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A B S T R A C T   

Lymphoblastoid cell lines (LCLs) are immortalised peripheral B lymphocytes, transformed via infection with 
Epstein Barr virus (EBV). The use of LCLs to study B cell function remains controversial and core markers to 
define physiological B cell populations are not consistent between studies of physiological B cells and LCLs. A 
consensus on the nature of these commonly used cell lines has not been reached. Recently, a core set of markers 
to subtype peripheral B cells was proposed, addressing the lack of agreed markers for B cell characterisation. In 
this present study, the consensus panel was applied to describe the B cell subtypes in LCLs. We found that LCLs 
were generally not physiologically representative of B cells, with most cells harbouring marker combinations 
absent on peripheral B cells. Some B cell subtyping markers were fundamentally altered during EBV trans-
formation to LCLs (e.g. CD19, CD21). Notably, most LCLs secreted IgG but the associated marker combinations 
were predominantly only present in vitro following EBV transformation. This study therefore informs interpre-
tation of past investigations, and planning of future studies using LCLs, as these cells are unlikely to behave like 
their pre-transformed B cell subtype.   

1. Introduction 

Epstein Barr virus (EBV) can infect peripheral human B lymphocytes, 
resulting in the formation of immortalised lymphoblastoid cell lines 
(LCLs), the most notable feature of which is indefinite proliferation 
(Neitzel, 1986). These transformed B cells have been used extensively in 
laboratory-based research for decades and have been found to have 
many benefits experimentally, including: (i) easy preparation, (ii) min-
imal maintenance of cell culture, and (iii) minimal somatic mutation 
rate within the culture (Hussain and Mulherkar, 2012; Mohyuddin et al., 
2004). Despite this, the ability of LCLs to recapitulate B cell subtypes and 
function remains controversial (Rodriguez et al., 2021; Mazzei et al., 
2011; Zijno et al., 2010) and fundamental questions regarding the 
physiological B-cell features of these cell lines remain. 

B cell development is a highly regulated and ordered selection pro-
cess, originating from hematopoietic precursor cells in the bone marrow. 
CD19 and CD20 are markers traditionally used in the identification of 
global B cell populations due to their wide-ranging expression across 
almost all B cell subtypes in the development pathway. CD19 is 

expressed from pro-B cells to early plasma cells and CD20 is expressed 
from pre-B cells to early plasmablasts (Forsthuber et al., 2018); i.e. the 
longer lived matured humoral immune cells. Markers to identify specific 
B cell subtypes along this pathway have been identified but their 
expression levels are often less well defined between subtypes and have 
been inconsistently applied across studies (Rodgers et al., 2022). 

Historically, the core markers used to define many of the specific 
physiological B cell subtypes have differed between studies (as sum-
marised by Sanz et al. (2019)) and reviewed in the context of melanoma 
associated B cells (Rodgers et al., 2022)), which makes comparison of B 
cell subtypes between a large number of studies difficult. The question of 
whether some B cell phenotyping markers can be applied to the char-
acterisation of LCLs has previously been explored (Supplementary 
Table 1). These studies have clearly indicated that the transformed B cell 
sub-populations were heterogeneous and remained so following in vitro 
expansion (Supplementary Table 1; (Megyola et al., 2011; Ozgyin et al., 
2019; Yap et al., 2019). CD19 and CD20 are expressed on LCLs, how-
ever, expression of these fundamental markers was variable, with some 
cell lines downregulating CD19 and/or CD20 following EBV 
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transformation, without the typical upregulation of mature B cell 
markers (Wroblewski et al., 2002; Vockerodt et al., 2008; SoRelle et al., 
2021); Supplementary Table 1. While inconsistencies between marker 
definitions for B cell subtypes hinders the comparison between previous 
studies, they have demonstrated variable expression in key B cell 
markers, including: CD21, CD23, CD30, CD38, CD54, CD69, CD71, 
CD77, CD95, IgA, IgD, IgE, IgG and IgM (Hur et al., 2005; Steinitz, 2014; 
Mrozek-Gorska et al., 2019; Karran et al., 1995; Ozgyin et al., 2019; Yap 
et al., 2019; SoRelle et al., 2021); Supplementary Table 1. 

Class switching and the ability to secrete immunoglobulin are key 
features of B cell function and can also act as markers of B cell devel-
opment. For example, secreted IgG could be indicative of B cells func-
tioning as plasma cells, plasmablasts and, more controversially, B-1 cells 
(Quach et al., 2016). There is a consensus that LCLs are capable of 
secreting immunoglobulins, but the expression of the different isotypes 
has been variable between studies (Supplementary Table 1) (Steinitz, 
2014; SoRelle et al., 2021; Heath et al., 2012; Lau et al., 1989; Bur-
lingham et al., 1989; Ariga et al., 1985; Simmons et al., 1981; Guglielmi 
and Preud’homme, 1981). While some studies suggested the antibody 
repertoire of the original B cells were maintained in LCLs (Steinitz, 
2014) and that class switching was not induced by EBV transformation 
(Heath et al., 2012), others showed a change in isotype occurred (Hur 
et al., 2005) and that LCLs are more clonal than those B cells present in 
the periphery (Rodriguez et al., 2021); Supplementary Table 1. 

