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Methods: A total 14,852 P. aeruginosa isolates were included in our study. The resistant rate
and antimicrobial consumption were investigated every six months. Linear regression analysis
was conducted to examine the trends in antibiotics consumption and antimicrobial resistance
over time. The relationship between P. aeruginosa resistance and antimicrobial consumption
were using Pearson correlation coefficient to analysis. The trend of resistance before and after
ASPs implanted is evaluated by segment regression analysis.

Results: P. aeruginosa resistance to ceftazidime, gentamicin, amikacin, ciprofloxacin and le-
vofloxacin significantly decreased during the study period; piperacillin/tazobactam (PTZ), ce-
fepime, imipenem/cilastatin and meropenem remained stable. The P. aeruginosa resistance to
ciprofloxacin and levofloxacin increasing initial then decreased after strictly controlled the use
of levofloxacin since 2007. As the first choice antibiotic to treat P. aeruginosa, the consumption
and resistance to PTZ increase yearly and resistance became stable since extended-infusion
therapy policy implant in 2009.

Conclusion: Our ASP intervention strategy, which included extended infusion of PTZ and
restrict use of levofloxacin, may be used to control antimicrobial resistance of P. aeruginosa
in medical practice.

Copyright © 2022, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Introduction

Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous
gram-negative bacillus, is one of the most common causes
of nosocomial infections worldwide.” In the United States,
P. aeruginosa was found to be the fourth most common
pathogen causing hospital-acquired infections (HAIs),
particularly ventilator-associated pneumonia and catheter-
related urinary tract infections.? Moreover, it was respon-
sible for 6.9%—11.0% of HAls in Taiwan from 2012 to 2021, as
reported by the Taiwan Healthcare-Associated Infection
and Antimicrobial Resistance Surveillance System estab-
lished by the Centers for Disease Control. The global in-
crease in antibiotic-resistant P. aeruginosa infections for
over a decade has become a health-care concern.’™®
Notably, antibiotic-resistant P. aeruginosa strains were
responsible for 84,600 deaths in 2019.° The rapid emer-
gence of P. aeruginosa antimicrobial resistance has made
selecting effective antibiotics more challenging.” Study has
reported a positive correlation between antibiotic con-
sumption and resistance in P. aeruginosa.®

Implementation of antimicrobial stewardship programs
(ASPs) to address local trends in antibacterial resistance is a
key strategy for controlling bacterial resistance.’ This study
investigated the relationship between consumption of
different antipseudomonal agents and antimicrobial resis-
tance over a 14-year ASP intervention period at a university
hospital in Taipei, Taiwan.

Methods
Hospital setting

Taipei Medical University Hospital is a private, tertiary
care, university-affiliated teaching hospital in Taipei,
Taiwan. This hospital had 350 beds in 2004, 560 beds in
2008, 702 beds in 2010, and 743 beds in 2017. The hospital
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has medical, surgical, neonatal, and pediatric intensive
care units and an emergency room.

Bacterial isolates, susceptibility testing, and
antimicrobial resistance rate

All P. aeruginosa strains isolated from inpatients and out-
patients at our hospital from 2004 to 2017 were included in
this study. Susceptibility data were obtained from the
Clinical Microbiology Laboratory Department. A broth
microdilution method (Phoenix; Becton Dickinson, Sparks,
MD) was used for susceptibility testing, and the breakpoints
for determining susceptibility of each antibiotics was
interpreted according to the criteria suggested by the
Clinical and Laboratory Standards Institute. '

Antibiotic consumption and ASPs

The antipseudomonal agents examined in this study
comprised penicillins (piperacillin-tazobactam (PTZ)),
cephalosporins (ceftazidime and cefepime), carbapenems
(imipenem-cilastatin and meropenem), aminoglycosides
(gentamicin and amikacin), and fluoroquinolones (cipro-
floxacin and levofloxacin) applied on inpatient and outpa-
tient at our institution from 2004 to 2017. The amounts of
antibiotic consumption were presented as defined daily
doses (DDDs) per 1000 patient days (PD) (DID = DDDs/1000
PD). And the DDDs of each antibiotics was defined depen-
ded on the World Health Organization Collaborating Centre
for Drug Statistics Methodology.

In our hospital, ASPs are led by infectious disease (ID)
physicians, infection control nurse (ICN), clinical laboratory
technologist and pharmacists with ID training are also
deeply involved in the programs. We regularly hold
educational program and advocate the guideline, enforce
facility-specific clinical practice on treatment, provide
prior authorization for the use of restricted antibiotics
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within 24 h, conduct prospective audit and provide feed-
back, verify dose and optimal duration. Furthermore, we
hold regular conference to monitor and rectify inadequate
antibiotic use monthly, report and feedback on facility-
specific antibiotic susceptibility rate and infection rate to
prescriber and medical staff quarterly.

