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Abstract Background: Acute respiratory infections (ARIs) are common in children. We devel-
oped machine learning models to predict pediatric ARI pathogens at admission.
Methods: We included hospitalized children with respiratory infections between 2010 and
2018. Clinical features were collected within 24 h of admission to construct models. The
outcome of interest was the prediction of 6 common respiratory pathogens, including adeno-
virus, influenza virus types A and B, parainfluenza virus (PIV), respiratory syncytial virus (RSV),
and Mycoplasma pneumoniae (MP). Model performance was estimated using area under the
receiver operating characteristic curve (AUROC). Feature importance was measured using
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Shapley Additive exPlanation (SHAP) values.
Results: A total of 12,694 admissions were included. Models trained with 9 features (age, event
pattern, fever, C-reactive protein, white blood cell count, platelet count, lymphocyte ratio,
peak temperature, peak heart rate) achieved the best performance (AUROC: MP 0.87, 95%
CI 0.83e0.90; RSV 0.84, 95% CI 0.82e0.86; adenovirus 0.81, 95% CI 0.77e0.84; influenza A
0.77, 95% CI 0.73e0.80; influenza B 0.70, 95% CI 0.65e0.75; PIV 0.73, 95% CI 0.69e0.77).
Age was the most important feature to predict MP, RSV and PIV infections. Event patterns were
useful for influenza virus prediction, and C-reactive protein had the highest SHAP value for
adenovirus infections.
Conclusion: We demonstrate how artificial intelligence can assist clinicians identify potential
pathogens associated with pediatric ARIs upon admission. Our models provide explainable re-
sults that could help optimize the use of diagnostic testing. Integrating our models into clinical
workflows may lead to improved patient outcomes and reduce unnecessary medical costs.
Copyright ª 2023, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Acute respiratory infections (ARIs) are the most common
infectious disease during childhood and are also the leading
cause of pediatric hospitalization or death worldwide.1

Pathogens of pediatric ARIs differ from community-
acquired pneumonia (CAP) in adults. Infants and toddlers
are more susceptible to infections, and there is a high viral
pneumonia ratio.2,3 Influenza virus (flu), adenovirus, res-
piratory syncytial virus, and Mycoplasma pneumoniae are
common etiologies among pediatric ARIs in Taiwan.4,5

However, the variability in clinical manifestations makes
the diagnosis of pathogens a challenge. Misdiagnosis can
lead to inappropriate use of antibiotics in hospitalized
children with respiratory illnesses, which causes unnec-
essary medical care costs and undesirable outcomes for
patients.6,7

For pathogen diagnosis, clinicians rely on demographics,
clinical manifestations, physical examinations, and recent
epidemiological patterns as references. However, clinical
presentations associated with pediatric ARIs commonly
overlap. No universally established standards exist. In addi-
tion, reviewing different sources of health data to determine
a diagnosis is time consuming, which adds to the workload of
physicians in clinical settings.8 Tools to automatically
determine the cause of ARIs can reduce the burden on cli-
nicians and enhance overall medical care quality.

Advances in artificial intelligence (AI) have enhanced the
performance of computer-aided diagnosis, prognosis pre-
diction, and optimal intervention suggestions. Recent
studies have shown that machine learning (ML) methods
applied in medical decision support yield impressive results
in various diseases and tasks.9e11 Previous works on ML for
respiratory infections focused mainly on outcome pre-
dictions and image processing.11e14 In the area of etiology
diagnosis, studies on respiratory infections are limited.
Lhommet et al. tried to develop a data-driven method to
differentiate viral from bacterial pneumonia at patient
presentation.15 Unfortunately, neither experts nor an AI
model succeeded in predicting the microbial etiology of
ARIs. In another study, Mai and his colleagues used MetaMap
to predict viral etiologies among 1685 pediatric admissions.
However, the result was less satisfactory. The prediction
models showed that the area under the receiver operating
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characteristic curve ranged from 0.53 to 0.72 among the 6
common viruses.16

Timely detection of microorganisms that cause ARIs can
help physicians prepare for further disease management.
To date, no AI-based etiology prediction models exist for
pediatric ARIs that yield clinically applicable performance.
In this study, we aimed to develop an ML algorithm to
predict pediatric ARI pathogens with available information
at admission.

