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Abstract Background: Bacteremia is a life-threatening complication of infectious diseases.
Bacteremia can be predicted using machine learning (ML) models, but these models have
not utilized cell population data (CPD).
Methods: The derivation cohort from emergency department (ED) of China Medical University
Hospital (CMUH) was used to develop the model and was prospectively validated in the same
hospital. External validation was performed using cohorts from ED of Wei-Gong Memorial Hos-
pital (WMH) and Tainan Municipal An-Nan Hospital (ANH). Adult patients who underwent com-
plete blood count (CBC), differential count (DC), and blood culture tests were enrolled in the
present study. The ML model was developed using CBC, DC, and CPD to predict bacteremia
from positive blood cultures obtained within 4 h before or after the acquisition of CBC/DC
blood samples.
Results: This study included 20,636 patients from CMUH, 664 from WMH, and 1622 patients
from ANH. Another 3143 patients were included in the prospective validation cohort of CMUH.
The CatBoost model achieved an area under the receiver operating characteristic curve of
0.844 in the derivation cross-validation, 0.812 in the prospective validation, 0.844 in the
WMH external validation, and 0.847 in the ANH external validation. The most valuable predic-
tors of bacteremia in the CatBoost model were the mean conductivity of lymphocytes, nucle-
ated red blood cell count, mean conductivity of monocytes, and neutrophil-to-lymphocyte
ratio.
Conclusions: ML model that incorporated CBC, DC, and CPD showed excellent performance in
predicting bacteremia among adult patients with suspected bacterial infections and blood cul-
ture sampling in emergency departments.
Copyright ª 2023, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Introduction

Bacteremia is a life-threatening condition resulting from
the presence of viable bacteria in the bloodstream.1e3 A
previous study has indicated that patients in the emergency
department (ED) with bacteremia have a higher 30-day
mortality rate than those with negative blood cultures.1

The higher mortality rate associated with bacteremia is
frequently linked to delayed or inappropriate use of anti-
infective treatment.2,3 Currently, blood culture remains
the gold standard test for identifying the causative agent of
bacteremia, and studies have reported that the time-to-
positivity ranges from approximately 16 to 25 h on
average.4e7 In addition, one-third to over half of positive
blood cultures may be the result of contamination, which
occurs when bacteria that are not in the bloodstream are
introduced into the culture bottle during blood
sampling.8e10 Due to the ambiguity regarding the clinical
relevance of potential contaminants, patients may need to
stay in the hospital for longer periods, receive unnecessary
antibiotic treatment, and experience additional laboratory
testing,11,12 resulting in significantly higher costs in phar-
macy charges, laboratory charges, and indirect costs.13

Thus, the accurate and timely detection of bacteremia is
critical in clinical practice.

Over the past few decades, new-generation haematology
analysers have measured quantitative information on the
morphological and functional characteristics of leukocytes
to generate cell population data (CPD) for leukocyte differ-
ential count (DC).14 Compared to conventional CBC/DC test
which only provides the numbers of different blood cells,
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CPD can offer a more in-depth view of blood cells regarding
the cellular volume, granularity, complexity, transparency,
composition, and membrane surface of the cells.15 CPD has
been already applied in infectious disease, including early
diagnosis of COVID-19, screening tools for viral infection in
children and discriminating the etiologies of fever.16e18

Several studies have indicated that there is a significant
change in some parameters of CPD in response to bacterial
infection, but they mainly utilized statistical analysis
methods to assess the differences.19e23 However, the CPD
report contains many numbers that may require further
interpretation before clinical utility. Therefore, machine
learning (ML) models that can process large-scale informa-
tion may play a critical role.

ML has been widely applied in medicine, and recent
studies have shown that ML has the potential to detect
bacteremia with greater efficacy than traditional scales,
such as the quick Sequential Organ Failure Assessment
(qSOFA) score and systemic inflammatory response syn-
drome (SIRS).24,25 However, whether ML models trained
with CPD can effectively predict bacteremia and whether
these models can be applied to the population in the ED are
still unclear. The objective of the present study was to
establish ML models for the early prediction of bacteremia
among adult patients in the ED using CPD, complete blood
count (CBC), and DC. The prevalence of bacteremia and
distribution of data may vary across different hospitals.
Therefore, in order to evaluate the generalizability of the
model, we included two different hospitals for external
validation. In addition, the present study used explainable
AI to depict how the ML model makes decisions.
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Materials and methods

