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Methods: Seventy-eight individuals were enrolled in the study. The primary outcome were the
level of spike-specific antibodies and neutralizing antibodies measured by ELISA. Secondary
measures included memory T cells and basal immunity estimated by flow cytometry and ELISA.
Correlations for all parameters were calculated using the nonparametric Spearman correlation
method.
Results: We observed that two doses of mRNA-based Moderna mRNA-1273 (Moderna) vaccine
produced the highest total spike-binding antibody and neutralizing ability against the wild-
type (WT), Delta, and Omicron variants. The protein-based MVC-COV1901 (MVC) vaccine devel-
oped in Taiwan produced higher spike-binding antibodies against Delta and Omicron variants
and neutralizing ability against the WT strain than the adenovirus-based AstraZeneca-Oxford
AZD1222 (AZ) vaccine. Moderna and AZ vaccination produced more central memory T cells
in PBMC than the MVC vaccine. However, the MVC vaccine had the lowest adverse effects
compared to the Moderna and AZ vaccines. Surprisingly, the basal immunity represented by
TNF-a, IFN-g, and IL-2 prior to vaccination was negatively correlated with the production of
spike-binding antibodies and neutralizing ability.
Conclusion: This study compared memory T cells, total spike-binding antibody levels, and
neutralizing capacity against WT, Delta, and Omicron variants between the MVC vaccine and
the widely used Moderna and AZ vaccines, which provides valuable information for future vac-
cine development strategies.
Copyright ª 2023, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) causes the 2019 coronavirus infectious disease
(COVID-19), an ongoing worldwide outbreak of pneumonia-
like respiratory disease.1 In addition to the SARS-CoV-2
wild-type (Wuhan strain) virus, several variants have
emerged since the start of the COVID-19 pandemic,
including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma),
B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants.2 How-
ever, the Omicron variant is the most mutated SARS-CoV-2
variant with high transmissibility and immune evasion.
Owing to its enhanced transmissibility, Omicron has rapidly
replaced Delta as the dominant variant in several regions
and is more difficult to eradicate.3

In addition to the development of therapeutics,4 the
immune response to SARS-CoV-2 is critical for disease con-
trol; therefore, prophylactic vaccines are sought as an ul-
timate intervention. SARS-CoV-2 is known to use the
receptor-binding domain (RBD) of the spike (S) protein to
enter cells after binding to angiotensin-converting enzyme-
2 (ACE2).5 Therefore, current vaccine development uses
the S protein as a vaccine antigen to induce antibodies that
block the binding of SARS-CoV-2 to ACE2. As of April 2022,
four COVID-19 vaccines have been approved for adminis-
tration in Taiwan, including the AZ, Moderna, MVC, and BNT
vaccines. Moderna and BNT are mRNA-based vaccines
expressing the S protein, and the efficacy rates were 95%
for the BNT vaccine and 94.5% for the Moderna vaccine in
phase III clinical trials.6 AZ vaccine expresses S protein from
adenovirus vector platforms and has achieved an efficacy of
70% in a phase III clinical trial.6 MVC is a protein-based
subunit vaccine comprising the S protein, and the sero-
conversion rate was 99.8% in a phase II clinical trial.7 All of
these vaccines have been evaluated in clinical trials and
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approved by regulatory authorities based on demonstrated
safety profiles and acceptable efficacy rates. By April 2022,
the coverage rate of the COVID-19 vaccine in Taiwan was
79.8% for the second dose and 58.2% for the third dose.8

However, no studies have compared their ability to pro-
duce total and neutralizing antibodies against virus variants
before and after administration.

In addition to eliciting cytotoxic T lymphocyte (CTL)
responses and B cell/antibody responses to protect against
microbial infection, another goal of vaccine development is
to induce memory T cell/B cell responses to facilitate rapid
viral clearance during reinfection.9e11 Memory T cells,
including CD4 and CD8 memory T cells, have traditionally
been divided into two major subpopulations: central
memory T (Tcm) cells and effector memory T (Tem) cells.12

Tcm cells are present in secondary lymphoid organs and
blood, which require further differentiation signals to make
effector cytokines and proliferate substantially after
reactivation. In contrast, Tem cells are mainly found in the
spleen, blood and peripheral organs, which results in rapid
effector responses and less proliferation.13 Moreover, pre-
existing cross-reactive memory T cells are associated with
reduced symptoms of viral shedding following infection
with the 2009 pandemic H1N1 IAV strain.14 Furthermore,
most S-specific memory CD4þ T cells were central memory
cells, whereas most memory CD8þ T cells were of the
effector memory phenotype after SARS-CoV infection.15