Methods

Study design

Fig. 1 illustrates the schematic diagram of pediatric ARI
diagnosis and management in the study framework. The
decision-making process usually begins with history taking,
physical examinations and orders corresponding to labora-
tory or radiological studies. After obtaining adequate in-
formation, physicians’ work usually includes severity
assessment, differential diagnosis, pharmacological treat-
ment, and family communication. However, the diagnosis
process is dynamic. Reassessment of patients and repeated
decision-making are common, especially in complicated
cases. The purpose of developing a machine learning tool is
to use an established dataset to simplify the work of
multitasking.

Cohort and data source

Hospitalized patients admitted to National Taiwan Univer-
sity Hospital between 2010 and 2018 who met the following
three criteria were included in the study cohort.

1. Aged between 1 month and 18 years.
2. Presented with acute respiratory infection symptoms

(e.g., cough, rhinorrhea) or positive physical examina-
tion findings (e.g., crackles, stridor, wheezing) or posi-
tive radiological findings (e.g., consolidation, effusion)
or tentative diagnosis of respiratory tract infection
recorded within 24 h of admission (see Supplementary
Table 1 for full list of symptoms, physical examination
findings and diagnosis list).

http://creativecommons.org/licenses/by/4.0/


Figure 1. Schematic diagram of pediatric acute respiratory infection diagnosis and management in the study framework.
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3. Classified with International Classification of Disease,
ninth revision (ICD-9) and tenth revision (ICD-10) codes
related to respiratory infections at discharge (see
Supplementary Table 2 for the full list of included
diagnosis codes).

Patients meeting any of the following criteria were
excluded from the study.

1. Patients discharged from the hospital within 14 days
preceding the current admission.

2. Patients with congenital pneumonia.
3. Patients with immunodeficiency.
4. Diagnosis with Mycobacterium species infections or

tuberculosis.
5. Opportunistic infections, such as pulmonary aspergil-

losis, candidiasis, or pneumocystis pneumonia.
6. A diagnosis other than infections that was the likely

explanation for the pulmonary infiltrates or respiratory
symptoms (e.g., pneumonitis due to inhalation or
ingestion of irritant substances, hemothorax).

The electronic health records of the included patients
were extracted from the National Taiwan University Hos-
pital integrative medical database and deidentified before
analysis. This study was approved by the institutional re-
view board of National Taiwan University Hospital
(201912131RINB).

Outcome of interest

Our study aimed to diagnose common respiratory pathogens
in pediatric patients in Taiwan, including adenovirus (ADV),
influenza A (IAV) and B (IBV) virus, parainfluenza virus (PIV),
respiratory syncytial virus (RSV), and M. pneumoniae (MP).
To focus on community-acquired infections, our study was
restricted to patients who were hospitalized with positive
pathogen findings within a period of two days after
admission and five days prior to admission, to capture the
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acute infection phase. We applied viral isolation, antigen
testing, and RT-PCR methods to confirm the diagnosis of
each pathogen. The diagnostic tests used were determined
based on clinical judgment. These tests were performed on
samples taken from various sources, including nasopha-
ryngeal swabs, throat swabs, sputum samples, pleural
effusion samples, and bronchoalveolar lavage fluid sam-
ples. Although Streptococcus pneumoniae is an important
microorganism in pediatric ARIs, the definition between
infections and colonization is not clear.17 Therefore, we did
not include S. pneumoniae in our analysis.

Between-group comparison

Clinically relevant manifestations within 24 h of admission
were collected for statistical analysis among patients with
different pathogen findings. Extreme values of vital signs
were excluded in accordance with previous research.18 All
included features are presented in Supplementary Table 3.

The KolmogoroveSmirnov test was conducted on nu-
merical variables (i.e., laboratory results, vital signs, age)
to test for normality. For nonnormally distributed variables,
the medians and interquartile ranges were calculated, and
the KruskaleWallis H test was used for between-group
comparisons. For normally distributed variables, the
means and standard deviations were reported, and Stu-
dent’s t test was used for between-group comparisons. For
categorical variables (e.g., presence of underlying dis-
eases, symptoms, and chest X-ray findings), counts and
percentages were calculated, and the chi-square test was
used for between-group comparisons. We applied the
BenjaminieHochberg procedure to adjust for multiple
comparisons. Adjusted p values < 0.05 were considered
significant.