Study design and participants

The present study collected data from three hospitals. For
derivation and prospective validation, data were obtained
from China Medical University Hospital (CMUH). CMUH is a
1700-bed, urban, academic, tertiary care hospital in Tai-
chung city, which is in central Taiwan. There are approxi-
mately 150,000 to 160,000 ED visits annually at CMUH. For
external validation, data were acquired from the ED in Wei-
Gong Memorial Hospital (WMH) and Tainan Municipal An-
Nan Hospital (ANH). With a total of 872 beds, WMH is
located in Miaoli, Taiwan, and it serves as an academic,
regional hospital with approximately 55,000 ED visits
annually. ANH, an academic regional hospital in Tainan,
Southern Taiwan, has a capacity of 925 beds and serves an
annual volume of 50,000 in the ED. Approval for conducting
the present study was granted by the Institutional Ethics
Committee of China Medical University Hospital (Reference
No. CMUH112-REC3-043). As the present study involved
minimal risk to the subjects, informed consent was waived.

For patients with suspected infectious disease, emer-
gency physicians generally perform CBC, DC and blood
cultures. The number of blood culture sets is mainly based
on the clinical judgment of physicians. However, most
physicians usually follow the routine practices of their
respective hospitals, which leads to variations in the dis-
tribution of the number of blood culture sets among
different hospitals. The CBC was analysed on a Beckman
Coulter DxH 900 (Beckman Coulter, Miami, Florida, USA),
and the collection of blood culture followed the Clinical
and Laboratory Standards Institute (CLSI) guidelines.26 The
detection and identification of blood samples were per-
formed using the BACTEC� FX system (Becton Dickinson
Microbiology Systems, Sparks, MD, USA) with a positive re-
covery rate between 13.31% and 17.68%.7

For the derivation cohort, we retrospectively enrolled
adult patients (age 20 years or older) who had a CBC test in
the ED at CMUH during the following periods: May 1, 2021 to
July 31, 2022 and March 1, 2022 to December 31, 2022. The
exclusion criteria were as follows: 1) patients without blood
culture test; 2) patients without information about WBC or
any DC; 3) patients with a WBC count of zero, and (4) if
sampling time of all blood culture was more than 4 h from
sampling times of CBC/DC. External validation was per-
formed with the same inclusion and exclusion criteria
during the following periods: December 1, 2022, to January
31, 2023, in WMH and October 1, 2022 to January 31, 2023,
in ANH. Prospective validation was conducted at CMUH
from February 15, 2023 to April 15, 2023.

Data source

The clinical information was obtained from the electronic
medical record of CMUH, including demographic informa-
tion, such as age, gender, and laboratory tests involving
blood culture, CPD, and CBC/DC. The CBC test included the
following measurements: white blood cell (WBC) count,
haemoglobin, haematocrit, red blood cell (RBC) count,
platelet count, platelet distribution width (PDW),
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neutrophil-to-lymphocyte ratio (NLR), platelet-to-
lymphocyte ratio (PLR), mean corpuscular volume (MCV),
mean corpuscular haemoglobin (MCH), mean corpuscular
haemoglobin concentration (MCHC), and monocyte distri-
bution width (MDW). DC included the percentage of lym-
phocytes (LY), monocytes (MO), segmented neutrophils
(NE), eosinophils (EO), and basophils (BA). In addition,
sampling time was also recorded in each examination.

When performing DC analysis, the CPD was obtained
routinely from a Beckman Coulter DxH900 analyser which is
a quantitative, multiparameter, automated haematology
analyser.27 Volume, conductivity, and scattergram (VCS)
technology is employed to evaluate the WBC differential,
nucleated RBC count, and immature granulocytes. VCS
technology involves measuring impedance to determine
cell volume, analysing the internal composition of the cell
and nucleus-to-cytoplasm ratio using radiofrequency cur-
rent, and assessing cellular granularity through five light-
scatter measurements, which together constitute the CPD
data. The detailed items of the CPD are listed in
Supplementary Table S1.

Pre-processing

Because some values derived from the blood analysis were
not presented in the laboratory report in some hospitals,
we calculated these values directly from the raw data,
including absolute neutrophil count, PLR, and NLR. The
missing values of the DC was replaced with zeros, including
the percentage of band cells, lymphocytes, monocytes,
segmented neutrophils, eosinophils, and basophils. For
other blood and CPD parameters, the median value of the
training set was used to impute the missing values. The
imputation method and missing values of parameters in
each cohort are displayed in Supplementary Table S2.

