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Abstract Background: The purpose of this study was to examine the in vivo activity of ros-
marinic acid (RA) e a phytochemical with antioxidant, anti-inflammatory, and antiviral prop-
erties e against influenza virus (IAV). An antibody-based kinase array and different in vitro
functional assays were also applied to identify the mechanistic underpinnings by which RA
may exert its anti-IAV activity.
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Rosmarinic acid;
Signaling pathways
Methods: We initially examined the potential efficacy of RA using an in vivo mouse model. A
time-of-addition assay and an antibody-based kinase array were subsequently applied to inves-
tigate mechanism-of-action targets for RA. The hemagglutination inhibition assay, neuramini-
dase inhibition assay, and cellular entry assay were also performed.
Results: RA increased survival and prevented body weight loss in IAV-infected mice. In vitro
experiments revealed that RA inhibited different IAV viruses e including oseltamivir-
resistant strains. From a mechanistic point of view, RA downregulated the GSK3b and Akt
signaling pathways e which are known to facilitate IAV entry and replication into host cells.
Conclusions: RA has promising preclinical efficacy against IAV, primarily by interfering with the
GSK3b and Akt signaling pathways.
Copyright ª 2022, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Introduction

Influenza viruses can infect a wide range of host species and
are mainly transmitted through respiratory droplets.
Taxonomically, they can be divided into four types (A, B, C,
and D) and further into subtypes based on the antigen na-
ture of viral membrane glycoproteins.1 The genome of
influenza A virus (IAV) comprises eight negative-sense,
single-stranded viral RNA segments which encode at least
10 proteins2 e including hemagglutinin (HA), neuraminidase
(NA), matrix proteins 1 (M1) and 2 (M2), polymerase acidic
(PA), polymerase basic 1 (PB1), polymerase basic 2 (PB2),
nucleoprotein (NP), and non-structural proteins 1 (NS1) and
2 (NS2). HA and NA are the most abundant viral surface
glycoproteins. Eighteen subtypes of IAV HA (H1eH18) and
11 subtypes of IAV NA (N1eN11) have been identified to
date.2 IAV infections are initiated by attachment of HA to
host cell surface receptors, including sialic acid-containing
glycans.3,4 Sialic acid is subsequently cleaved by NA to
promote the release of progeny virions.5 Additionally, NA
can facilitate virus entry.6,7

While vaccination is a highly effective method of pre-
venting IAV, the cross-protection against different subtypes is
still limited. Moreover, cross-protection induced by vaccines
during influenza epidemics remains unpredictable. Flu anti-
viral drugs are clinically useful to treat seasonal influenza
outbreaks. In general, anti-influenza drugs may be classified
according totheir viral targets (i.e.,PA,M2,andNA).Baloxavir
marboxil (Xofluza) inhibits viral replicationby targeting thePA
activity required for cap-snatching.8,9 Amantadine and
rimantadine are M2 proton channel blockers that inhibit
influenza virus genometrafficking to thehost cell nucleus.10,11

Oseltamivir (Tamiflu) and zanamivir (Relenza) are NA in-
hibitors that prevent the release of virus progeny. From a
mechanistic point of view, these drugs inhibit removal of sialic
acid moieties from glycans linked to HA.

Unfortunately, prolonged treatment may induce the
emergence of resistant mutants.12 In this regard, Bright
et al.13 have previously shown that adamantane resistance in
IAV isolates increased from <10% in 2000e2002 to 57.5% and
73.8% in 2003 and 2004, respectively. Neuraminidase inhibitor
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resistancehasalsoemerged in2007e2008as a result of viruses
carrying aH274YNAmutation.14 A I38X substitutionwithin the
PA endonuclease domain has also been observed in 9.7% of
patients treated with baloxavir marboxil.15 Collectively,
these data indicate that there is still an unmet need for new
and effective treatment options against influenza.

Rosmarinic acid (RA) is a phytochemical with broad-
spectrum antiviral activities. For example, RA can directly
block the function of the human immunodeficiency virus-1
enzyme integrase.16 Moreover, RA inhibits hepatitis B virus
replication by targeting the viral epsilon RNA-polymerase
interaction.17 Finally, we have recently shown that RA
directly inhibits the interaction between enterovirus A71 vi-
rions and their host receptors.18 The purpose of this study was
to examine the in vivo activity of RA against IAV infections. An
antibody-based kinase array and different in vitro functional
assays were also applied to identify the mechanistic un-
derpinnings by which RA may exert its anti-IAV activity.