Although it has been demonstrated that the level of anti-
bodies produced after SARS-CoV-2 mRNA vaccination is
strongly correlated with the frequency of antigen-specific
memory B cells,10 the levels of induction of Tcm cells and
Tem cells after vaccination with different COVID-19 vac-
cines remain unclear. Additionally, TNF-a, IFN-g, and IL-2
are known to regulate the activation, growth, and differ-
entiation of a wide variety of cell types, including T cells, B
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cells, NK cells, and macrophages.16 Previous studies have
measured cytokines, such as IL-2, IFN-g, and TNF-a, using a
whole-blood cell culture system to determine the immune
status of healthy and cancer patients.17e19 However, it is
currently unknown whether the levels of the production of
these cytokines prior to vaccination affect the efficacy of
COVID-19 vaccines on antibody production.

In this study, we determined the levels of S-binding an-
tibodies and neutralizing antibodies against the WT, Delta,
and Omicron variants of three different forms of the vac-
cine. Another important result was the determination of
the relationship between antibody production, neutraliza-
tion capacity, adverse effects, age, sex, memory T cell
population, and basal immunity after AZ, Moderna, and
MVC vaccination. These findings clarify the characteristics,
efficacy, and immune associations of COVID-19 vaccines
against SARS-CoV-2 variants in a real-world data analysis.

Methods

Recruitment and clinical sample collection

Seventy-eight individuals signed informed consent forms and
were enrolled in the study, which was approved by the
Research Ethics Committee of China Medical University and
Hospital, Taichung, Taiwan (CMUH110-REC2-056). All par-
ticipants received two doses of homologous AZ, Moderna,
MVC, BNT vaccine schedules or a heterologous prime-boost
schedule. Ten milliliters of peripheral blood samples were
collected at two time points: baseline (before vaccination)
and 4 weeks after the second dose. The questionnaires of
adverse reactions were collected one week after the first
and second doses. Each “adverse reaction” is rated on a five-
point scale from 0 to 4, with 0 Z “not at all” and 4 Z “very
much.” Demographic and clinical information is provided in
Supplemental Table 1. Due to the small number of people
who received two doses of homologous BNT vaccine (n Z 4)
and heterologous vaccine (n Z 6), these two groups of par-
ticipants were excluded from the statistical analysis.

Sample processing

Venous blood was collected into EDTA tubes and then
centrifuged at 3000 rpm for 15 min to separate plasma.
Plasma samples were stored at �80 �C for downstream
antibody analysis. The remaining whole blood was diluted
with PBS, and peripheral blood mononuclear cells (PBMCs)
were isolated using Lymphoprep gradient centrifugation
(STEMCELL, Oslo, Norway). The collected PBMCs were
divided into two parts: one part was used to detect the
memory T cell populations, and the other was used to detect
the production of cytokines after culture and stimulation.

Detection of SARS-CoV-2-specific antibodies

The presence of S-specific antibodies to the different var-
iants in serum was determined by enzyme-linked immuno-
sorbent assay (ELISA). Briefly, 50 mL of 2 mg/mL S protein of
different variants, including WT (Wuhan strain), B.1.617.2
(Delta) and B.1.1.529 (Omicron) strains (kindly provided by
Dr. S. J. Liu, National Institute of Infectious Diseases &
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Vaccinology, National Health Research Institutes, Taiwan)
in 0.1 M carbonate buffer (pH 9.5) was coated onto 96-well
microplates by overnight incubation at 4 �C. After washing
twice with 0.05% Tween 20 in PBS, the microplates were
blocked with 3% BSA in PBS at room temperature for 2 h.
The plasma samples were diluted using 1% BSA in PBS and
incubated for another 2 h at room temperature. Following
the addition of HRP-conjugated donkey anti-human IgG
(Biolegend, CA, USA), the assay was visualized by 3,30, 5,5’
tetramethylbenzidine (TMB) dihydrochloride substrate
(Millipore, CA, USA). The absorbance was measured by an
ELISA reader at 450 nm.