Training pipeline

The training process is shown in Fig. 1. For internal vali-
dation, we divided the CMUH cohort from 2021 to 2022 into
80% for training and 20% for testing. Within the training set,
we performed 5-fold cross-validation to assess perfor-
mance. To prevent the algorithms from being biased to-
wards higher values, all features, which were continuous,
were scaled before training the models. A standard scaler
was utilized in the present study, which made the mean of
the data zero and the standard deviation one. Subse-
quently, because there was an imbalance in the distribution
of positive and negative labels, the resampling technique of
synthetic minority oversampling technique (SMOTE)-edited
nearest neighbour (ENN) was applied. SMOTE generates
synthetic samples of the minority class by interpolating
between the feature vectors of minority class instances,
which increases the representation of the minority class.28

In contrast, ENN removes noisy samples from the majority
class by examining the neighbours of each sample and
removing those that are misclassified.29 These adjustments
were made to ensure that the number of patients between
the two groups was more balanced to prevent AI algorithms
from being biased in favour of the majority class in the
imbalanced dataset. For external and prospective



Figure 1. Training pipeline among different cohorts. CMUH, China Medical University Hospital; WMH, Wei-Gong Memorial Hos-
pital; ANH, Tainan Municipal An-Nan Hospital; SMOTE, synthetic minority oversampling technique; ENN, edited nearest neighbour;
ML, machine learning.
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validation, we used the entire CMUH dataset from 2021 to
2022 for model training and recorded the performance on
each cohort separately.

In the present study, we developed binary classifiers
using five most common used machine learning models as
follows: extreme gradient boosting (XGBoost), light
gradient boosting machine (LGBM), categorical boosting
(CatBoost), random forest (RF), and logistic regression
(LR).30e34 These models are not only extensively integrated
into machine learning models for predicting medical issues
but are also open-source resources that are convenient to
implement and perform various tasks.

Feature selection and hyperparameter tuning were not
executed in the present study.
Performance evaluation

The main objective of the present study was to establish ML
models through CBC/DC and CPD to provide early prediction
of bacteremia from positive blood cultures obtained within
4 h before or after the acquisition of CBC/DC blood sam-
ples. We labelled the sample as positive if there were mi-
croorganisms in the blood culture, and we labelled the
sample as negative if there was contamination or no growth
of microorganisms. The definition of contamination of
blood cultures was according to the CLSI guidelines.26

To evaluate the performance of the present models, we
utilized several metrics, including the area under the
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receiver operating characteristic curve (AUROC), the area
under the precision-recall curve (AUPRC), precision (posi-
tive predictive value), recall (sensitivity), F1 score, nega-
tive predictive value, and specificity. Additionally, we
trained the model using different combinations of data
types to assess the impact on performance. DeLong’s test
was applied to compare the AUROC between individual
models.35,36 To interpret the output of the models, we
applied the SHapley Additive exPlanations (SHAP) method
using the SHAP python package (version 0.41.0). The results
are presented as bee swarm plots, in which each dot cor-
responds to an individual data point in the model.37

Experimental environment

The pre-processing of data was conducted using MATLAB
(version R2021a). To construct and train the ML models,
Python (version 3.8.10) on the Google Colab platform was
applied.38
Results

Participant characteristics

The present study initially identified 76,426 CBC/DC sam-
ples in the derivation cohort of CMUH, but after exclusion,
the final dataset used for developing the ML model



• No available blood 
culture record 4 hours
before or after CBC/DC 
sampling time

• No yield at least one 
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1,063 Contaminations

2,166 
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May 2021-Jul.2021; 
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Derivation cohort in CMUH