Methods

Cells and viruses

MadineDarby canine kidney (MDCK) cells were cultured in
E10 medium consisting of Dulbecco’s modified Eagle me-
dium (DMEM; Invitrogen, Carlsbad, CA, USA), 10% heat-
inactivated fetal bovine serum (FBS; JRH Biosciences,
Lenexa, KS, USA), 2 mM L-glutamine (Gibco BRL, Gaithers-
burg, MD, USA), 0.1 mM nonessential amino acid (NEAA)
mixture (Gibco), 100 U/mL penicillin, and 100 mg/mL
streptomycin (SigmaeAldrich, St Louis, MO, USA). Human
lung carcinoma A549 cells were cultured in minimal
essential medium (MEM; Invitrogen) containing 10% heat-
inactivated FBS and penicillin/streptomycin. Human em-
bryonic kidney (HEK) 293 cells were maintained in DMEM
containing 10% FBS. All cell lines were grown at 37 �C under
a humidified 5% CO2 atmosphere. The influenza virus A/
WSN/33 (WSN) was obtained from the American Type Cul-
ture Collection (Manassas, VA, USA) and propagated in
MDCK cells. The sources and proliferation conditions for
other viruses e including H1N1pdm09,19 human herpes
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simplex virus type 1 (HSV-1), and adenoviruses e have been
previously described in detail.20 Viral titers were deter-
mined with a conventional plaque assay.21
Animal experiments

All animal experiments were reviewed and approved by the
Institutional Animal Care and Use Committee of the Chang
Gung University (approval number: CGU10-001). Four-
week-old SPF BALB/c mice were obtained from Lasco
(Taipei, Taiwan). RA (100 mg dissolved in 100 mL of 5%
dimethyl sulfoxide [DMSO] aqueous solution) was adminis-
tered orally twice a day (100 mg/kg per day). An equal
volume of 5% DMSO was used as negative control. Once the
mice (n Z 10 per group) were properly anesthetized, an
intranasal challenge with influenza virus A/WSN/33
(2 � median lethal dose, LD50, 2 � 104 plaque-forming units
[PFU] in 20 mL) was performed. All infected mice were
monitored daily for body weight and survival. Weight
tracking was halted when a change in group number
occurred. Mice were considered dead if weight loss sur-
passed 25%. In cytokine quantification experiments, mice
from each group were euthanized via CO2 inhalation five
days after infection. Harvested lung tissues were weighed
and homogenized in ice-cold PBS. Lung homogenates were
centrifuged at 300 g for 10 min at 4 �C. The supernatants
were stored in aliquots and subsequently used for quanti-
fying tumor necrosis factor (TNF)-a levels with the mouse
ELISPOT ReadySETGo! ELISA kit (eBioscience, San Diego,
CA, USA).
Inhibition of virus-induced cell death (anti-
cytopathic effect) assay and cytotoxicity
assessment

MDCKcells (1.5� 104 cells/well)were seeded in 96-well tissue
culture plates and infected with 9� 50 percent tissue culture
infective dose (9TCID50) of different influenza virus strains in
presence of different RA concentrations (SigmaeAldrich).
Cells were maintained in E0 (DMEM containing penicillin/
streptomycin, 2 mM L-glutamine, 0.1 mM NEAA mixture, and
2.5mg/mL trypsin). Thehalf-maximal cytotoxic concentration
(CC50) and half-maximal inhibitory concentration (EC50) were
determined as previously described.21
Plaque reduction assay

MDCK cells (5 � 105 cells/well) were seeded into 6-well
tissue culture plates and incubated overnight. Cell mono-
layers were infected with influenza virus A/WSN/33
(w45 PFU/well) either in the absence or presence of
different RA concentrations. Following 1 h of adsorption at
37 �C, the viral suspension was removed and cells were
washed with phosphate-buffered saline (PBS). Subse-
quently, cells were treated with E0 containing 0.3% agarose
in presence of different RA concentrations. The antiviral
activity of RA was analyzed with a plaque reduction assay
with respect to the negative control (DMSO). The ImageJ
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software and the ViralPlaque macro were used for plaque
size quantification.22

