and 2020 (n =
3038) (Table 1).18–21 Bacterial isolates were cultured on trypticase soy 
agar (TSA) with 5 % sheep blood (Becton-Dickinson Microbiology Sys
tems) at 37 ◦C for 16–18 h. This process involved both the direct inoc
ulation of specimens onto blood agar plates and subculturing from 
positive blood culture bottles. The species identification of the isolates 
was subsequently confirmed using matrix-assisted laser desorption/io
nization time-of-flight mass spectrometry (MALDI-TOF MS) Biotyper 
system (Bruker Microflex LT/SH, Bruker Daltonics GmbH).

2.2. Study workflow

To establish and investigate the feasibility of applying Raman spec
trum combined with deep learning for clinical bacterial identification, 
this study employed the AIRDIS to collect bacterial spectral data. Species 
identification was concurrently performed following standard clinical 
workflows using the MALDI-TOF MS Biotyper system. The species 
identification results were used as labels for the bacterial Raman spectra, 
facilitating the deep learning analysis and validation as shown in Fig. 1.

2.3. Bacterial isolates

Among 5554 isolates, 1221 were randomly selected for training, 
including 150 S. aureus, 150 E. faecium, 150 K. pneumoniae, 150 
P. aeruginosa, and 150 A. baumannii isolates from SMART program, as 
well as 125 S. aureus, 106 E. faecium, 124 K. pneumoniae, 97 
P. aeruginosa, and 19 A. baumannii isolates from CMUH. The remaining 
4333 isolates were used for testing.

2.4. Preparation of Raman samples

The isolates were incubated on blood agar plates at 37 ◦C for 16–18 
h. A single colony then selected and mixed with a silver nanoparticle 
SERS colloid (ITRUST MedTech Inc.) on a stainless-steel substrate 
(ITRUST MedTech Inc.), resulting in a circular spot approximately 2–3 
mm wide following rapid air-drying. After drying, the bacterial isolates 
were excited with a 785 nm laser,22 which induced Raman scattering 
from the bacterial cells. In the application of SERS technology, the 
colloidal silver nanoparticles interact directly with the bacterial strains. 
By positioning the bacterial cells near the plasmonic silver nano
particles, the enhanced electromagnetic field from the nanoparticles 
amplifies the Raman signal, enabling the acquisition of representative 
Raman fingerprint spectra of the bacteria, as shown in Fig. 2.

Table 1 
Bacteria isolates evaluated in this study.

Organism No. of isolates collected

CMUH SMART

S. aureus 664 626
E. faecium 383 637
K. pneumoniae 760 606
P. aeruginosa 514 553
A. baumannii 195 616
Subtotal 2516 3038
Total 5554

CMUH, China Medical University Hospital; SMART, Surveillance of Multicenter 
Antimicrobial Resistance in Taiwan.
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2.5. Raman measurements

The AIRDIS was employed to record Raman scattering signals, uti
lizing a 1-s integration time and laser power adjusted between 1 and 
500 mW during data collection. The ring-shaped region was selected as 
the measurement area, and spectra were collected from 20 randomly 
chosen points within this region to minimize the coffee-ring effect and 
enhance reproducibility. The coffee-ring effect is a common phenome
non in SERS measurements, where the colloidal particles form a ring- 
like pattern during drying. By selecting the optimal region within this 
ring, consistent and reproducible measurements can be achieved.23

2.6. Spectrum pretreatment

The collected spectra were processed using a polynomial fitting al
gorithm for baseline correction and a Savitzky-Golay filter for smooth
ing.24 This approach ensured spectral consistency while maintaining the 
linear relationship between signal intensity, laser power, and integra
tion time, and effectively reduced noise. Subsequently, to ensure 
comparability among different variables, the spectra were normalized, 

allowing features within the same range to be standardized.

2.7. Deep learning model architecture and model training

The RamanNet architecture was utilized for classification tasks.25 A 
multi-layer perceptron (MLP) was constructed for this purpose, con
sisting of two dense layers with batch normalization and an output layer. 
The Raman spectra were segmented into multiple overlapping frag
ments, with each fragment normalized and feature-extracted through an 
independent dense layer. The features obtained from all dense layers 
were concatenated and regularized using a dropout layer.