5,659 CBC/DC samples of ED
Dec. 2022-Jan. 2023

Validation cohort in WMH

17,136 CBC/DC samples of ED
Oct. 2022-Jan. 2023

Validation cohort in ANH

22,510 CBC/DC samples of ED
Feb. 2023-Apr. 2023

Validation cohort in CMUH

33,484 samples

32,622 samples

3,143 samples

300 Positive cultures
2,734 Negative cultures

109 Contaminations

300 
Positive labels

2,843 
Negative labels

6,629 samples

5,332 samples

664 samples

69 Positive cultures
569 Negative cultures

26 Contaminations

69
Positive labels

595
Negative labels

1,620 samples

1,600 samples

1,622 samples

118 Positive cultures
1,384 Negative cultures

120 Contaminations

118
Positive labels

1,504
Negative labels

7,562 samples

5,402 samples

Figure 2. Flow chart of patient recruitment in different datasets. CMUH, China Medical University Hospital; WMH, Wei-Gong
Memorial Hospital; ANH, Tainan Municipal An-Nan Hospital; CBC, complete blood count; CPD, cell population data; DC, differ-
ential count.
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consisted of 2166 cases with positive labels and 18,470
cases with negative labels. The prospective validation
cohort of CMUH included 3143 cases with both CBC/DC and
blood culture samples after exclusion, comprising 300
positive labels and 2843 negative labels. Additionally,
external validation was conducted with cases of 69 positive
and 595 negative labels from WMH as well as cases of 118
positive and 1504 negative labels from ANH. The inclusion
and exclusion process for each cohort is illustrated in Fig. 2.

The mean age of patients in the derivation and internal
validation cohort was 64 � 29 years, while it was slightly
younger in the prospective validation cohort (62 � 34 years)
and older in the WMH cohort (69 � 37 years) and ANH cohort
(66 � 31 years). Each cohort had nearly an equal proportion
of females, making up almost half of the included subjects.
The average WBC count was 9.3 � 109/L, and the average
proportion of neutrophils was 79.5% in the derivation
cohort, with similar CBC/DC distribution results observed in
each cohort. Table 1 presents the patient demographics
and CBC/DC examination results for the derivation cohort,
prospective validation cohort, and external validation co-
horts from WMH and ANH.

In the derivation cohort of 20,636 cases, 60.8%, 39.0%,
and 0.2% had one set, two sets, and three sets of blood
cultures, respectively, within 4 h before and after the CBC/
DC exam. The prospective validation cohort from CMUH had
a similar distribution of blood culture sets. However, a
higher proportion of one set of blood cultures (87.5%) was
observed in the WMH cohort, while the ANH cohort had a
higher proportion of two sets of blood culture samples
(71.9%). In the derivation cohort, 10.5% had a positive blood
culture result, 84.3% had a negative result, and 5.2% were
suspected to have a contaminated blood culture result. The
proportion of positive blood culture results was slightly
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lower in the CMUH prospective cohort and the WMH cohort
(9.5% and 10.3%, respectively), while the lowest proportion
of positive blood culture results (7.3%) was noted in the
ANH cohort. Escherichia coli was the most commonly
identified pathogen in all four cohorts. In the derivation
cohort from the CMUH, and validation cohort from WMH and
ANH, Klebsiella pneumoniae accounted for the second-
highest proportion of positive blood culture results, fol-
lowed by Staphylococcus aureus. In the prospective vali-
dation cohorts from CMUH, S. aureus accounted for 16.0%
of all positive blood culture results, followed by K. pneu-
moniae and Proteus mirabilis (9.7% and 3.0%, respectively).
Table 2 provides more details on the distribution of blood
culture samples and identified pathogens.

Supplementary Table S1 shows the missing values of all
parameters among each cohort. There were some missing
values among the DC of the cohort in CMUH. Among all
hospitals, band cells showed large missing values because
they were reported as blank if not detected during blood
analysis, and after pre-processing, they presented as
missing values. Except for band cells, MDW accounted for
the highest number of missing values.
Performance

Table 3 outlines the performance of the ML models for
predicting bacteremia using CBC/DC and CPD data through
cross-validation. The CatBoost model achieved a slightly
better AUROC (0.844 � 0.002) than the other models, with
the LGB model coming in second (0.842 � 0.001). The
CatBoost model also had a higher AUPRC (0.447 � 0.003)
than the LGB model (0.435 � 0.008). The F1-score for the
CatBoost model was 0.445, with a specificity of 0.826 and



Table 2 Blood culture numbers, results, and bacteria identified in each cohort.