Time-of-addition assay

A 6-well tissue culture plate was seeded with MDCK cells
(5 � 105 cells/well) and incubated at 37 �C for 16e20 h
under a 5% CO2 atmosphere. Cells were infected with
influenza virus A/WSN/33 at the indicated multiplicity of
infection (MOI) for 1 h and kept on ice for 1 h. Following
viral adsorption, cells were washed with Hank’s balanced
salt solution (HBSS) to remove unbound viruses. Different
concentrations of RA dissolved in E0 were added at the time
points reported in Fig. 3. Supernatants were harvested at
12 h post infection (hpi) and viral titers were determined
using the plaque assay.21

RNA extraction and quantitative reverse
transcription-polymerase chain reaction

MDCK cells (5 � 105 cells/well) were seeded into 6-well
tissue culture plates, infected with either influenza virus
A/WSN/33 or A/90206 (MOI: 0.01) for 1 h, and subsequently
treated with RA. Cells were harvested at 0, 6, 9, and 12 hpi.
Total intracellular RNA was extracted with the TRIzol re-
agent (Invitrogen) according to the manufacturer’s proto-
col. RNA levels of influenza virus A/WSN/33 or A/90206
were measured by quantifying M1 and NA expression,
respectively. The following primers were used for real-time
PCR: M1 forward 50-GAC CAA TCC TGT CAC CTC-30 and M1
reverse 50-GAT CTC CGT TCC CAT TAA GAG-30; NA forward
50-CAC CAA CTT TGC TGC TGG ACA-30 and NA reverse 50-TGA
CAA ACA CAT CCC CCT TGG-30; glyceraldehyde phosphate
dehydrogenase (GAPDH) forward 50-AAG AAG GTG GTG AAG
CAG GC-30 and GAPDH reverse 50-TCC ACC ACC CTG TTG
CTG TA-30.

Hemagglutination and hemagglutination-inhibition
assays

Following two-fold serial dilution in PBS, influenza virus A/
WSN/33 was mixed for 1 h with two volumes of guinea pig
red blood cells (RBCs) in round-bottomed 96-well plates.
RBC aggregation caused by the lowest viral titer was
defined as 1 � hemagglutination value (HAv).23 A virus titer
of 4 � HAv was used for the hemagglutination-inhibition
(HAI) assay, in which different RA concentrations were
mixed with influenza virus A/WSN/33 at room temperature
for 30 min. Subsequently, the mixture was incubated for 1 h
with two volumes of guinea pig RBCs.

RdRp activity assay

HEK293 cells (5 � 104 cells) were seeded in a 48-well plate
e which was precoated with poly-L-lysine for 30 min e and
incubated at 37 �C for 16e20 h. Subsequently, cells were
cotransfected with 0.1 mg of pHW2000-NP, -PA, -PB1, and
-PB2, as well as with pPOLI-FLuc-RT e a plasmid encoding
firefly luciferase driven by POLI (0.1 mg) e and pRL-TK e
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which carried Renilla luciferase as an internal control
(5 ng). After 8 h of incubation, the transfection complex
was replaced with growth medium supplemented with the
reported RA concentrations. The ribonucleoprotein (RNP)
complex activity was assayed after 48 h using a Dual-
Luciferase Assay System (Promega, Madison, WI, USA).
Figure 1. Effects of rosmarinic acid in mice experimentally infe

c mice (n Z 10 per group) were given either DMSO 5% (100 mL) o
intranasal challenge with influenza virus A/WSN/33. Treatment was
Body weight was measured daily and normalized to the average w
passed 25%. (b) Body weight is expressed as the mean � standar
*P < 0.05 and ***P < 0.001. (d) TNF-a levels in lung homogenates fr
errors of the mean. P Z 0.06 versus control mice.
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Antibody-based detection of protein
phosphorylation status