ACE2 competitive ELISA

An ACE2 competitive ELISA was performed using the Anti-
SARS-CoV-2 (WT/B.1.617.2 (Delta)/B.1.1.529 (Omicron))
Neutralizing Antibody Titer Serologic Assay Kit (ACRO Bio-
systems, DE, USA) according to the recommended protocol.
Briefly, precoated human ACE2 microplate 96-well plates
were provided by the kit. Then, 50 mL of 1:10, 1:40, and
1:80 diluted serum samples and positive and negative
controls were added to each well, followed by 50 mL of
HRP-SARS-CoV-2 Spike RBD (WT/Delta/Omicron). The plate
was washed, and 100 mL substrate solution was added to
each well for 20 min at 37 �C. The reaction was stopped
with the provided stop solution. The absorbance was
measured using an ELISA reader at 450 nm. The competitive
activity of serum antibodies was expressed as a percentage
of inhibition ((1� OD450 nm of sample/OD450 nm of
negative control) � 100%).

Flow cytometry

The isolated PBMCs were stained with fluorescently labeled
CD3, CD4, CD8, CD45RA, and CD62L monoclonal antibodies
(BioLegend, CA, USA). Flow cytometric analysis was per-
formed on a flow cytometer using a FACSVerse instrument
(BD Bioscience, CA, USA), and the data were analyzed using
FlowJo software (Tree Star Inc., OR, USA). Gating strategies
and representative flow cytometry plots of different
memory T cell populations are shown in Supplementary
Figure 1.

Measurement of cytokine production

Human PBMCs were plated at a density of 1 � 106 cells per
milliliter in complete Iscove’s Modified Dulbecco’s Medium
(IMDM) medium (GIBCO, NY, USA). Then, 50 ng/ml phorbol
12-myristate 13-acetate (PMA) (Sigma, MO, USA) was added,
and the cells were subsequently incubated at 37 �C in a 5%
CO2 atmosphere. The supernatants of cells incubated for 24
and 48 h were collected, and human IL-2, TNF-a and IFN-a
levels were determined using ELISA kits (BD Bioscience, CA,
USA) according to the manufacturer’s protocol.

Statistical analysis

Statistical data were generated using GraphPad Prism
software. The results are expressed as the means � SD.
Differences between groups were assessed by Student’s t



Fig. 1. Antibody responses following AZ, Moderna, and MVC vaccination. Antibody titers were measured in serum collected
before vaccination (pre vac) and 4 weeks after the second dose (post 2nd). The presence of S-specific antibodies (anti-S IgG)
against WT (A), Delta (B), and Omicron (C) variants in serum was determined by ELISA. The upper panels of Figs. A, B, and C show
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test. P values less than 0.05 were considered statistically
significant. Correlations were calculated using the
nonparametric Spearman correlation method and are
shown with linear trend lines. The coefficient of correlation
had to be > 0.25 or < �0.25 and p < 0.05 for a significant
correlation.

Results

Antibody responses to COVID-19 vaccination

For this study, we recruited 78 participants who received
COVID-19 vaccines in Taiwan. Because the number of par-
ticipants with two doses of BNT (n Z 4) and heterologous
(nZ 6) vaccination was too low, the results of this study only
included those in the two-dose AZ (n Z 38), Moderna
(nZ 17) and MVC (nZ 13) groups for statistical analysis. Full
cohort information is described in Supplemental Table 1.
First, we determined circulating S-binding antibodies
against WT, Delta, and Omicron (Fig. 1AeC) strains in serum
samples by ELISA. The upper panel of Fig. 1AeC shows that
the second doses of AZ, Moderna, and MVC vaccine induced a
significant increase in total S-binding antibodies against WT
(p < 0.01, < 0.0001, and Z 0.065, respectively), Delta (p <
0.01, < 0.0001, and < 0.0001, respectively), and Omicron
(p < 0.05, < 0.0001, and < 0.05, respectively) variants.
Based on the variation among individuals with different
baselines, we calculated the fold enhancement by dividing
the level of antibodies after the second dose by the baseline.
The fold changes in antibodies against WT, Delta, and Omi-
cron S protein by the Moderna vaccine booster were 84, 14,
and 18, respectively, which were highest compared to AZ
and MVC vaccines (bottom panel of Fig. 1AeC). Moreover,
the fold change in anti-Delta and Omicron S antibodies was
significantly higher in the two-dose MVC vaccine group than
in the AZ vaccine group (p < 0.01 and < 0.001, respectively)
(bottom panel of Fig. 1B and C). Notably, the fold change in
anti-Delta and Omicron S antibodies was significantly lower
than that in the anti-WT S antibodies produced following
Moderna vaccination (p < 0.05). There was no significant
difference in antibody production against WT, Delta, and
Omicron variants in the AZ and MVC vaccines (Fig. 1D). In
addition, we found no differences between males and fe-
males in terms of antibody production (against WT, Delta,
and Omicron S proteins) following immunization with AZ,
Moderna, and MVC vaccines (Supplemental Fig. 1). The as-
sociation between age and antibody production was also not
significant in the immunization with AZ, Moderna, and MVC
vaccines (Supplemental Fig. 2).