Model training and performance evaluation

Four models were applied for pathogen prediction because
of promising results yielded on classification tasks using
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clinical data in various studies, namely, logistic regression
(LR), random forest (RF), gradient boosting (GB), and
extreme gradient boosting (XGB) models.9e12 Six indepen-
dent binary classification models were developed to classify
each targeted pathogen. Each model used the same data-
sets for training (60%), validation (20%), and testing (20%) in
chronological order, without any interference or interac-
tion between models.

To evaluate different algorithms against the pathogens,
the area under the receiver operating characteristic curve
(AUROC) was calculated. The Youden Index with an optimal
combination of sensitivity and specificity was used to
evaluate the separate performance of each pathogen pre-
diction model. To further analyze the input features, we
used SHapley Additive exPlanation (SHAP) values to rank
feature importance.

Software

Electronic health records were extracted and preprocessed
using the NumPy (version 1.16.5) and Pandas (version
0.25.1) libraries of the Python programming language
version 3.7.4 (Python Software Foundation, Fredericksburg,
VA, USA). Between-group statistical analyses were con-
ducted using the SciPy package version 1.3.1. While training
the models, we used Scikit-learn (the Scikit-learn Contrib-
utors, version 0.24.1) for the LR, RF, and GB algorithms.
The XGBoost package (version 1.4.2) was used for the XGB
algorithm.19 Evaluation was conducted using the Scikit-
learn package, in addition to SHAP values (version
0.39.0). We used TreeExplainer, built based on SHAP values,
to interpret and explain tree-based models in our study.20

Results

Cohort selection

We depict the workflow of our cohort selection process in
Fig. 2. There were 14,201 patient admissions that fulfilled
the inclusion criteria in the dataset. A total of 1507 ad-
missions that met the exclusion criteria were excluded,
resulting in 12694 admissions in the study cohort. The study
cohort was further separated into training, validation, and
testing datasets of 7624, 2536 and 2534 admissions,
respectively. We present the characteristics of the patients
in each dataset in Table 1.

Characteristics of patients with each pathogen

Information regarding the demographics and clinical fea-
tures of the included children with common pediatric res-
piratory pathogens is summarized in Table 2. Laboratory
results and radiological findings can be found in Table 3. We
provide detailed data in Supplementary Table 4. Among the
6 pathogens included in our models, patients infected with
MP were older (median age 5.5 years, IQR: 3.5e8.1), and
those infected with RSV were younger (0.8 years old, IQR:
0.3e1.5). Approximately 98.4% of patients infected with MP
were admitted due to pneumonia, followed by RSV (75.8%)
and PIV (70.8%). For IAV and IBV infections, patients were
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classified as having upper respiratory tract infections (URI)
(34.6% and 32.8%). Patients with RSV infections tended to
stay in the hospital longer (5 days vs. 4 days) than patients
with other pathogens. Approximately 17.3% of IAV patients
received intensive care, while only 5% of MP patients were
transferred to the intensive care unit (ICU).

Among all pathogens included in other models, each of
them had unique characteristics. Nearly all patients infec-
ted with MP had cough (95.9%), but relateively few children
reported rhinorrhea (31.3%) in our cohort. Pneumonia
patches/consolidation (59.6%) and pleural effusion (6.9%)
were more common in MP patients than in patients infected
with other microorganisms. Patients with RSV infections had
more prominent rhinorrhea (58.4%) and dyspnea (58.6%).
Rhonchi (43.9%) and wheezing (50.7%) were the two most
common physical examination findings in patients with RSV
infections than other pathogens. Laboratory data usually
revealed lymphocyte predominance and low CRP levels
(0.4 mg/dL, IQR: 0.1e1.3) associated with RSV compared
with other viruses. A higher proportion of children with ADV
infections presented with fever (96.0%) and sore throat
(27.3%), with 79.7% having a body temperature above the
normal range within 24 h of admission. Laboratory results
revealed higher mean WBC (12.0 k/mL, IQR: 8.9e16.0) and
CRP (4.1 mg/dL, IQR: 1.9e7.1) values associated with ADV
compared with other pathogens. Regarding IAV and IBV in-
fections, physical examinations showed less evidence of
pulmonary involvement in hospitalized children. The rates
of crackles (23.3%), rhonchi (18.4%), and wheezing (13.4%)
in patients infected with IAV were the lowest compared to
other pathogens. However, 2.3% of IAV patients presented
with cyanosis, which echoed the finding that 17.3% of pa-
tients needed intensive care. Higher proportion of patients
with cardiovascular (9.6%) or respiratory (4.8%) diseases had
positive results on PIV exams. Hoarseness (15.7%) and stri-
dor (16.0%) were specific and commonly reported clinical
manifestations in PIV infections.
Diagnostic performance results