Dataset CMUH WMH ANH

Derivation cohort Validation cohort Validation cohort Validation cohort

Case number 20,636 3143 664 1622
Blood culture number within 4 h to CBC/DC sampling time, No (%)
One 12,543 (60.8) 2000 (63.6) 581 (87.5) 454 (28.0)
Two 8049 (39.0) 1133 (36.0) 78 (11.7) 1166 (71.9)
Three 44 (0.2) 10 (0.3) 5 (0.8) 2 (0.1)

bacteremia, No. (%)
Yesa 2166 (10.5) 300 (9.5) 69 (10.3) 118 (7.3)
Noa 17,407 (84.3) 2734 (87.0) 569 (85.7) 1384 (85.3)
Contamination 1063 (5.2) 109 (3.5) 26 (3.9) 120 (7.4)

Bacteria identified, No. (%)
E. coli 901 (41.6) 120 (40.0) 32 (46.4) 56 (47.5)
K. pneumoniae 328 (15.1) 29 (9.7) 14 (20.3) 21 (17.8)
S. aureus 244 (11.3) 48 (16.0) 7 (10.1) 8 (6.8)
P. aeruginosa 75 (3.5) 9 (3.0) 1 (1.4) 1 (0.8)
P. mirabilis 59 (2.7) 10 (3.3) 2 (2.9) 4 (3.4)
S. enteritidis 56 (2.6) 5 (1.7) 2 (2.9) 1 (0.8)
E. faecium 39 (1.8) 8 (2.7) 0 (0.0) 1 (0.8)
A. baumanni 20 (0.9) 3 (1.0) 0 (0.0) 1 (0.8)
a Cases with contamination were not includedCMUH, China Medical University Hospital; WMH, Wei-Gong Memorial Hospital; ANH,

Tainan Municipal An-Nan Hospital; No., number; CBC, complete blood count; DC, differential count.

Table 1 Basic characteristics of patients in different cohorts.

Datase
CMUH WMH ANH

Derivation cohort Validation cohort Validation cohort Validation cohort

Case number 20,636 3143 664 1622
Age, median (IQR) 64.0 (29.0) 62.0 (34.0) 69.0 (37.0) 66.0 (31.0)
Female 10,305 (50.0) 1528 (48.6) 332 (48.5) 805 (49.6)
Complete Blood Count and DC, Median (IQR)
WBC (103/mL) 9.3 (6.2) 9.5 (6.2) 9.4 (7.0) 9.4 (6.1)
NE (%) 79.5 (17.2) 80.2 (16.7) 79.6 (13.7) 76.9 (17.9)
MO (%) 7.0 (4.6) 7.0 (4.6) 7.0 (5.9) 7.0 (5.8)
LY (%) 10.5 (12.1) 10.1 (11.6) 10.0 (10.0) 12.5 (13.4)
BA (%) 0.4 (0.4) 0.4 (0.4) 0.3 (0.5) 0.4 (0.3)
EO (%) 0.5 (1.3) 0.5 (1.3) 0.3 (1.0) 0.7 (1.4)
Band cells (%) 5.8 (9.4) 5.1 (13.4) 6.0 (14.0) NA
Hgb (g/dL) 12.3 (3.4) 12.5 (3.4) 12.4 (3.7) 12.5 (3.1)
RBC (106/mL) 4.15 (1.15) 4.2 (1.2) 4.2 (1.2) 4.3 (1.1)
NRBC (%) 0 (0.1) 1.6 (1.5) 0.0 (0.1) 0.1 (0.1)
Plt (103/mL) 222.0 (124.0) 223.0 (119.0) 213.0 (121.0) 222.0 (115.0)
NLR 7.5 (10.6) 7.9 (10.8) 7.9 (9.0) 6.2 (8.5)
PLR 20.5 (27.3) 21.0 (27.9) 20.8 (23.0) 17.7 (21.7)
MDW 21.2 (5.7) 21.4 (5.7) NA 20.5 (5.0)
PDW (fL) 16.8 (0.8) 16.8 (0.8) 16.9 (0.9) 16.7 (0.9)
MCV (fL) 88.6 (7.7) 88.6 (7.3) 87.8 (9.7) 88.2 (7.3)
MCH (pg) 30.1 (3) 30.2 (2.8) 29.9 (4.1) 30.1 (2.9)
MCHC (g/dL) 33.8 (1.2) 34.0 (1.2) 33.9 (1.5) 34.0 (1.4)
Hct (%) 36.4 (9.7) 36.8 (9.8) 36.7 (9.7) 36.9 (8.5)