Neutralization responses to COVID-19 vaccination

In addition to total S-binding antibodies, we further
assessed the neutralizing ability of antibodies produced by
the antibody titers produced by each individual against the three
panels of Figs. A, B and C are the folds of antibody calculated by
vaccination. (D) The folds of antibodies against WT, Delta and O
vaccination. The numbers in each column on the graph are the mea
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****).
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two doses of the AZ, Moderna, and MVC vaccines using an
ACE2 competitive ELISA. We used 10-, 40-, and 80-fold di-
lutions of sera to compete with WT, Delta, and Omicron S
proteins for binding to ACE2. In the upper panel of Fig. 2A
and B, we found that the sera from the booster of all three
vaccines significantly reduced the neutralizing ability of WT
and Delta variants with increasing dilutions. However, only
the booster of the Moderna vaccine significantly reduced
the neutralizing ability (36% down to 18%) of the Omicron
variant with increasing dilutions (upper panel of Fig. 2C).
However, neutralization of the Omicron variant by the AZ
and MVC vaccines was low and did not change with
increasing dilutions. To analyze the neutralizing effect of
each vaccine in WT, Delta, and Omicron variants, we
compared the percentage of inhibition in 40-fold diluted
serum from all three vaccines. We demonstrated that
Moderna immunization had the best neutralizing effect in
the WT (84%), Delta (75%), and Omicron (20%) variants,
while the MVC vaccine (48%) had a better neutralizing ef-
fect in the WT than the AZ vaccine (34%) (p < 0.05) (lower
panel of Fig. 2AeC). The AZ, Moderna, and MVC vaccines
had the best neutralizing effects in the WT strain (34, 84,
and 48, respectively) and the least in the Omicron variant
(7, 20, and 11, respectively). In comparison, neutralization
of the Delta and Omicron variants was reduced by 13% and
27% compared to the WT strain in AZ vaccination, reduced
by 9% and 64% in Moderna vaccination, and reduced by 28%
and 37% in MVC vaccination (Fig. 2D). None of the partici-
pants had a neutralizing effect on the WT, Delta, or Omi-
cron variants before vaccination (data not shown). In
addition, we found no differences between males and fe-
males in neutralizing ability and no association between
age and neutralizing ability after immunization with AZ,
Moderna, and MVC vaccines (Supplemental Figs. 3 and 4).

Adverse reactions to COVID-19 vaccination

Subsequently, we compared the adverse reactions to the
prime-boost AZ, Moderna, and MVC vaccines and investi-
gated the potential relationships between the fold change
in antibodies, neutralization capacity, or age and adverse
reactions after two doses of vaccines. As in previous stud-
ies,20e22 we confirmed a higher frequency of adverse re-
actions after AZ primary vaccination compared with AZ
booster vaccination (p < 0.001). However, there was a
higher frequency of adverse reactions after Moderna
booster vaccination than after Moderna primary vaccina-
tion (p < 0.05). In addition, there was no difference in the
frequency of adverse reactions between MVC primary and
booster vaccinations. Moreover, Moderna and MVC had
fewer adverse reactions than the AZ vaccine in the primary
vaccination (p < 0.05 and p < 0.05, respectively), and AZ
and MVC had fewer adverse reactions than Moderna in the
booster vaccination (p < 0.01 and p < 0.05, respectively)
(Fig. 3A). Combining the adverse reaction scores for the
variants following AZ, Moderna, and MVC vaccines. The lower
dividing the antibody titer after the second dose by the pre-
micron S protein were compared after AZ, Moderna and MVC
ns for each group. The results are presented as the means � SD.