Strategies implemented as part of our hospital’s ASP to
control P. aeruginosa antimicrobial resistance from 2004 to
2017 included the following (and Supplementary Fig. 1):

(1) Strict regulation of carbapenem prescriptions since
2004, comprising (a) requiring prior authorization—
consisting of a real-time consultation using a
computer-generated alert system and confirmation by
and ID specialist— for carbapenem prescriptions and
(b) monitoring carbapenem consumption and P. aeru-
ginosa resistance to carbapenem every six months.

(2) Use of PTZ, rather than ceftazidime or cefepime, as to
the first-choice treatment for P. aeruginosa infections
since 2004 due to increasing usage of 3rd and 4th
cephalosporins since 2003, comprising (a) Education:
prescribers have been advised the empirical use of PTZ
for severe hospital-acquired infection leading by P.
aeruginosa, (b) Preprescription approval: Mandate
formal ID consultation for prescribing of ceftazidime,
cefepime and PTZ and (c) Monitoring ceftazidime and
cefepime consumption monthly.

(3) Strict regulation of levofloxacin prescriptions since
July 2007 due to a surging rate of Fluoroquinolone-
resistant P. aeruginosa was observed since 2006,
comprising (a) Education: Staff members have been
advised against the empirical use of Fluo-
roquinolones, and the recommendation of optimal
dose has been provided to all physicians, (b) Pre-
authorization: each levofloxacin prescriptions need
to be applied through electronic medical system
(indication documented) and verified by pharmacists
and (c) Monitoring levofloxacin consumption monthly
and resistance to levofloxacin every six months.

(4) Implementation of PTZ extended-infusion therapy
since 2009, initial started from intensive care units and
promoted throughout our hospital gradually,
comprising (a) The recommended dosage is 4500 mg
Q8H infusion over 4 h for patients with normal
renal function. The dose and extended-infusion

time are adjusted according to renal function.
And compatibility was also reviewed by ID
pharmacist (Supplementary Fig. 2), (b)Advocate
institution updated guideline: all prescribers and staff
members (application of infusion pump) were
instructed by ID physicians and linking nurse and (c)Set
protocol at electronic physician order entry system.

Correlation between antimicrobial resistance
rate and antibiotic consumption

The relationship between antimicrobial resistance rate and
antibiotic consumption was investigated every six months.
The change in P. aeruginosa resistance to PTZ from pre-
intervention to postintervention was used to evaluate the
effectiveness of the PTZ extended-infusion strategy to
control P. aeruginosa antimicrobial resistance.

Statistical analysis

The trends in antibiotic resistance and antibiotic con-
sumption and medical were analyzed by linear regression
analysis. A Pearson correlation coefficient was conducted
to determine the relationship between the consumption of
each antibiotic and the antimicrobial resistance rate with
SPSS statistical software (Version 19.0; SPSS Inc. Armonk,
NY, USA). The effect of the intervention on the imple-
mentation of PTZ extended-infusion strategy since 2019
and bacterial resistance was assessed using Segment
regression analysis. Analyses was performed using R sta-
tistical software version 3.1.2. A p value of <0.05 was
considered statistically significant for all tests.

Results

Trends in antimicrobial resistance and consumption
of selected antibiotics

A total 14,852 P. aeruginosa isolates were isolated at Taipei
Medical University Hospital from 2004 to 2017. The number
of P. aeruginosa isolates in each half-year period ranged
from 293 to 726. Table 1 shows the trends of antibiotic
resistance of these isolates over the 14-year period.

Table 1  The trend of Antibiotic resistance to Pseudomonas aeruginosa rate (%) at Taipei Medical University Hospital from 2004

to 2017.

Antimicrobial agent Median resistance rate (%) Interquartile Range Gradient (95% Cl) Trend p-value
Piperacillin/tazobactam 15 (12—17) 0.253 (—0.067, 0.574) Stable 0.116
Ceftazidime 13.5 (11—19.5) —0.426 (—0.637, —0.215) Decreasing <0.0001*
Cefepime 29 (24—34) —0.128 (—0.379, 0.123)  Stable 0.304
Imipenem/cilastatin 13 (11—15) 0.391 (—0.124, 0.906) Stable 0.131
Meropenem 11 (10—14) 0.090 (—0.470, 0.649) Stable 0.745
Gentamicin 19 (12—26.5) —0.381 (—0.490, —0.272) Decreasing <0.0001*
Amikacin 6 (2—10) —0.662 (—0.864, —0.460) Decreasing <0.0001*
Ciprofloxacin 19.5 (17.5—24) —0.367 (—0.587,-0.147) Decreasing 0.002*
Levofloxacin 23 (20.5—26) —0.307 (—0.582,-0.033) Decreasing 0.03*

* p < 0.05, Statistically significant.
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Table 2 The trend of Antibiotic consumption (DID) at Taipei Medical University Hospital from 2004 to 2017.