Recently, a consensus marker panel and gating strategy was pro-
posed to conclusively phenotype peripheral B cells derived from pe-
ripheral blood mononuclear cells (PMBC) (Sanz et al., 2019). Key cell 
surface phenotypic markers CD19, CD21, CD24, CD27, CD38, IgM and 
IgD, along with optional additional markers, including CD20, CD95, IgA 
and IgG were proposed to be used in distinct combinations to define 
most agreed B cell subtypes (Sanz et al., 2019). 

Given the inconsistencies in published data characterising features of 
cells present in LCLs, we aimed to investigate if B cell subtypes could be 
identified using a panel based on the recently published consensus B cell 
subtyping markers (Sanz et al., 2019). Our data provide conclusive ev-
idence of B cell features retained by LCLs as well as the paucity of rec-
ognised defined B cell subtypes present in these transformed cells. 

2. Methods 

Nineteen lymphoblastoid cell lines were derived from stage III and IV 
cutaneous melanoma patients (O’Rourke et al., 2003; O’Rourke et al., 
2007) using standard protocols (originally described by (Neitzel, 
1986)). The LCLs have undergone low passage since the establishment of 
the transformed culture, stored long term at − 152 ◦C and were cultured 
under standard conditions (37 ◦C, 5% CO2 and 21% O2). 

Flow cytometry (Miltenyi Biotec, UK) was used to determine the B 
cell marker profile of LCLs (Supplementary Table 2), with 100μL/5 ×
105 cells/test fixed in PBS, 1% BSA, 0.1% sodium azide. Due to the 
human IgG backbone on the REAffinity antibodies (Miltenyi Biotec, UK), 
the anti-IgG antibody was incubated first, then after washing, the 
remaining panel of antibodies were incubated. Cell pellets were resus-
pended in PBS, 1% BSA, 0.1% sodium azide and data were collected 
using a calibrated MACSQuant Analyser 10 (Miltenyi Biotec, UK) then 
analysed using FlowJo software (version 10.08.00, FlowJo, US). A 
fluorescence minus one (FMO) based gating strategy was used to char-
acterise the presence or absence of markers and the undefined LCL 
populations. The gating strategy described by Sanz et al. (2019) was 
used to identify specific, established B cell subtypes. This gating strategy 
relies on classification of low (CD20), mid (CD38) or high (CD21, CD24 
and CD38) fluorescence for some subtypes (Supplementary Figure 1). 

Secreted IgG was detected in LCL supernatant using a commercial 
human IgG ELISA kit according to the manufacturer’s instructions 
(catalogue #3850-1AD-6; MABTECH, UK) and optical density was read 
at 405 nM by a Thermo Varioskan LUX scanner (Thermo Scientific, UK). 

3. Results/discussion 

During panel optimisation, CD19 was not consistently expressed on 
all cells present in LCL culture (Supplementary Fig. 2), which is in 
agreement with some past studies (Wroblewski et al., 2002; Vockerodt 
et al., 2008; SoRelle et al., 2021) but not others (Hussain et al., 2012; 
Gellner et al., 2016; Ozgyin et al., 2019), although the sample numbers 
in these latter studies were low (Supplementary Table 1). CD19 is 
robustly expressed on nearly all primary B cell subtypes, except plasma 
cells (terminally differentiated, mature, somatic hypermutated, acti-
vated and antibody secreting) and is frequently co-expressed with CD20, 
except for early pro-B cells and plasmablast/plasma cells. In contrast 

Table 1 
Summary of the FACS panel investigation of B cell subtype and results of the IgG ELISA using FMO gating strategy.  

Cell Line IgG 
Surface Marker Expression (− /+/++/+++) 

Secretion (− /+/++/+++) 

IgG CD20 IgD CD27 CD38 CD24 CD21 

C001 ++ – +++ + – +++ + +

C006 ++ – +++ – + +++ + – 
C013 + – +++ + – +++ + +

C016 ++ – +++ – + +++ + – 
C017 ++ – +++ – – +++ + +

C025 ++ – +++ – – +++ – – 
C027 ++ – +++ – + + – +

C039 ++ – +++ – – +++ + +

C043 + + +++ – – +++ – +

C045 ++ – +++ – – +++ + – 
C057 – – +++ + – +++ – +

C058 ++ + +++ – + +++ + +

C065 – – +++ + – +++ + +

C071 + – +++ – + +++ + +

C074 – – +++ – – +++ + +

C089 + – +++ + – +++ + +

C092 + – +++ + – +++ + +

C094 ++ – +++ + + +++ + +

C106 +++ – +++ + + +++ + +

IgG secretion results are displayed alongside the results for the FACS panel analysis using FMO gating strategy. 
IgG secretion summarised by negative (− ) positive; low (+), mid (++) and, high (+++). Ranges for IgG secretion categories: + = 1–60 ng/mL), ++ = 61–750 ng/mL 
and, +++=>750 ng/mL. Marker expression classified as; negative (− ) low (+), mid (++) and high (+++) dependant on the percentage of positive populations (i.e. - 
= <5%, + = 5–75%, ++ = 76%–90%, +++ = >90%. 