A 6-well tissue culture plate was seeded with A549 cells
(5 � 105 cells/well) and incubated at 37 �C for 16e20 h
under a 5% CO2 atmosphere. Cells were infected with the
cted with influenza virus A/WSN/33. (a) Four-week-old BALB/
r rosmarinic acid (100 mg/kg daily) for seven days before an
subsequently continued for additional ten days after infection.
eight on day 0. Mice were considered dead if weight loss sur-
d error of the mean. (c) KaplaneMeier survival plots of mice.
om control and RA-treated mice. Values are means � standard



Figure 2. Effects of rosmarinic acid as determined by the plaque reduction assay. (a) Cell monolayers were infected with
influenza virus A/WSN/33 (w45 plaque-forming units/well) in absence or presence of different rosmarinic acid concentrations.
Following 1 h of adsorption at 37 �C, the viral suspension was removed and cells were washed with phosphate-buffered saline.
Subsequently, cells were treated with E0 containing 0.3% agarose in presence of different rosmarinic acid concentrations. The
antiviral activity of rosmarinic acid was analyzed on the third post-infection day with a plaque reduction assay; DMSO was used as
negative control (arbitrarily set at 1). (b) Plaque size quantification in presence or absence of rosmarinic acid (25 mM). The ImageJ
software and the ViralPlaque macro were used for plaque size quantification.22 Data are means � standard deviations from three
independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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influenza virus A/WSN/33 (MOI: 0.01) at 37 �C for 1 h and
subsequently washed twice with HBSS. Following the addi-
tion of RA (100 mM), cells were harvested at 24 hpi and
analyzed using a human phospho-kinase array (R&D sys-
tems, Minneapolis, MN, USA).

Antibodies for western blot analysis

The following antibodies were used for western blot anal-
ysis: mouse anti-phospho-AKT (Ser473) antibody (Cell
Signaling, Beverly, MA, USA), rabbit anti-AKT antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit
anti-phospho-PRAS40 antibody (GeneTex, Irvine, CA, USA),
rabbit anti-PRAS40 antibody (GeneTex), rabbit anti-phos-
pho-GSK3b (Ser9) antibody (Cell Signaling), and rabbit anti-
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GSK3b antibody (Cell Signaling). Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was used as an inter-
nal control and was detected using a rabbit anti-GAPDH
antibody (Santa Cruz Biotechnology).

Data analysis

The mice survival curves were plotted with the
KaplaneMeier method and compared using log-rank test.
The results of in vitro experiments e i.e., plaque reduction
assays, time of addition assays, western blot analyses, and
assays to test the effect of RA on viral RNA synthesis and
RdRp complex activity e were analyzed with the Student’s
t-test. Two-tailed P values < 0.05 were considered statis-
tically significant.



Figure 3. Mechanistic underpinnings of rosmarinic acid against influenza A virus as determined by the time-of-addition

assay. (a) MadineDarby canine kidney cells were infected with influenza virus A/WSN/33 or A/TW/90206/2009 (multiplicity of
infection: 0.01); subsequently, rosmarinic acid (100 mM) was added at the reported time points. (b) Supernatants were collected for
a plaque assay; data are means � standard deviations from three independent experiments. The antiviral activity of rosmarinic
acid was calculated with respect to control conditions (infected cells without any treatment) arbitrarily set at 1. *P < 0.05,
**P < 0.01, and ***P < 0.001. (c) Effect of rosmarinic acid on the hemagglutinin activity of influenza A virus. Guinea pig red blood
cells were incubated with influenza virus A/WSN/33 or A/TW/90206/2009 for 1 h in a medium containing different rosmarinic acid
concentrations. A virus titer of 4 � HAv was used for the assay, and rosmarinic acid was subjected to two-fold serial dilutions (from
200 mM to 0.4 mM, from left to right). The reported data are from one of three independent experiments.
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Results

Rosmarinic acid increases the survival of mice
experimentally infected with influenza virus A/
WSN/33