Antimicrobial agent Median use (DID) Interquartile Range Gradient (95% Cl) Trend p-value
Piperacillin/tazobactam 22.25 (20.95—25.1) 0.718 (0.512, 0.924) Increasing <0.0001*
Ceftazidime 2.94 (1.99—4.265) 0.783 (0.271, 1.295) Increasing 0.004*
Cefepime 6.06 (2.285—-16.7) 0.447 (0.335, 0.558) Increasing <0.0001*
Imipenem/cilastatin 2.55 (1.7-3.2) —1.923 (—3.105, —0.764) Decreasing 0.002*
Meropenem 6.3 (3.85—9.75) 0.739 (0.452, 1.026) Increasing <0.001*
Gentamicin 42.65 (35.85—51.55) —0.347 (—0.435, —0.259) Decreasing <0.0001*
Amikacin 20.9 (17.05—24.5) —0.539 (-0.775,-0.302) Decreasing <0.0001*
Ciprofloxacin 25.3 (22.8—31.05) 0.393 (0.076, 0.709) Increasing 0.017*
Levofloxacin 7.1 (5.95—9.55) —0.402 (—0.743, —0.062) Decreasing 0.022*

* p<0.05, Statistically significant.

Resistance rates for all nine selected antimicrobials
decreased significantly or remained stable. The consump-
tion of PTZ, ceftazidime, cefepime, meropenem, and cip-
rofloxacin increased significantly over time. By contrast,
the consumption of imipenem/cilastatin, gentamicin, ami-
kacin, and levofloxacin decreased significantly (Table 2).

Correlation of antibiotic consumption and
resistance rate

Table 3 presents the relationship between the consumption
of each antipseudomonal agent and the resistance rate.
PTZ, gentamicin, amikacin, and levofloxacin consumption
exhibited a significant positive correlation with antimicro-
bial resistance; meropenem, imipenem/cilastatin, and
ciprofloxacin consumption exhibited no correlation; and
ceftazidime and cefepime consumption exhibited a signifi-
cant negative correlation.

Effect of control of levofloxacin use on P.
aeruginosa resistance to fluoroquinolones

P. aeruginosa resistance to ciprofloxacin and levofloxacin
increased to 37% and 36%, respectively, in the first half of
2006, during which the consumption of fluoroquinolones

Table 3  Correlations between consumption of each anti-
biotic agent and resistance rate at Taipei Medical University
Hospital.

Antimicrobial agent Coefficient Coefficient p-value
(r%) (r)
Piperacillin/ 0.221 0.470 0.012*
tazobactam

Ceftazidime 0.191 —0.440 0.019*
Cefepime 0.112 —0.416 0.028*
Imipenem/cilastatin 0.132 —0.358 0.061*
Meropenem 0.018 —0.134 0.498
Gentamicin 0.573 0.757 <0.0001*
Amikacin 0.487 0.697 <0.0001*
Ciprofloxacin 0.135 —0.367 0.055
Levofloxacin 0.517 0.719 <0.0001*

* p < 0.05, Statistically significant.
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also increased. Our hospital has strictly controlled the use
of levofloxacin since the second half of 2007. The con-
sumption of total levofloxacin decreased significantly from
14.12 + 5.37 t0 6.86 + 1.92 (p = 0.011), and P. aeruginosa
resistance to ciprofloxacin and levofloxacin decreased to
18% and 21% in 2017, separately (Tables 1-2).