To optimize the multi-class microbial identification models, hyper
parameters were adjusted through grid search applied to the training 
dataset. The training data were divided randomly into an 80:20 split for 
training and validation. Model selection was based on the weighted F1- 
score calculated from the validation set. All training and evaluations 
were performed using TensorFlow (version 2.9.1), Keras (version 2.9.0), 
and scikit-learn (version 1.3.2) on a system equipped with an Intel Core 
i7-14700K CPU, 128 GB RAM, and an NVIDIA GeForce RTX 4090 
GPU.26,27

Fig. 1. Workflow of this study. Bacteria cultured from blood specimens or positive blood culture bottles were analyzed using MALDI-TOF MS and AIRDIS, 
respectively. The identification results from MALDI-TOF MS were used as labels for the bacterial Raman spectra to train and validate the deep learning model.

Fig. 2. Schema of the label-free SERS detection of bacteria. The acquisition of bacterial Raman spectra followed these steps: (1) a reagent was dispensed onto a 
reflective substrate, (2) a single bacterial colony was picked using a sterile loop, (3) the bacteria were mixed with the reagent on the substrate, (4) the mixture was 
allowed to air-dry, and (5) the sample was analyzed to obtain the Raman spectra.
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2.8. SHAP value analysis for feature importance

To identify key Raman spectral features distinguishing different 
bacterial species, SHapley Additive exPlanations (SHAP) analysis 
(version: 0.44.1) was performed.28 SHAP values quantify the contribu
tion of each feature to the model’s predictions. By calculating the mean 
absolute SHAP values, the most significant Raman spectral features 
influencing the bacterial identification model’s decisions were deter
mined. These SHAP values were then mapped to their corresponding 
Raman shift positions for visualization. The SHAP values were then 
compared with Raman shift intensity of the testing samples for each 
species, revealing that the presence of several significant Raman shift 
peaks influenced the model’s predictions.

2.9. Clinical identification data analysis

During model evaluation, the optimized model predicted the scores 
for 20 Raman spectra per sample. The average of these scores was 
calculated as the species identification score for the sample, with a 
classification threshold set at 0.6. The performance of the model was 
evaluated using several metrics, including accuracy, recall (sensitivity), 
precision, and F1 score. These metrics were calculated based on the 
confusion matrix.

3. Results

3.1. Collection of clinical isolates for AIRDIS evaluation

The isolates were identified and validated using the clinical standard 
method, MALDI-TOF MS. After acquiring the Raman spectra, data pre
processing was performed using the AIRDIS software to ensure data 
consistency. Each bacterial sample in the dataset was measured with a 
minimum of 20 spectra (Table 1).

3.2. Performance of Gram-positive and Gram-negative bacteria 
identification

This study developed a multiclass deep learning model leveraging 
Raman spectroscopy to identify five bacterial species: S. aureus and 
E. faecium (Gram-positive), as well as K. pneumoniae, P. aeruginosa, and 
A. baumannii (Gram-negative). We first developed a model to distinguish 
between Gram-positive and Gram-negative bacteria. As shown in 
Fig. 3A, the model demonstrated exceptional performance in dis
tinguishing Gram-positive and Gram-negative bacteria, achieving an 
area under the curve (AUC) of 0.99, indicative of highly accurate 

classification. Confusion matrix analysis further confirmed strong re
sults, with Gram-positive bacteria showing an accuracy, recall, preci
sion, and F1 score of 97.64 %, 97.64 %, 98.36 %, and 98.00 %, 
respectively (Fig. 3B and Table 2). For Gram-negative bacteria, the 
corresponding metrics were 98.86 %, 98.86 %, 98.36 %, and 98.61 %. 
These findings highlight the model’s reliability and robust predictive 
capability.