Fig. 2. Antibody responses following AZ, Moderna, and MVC vaccination. Competitive activity in serum samples collected from
two doses of vaccine was detected by competitive ELISA. The percent inhibition was measured using 10-, 40-, and 80-fold dilutions
of serum to compete with WT (A), Delta (B), and Omicron (C) S proteins for binding to ACE2. The upper panels of Figs. A, B, and C
show the percent inhibition following AZ, Moderna, and MVC vaccination. The lower panels of Figs. A, B and C show the percentage
of inhibition in 40-fold diluted serum from all three vaccines. The numbers in each column on the graph are the means for each
group. (D) The percentage of inhibition in 40-fold diluted serum against WT, Delta and Omicron S protein was compared after AZ,
Moderna and MVC vaccination. The numbers in each column in Fig. D are the mean subtractions between groups. The results are
presented as the means � SD. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****).

Y.-C. Song, S.-J. Liu, H.-J. Lee et al.

710



Journal of Microbiology, Immunology and Infection 56 (2023) 705e717
primary and booster vaccinations, the MVC vaccine had the
lowest adverse reactions (11.5) compared to AZ (16.4) and
Moderna (17.0) (Fig. 3B). The frequency of fever and
arthralgia with the MVC vaccine was significantly lower than
that with AZ and Moderna, especially because all partici-
pants who received the MVC vaccine had no fever symptoms
(Fig. 3C). Furthermore, there were no correlations between
adverse reactions and the fold change in antibodies
(Fig. 3D), neutralization capacity (Fig. 3E), or age (Fig. 3F)
after two doses of AZ, Moderna, and MVC vaccine.

Memory T cell responses to COVID-19 vaccination

Regarding human memory CD4 and CD8 T cells, multiple
phenotypes and broad functions have been observed in
different viral infections.15,23 We next asked whether AZ,
Moderna, and MVC vaccination affected the levels of
different memory T cell populations. To address this ques-
tion, we developed a flow cytometric assay that uses fluo-
rescently labeled markers to track memory T cell
populations in PBMC samples (Supplemental Fig. 5). We
demonstrated that the percentage of the central memory
population (upper panel of Fig. 4AeC) but not the effector
memory population (upper panel of Fig. 4DeF) in total T,
CD8 T, and CD4 T cells was significantly enhanced after two
doses of AZ and Moderna. To analyze changes in central and
effector memory populations in total T, CD8 T, and CD4 T
cells, we subtracted the percentage of the cell population
prevaccination from the postvaccination (lower panel of
Fig. 4AeF). Increased central memory populations in total
T, CD8 T, and CD4 T cells were significantly enhanced after
two doses of AZ (increased by 5.6%, 3.2%, and 8.0%,
respectively) and Moderna (increased by 7.8%, 5.3%, and
10.5%, respectively) vaccination compared to MVC vacci-
nation. Furthermore, Moderna vaccination had a higher
level of increased CD8 Tcm cells than AZ vaccination
(increased by 2.1%) (bottom panel of Fig. 4B). In addition,
there was a significant positive correlation between
changes in Tcm cells and fold of antibody production in
Moderna vaccination (correlation in total Tcm cells was
0.58, in CD4 Tcm was 0.57, in CD8 Tcm was 0.63) but not in
AZ or MVC vaccinations (Fig. 5). These results suggested
that the adenovirus-based AZ and mRNA-based Moderna
vaccines may be better than the protein-based MVC vaccine
in generating memory T cells.

Relationships between basal immunity and
antibody production to COVID-19 vaccination

To delineate the correlation between basal immunity and
antibody production, we measured the secretion levels of
TNF-a, IFN-g, and IL-2 using a PBMC culture system before
vaccination.17e19 Surprisingly, the levels of TNF-a and IL-2
and the sum of three cytokines before COVID-19 vaccina-
tion were negatively correlated with antibody titers pro-
duced postvaccination (correlations were �0.4, �0.34, and
�0.35, respectively) (Fig. 6A). In addition, there were also
negative correlations between the levels of TNF-a, IL-2,
and the sum of the three cytokines before vaccination
and the neutralizing capacity after vaccination (correla-
tions were �0.46, �0.26, and �0.5, respectively) (Fig. 6B).
Supplemental figure 6 and 7 show individual data analysis of
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cytokine responses to AZ, Moderna, and MVC vaccines. This
result suggested that excessive basal immunity before
vaccination does not promote the production of S-binding
or neutralizing antibodies.