Effect of PTZ extended-infusion therapy on P.
aeruginosa resistance to PTZ

The incidence rate of P. aeruginosa resistance to PTZ
increased to 28% in the second half of 2006 and nosocomial
infections related to PTZ-resistant P. aeruginosa also raised
to 24%. Extended-infusion therapy policy was implemented
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(Standard Error)
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Parameter 95% ClI for odds ratio p value

Preintervention slope 0.0012

(0.0092, —0.0068)
(0.004012)

0.767

Change in intercept 2.226

(13.10, -8.643)
(5.434413)

(intermediate effect) 0.686

Postintervention slope -0.00083

(0.0067, -0.0067)
(0.004368)

0.646

Figure 1. Pseudomonas aeruginosa resistance to Piper-
acillin/tazobactam(PTZ) before and after implementation of
the extended-infusion therapy policy in 2009 and change in PTZ
slope before and after policy implementation. (Gray bar: PTZ
consumption (DID), black line: PTZ resistance rate (%), red
dotted line: PTZ resistance trend, gray dotted line: PTZ
extended-infusion strategy implementation).
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since 2009. The consumption (DID) of total PTZ increased
from 19.74 + 3.39 to 24.63 + 4.20 during study period. But
the resistance slope was 0.0012 and —0.00083 before and
after implementation of the extended-infusion therapy
policy, respectively; no significant difference (p = 0.646)
was identified between the two stages (Fig. 1).

Discussion

Our study evaluated the association between consumption
of different antipseudomonal agents and the antibiotic
resistance of P. aeruginosa in a teaching hospital over a 14-
year ASP intervention period. Under long-term ASP strate-
gies on targeted antibiotics management, our antibiogram
of P. aeruginosa was more susceptible to similar university-
affiliated hospitals. Hence, we will focus on management of
specific antibiotics in the following discussion.

Fluoroquinolones are antibiotics with broad-spectrum
activity, high potency, and favorable bioavailability, which
make them convenient treatment options for various clin-
ical indications, including pseudomonas infections." How-
ever, the overuse of quinolones has contributes to
increasing the resistance of P. aeruginosa to quinolones
worldwide.”” ' The Clinical and Laboratory Standards
Institute (CLSI) has even lowered the Fluoroquinolon anti-
microbial susceptibility breakpoints for P. aeruginosa on
the basis of pharmacokinetic and pharmacodynamic find-
ings." Several retrospective observational studies identi-
fied a positive correlation between quinolone use and the
antimicrobial resistance of P. aeruginosa, especially to
levofloxacin.'®~"® This finding could partly be explained by
pharmacodynamic principles. Ciprofloxacin has higher
antibacterial efficacy against P. aeruginosa than does lev-
ofloxacin because it has a lower minimum inhibitory con-
centration (MIC). And the mutant selection window (MSW)
concept may help explain this phenomenon. This window is
the concentration range between the MIC and the MIC of
the least drug-susceptible mutant subpopulation and is
known as the mutant prevention concentration (MPC).'%"%°
Fluoroquinolones exposures within this window have been
shown to promote the emergence of resistant populations.
Hansen et al. reported that the MPC for ciprofloxacin was
approximately three to four times lower than that for lev-
ofloxacin, indicating a narrowed MSW and lower possibility
of inducing a mutation.?’ In our previous study, strictly
restricting levofloxacin consumption resulted in a 20%
decrease in the incidence of Fluoroquinolones -resistant P.
aeruginosa infections??; therefore, levofloxacin pre-
scriptions have been strictly regulated since the second half
of 2007, and ciprofloxacin, instead of levofloxacin, is used
to treat pseudomonas infections if indicated. Since the
implementation of the ASP, a significant decrease in levo-
floxacin consumption was noted over 10 years. Concur-
rently, the incidence of Fluoroquinolones -resistant P.
aeruginosa also decreased.

Studies have demonstrated that B-lactam resistance is
positively correlated with the consumption of B-lactam
agents, and that PTZ is less likely than B-lactam antibiotics
to induce B-lactam resistance in P. aeruginosa.”> >° Studies
have also mentioned that reducing the use of extended-
spectrum cephalosporin and replacing it with PTZ could
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control antimicrobial resistance in bacteria, such as
extended-spectrum f-lactamase (ESBL) resistance in
Enterobacteriaceae, B-lactam resistance in P. aeruginosa,
and vancomycin resistance in Enterococcus and Clos-
tridioides difficile.”®?’ In fact, both ESBL-producing
Escherichia coli and Klebsiella pneumoniae isolates asso-
ciated with nosocomial infections were arising since 2003
(from 9.6% to 12.5% and from 23.52% to 31.5%, respectively)
was found in our hospital. After implementing our outline
ASP strategy of using PTZ instead of broad-spectrum
cephalosporins, the amount of ceftazidime consumed in
our hospital decreased dramatically from 12.7 DID in 2003
to 5.6 DID in 2004; during the study period, the average
amount consumed was approximately 3.68 DID. The amount
of cefepime consumed remained below 5 DID until the
second half of 2010 (8.2 DID), when it increased due to
improved P. aeruginosa sensitivity to cefepime.