We further analyzed the spectral differences between Gram-positive 
and Gram-negative bacteria, as shown in Fig. 4A. Several regions with 
significant variation were identified, particularly the gray-shaded areas 
in Fig. 4A, which serve as distinguishing spectral features for 

Fig. 3. Binary classification results of Gram-positive and Gram-negative bacteria. (A) The ROC curve with an AUC of 0.99. (B) The confusion matrix displaying the 
prediction accuracies for Gram-positive and Gram-negative bacteria, at 97.64 % and 98.86 %, respectively.

Table 2 
Model performances of identifications for clinical isolates.

Bacteria 
classification/species 
(no. of isolates)

Data 
segment

Metrics (%)

Accuracy Recall Precision F1

Gram positive 
bacteria (1,779)

Testing 97.64 97.64 98.36 98.00
1779 
isolates/ 
35580 RS 
files

S. aureus (1,015) Testing 96.85 96.85 98.10 97.47
1015 
isolates/ 
20300 RS 
files

E. faecium (764) Testing 96.60 96.60 96.60 96.60
764 isolates/ 
15280 RS 
files

Gram negative 
bacteria (2,554)

Testing 98.86 98.86 98.36 98.61
2554 
isolates/ 
51080 RS 
files

K. pneumoniae 
(1,092)

Testing 96.61 96.61 95.05 95.82
1092 
isolates/ 
21840 RS 
files

P. aeruginosa (820) Testing 94.76 94.76 98.11 96.40
820 isolates/ 
16400 RS 
files

A. baumannii (642) Testing 96.88 96.88 93.53 95.18
642 isolates/ 
12840 RS 
files
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differentiating Gram-positive and Gram-negative bacteria.
Bacterial Raman spectral features primarily reflect the structural 

characteristics of their cell surfaces.29,30 The principle behind Gram 
classification is based on the differences in the bacterial cell wall 
structure, which accounts for the high accuracy of the classification 
model in distinguishing Gram-positive and Gram-negative bacteria. For 
instance, the peak observed at 908 cm⁻1 in Gram-negative bacteria 
(region No. 2 in Fig. 4A) has been linked to saccharides, a feature 
attributed to molecules such as lipopolysaccharides (LPS) found on the 
outer membrane of Gram-negative bacteria, which are less pronounced 
in Gram-positive bacteria.31,32 In contrast, the peak at 1507 cm⁻1 in 
Gram-positive bacteria (region No. 4 in Fig. 4A) is associated with the 
peptidoglycan layer of the cell wall, which is more extensive in 
Gram-positive bacteria. This results in a stronger Raman signal, whereas 
Gram-negative bacteria, with their additional outer membrane, exhibit 
weaker excitation of this signal, leading to differences in the spectral 
data.31,33 In addition, the SHAP analysis results revealed that Raman 
shift features within the spectral regions of 902–907 cm⁻1, 779–783 
cm⁻1, and 1004–1005 cm⁻1 were identified as the most significant con
tributors to the predictions of the Gram classification model (Fig. 4B). 
These finding correspond to the spectral differences observed in Fig. 4A, 
specifically in regions No. 1, No. 2, and No. 3, where notable variations 
in spectral intensity and peak positions can be observed. Spectra 
exhibiting peaks within the ranges of 779–783 cm⁻1 (region No. 1) and 
902–907 cm⁻1 (region No. 2) are characteristic of Gram-negative bac
teria, whereas spectra with peak observed in the range of 1004–1005 

cm⁻1 (region No. 3) are associated with Gram positive bacteria. These 
differences highlight the relationship between the identified Raman 
shift features and the underlying structural and compositional distinc
tions between Gram-positive and Gram-negative bacteria, further vali
dating the classification model’s predictions.

3.3. Performance of S. aureus and E. faecium identification

In the species-level classification model, the identification of 
S. aureus and E. faecium demonstrated exceptional performance, with 
both achieving an AUC of 0.99, indicating highly accurate results 
(Fig. 5A). The confusion matrix confirmed these strong results. For 
S. aureus, the accuracy, recall, precision, and F1 score were 96.85 %, 
96.85 %, 98.10 %, and 97.74 %, respectively (Fig. 5B and C and 
Table 2). Similarly, E. faecium achieved an accuracy, recall, precision, 
and F1 score of 96.60 %, 96.60 %, 96.60 %, and 96.60 %, respectively 
(Fig. 5B and Table 2).