Discussion

The novelty of this study is the comparison of total S-
binding antibody levels and neutralizing capacity against
WT, Delta, and Omicron variants between the MVC vaccine
developed in Taiwan and the widely used Moderna and AZ
vaccines in the world. We observed that two doses of
Moderna vaccination produced the highest total S antibody
and neutralizing ability against the WT, Delta, and Omicron
variants compared to the AZ and MVC vaccines. MVC
vaccination produced higher S-binding antibodies against
Delta and Omicron variants and neutralizing ability against
WT SARS-CoV-2 than AZ vaccination. Moreover, the MVC
vaccine had the lowest adverse reactions compared to AZ
and Moderna. Another important result was that Moderna
and AZ vaccination produced more Tcm populations in
PBMC than the MVC vaccine. Surprisingly, high levels of
cytokines (especially TNF-a and IL-2) before vaccination
did not help to enhance the S-binding antibody level or
neutralizing ability. The summary and key findings are
described in Table 1.

At least 50 mutations were found in the Omicron genome
in a study of SARS-CoV-2 gene sequencing, 32 of which
affected the spike protein.24 However, there are 11 com-
mon mutations in the RBD of Omicron and its subvariants.
Since the main effect of the mutation in the RBD of Omicron
has a higher positive electrostatic surface potential, this
may increase the interaction between RBD and ACE2. Om-
icron and subvariants have the potential to increase
transmission compared to the WT.25 These mutations in the
RBD of Omicron may result in the inability of vaccine-
induced antibodies to neutralize binding of the S protein
to ACE2. Our results confirmed that the AZ, Moderna and
MVC vaccines had the best neutralization effect in the WT
virus and the least neutralization effect in the Omicron
variant. The same results were observed even with the BNT
vaccine (n Z 4), with 48% neutralizing effect on WT virus,
23% neutralizing effect on the Delta variant, and 0%
neutralizing effect on the Omicron variant when serum was
diluted forty-fold (Supplemental Fig. 8). On the other hand,
our results showed that the production of antibodies
against WT, Delta, and Omicron variants had no significant
difference in the AZ and MVC vaccines but not the Moderna
vaccine. This may be because AZ and MVC vaccine-induced
antibodies do not affect the recognition of other parts of
the Delta and Omicron S protein.

A previous study found that higher antibody titers and
better neutralizing capacity in young adults (<40 years old)
than in older adults (>60 years old) were inversely associ-
ated with age in AZ and Moderna vaccination in Taiwan.26

However, there were no significant differences in correla-
tion analyses between age and antibody titers, neutralizing
ability, or adverse reactions in our study. This may be
because the participants were all between the ages of 20
and 60, and there were no participants over 60.

A recent study demonstrated that 100% of individuals
who were vaccinated with Moderna mRNA-1273, Pfizer/



Fig. 3. Adverse reactions after AZ, Moderna, and MVC vaccination. (A) Scores of adverse reactions after the first (1st) and
second (2nd) doses of AZ, Moderna, and MVC vaccines are shown. (B) The sum of the scores for the first and second doses of the
vaccines is shown. The numbers in each column on the graph are the means for each group. (C) The scores for each clinical
symptom were summed from the scores for the first and second doses of vaccines. Associations between adverse reactions and
antibody titer (D), inhibition activity (E), and age (F) were calculated using Spearman rank correlation and are shown with linear
trend lines. The results are presented as the means � SD. p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).
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Fig. 4. Memory T cell responses following AZ, Moderna, and MVC vaccination. The frequencies of central memory T cells (Tcm)
(AeC) and effector memory T cells (Tem) (DeF) in total T (CD3þ) cells (A and D), CD8þ T cells (B and E), and CD4þ T cells (C and F)
were detected by flow cytometry. The upper panels of Figs. AeF show the percentage of Tcm/Tem populations before vaccination
(pre vac) and 4 weeks after the second dose (post 2nd). The lower panels of Figs. AeF show the changes in Tcm and Tem pop-
ulations in total T, CD8þ T, and CD4þ T cells. The changes in percentage were subtracted from the memory T cell populations
prevaccination from those postvaccination. The numbers in each column on the graph are the means for each group. The results are
presented as the means � SD. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****).
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Fig. 5. Association between changes in Tcm cells and fold of antibody production. Associations between antibody titers
following AZ, Moderna, and MVC vaccination and changes in memory T cell populations were calculated using Spearman rank
correlation and are shown with linear trend lines. Groups with significant trends are shown in red.