To investigate the potential utility of RA for treating IAV
infections, its efficacy was investigated in an in vivo model.
Mice were given either DMSO 5% (100 mL) or RA (100 mg/kg
daily) for seven days before an intranasal challenge with
influenza virus A/WSN/33. Treatment was subsequently
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continued for additional ten days after infection. Body
weight was measured daily and normalized to the average
weight on day 0 (Fig. 1, panel a). RA-treated mice were
protected against IAV infection compared with the virus
control group (i.e., animals treated with 5% DMSO). The
protection was observed both in terms of body weight
changes and survival (both p values < 0.05; Fig. 1, panels b
and c). Mice treated with RA had a trend towards lower
levels of TNF-a in lung homogenates compared with un-
treated animals (P Z 0.06; Fig. 1, panel d). Collectively,
these results indicate that RA increases the survival of mice
experimentally infected with influenza virus A/WSN/33.
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Rosmarinic acid inhibits different influenza A virus
strains

Using in vitro anti-cytopathic effect assays, we examined the
CC50 and EC50 of RA against different IAV strains. As shown in
Table 1, RA showed an inhibitory effect against IAV (EC50

range: 7.60e70.57 mM). This was especially evident for the
five H1N1pdm09 strains. Therefore, RA was more effective
against IAV compared with IBV. In addition, RA exerted
inhibitory effects against oseltamivir-resistant viruses. To
further confirm the antiviral effects of RA, we performed
plaque reduction assays against the A/WSN/33 strain and the
A/TW/90206/2009 pandemic strain (Fig. 2). The results
revealed that RA effectively inhibited both strains in a dose-
dependent manner (Fig. 2, panel a). Furthermore, RA was
found to decrease viral plaque size e which was three-fold
larger in untreated cells (Fig. 2, panel b).
Rosmarinic acid inhibits the early phase of
influenza virus A infection

Time-of-addition assays were performed (Fig. 3, panels a
and b) in an attempt to clarify the mechanisms by which RA
inhibits IAV infections. MDCK cells were treated with RA at
various time points with respect to virus adsorption (from �1
to 0 h) e a procedure followed by removal of unbound vi-
ruses (Fig. 3, panel a). On analyzing a single infectious cycle,
RA was found to predominantly inhibit the influenza virus A/
WSN/33 strain and the A/TW/90206/2009 pandemic strain
within two time frames (0e12 and �3 to þ12 hpi). A mar-
ginal inhibition was observed at �3 to �1 hpi, whereas no
inhibitory activity was evident for other time frames (�1 to
0, 6e12, and 9e12 hpi; Fig. 3, panel b). We further inves-
tigated the ability of RA to inhibit IAV attachment using the
HAI assay. As shown in Fig. 3 (panel c), the HAv values of two
IAV strains were determined (A/WSN/33 and A/TW/90206/
2009). RA up to a non-hemolytic concentration of 50 mM was
unable to inhibit RBCs hemagglutination. Collectively, these
Table 1 Inhibition spectra of rosmarinic acid against different

Cell line or virus strain CC50 (mM)a

MadineDarby canine kidney cells 582.02 � 11.20
A549 216.82 � 14.61
A/WSN/33 (H1N1)
A/CA/07/2009 (H1N1pdm09)
B/TW/99/07
B/TW/70325/05
A/Taiwan/6663/2009 (H1N1pdm09)d

A/Taiwan/7717/2009 (H1N1pdm09)d

A/TW/90206/2009 (H1N1pdm09)
A/TW/90167/2009 (H1N1pdm09)
Adenovirus
Human herpes simplex virus type 1

a CC50 was determined with an MTT assay.21
b EC50 was assessed using an anti-cytopathic effect assay.
c CC50-to-IC50 ratio.
d Oseltamivir-resistant strain.19

MadineDarby canine kidney cells were used for influenza virus infect
infections were performed on A549 cells. Values are means � standa
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results suggest that RA inhibits the early phase of IAV
infection without affecting virus attachment to host cells.

Rosmarinic acid suppresses viral RNA replication
but not RdRp complex activity

We next examined whether RA can interfere with influenza
virus RNA expression. The results of a time-course experi-
ment revealed that RA significantly suppressed viral RNA
expression as reflected by M1 and NA gene expression levels
(Fig. 4, panels a and b). To shed further light on the
mechanisms of RA-mediated inhibition of influenza virus
RNA expression, we examined its effects on the activity of
the RdRp complex using a minigenome assay. The viral PA,
PB1, PB2, and NP genes were transfected into HEK293 cells.
Compared with the positive control 3P0128, RA was unable
to inhibit RdRp complex activity at a concentration of
280 mM.20 These findings suggest that the RA-elicited inhi-
bition of viral RNA expression is unrelated to a defective
RdRp complex activity (Fig. 4, panel c).