We also leveraged SHAP values to investigate potentially significant 
spectral features or regions. An analysis was conducted on S. aureus and 
E. faecium, both classified as Gram-positive bacteria, identifying the top 
40 most significant Raman shift features ranked by mean absolute SHAP 
values (Fig. 6A). This reveals that Raman shift features at 717–734 cm⁻1, 
1131–1140 cm⁻1, and 1077–1079 cm⁻1 are the most critical for pre
dictions in both species. A detailed examination of Fig. 6B and C reveals 
that spectra exhibiting higher intensity within the range of 728–734 
cm⁻1 are more likely to be associated as S. aureus. In contrast, spectra 

Fig. 4. Key spectral differences and features in Gram classification. (A) The spectral differences between Gram-positive and Gram-negative bacteria. (B) The 40 
features which contribute the most to the outcome of the Gram classification model. Raman shift features are ranked based on their mean absolute SHAP values. 
Positive SHAP values contribute to the classification of spectra as belonging to Gram-positive, while negative SHAP values are associated with Gram-negative. The 
color bar represents the relatively higher or lower spectral intensity of the Raman shift features.
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with higher intensity within the ranges of 717–726 cm⁻1, 1131–1140 
cm⁻1 and 1077–1079 cm⁻1 are indicative of E. faecium.

These findings closely correspond to the observed spectral charac
teristics. As illustrated in Fig. 7A, the gray-shaded regions highlight the 
spectral differences between the two species. While the variation in re
gion No. 2 appears subtle, a comparison with the peak at 490–500 cm⁻1 

suggests that the relative intensity differences between adjacent peaks 
could be crucial in improving classification accuracy.

3.4. Performance of K. pneumoniae, P. aeruginosa and A. baumannii 
identification

For Gram-negative bacteria, including K. pneumoniae, P. aeruginosa, 
and A. baumannii, the model achieved an AUC of 0.99 for each, 
demonstrating its exceptional performance (Fig. 5A). The classification 
metrics demonstrated similarly strong performance in Gram-negative 
bacteria (Fig. 5B and Table 2). K. pneumoniae achieved 96.61 % accu
racy, 96.60 % recall, 95.05 % precision, and a 95.82 % F1 score. For 
P. aeruginosa, the values were 94.76 %, 94.76 %, 98.11 %, and 96.40 %, 
respectively. A. baumannii attained 96.88 % accuracy, 96.88 % recall, 
93.53 % precision, and a 95.18 % F1 score. These findings provide 
strong evidence supporting the model’s reliability and its robust pre
dictive capability in accurately distinguishing between Gram-positive 
and Gram-negative bacteria.

Similarly, we conducted SHAP value analysis on Gram-negative 
bacteria, including K. pneumoniae, P. aeruginosa, and A. baumannii, to 
identify potentially significant spectral features or regions. Fig. 6D show 
the top 40 most important Raman shift features ranked by mean abso
lute SHAP values. The results indicate that Raman shift features at 
1128–1138 cm⁻1, 678–682 cm⁻1, and 713–738 cm⁻1 contributed the 
most to predictions for these three bacterial species. A closer examina
tion of Fig. 6E to G reveals that spectra with higher intensity in the 
ranges of 1128–1138 cm⁻1 and 713–738 cm⁻1 are more likely to be 
associated as K. pneumoniae. In contrast, spectra with higher intensity 
within the ranges of 853–861 cm⁻1 and 1173–1176 cm⁻1 are indicative 
of P. aeruginosa. Additionally, spectra exhibiting higher intensity within 
the ranges of 673–682 cm⁻1, 722–725 cm⁻1 and 1373–1374 cm⁻1 are 
characteristic of A. baumannii.