Y.-C. Song, S.-J. Liu, H.-J. Lee et al.
BioNTech BNT162b2, Janssen Ad26.COV2.S, and Novavax
NVX-CoV2373 vaccines generated specific memory CD4þ T
cells,27 which is in accordance with our findings in the
increased memory T cells after vaccinations. Even though
we did not use antigen-specific stimulated T cells to
examine the antigen-specific memory T cell population, we
could still observe an increase in memory T cells after
vaccination. On the other hand, Tcm cells are present in
secondary lymphoid organs and blood and Tem cells are
mainly found in the spleen, blood, and peripheral organs.
Therefore, the migration of memory T cells to other
lymphoid organs generated by MVC vaccination cannot be
ruled out. In summary, we are the first to show this finding,
but the mechanism still needs to be explored in the future.
Our findings still provided some clues to re-think how to
improve the protein-based vaccine in the future.

Previous studies have shown that chronic inflammatory
diseases, such as spondyloarthritis and air pollutant-
induced inflammation, may suppress plasma neutralizing
antibody production after vaccination.28,29 Here, we found
that there were negative correlations between basal im-
munity (IFN-g, TNF-a, and IL-2) before vaccination and
antibody production/neutralizing capacity after vaccina-
tion. These results suggested that an excessive immune
714
response prior to vaccination may impair the production of
neutralizing antibodies.

Limitations

In Taiwan, AZ was the first COVID-19 vaccine (March 2020)
to be administered to the public, followed by the Moderna
(June 2020), MVC (August 2020), and BNT (September 2020)
vaccines. Therefore, more participants received the AZ
vaccine than the Moderna, MVC, and BNT vaccines. None-
theless, some of the results of this study confirmed previous
findings, such as comparing the S-binding antibody levels
and side effects of the Moderna vaccine with the AZ
vaccine20e22,30,31 and the ability of the MVC vaccine to
produce antibodies against WT and Omicron variants.7

Therefore, even though the case number was not suffi-
ciently large, the statistical analysis has a certain credi-
bility and new findings. Therefore, we still observed that
MVC vaccinations were better than AZ in certain measure-
ments such as anti-S IgG against delta and omicron variants.
In addition to the lower number of participants, another
limitation of this study is that the age range was not wide
enough. Most of the people who were willing to vaccinate in
Taiwan in the early stage were between 20 and 60 years



Fig. 6. Association of basal immunity and antibody production following vaccination. IFN-g, TNF-a, and IL-2 secretion from a
PBMC culture system was measured by ELISA. Associations between the fold change in antibody titer (A) or neutralization (% of
inhibition) (B) following AZ, Moderna, and MVC vaccination and the levels of IFN-g, TNF-a, IL-2, and the sum of three cytokines
before vaccination were calculated using Spearman rank correlation. Lines in the graph are displayed as trend lines. Groups with
significant trends are shown in red.
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Table 1 Research summary and key findings.

S-binding Ab titer Neutralization Adverse reactions Tcm

WT Delta Omicron WT Delta Omicron

AZ þþ þ þ þ þþ þþ þþþ þþ
Moderna þþþ þþþ þþþ þþþ þþþ þþþ þþþ þþþ
MVC þþ þþ þþ þþ þþ þþ þþ þ
The number of þ indicates levels among the three vaccines.
þþþ highest, þþ medium, þ minimum.

Y.-C. Song, S.-J. Liu, H.-J. Lee et al.
old; therefore, there was no significant difference in age-
related statistical analysis.

Conclusions

This study found that the Moderna vaccine produced the
best effect against the WT, Delta, and Omicron variants of
SARS-CoV-2, while the MVC vaccine may be more effective
than the AZ vaccine. In addition, the ability of Moderna and
AZ to generate memory T cells was higher than that of the
MVC vaccine. However, MVC had minimal side effects. The
surprising finding was that strong basal immunity before
vaccination did not promote antibody production.
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