The activity of rosmarinic acid against influenza A
virus is associated with downregulation of the Akt
signaling pathway

Influenza virus infectivity is correlated with altered kinase-
regulated signaling pathways.24 Therefore, we used an
antibody-based phosphokinase assay to examine how RA
affected kinase activities during a multicycle of infection
(Fig. 5). Mock- or influenza virus A/WSN/33-infected
A549 cells were treated with either RA or DMSO (negative
control). After 24 h, cell lysates were collected and sub-
jected to a phosphoprotein array. Of the 43 proteins
examined, the phosphorylation levels of WNK1 (T60),
PRAS40 (T246), Src (Y419), Akt (S473), and GSK3a/b (S21/
S9) were decreased in RA-treated infected cells compared
with those treated with DMSO (Fig. 5, panel a). Using
STRING networks, we found that these kinases shared an
viruses e including various influenza A virus strains.

EC50 (mM)b Selectivity indexc

70.57 � 11.97 8.25
7.60 � 1.80 76.58
89.61 � 1.51 6.50
>500 e

16.82 � 1.87 34.60
26.08 � 8.70 22.31
12.22 � 0.03 47.63
15.51 � 3.56 37.53
>200 e

>200 e

ions, whereas adenovirus and human herpes simplex virus type 1
rd deviations from two independent experiments.
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Akt-centered biological connection (Fig. 5, panel b).25 Src is
implicated in the activation of Akt26,27 e which in turn
modulates the kinase activities of WNK1, PRAS40, and
GSK3a/b. Therefore, we used western blotting to investi-
gate the phosphorylation levels of Akt, PRAS40, and GSK3b
in a single infectious cycle. Compared with cells treated
with DMSO (negative control), cells exposed to RA showed
decreased Akt and PRAS40 phosphorylation; this effect was
observed in both infected and non-infected cells (Fig. 5,
panels c and d). Given the key role played by Akt signaling
in virus entry and replication,28 these results indicate that
RA inhibits IAV infections by interfering with this pathway.
In addition, RA treatment reduced the amount of both non-
phosphorylated and phosphorylated GSK3b (Fig. 5, panel e).

Rosmarinic acid may inhibit influenza A virus entry
into host cells by decreasing GSK3b and phospho-
AKT expression

GSK3b e an evolutionarily conserved serine/threonine
protein kinase with multiple physiological activities e is
Figure 4. Effects of rosmarinic acid on viral RNA synthesis and

virus A/WSN/33 (a) or A/TW/90206/2009 (b) at a multiplicity of in
(100 mM). Total mRNA was extracted at 0, 6, 9, and 12 h post infectio
with plasmids encoding PA, PB1, PB2, NP, firefly luciferase (Fluc), a
inhibitors. Cell lysates were harvested after 24 h and luciferase acti
three independent experiments. Each group included four repeat
***P < 0.001.
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characterized by constitutive cell expression.29 Down-
regulation of GSK3b expression through RNA silencing has
been previously found to abrogate IAV entry into host
cells.30 We therefore examined the potential role of
GSK3b downregulation in RA-induced inhibition of IAV in-
fections. To this aim, we performed a viral entry assay to
assess whether RA is capable of inhibiting IAV entry. A549
cells were pretreated with RA for 16 h and virus adsorption
was conducted on ice for 1 h, followed by removal of un-
bound viruses. Total RNA was extracted following 1 h of
viral internalization at 37 �C. The results revealed that
cells pretreated with RA had decreased viral RNA levels
(Fig. 6, panel a). Because NA plays a key role in IAV entry
into host cells,7,31,32 we subsequently examined the po-
tential effect of RA on viral NA activity. As expected,
treatment with host cells with zanamivir significantly
inhibited NA activity in IAV-infected cells; however, this
was not observed when IAV-infected cells were exposed to
different concentrations of RA (Fig. 6, panel b). Collec-
tively, these results indicate that RA inhibits IAV entry into
host cells by targeting specific intracellular signaling
RdRp complex activity. HEK293 cells infected with influenza
fection of 0.01 were incubated without or with rosmarinic acid
n for viral RNA quantification (c). Cells were transfected for 8 h
nd Renilla luciferase (Rluc) prior to the addition of the reported
vity was quantified. Data are means � standard deviations from
s; Fluc activity was normalized to Rluc values. **P < 0.01 and