On the testing set, XGB models trained with all 79 features
achieved the best performance in diagnosing most of the
pediatric respiratory tract infection-associated pathogens
within 24 h after admission (MP: AUROC 0.87, 95% CI
0.83e0.90; RSV: AUROC 0.85, 95% CI 0.85e0.89; ADV:
AUROC 0.84, 95% CI 0.75e0.84; IAV: AUROC 0.76, 95% CI
0.76e0.83; IBV: AUROC 0.73, 95% CI 0.67e0.77; PIV: AUROC
0.75, 95% CI 0.68e0.78). For both clinical interpretability
and further feature selection, all features were ranked by
importance by SHAP values. The top 9 features were age,
fever, C-reactive protein (CRP), white blood cell (WBC)
count, platelet count, lymphocyte ratio, peak tempera-
ture, peak heart rate and number of cases for each path-
ogen identified in our institution over the past 30 days
(event pattern). With the 9 selected features, XGB models
achieved better performance compared with other algo-
rithms. Additionally, the AUROC was only slightly reduced
(ranged from 0.70 to 0.87). The negative predictive values
(NPVs) for each pathogen were remarkable (MP: NPV 0.99,
95% CI 0.99e0.99; RSV: NPV 0.95, 95% CI 0.95e0.95; ADV:
NPV 0.98, 95% CI 0.98e0.98; IAV: NPV 0.97, 95% CI



Figure 2. Workflow of cohort selection process (adm: admission).
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0.97e0.97; IBV: NPV 0.98, 95% CI 0.97e0.98; PIV: NPV 0.98,
95% CI 0.98e0.98). The detailed performance matrix of
each pathogen is shown in Supplementary Table 5.

Fig. 3 shows the model performances with different
sources of information. The basic information included
demographics (DE), symptoms and physical examinations
(PE). The AUROC of the MP predictive models trained with
the basic information was 0.82. The addition of laboratory
data (LD) increased the AUROC by 0.04. Further addition of
vital sign (VS) data did not obviously increase the AUROC.
Most of the models achieved their best AUROC after the
addition of event pattern (EP, number of cases for each
pathogen identified in our institution over the past 30
days), except the model for ADV prediction.
Table 1 Characteristics of patients in the training, validation,

Training dataset
(N Z 7624)

Age 2.3 (1.1e4.6)
Sex
Male 4337 (56.9%)
Female 3287 (43.1%)

Any chronic disease 2496 (32.7%)
ICU 1069 (14.0)
Death 4 (0.1)
Identified pathogens
Respiratory syncytial virus 842 (11.0)
Adenovirus 433 (5.7)
Influenza A virus 227 (3.0)
Influenza B virus 205 (2.7)
Parainfluenza virus 224 (2.9)
Mycoplasma pneumoniae 122 (1.6)

Abbreviation: ICU, intensive care unit.
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Explaining the rationale behind the predicted
models

Fig. 4 presents the features by relative importance from
the XGB algorithm based on SHAP values. The event pattern
ranked in the top three for all pathogens, which had a
positive influence on all model performances. Age was the
most important feature in the MP, RSV, and PIV models.
However, age influenced the prediction models differently
for different pathogens. The XGB model tended to predict
that older patients would have positive MP findings. In
contrast, the models tended to predict that younger pa-
tients would have positive findings of RSV and PIV. Differ-
ential influences on prediction can be observed for WBC
and testing datasets.

Validation dataset
(N Z 2536)

Testing dataset
(N Z 2534)

2.0 (0.9e4.0) 2.1 (1.0e3.9)

1411 (55.6%) 1485 (58.6%)
1125 (44.4%) 1049 (41.4%)
865 (34.1%) 825 (32.6%)
301 (11.9) 281 (11.1)
1 (0.0) 0 (0.0)

311 (12.3) 351 (13.9)
84 (3.3) 131 (5.2)
143 (5.6) 145 (5.7)
87 (3.4) 104 (4.1)
70 (2.8) 100 (3.9)
129 (5.1) 68 (2.7)



Table 2 Demographics and clinical features of patients with common pediatric respiratory pathogens in the dataset.