CMUH, China Medical University Hospital; WMH, Wei-Gong Memorial Hospital; ANH, Tainan Municipal An-Nan Hospital; DC, differential
count; IQR, interquartile range; WBC, white blood cell; NE, neutrophil; MO, monocyte; LY, lymphocyte; BA, basophil; EO, eosinophil;
Hgb, haemoglobin; RBC, red blood cell; NRBC, nucleated red blood cell; Plt, platelet; NLR, neutrophil-to-lymphocyte ratio; PLR,
platelet-to-lymphocyte ratio; MDW, monocyte distribution width; PDW, platelet distribution width; MCV, mean corpuscular volume;
MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin concentration; Hct, haematocrit; IQR, interquartile range.
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Table 3 Model performance of cross-validation in internal validation.

Models AUROC AUPRC F1-score Sensitivity Specificity PPV NPV

CatBoost 0.844 0.447 0.445 0.715 0.826 0.323 0.962
LGBM 0.842 0.435 0.435 0.710 0.820 0.313 0.961
XGB 0.839 0.437 0.439 0.696 0.829 0.321 0.959
LR 0.838 0.391 0.323 0.882 0.586 0.198 0.977
RF 0.834 0.391 0.391 0.776 0.746 0.262 0.966

CatBoost, categorical boosting; LGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; RF random forest classifier;
LR logistic regression; PPV positive predictive value; NPV negative predictive value; AUROC area under receivereoperator curve; AUPRC
area under precision-recall curve; CMUH, China Medical University Hospital; WMH, Wei-Gong Memorial Hospital; ANH, Tainan Municipal
An-Nan Hospital.

Table 4 Model performance of Catboost and LGBM in the
derivation, prospective internal validation, and external
validation cohorts.

Cohort CatBoost LGBM

AUROC AUPRC AUROC AUPRC

CMUH-derivation 0.844 0.447 0.842 0.435
CMUH-validation 0.812 0.419 0.820 0.409
WMH 0.844 0.363 0.837 0.367
ANH 0.847 0.426 0.857 0.437

CatBoost, categorical boosting; LGBM, light gradient boosting
machine; AUROC area under receiver-operator curve; AUPRC
area under precision-recall curve; CMUH, China Medical Uni-
versity Hospital; WMH, Wei-Gong Memorial Hospital; ANH,
Tainan Municipal An-Nan Hospital.
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an NPV of 0.962. Fig. 3 shows the ROC curves and precision-
recall curves for all developed ML models, including the
CatBoost, LGB, XGB, LR, and RF models.

To validate the ML model performance, the CatBoost
model and LGB model, which outperformed the other
(A) ROC curve

Figure 3. Receiver operating characteristic (ROC) curves and pr
boosting; LGB, light gradient boosting; XGB, extreme gradient boo
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models, were selected. In the CMUH prospective valida-
tion cohort, the CatBoost model showed an AUROC of
0.812 and an AUPRC of 0.419, while the LGB model had an
AUROC of 0.82 and an AUPRC of 0.409. In the WMH
external validation cohort, the CatBoost model had an
AUROC of 0.844 with an AUPRC of 0.363, while the LGB
model showed slightly lower AUROC and AUPRC. The ANH
external validation cohort yielded an AUROC of 0.847 with
an AUPRC of 0.426 for the CatBoost model, and the LGB
model demonstrated slightly higher AUROC (0.857) and
AUPRC (0.437) values (see Table 4).
Feature importance

The analysis of feature importance through the SHAP value
in CatBoost and LGBM is shown in Fig. 4, and only the top 15
features are displayed. A positive SHAP value indicates a
higher likelihood of bacteremia, while a negative value
suggests a lower likelihood. In the CatBoost classifier
(Fig. 4A), the five most important features were mean
conductivity of lymphocyte (MN_C_LY), NRBC, mean con-
ductivity of monocyte (MN_C_MO), NLR, and standard
(B) PR curve

ecision-recall (PR) curves of different models. CAT, categorical
sting; RF random forest classifier; LR logistic regression.
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Figure 4. Feature importance derived from the SHAP values in the internal validation. There were 15 features arranged based on
the SHAP values across all samples between the (A) CatBoost classifier and (B) LGBM classifier. Each feature is represented by a row,
in which the SHAP value is displayed on the horizontal axis and a single point represents each data sample. Features with higher
values are visualized in red, while those with lower values are shown in blue. The length of the feature bar indicates the magnitude
and direction of the feature’s impact on the model’s output, in which a long bar signifies a large impact and a short bar signifies a
small impact. SHAP, Shapley additive explanations; CatBoost, categorical boosting; LGBM, light gradient boosting machine; MN,
mean; %, percentage; SD, standard deviation; C, conductivity; V, volume; LALS, low-angle light scatter; LY, lymphocyte; MO,
monocyte; NE, neutrophil; EO, eosinophil; BA, basophil; NRBC, nucleated red blood cell; PLT, platelet; RBC, red blood cell.