Figure 5. Effects of rosmarinic acid on the phosphoprotein profile of cells infected with influenza A virus. A549 cells infected
with influenza virus A/WSN/33 (a) A/WSN/33 at a multiplicity of infection of 0.01 were incubated either without or with rosmarinic
acid (100 mM) for 24 h and subsequently analyzed with a human phospho-antibody array. Expression levels of phosphoproteins are
presented as relative pixel densities. (b) STRING analysis identified Akt as the hub protein within a network consisting of Akt, WNK1,
PRAS40, Src, and GSK3b. (cee) Effect of rosmarinic acid on Akt, PRAS40, and GSK3b phosphorylation. A549 cells were infected with
influenza virus A/WSN/33 (multiplicity of infection: 0.01) in presence of rosmarinic acid or DMSO. Uninfected cells served as
controls. Cell lysates were harvested at 6 h post infection for western blot analysis. Data are means � standard deviations from
three independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 6. Rosmarinic acid may inhibit the entry of influenza A virus into host cells by downregulating GSK3b expression. (a)
Following exposure to rosmarinic acid (100 mM) for 16 h, A549 cells were infected on ice with influenza virus A/WSN/33 (multiplicity
of infection: 0.01) for 1 h. After one hour of viral internalization at 37 �C and removal of unbound viruses, total RNA was extracted.
(b) Influenza viruses A/WSN/33 or A/TW/206/2009 were incubated with DMSO (1, 2), 0.5 mM of zanamivir (3, 4), or 1 (5, 6), 10 (7, 8),
or 100 mM (9, 10) of rosmarinic acid for 30 min. Following the addition of MU-NANA (60 mM), the reaction was incubated at 37 �C for
one additional hour. The reaction was terminated through the addition of a stop solution before fluorescence quantification. (c and
d) A549 cells were treated with rosmarinic acid (100 mM) for 2 h. GSK3b expression levels were quantified in cell lysates using
western blot analysis (c) or from total mRNA using qRT-PCR (d). Data are means � standard deviations from three independent
experiments. **P < 0.01 and ***P < 0.001. Abbreviation: ns, not significant.
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pathways into host cells. Notably, a 2-h treatment with RA
was sufficient to decrease the post-transcriptional
expression of GSK3b (Fig. 6, panels c and d).
Discussion

Despite decades of research for what remains a significant
public health concern, influenza outbreaks still pose major
therapeutic challenges. The identification of novel treat-
ment options is therefore required for improving our ca-
pacity to more optimally tailor interventions during future
epidemics. In the current study, we found that RA increased
survival and prevented body weight loss in IAV-infected
mice (Fig. 1). Moreover, in vitro anti-cytopathic effect as-
says revealed that RA successfully inhibited different IAV
isolates, including oseltamivir-resistant strains (Table 1).
On analyzing time-of-addition assays, we also found that RA
interferes with the early phases of IAV infection. From a
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mechanistic point of view, RA downregulated the GSK3b
and Akt signaling pathways e which are known to facilitate
IAV entry and replication into host cells (Figs. 5 and 6).33e35

Using genome-wide RNA interference screening, König
et al.30 showed that several host factors play a crucial role
in IAV infection. Of the 295 molecules involved in viral
growth, 23 (including GSK3b) were identified as promoters
of an efficient virus entry.30 However, the exact mecha-
nistic role of GSK3b during this process has not been fully
elucidated. A previous study reported that dynamin I e a
GTPase involved in clathrin-mediated endocytosis (CME) e
can act as a direct substrate for GSK3b.36 GSK3b-mediated
phosphorylation of the dynamin I Ser774 residue profoundly
affects CME rates, and inhibition of GSK3b activity accel-
erates the formation and maturation of clathrin-coated
pits.37,38 Given the role played by receptor-mediated
endocytosis during IAV entry, more studies are necessary
to investigate whether GSK3b inhibition-induced dysregu-
lation of endocytosis may decrease the amount of surface
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receptors e ultimately limiting virus entry into the host
cell. However, our findings do not rule out the possibility
that GSK3b can affect IAV infectivity through mechanisms
unrelated to virus entry.