In the Raman spectra, although Gram-negative bacteria share com
mon characteristic features, the gray-shaded regions in Fig. 7B highlight 
significant spectral differences among the three species. These differ
ences are reflected in the varying expression levels of specific features, 
which, in turn, influence the relative intensity between adjacent peaks. 
Such variations may play a critical role in improving classification ac
curacy. Additionally, we observed that the predictive impact of 

individual features varied across different bacterial species. For 
instance, the Raman shift feature at 678 cm⁻1 had a stronger influence on 
the predictions for A. baumannii and K. pneumoniae, while its impact on 
P. aeruginosa was comparatively smaller. This variation is visually 
evident in the different sizes of the color-coded regions corresponding to 
each species. Conversely, the Raman shift feature at 861 cm⁻1 demon
strated greater importance for P. aeruginosa and K. pneumoniae, while its 
contribution to A. baumannii predictions was less significant.

These findings provide strong evidence supporting the model’s reli
ability and its robust predictive capability in accurately distinguishing 
between Gram-positive and Gram-negative bacteria.

4. Discussion

This study developed an identification system integrating Raman 
spectroscopy and ML for S. aureus, E. faecium, K. pneumoniae, 
P. aeruginosa, and A. baumannii. According to the World Health Orga
nization’s 2024 bacterial priority pathogens list, these bacteria are 
classified under the priority categories of either the critical or high 
group.34 Specifically, carbapenem-resistant K. pneumoniae, 
A. baumannii, and P. aeruginosa (CRKP, CRAB, and CRPA) rank 1st, 3rd, 
and 10th, respectively. Vancomycin-resistant E. faecium (VRE) and 
methicillin-resistant S. aureus (MRSA) rank 9th and 14th overall, and 1st 
and 3rd among Gram-positive bacteria. This underscores the critical 
importance of rapid and accurate identification of these bacterial spe
cies, as well as understanding their antimicrobial resistance. The AIRDIS 
developed in this study demonstrated excellent performance in identi
fying these five bacterial species, providing significant support for the 
future development of antimicrobial resistance prediction models.

The potential clinical applications of Raman spectroscopy have been 
extensively investigated in research. SERS effectively addresses chal
lenges such as weak signals and low reproducibility, significantly 
enhancing its utility in clinical settings.35 However, due to the 
complexity of the data, ML is now considered essential for the analysis of 
Raman spectral signals.36 Numerous studies have explored the effec
tiveness of combining SERS technology with ML algorithms for the rapid 
detection of bacteria.16,17,37,38 In 2021, Tang et al. analyzed 117 isolates 
from nine clinically significant Staphylococcus species, achieving an ac
curacy of 98.21 %.37 In 2022, Tang et al. utilized SERS combined with 
machine learning to distinguish 103 clinical bacterial isolates from 15 
species, including Achromobacter xylosoxidans, achieving an accuracy of 
99.86 %.38 In 2022, Wang et al. analyzed 30 bacterial species from 9 
different genera, achieving an accuracy of 99.80 % at the genus level 
and 98.37 % at the species level.16 A more recent study analyzing 30 
bacterial species reported an overall accuracy of 90.55 %.17 However, a 

Fig. 5. Binary classification results of species identification. (A) AUC for the deep learning algorithm in species identification. The confusion matrix displaying (B) 
prediction results and (C) prediction accuracies (%) for S. aureus, E. faecium, K. pneumoniae, P. aeruginosa, and A. baumannii (96.85, 96.60, 96.61, 94.76, and 96.88, 
respectively).
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significant gap is still widely recognized between basic research and 
practical applications.35 While the studies mentioned above achieved 
promising results, they were limited by the relatively small number of 
isolates analyzed, despite generating over ten thousand spectra. The 
variability among clinical isolates remains a major challenge for broader 

application. The AIRDIS developed in this study utilized 5554 clinical 
isolates during training and testing, generating a total of 197,740 Raman 
spectra. It achieved an accuracy of over 94.76 % across various classi
fication tasks. Furthermore, the system was seamlessly integrated into 
the workflow of a clinical microbiology laboratory, demonstrating the 