Table 5 DeLong test to compare AUROC values of
different inputs in the CatBoost classifier for internal
validation.

Input type AUROC (SD) p valuea

CPD and CBC/DC 0.844 (0.002) reference
CPD 0.836 (0.002) 0.15 reference
CBC/DC 0.810 (0.003) <0.001 <0.001

a p value was calculated to compare the AUROC value of the
reference with other models from different input.
SD, standard deviation; CatBoost, categorical boosting; AUROC,
area under receiver-operator curve; Std, standard deviation;
CPD, cell population data; CBC, complete blood count; DC,
differential count.
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deviation of monocyte volume (SD_V_MO). In the LGBM
classifier (Fig. 4B), the five most important features were
MN_C_LY, NLR, MN_C_MO, mean conductivity of eosinophil
(MN_C_EO), and percentage of NE (NE%). Of note, the CPD
789
parameters accounted for more than half of the top ten
important features in both models. By analysing the top five
SHAP values of the CatBoost classifier, it was found that
MN_C_LY, NLR, and SD_V_MO were positively correlated
with bacteremia. Conversely, lower values of NRBC and
MN_C_MO were associated with a higher risk of bacteremia.

Performance of different inputs for the Catboost
classifier

In the present study, there were two types of features,
namely, CPD and CBC/DC. We trained CatBoost using the
following three input sources: 1) all features (CPD and CBC/
DC), 2) CPD alone, or 3) CBC/DC alone. The results are
presented in Table 5. Compared to the model trained with
CBC/DC alone, the model trained with either all features or
CPD alone showed a significantly higher AUROC (p < 0.001)
through the DeLong test. The model trained with all fea-
tures had the tendency to achieve a higher AUROC of 0.844
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than models trained with CPD alone, but the difference was
not statistically significant (p Z 0.15).
Discussion

The present study indicated that by using the data derived
from blood analysis (CPD and CBD/DC), ML models are
capable of early prediction of bacteremia in blood culture
obtained within 4 h before or after the acquisition of CBC/
DC blood samples. Notably, this is the first study to estab-
lish ML models that combine CPD and CBC/DC. In internal
validation, the CatBoost and LGBM classifiers obtained
higher AUROC and AUPRC values, and they also performed
well in external and prospective validation. Moreover, we
discovered that incorporating CPD with CBC/DC signifi-
cantly enhanced the predictive performance of the model.

Prior research has utilized multiple sources of data input
for model training or establishment of predictive rules,
showing good performance in the identification of bacter-
emia. These prior studies utilized models trained on med-
ical notes, vital signs, and laboratory data in the ED.24,25,39

However, medical notes rely heavily on subjective judge-
ments and the quality of recording by the assessors. The
laboratory data include various blood and biochemical pa-
rameters, which are dependent on the order of the physi-
cians and consequently result in a considerable number of
missing values. In addition, vital signs can be influenced by
current treatments. For instance, blood pressure and heart
rate can be affected by vasopressors or antihypertensive
medications, and oxygen administration can affect blood
oxygen saturation and respiratory rate. To address these
issues and accurately reflect a patient’s current condition,
it is necessary to increase the scope of recorded data to
include all relevant external factors; however, this can
result in more missing values and lead to increased diffi-
culty in implementation of the prediction model.

Lien et al. discovered that CBC/DC can be used to train
ML models to identify bacteria present in the blood culture
ordered on the same day, and the addition of C-reactive
protein (CRP) enhances the effectiveness of the model;
they obtained an AUROC of 0.806 when the ML model was
trained with CBC/DC count alone, which was similar to the
present results (Table 5).40 In the present study, we further
applied the DeLong test to discriminate the significance
between models with different inputs and revealed that
CPD strengthened the predictive ability.