However, because PTZ became the first-choice treatment
for P. aeruginosa infections, its consumption increased
dramatically. Since the first half of 2006 and still lasted for
years, an increasing rate of P. aeruginosa resistance to PTZ
was observed. We developed PTZ extended infusion guid-
ance to solve these issues through literature review which
concentrated on its pharmacokinetic/pharmacodynamic
(PK/PD). The specific B-lactam antibiotics have short elimi-
nation half-lives, and all exhibit time-dependent bacteri-
cidal activity. According to the characteristics above, the
best predictor of bactericidal effect is achieved by the free
drug concentration exceeds the MIC of the bacterial path-
ogen (%fT > MIC) by approximately fourfold for 40 to 60
percent of the dosing interval. In critically ill patients, more
aggressive PK/PD targets up to 100%fT > 4—5 x MIC was
required. Extended infusion of PTZ may exert stronger
antimicrobial effects than intermittent infusion due to
providing high probabilities of target attainment.?® Thereby
reduce the mortality rate of P. aeruginosa infections and
achieved higher microbiological cure rates.?’ ' Further-
more, it may couple with the economic benefits of fewer
daily doses. Regarding emergence of resistance, Gatti et al.
also noted trough concentration (Cmin)/MIC ratios ranging
>3.8 and the ratio between steady-state concentration and
MIC ratio >5 were significantly associated with bacteria
regrowth prevention.?? Continuous and extended infusion
may represent better administration mode in preventing
microbiological failure. However, some systemic review and
meta-analysis demonstrated no difference in development
of resistance between extended infusion and short-term
intravenous infusion.?’ ' But cited randomized controlled
trials have high heterogeneity and small sample size. In
present study, although PTZ consumption increased, the
results of the analysis indicated that P. aeruginosa resistance
to PTZ remained unchanged. Notedly, PTZ still had a sus-
ceptibility rate of >80% in our hospital, higher than other
epidemiological and microbiological studies in Taiwan.>* Our
study was the first observational study to demonstrate that
PTZ-resistant P. aeruginosa remained stable might be
related to extended-infusion strategies.

Carbapenem use is among the most significant factors
contributing to the development of carbapenem-resistant
enterobacteria and other gram-negative Bacilli.***° Ac-
cording to Taiwan Surveillance of Antimicrobial Resistance
program and The Study for Monitoring Antimicrobial
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Resistance Trends, the prevalence rates of carbapenem-
resistant Pseudomonas aeruginosa are on the rise in this
decade.?*3” And carbapenem resistance will increase hos-
pitalization costs and day than in carbapenem-susceptible P.
aeruginosa patients.*®> Strictly controlling carbapenem
use is key to controlling antimicrobial resistance; once the
consumption is below 15 DID, carbapenem use is likely not
responsible for the problem of antimicrobial resistance.?’
The consumption of meropenem was 6.3 (3.85—9.75) DID
from 2004 to 2017; the values was far below 15 DID.
Furthermore, the carbapenem-resistant P. aeruginosa rate
remained stable and below 15% during the 14-year ASP
intervention period. Strict control of carbapenem as a
treatment for P. aeruginosa infections is necessary to control
P. aeruginosa resistance to carbapenem.

Our study has some limitations. First, it was a single-
center, retrospective, observational study that used aggre-
gate data with an inherent risk of bias. Second, we were not
able to investigate whether restrictive use of antibiotics was
associated with any mortality benefit or length of stay
shortening. Third, the phenomenon antibiotic-resistant
bacteria is the combined result of antibiotic use causing
the development of resistant organisms and horizontal gene
transfer.*’ Both antibiotic control and infection control are
key to ASP strategies for combatting antibiotic-resistant or-
ganisms. Our retrospective study did not analyze the effect
of infection control methods, such as hand hygiene, bundle
care, isolation and de-colonization policy for multi-drug
resistant organisms on the control of antibiotic-resistant P.
aeruginosa. In addition, epidemiological genotypic and mo-
lecular analysis of our P. aeruginosa strains to determine the
mechanisms underlying antimicrobial resistance were not
performed in this study.

Because few new antibiotics are being developed, the
proper use of the available antibiotics to avoid increasing
antibiotic resistance is crucial. Our ASP intervention strat-
egy, which included extended infusion of PTZ and restrict
use of levofloxacin, may be used to control antimicrobial
resistance of P. aeruginosa in medical practice. In conclu-
sion, regulating antibiotic consumption, monitoring anti-
microbial resistance, and developing appropriate ASPs in a
timely manner are the key to controlling the populations of
multidrug-resistant organisms.
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