Mycoplasma
pneumoniae
(N Z 319)

RSV

(N Z 1504)

Adenovirus

(N Z 648)

Influenza A
virus

(N Z 515)

Influenza B
virus

(N Z 396)

Parainfluenza
virus

(N Z 394)

P value

Demographics

Age 5.5 (3.5e8.1) 0.8 (0.3e1.5) 3.3 (1.8e4.8) 2.5 (0.7e4.9) 3.1 (1.4e6.0) 1.2 (0.6e1.8) <0.001
Sex (male %) 163 (51.1) 931 (61.9) 379 (58.5) 281 (54.6) 202 (51.0) 240 (60.9) <0.001
No chronic disease 275 (86.2) 1218 (81.0) 498 (76.9) 317 (61.6) 268 (67.7) 295 (74.9) <0.001
Event pattern

(Accumulated
cases in the
past 30 days)

5.0 (2.5e8.0) 17.0 (11.0e24.0) 7.0 (4.0e14.0) 7.0 (4.0e15.0) 7.0 (3.0e11.0) 4.0 (2.0e7.0) <0.001

Disease severity

Pneumonia 314 (98.4) 1140 (75.8) 427 (65.9) 315 (61.2) 250 (63.1) 279 (70.8) <0.001
LRI 3 (0.9) 299 (19.9) 26 (4.0) 22 (4.3) 16 (4.0) 58 (14.7)
URI 2 (0.6) 65 (4.3) 195 (30.1) 178 (34.6) 130 (32.8) 57 (14.5)
Outcome

Length of stay
(days)

4.0 (3.0e5.0) 5.0 (4.0e7.0) 4.0 (3.0e5.0) 4.0 (3.0e5.0) 4.0 (3.0e5.0) 4.5 (3.0e6.0) <0.001

Intensive care 16 (5.0) 200 (13.3) 34 (5.2) 89 (17.3) 40 (10.1) 50 (12.7) <0.001
Death 0 (0.0) 0 (0.0) 2 (0.3) 1 (0.2) 2 (0.5) 0 (0.0) 0.13
Vital signsa

Peak temperature
(Above normal)

241 (75.5) 668 (46.2) 507 (79.7) 367 (73.7) 285 (72.7) 170 (44.7) <0.001

Peak heart rate
(Above normal)

275 (86.2) 935 (64.7) 491 (77.2) 406 (81.5) 290 (74.0) 259 (68.2) <0.001

Peak respiratory
rate (Above
normal)

304 (95.3) 1124 (77.7) 497 (78.1) 361 (72.5) 313 (79.8) 280 (73.7) <0.001

Lowest SpO2

(Below normal)
42 (13.5) 164 (11.6) 34 (6.0) 40 (8.7) 39 (10.5) 31 (8.3) 0.001

Clinical features

Fever 303 (95.0) 1089 (72.4) 622 (96.0) 490 (95.1) 370 (93.4) 328 (83.2) <0.001
Cough 306 (95.9) 1437 (95.5) 517 (79.8) 408 (79.2) 315 (79.5) 353 (89.6) <0.001
Sputum 228 (71.5) 1026 (68.2) 326 (50.3) 243 (47.2) 194 (49.0) 224 (56.9) <0.001
Rhinorrhea 100 (31.3) 879 (58.4) 353 (54.5) 234 (45.4) 185 (46.7) 207 (52.5) <0.001
Dyspnea 80 (25.1) 881 (58.6) 126 (19.4) 106 (20.6) 108 (27.3) 185 (47.0) <0.001
Sore throat 34 (10.7) 55 (3.7) 177 (27.3) 52 (10.1) 52 (13.1) 21 (5.3) <0.001
Hoarseness 5 (1.6) 60 (4.0) 17 (2.6) 20 (3.9) 16 (4.0) 62 (15.7) <0.001
Skin rash 11 (3.4) 66 (4.4) 31 (4.8) 17 (3.3) 25 (6.3) 17 (4.3) 0.33
Physical examination