Previously, there were several studies statistically ana-
lysing the difference of CPD among normal control and
patients with bacteremia, and indicated several CPD pa-
rameters were significantly increased in the bacter-
emia.15,19,22 They also determined the cut-off values of
each parameter, with some of them showed excellent
performance in detecting bacteremia. However, these
studies consisted of smaller dataset and did not apply their
optimum cut-off value to prospective or external cohorts to
validate its efficacy. On the contrary, by combining ML with
CPD and CBC/DC, we recruited participants from three
hospitals and applied our ML models among both external
and prospective cohort to validate the performance.

In the CatBoost and LGBM classifiers, CPD composed over
half of the top ten important features, including the mean
790
conductivity and standard deviation of volume among
different cells. Mean conductivity is measured through
radiofrequency method, and it stands for the nucleus-to-
cytoplasm ratio of the cells. Two of the top three most
important features, the mean conductivity of lymphocyte
and monocyte (MN_C_LY and MN_C_MO), have been re-
ported to be related to bacterial infections and have also
been found to be correlated with sepsis.15,22,41,42 SD_V_MO,
which is equivalent to monocyte distribution width (MDW),
has been extensively investigated in recent years in the
context of sepsis.43,44 Cells of the innate immune system,
including monocytes and polymorphonuclear leukocytes,
serve as the first line of defence against infections.45

Monocytes play a critical role in the immune response
from the earliest stages and act as the primary defence
against infections.46 Moreover, monocytes are responsible
for various immune functions, including antigen presenta-
tion, cytokine production, and phagocytosis. Monocytes are
a heterogeneous group of cells with distinct phenotypes,
nuclear morphologies, sizes, and functions. In infectious
situations, this heterogeneity becomes more pronounced,
resulting in variations in monocyte morphology due to
functional changes in certain monocyte subsets.47

Because CPD are parameters routinely generated during
analysis of CBC/DC without the requirement of additional
blood samples, the application of CPD in the ML model of-
fers some advantages. Obtaining a CPD report takes the
same amount of time as obtaining a CBC/DC report,
allowing the ML model to be executed earlier in the ED and
enabling clinicians to initiate treatment or further testing
in a timely manner. Second, having a single data source
simplifies the integration of the predictive model into
clinical practice because fewer data sources need to be
connected. Additionally, since the data is device-generated
rather than manually input, missing values are rare, which
could have positive effect on performance. In addition,
clinicians typically request a CBC test for most patients
with suspected bacterial infection as part of the manage-
ment in the ED. Therefore, using CPD as an additional
marker for bacteremia is a cost-effective method that
would not increase the cost or burden on the health care
system.

However, the present study also had several limitations.
First, only patients suspected of having an infectious disease
and who had both CBC and blood culture exams were
included,whichprevented the evaluation of the utility of the
ML model on other populations. Although a more precise
definition of patients with infectious diseases can provide a
more specific population for model development and may
increase the model’s predictive performance. However,
limiting the definition of the patients enrolled in the present
study may result in a decrease in the generalizability of our
model. The purpose of this study to build aMLmodel that can
offer predictive information on bacteremia for patients with
varying degrees of suspicion of infectious disease. This can
allow patients to benefit from the predictive model even
without a clear infection source or specific symptoms (such
as fever). In addition, limiting the inclusion criteria will lead
to a decrease in the size of dataset, and increase the risk of
overfitting among AI models. Second, the selection of study
cases was based on the decisions of clinical physicians to
perform blood culture exams, which may introduce some
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selection bias. However, physicians were unaware of the
patients’ inclusion in the study cohort, reducing possible
selection bias. Third, host factors, such as diabetes and
immunocompromised status, were not considered in the
development of the model, but the aim of the model was to
predict bacteremia without clinical information. Despite
this, the ML model performed reliably. Finally, the study
population was limited to a single country, and further vali-
dation through global cooperation is necessary to establish
the model’s generalizability.

In conclusion, the ML model that incorporated CBC, DC,
and CPD showed excellent performance in predicting
bacteremia among adult patients with suspected bacterial
infections and blood culture sampling in emergency de-
partments. This ML model will be further developed using
CPD for all hospitalized patients to distinguish between
Gram-positive and Gram-negative bacteria causing blood-
stream infection, facilitating early detection of sepsis and
predicting clinical prognosis.
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