Fig. 6. The 40 features contributing the most to the outcomes of classification models for (A) Gram-positive bacteria (B) S. aureus, (C) E. faecium, (D) Gram-negative 
bacteria, (E) K. pneumoniae, (F) P. aeruginosa, and (G) A. baumannii. Raman shift features are ranked based on their mean absolute SHAP values. In panels (B), (C), (E), 
(F) and (G), positive SHAP values contribute to the classification of spectra as belonging to their respective classes, while negative SHAP values indicate the opposite. 
The color bar represents the relatively higher or lower spectral intensity of the Raman shift features.
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practical applicability of combining SERS with machine learning in 
clinical settings.

Previous studies have reported significant differences in peaks at 540 
and 1380 cm− 1 when comparing Gram-positive and Gram-negative 
bacteria. This feature is primarily attributed to glycosidic bonds in N- 
acetyl glucosamine and N-acetyl muramic acid of peptidoglycan.31

However, in the SHAP analysis conducted in this study, these two peaks 
were not identified as key features. Instead, we observed that the most 
pronounced difference between Gram-positive and Gram-negative bac
teria was the peak at 908 cm− 1, which is associated with LPS present in 
the outer membrane of Gram-negative bacteria.31,32 As LPS are an outer 
membrane structure exclusively found in Gram-negative bacteria, their 
use as a primary feature to distinguish between Gram-positive and 
Gram-negative bacteria is theoretically justified. It is important to note 
that bacteria possess various mechanisms for LPS modification.39 For 
instance, P. aeruginosa may modify its lipid A during long-term chronic 
infection to enhance immune evasion. Similarly, Burkholderia dolosa has 
been observed to alter its O-antigen structure during infection, poten
tially promoting biofilm formation. Additionally, Burkholderia cen
ocepacia has been found to exhibit O-antigen deficiency, which increases 
macrophage internalization following phagocytosis. Helicobacter pylori 
can also modify its LPS to evade immune responses, thereby sustaining 
infection. More importantly, LPS modification is one of the resistance 
mechanisms employed by bacteria such as K. pneumoniae, P. aeruginosa, 
A. baumannii, and Salmonella against polymyxin B or colistin.40 This 
highlights the importance of evaluating the performance of the AIRDIS 
when encountering such isolates. Moreover, attention should be given to 
whether these factors could impact identification performance in future 
developments of antimicrobial resistance prediction systems.

Due to the variability of clinical bacteria, different strains of the same 
species may exhibit distinct features in their Raman spectra. To mini
mize the issue of strain specificity, we utilized isolates from the SMART 
program, which includes isolates collected from 18 major hospitals 
across Taiwan. However, it is important to note that all isolates in this 
study originated from Taiwan, which represents a limitation of this 
research.

Compared to the commonly used MALDI-TOF MS in clinical micro
biology laboratories, the AIRDIS requires a similar operation time 
(average 1–3 min per sample). However, the cost per sample, instrument 
price, and maintenance expenses for AIRDIS are significantly lower than 
those of MALDI-TOF MS. In terms of accuracy, MALDI-TOF MS achieves 
nearly 100 % accuracy for S. aureus, E. faecium, K. pneumoniae, and P. 
aeruginosa, but its accuracy for A. baumannii is relatively lower at 
approximately 89.7 %. In contrast, AIRDIS demonstrated accuracies 
ranging from 94.76 % to 98.86 % across all five species. These results 

highlight AIRDIS as a competitive option, particularly for small-to me
dium-sized hospitals.

In conclusion, the AIRDIS offers rapid, accurate, and cost-effective 
bacterial identification while seamlessly integrating into the workflow 
of clinical microbiology laboratories. Validated with a large number of 
isolates, it demonstrated excellent performance in identifying clinically 
significant species, including S. aureus, E. faecium, K. pneumoniae, 
P. aeruginosa, and A. baumannii. This study provides valuable insights for 
advancing Raman technology as an alternative method for bacterial 
identification and for developing antimicrobial resistance prediction 
systems in the future.
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