Rales/Crackles 193 (60.5) 615 (40.9) 168 (25.9) 120 (23.3) 116 (29.3) 124 (31.5) <0.001
Rhonchi 97 (30.4) 661 (43.9) 166 (25.6) 95 (18.4) 78 (19.7) 148 (37.6) <0.001
Wheezing 62 (19.4) 763 (50.7) 107 (16.5) 69 (13.4) 56 (14.1) 126 (32.0) <0.001
Stridor 0 (0) 32 (2.1) 8 (1.2) 17 (3.3) 12 (3.0) 63 (16.0) <0.001

Continuous variables are described as medians (IQRs) and were tested using the KruskaleWallis H test. Categorical variables are pre-
sented as numbers (%) and were tested using the chi-square test.a

Abbreviations: LRI, lower respiratory tract infection; RSV, respiratory syncytial virus; URI, upper respiratory tract infection.
a Rates of abnormal vital signs were calculated using the following formula: No. of admissions with abnormal vital signs/ No. of ad-

missions with vital sign records
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count as well. WBC count was positively correlated with the
prediction of ADV but negatively correlated with the pre-
dictions on other pathogens.
Discussion

Our study proposed ML models that incorporated both
subjective and objective measures collected at admission
777
by using a large dataset. The variables included in the
model were obtained from medical histories, physical ex-
aminations, vital signs, laboratory results and radiographic
findings in the order resembling a clinical approach. Our
approach was novel in that we used routinely collected
information to predict the presence of pathogens causing
ARIs in children. Pathogen prediction results could thus be
automatically produced after completing each step. The
prediction performance increased as more information was
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obtained. Our approach has important implications for
clinical practice, as it enables earlier and more accurate
diagnosis of ARIs in children, which can shed light on tar-
geted treatments and prevent unnecessary antibiotic use.
Our approach also has the potential to reduce unnecessary
diagnostic tests and medical costs.

Our models outperformed similar attempts reported in
the literature and can be applied in clinical settings to
facilitate decision-making and reduce physician workload.
In a previous study, Chen et al. used a five-factor model
(age, duration of fever, erythrocyte sedimentation rate,
leukocyte count, and neutrophil proportion) to predict MP
for hospitalized children with respiratory symptoms,
achieving an AUROC of 0.75.21 Our model had a better
performance on MP with an AUROC of 0.87 when different
features were included in model development. Mai and his
colleagues made efforts to predict common respiratory vi-
ruses in the US by combining natural language processing
(NLP) tools and the ML approach.16 However, the perfor-
mance of the models for 4 overlapping viruses was inferior
to that of our models (AUROC: ADV, 0.53 vs. 0.81; influenza,
0.71 vs. 0.77; PIV, 0.69 vs. 0.73; RSV, 0.72 vs. 0.84). Large
case numbers and independent validation datasets are the
main advantages compared with previous models. The
ensemble methods applied in our study outperformed
models applied in previous studies (i.e., logistic regression,
decision tree) due to the nature of combining multiple
decision trees to minimize prediction error, which fits well
with categorization tasks using clinical manifestations
where the decision boundary is often nonlinear.19

The positive predictive value (PPV) of the machine
learning model we trained for each pathogen, except RSV
(PPV 0.34), ranged from 0.06 to 0.13, which may seem less
satisfactory. However, the positive rates of pathogen exams
in our dataset ranged from 0.04 to 0.29 (data not shown). In
comparison, our model demonstrated a PPV ranging from
0.06 to 0.34, indicating that it can still outperform the
conventional decision-making process. Clinicians usually
overestimate the pretest probability compared to the
available scientific literature.22 In our ML algorithm, we
reached outstanding negative predictive values for the 6
pathogens (0.95e0.99). This models could be applied to
optimize the use of diagnostic testing in clinical practice,
avoid unnecessary exams, and achieve diagnostic stew-
ardship. In our study, the overall performance of the IAV,
IBV and PIV models (AUROC: 0.70e0.77) is less impressive
than that of the ADV, RSV and MP models (AUROC:
0.81e0.87). Although different pathogens associated with
ARIs vary in their clinical manifestations, sometimes the
differences are subtle. It is difficult to distinguish between
flu and PIV solely by clinical features and physical exami-
nation findings.23 These results highlight the added value of
vital signs in our models, which increased the overall
diagnostic accuracy, especially in the flu and PIV models.