Protein abundance depends on transcription, trans-
lation, mRNA decay, and protein degradation. Our data
revealed that treatment with RA for 2 h decreased the
expression of GSK3b, a long-lived protein, at the protein
but not the mRNA level (Fig. 6, panels c and d). These data
indicate that RA may inhibit GSK3b expression at the post-
translational level. Previous studies have shown that GSK3b
may act as a substrate for calpain39 and matrix metal-
loproteinase-2.40 However, no cleaved GSK3b fragments
were observed in RA-treated cells. Collectively, these data
indicate that RA may downregulate GSK3b via post-
translational modifications, including acetylation,41 cit-
rullination,42 and mono-ADP-ribosylation.43,44

GSK3b activity plays a crucial role during coxsackievirus,
hepatitis C virus, and coronavirus infections.45e47 For
example, GSK3b inhibition decreases the release of cox-
sackievirus viral progeny without affecting viral protein
expression.45 Additionally, GSK3b inhibitors reduce hepati-
tis C virus replication by downregulating pro-viral hepatic
miR-122 expression.46 Finally, GSK3b inhibitors can inhibit
viral nucleocapsid protein phosphorylation and decrease
coronavirus replication47; thus, they have sparked interest
during the recent coronavirus disease-2019 pandemic.48,49

The PI3K-AKT signaling pathway can favor influenza virus
infection50 and Akt phosphorylation has emerged as a
promising therapeutic target against IAV infections.35,51,52

PI3K-AKT inhibition interferes with IAV entry and inhibits
both viral RNA synthesis and nuclear export of viral RNP. In
the current study, we found that RA treatment decreased
endogenous and virus-induced phospho-AKT, as well as the
synthesis of viral RNA. However, RA did not affect the nu-
clear export of viral RNP (data not shown). Collectively,
these results suggest that RNP export is a complex phe-
nomenon that cannot effectively be inhibited by RA alone.

While RA holds great promise to inhibit viruses that
activate the PI3K/Akt pathway (including HSV-1), it can also
facilitate viral infections by inducing certain cellular re-
sponses that favor replication in host cells. For example, RA
can suppress the unfolded protein response e an event
which may in turn promote HSV-1 replication.53e55 Using
time-of-addition, attachment, penetration, and plaque
reduction assays, Astani et al. demonstrated that RA dis-
plays some activity against HSV-1 attachment to host cells
e without affecting viral penetration and replication.
These assays showed a reduced HSV-1 titer when viruses
were pretreated with RA, suggesting that this molecule may
target virus particles in vitro.56,57 Musarrat et al.58 also
found that the envelope glycoprotein B of HSV-1 induces
AKT activation to promote virus entry into host cells. These
results can explain why RA did not show an anti-herpetic
activity in our study. As for the different inhibitory ef-
fects of RA on IAV and IBV, IAV was found to activate the
PI3K/Akt signaling pathway during the entry and replication
steps. However, IBV did not produce a sustained PI3K/Akt
activation. While a reduced titer of progeny virus was
observed in IBV-infected cells that had undergone pre-
treatment with the PI3K inhibitor wortmannin, this effect
did not occur when cells were exposed to IBV and
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wortmannin simultaneously.59 In this scenario, the inability
of RA to display anti-IBV effects in our anti-cytopathic ef-
fect assay is not surprising. Notably, treatment with a PI3K
inhibitor promoted H5N1 virus infection.60 Collectively,
these results indicate that the impact of the PI3K/Akt
pathway on influenza viral infection may be strain-specific.
In summary, our current findings represent a promising step
in understanding the potential usefulness of RA for treating
and/or preventing IAV infections. An analysis of RA deri-
vates would also have been interesting; however, a
screening of 21 related compounds failed to identify better
EC50 values than that observed for RA (data not shown).
Further studies are required to improve the anti-IAV po-
tency of this phytochemical.
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