During model development, we successfully reduced the
input variables from 79 to 9 without a significant loss of
performance. SHAP values effectively explained the effect
of each feature and made the result applicable in clinical
utilization. To identify the 6 selected pathogens, age was
an important feature that was present in all models. Chil-
dren with MP infections tended to be older than those with
RSV or PIV infections. However, in the IAV, IBV, and ADV



Figure 3. Performance of prediction models when inputting different information. DE: Demographics, PE: Physical examination,
LD: laboratory data, VS: vital sign, EP: event pattern (accumulated cases in the past month). (A) Mycoplasma pneumoniae (B)
Respiratory syncytial virus (C) Adenovirus (D) Influenza A virus (E) Influenza B virus (F) Parainfluenza virus.
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models, the pathogens which cause epidemics in all age
groups, the importance of age was lower than other path-
ogens in the models. Our results were compatible with
previous epidemiological data.3,5 To better diagnose
Figure 4. Feature importance analysis by SHapley Additive exPlan
Each point represents a patient’s feature value (blue represents a
negative impact (left of the vertical line) of a feature value means
positive impact (right of the vertical line) represents a prediction t
pneumoniae (B) Respiratory syncytial virus (C) Adenovirus (D) Influe
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respiratory virus infections, epidemiological patterns are
very important. We lacked epidemiological trends, clus-
ters, or contact history in the extracted features. Instead,
we used the number of cases for each pathogen identified
ation (SHAP) values. All features by importance were presented.
low-value feature, and red stands for high-value features). A
prediction of the specific pathogen is less likely. In contrast, a
hat is more likely to be the specific pathogen. (A) Mycoplasma
nza A virus (E) Influenza B virus (F) Parainfluenza virus.
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over the past 30 days, and this parameter significantly
increased the overall performance. In the future, by
incorporating data from multiple sites collectively or na-
tional real-time surveillance systems, the accuracy and
sensitivity of models could be further optimized. A similar
approach has been used in influenza forecasting.24 ADV is
unique, as it is best predicted by high fever and elevated
CRP and WBC levels. The symptoms and laboratory results
of adenovirus infection mimic bacterial infections,
commonly associated with misuse of antibiotics.25 The
performance of our model in differentiating ADV from other
ARIs was quite good.

Our study has some limitations. First, the models were
trained on data from a single medical center, which could
compromise the robustness of the models. Not all patients
had been tested for all pathogens included in the dataset.
This could lead to an underestimation of the true preva-
lence of these pathogens in our study population. Addi-
tionally, the decision to test for a particular pathogen was
based on clinical judgment, which could bring some selec-
tion bias into our results. While we used multiple methods
to confirm the diagnosis of each pathogen, there is always a
possibility of false negative results. Therefore, the true
prevalence of these pathogens may be higher than what we
were able to detect in our study. Prospective validation
with data from multiple centers may be helpful in
improving generalizability. Second, the 6 pathogens rep-
resented only 30% of ARI etiologies in our dataset. To pre-
dict one pathogen with a relatively low prevalence, a low
positive predictive value is inevitable. Third, vaccination or
contact/cluster history are important information during
history taking. Related items were not added to the current
models. The power of prediction will be enhanced by
including these features in future studies. Fourth, some
common pathogens in pediatric respiratory tract infections
could not be included in our analysis because of a lack of
routine surveillance, such as human metapneumovirus and
rhinovirus.26 Additionally, the issue of bacterial coinfection
is crucial in accurately predicting pathogens and prescrib-
ing appropriate antibiotics. However, there is no clear and
widely accepted consensus for differentiating between
coinfection and colonization. Therefore, we did not
conduct further analysis on this issue, which could possibly
affect the presentation of the diseases. Further investiga-
tion is needed to better understand this topic. Prospective
studies with the introduction of multiplex PCR or syndromic
point-of-care testing are needed to support model perfor-
mance. A comparison of AI-aided decision-making and the
standard of care in the real world is also necessary.
Conclusion

Our study demonstrates how artificial intelligence can
assist clinicians in identifying potential pathogens in pedi-
atric respiratory infections at admission. The results were
explainable and applicable to clinical practice. Based on
our model’s excellent negative predictive value, clinicians
can potentially avoid unnecessary medical costs and diag-
nostic tests, while still ensuring accurate diagnosis. Our
approach has the potential to decrease the workload of
clinicians and improve the overall quality of medical care.
780
Therefore, we recommend integrating our model into
clinical workflows and using it in conjunction with clinical
judgement.
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