C. MacKinnon et al.                                                                                                                                                                                                                            



Current Research in Immunology 5 (2024) 100079

3

CD20 was highly expressed by all LCLs tested, including where CD19 
was not (Table 1; Supplementary Fig. 2). Previous studies suggested that 
EBV transformation could down-regulate CD19 on B cells (Wroblewski 
et al., 2002; Vockerodt et al., 2008; SoRelle et al., 2021), which was 
consistent with these observations. As CD20− plasmablasts and plasma 
cells lack CD21, the receptor required for EBV internalisation (Jabs 
et al., 1999), it was unlikely that these B cell subtypes would be present 
within the LCL population. Therefore, CD20 is an appropriate pan-B cell 
marker in this study and was used in the final panel in place of CD19 (i.e. 
CD20, CD21, CD24, CD27, IgD and IgG). 

A FMO quadrant-based gating strategy was used first to analyse the 
markers; Table 1. CD20 was universally highly expressed, in agreement 
with the hypothesis that plasmablasts and plasma cells would not be 
present in LCLs. Physiologically, in humans, immunoglobulins are either 
expressed on the B cell surface or are secreted, but not both. Two LCLs 
contained cells that expressed IgG on the cell surface and also secreted 
IgG (C043 and C058), suggesting a heterogeneous population of sub-
types. There were three LCLs that contained cells neither expressing IgG 
on the surface nor secreted it (C057, C065 and C074). The remaining 
fourteen LCLs contained cells that secreted IgG but did not express it on 
their surface. CD38 was also highly expressed by all cell lines except for 
a single cell line (C027), where expression was low. The CD20+CD38+++

phenotype has been proposed as being indicative of a plasmablasts 
precursor, with some shared characteristics of plasmablasts, including 
spontaneous antibody secretion, Vh (heavy chain variable) utilisation 
and somatic mutation (Quach et al., 2016). This precursor phenotype 
was not included in the Sanz et al. (2019) B cell subtypes. CD21− cells 
were exclusively present in four cell lines and there were variable 

proportions of CD21− cells present in the remaining fifteen cell lines. As 
CD21 is well established as being required for EBV infection of B cells 
(Hussain and Mulherkar, 2012; Kuppers, 2003; Mrozek-Gorska et al., 
2019), this suggests CD21 was downregulated following EBV infection, 
or in cell lines grown in vitro, rendering it uninformative as a B cell 
subtyping marker in this context. IgD, CD24 and CD27 expression was 
variable across cell lines, either showing low or no expression. 

Using the gating strategy proposed by Sanz et al. (2019) (Supple-
mentary Fig. 1), the B cell subtypes present within the LCLs were defined 
(Fig. 1). Most cells present in the LCL population were an ’undefined’ 
subtype (61.52–98.10%) using this strategy; Fig. 1. There were, how-
ever, some definable B cell subtypes present within all the LCLs tested, 
notably double negative (DN)-1 (1.0–14.6%), DN2 (0.1–30.8%), naïve 
resting (0.1–23.5%) and early plasmablast (0.1–3.74%) subtypes 
(Fig. 1). C057, C065 and C074, which did not secrete IgG, were dis-
similar to each other in the proportions of different subtypes present. 
C057 had only small populations of defined B cell subtypes, C065 had 
23.5% naïve resting and 12.8% DN1 subtypes, and C074 had 2.93% 
naïve resting and 14.6% DN1 subtypes present. The majority of IgG 
secreting LCLs did not contain notable populations of antibody secreting 
physiological B cell subtypes as defined by Sanz et al. (2019). A previous 
study demonstrated some naïve B cells can undergo germinal centre-like 
activation and differentiation in vitro soon after EBV infection, resulting 
in transcriptomic and phenotypic features resembling plasmablasts and 
early plasma cells (Mrozek-Gorska et al., 2019). It is therefore possible 
these IgG secreting cells could have been either the CD20+CD38+++

precursor pre-plasmablasts described by Quach et al. (2016) or occurred 
as a result of EBV infection. 

Fig. 1. Heat map of percentage of B cell subtypes. 
B cell subtypes as determined using a gating strategy put forward by Sanz et al. (2019) for each cell line. The highest percentage is represented by a green colour and 
lower percentages/zero in red. ‘Undefined’ populations fell outside the defined gates. 
DN1 = double negative 1, DN2 = double negative 2, T1/T2 = transitional 1/transitional 2, T2 MZP = transitional 2 marginal zone progenitor, PB = plasma blast, PC 
= plasma cell. 
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Given the high proportion of undefined cells present in the LCL 
population, the markers defined by the FMO gating strategy were 
compiled into profiles to characterise the phenotypes present (Fig. 2). 
The most common marker profile identified was 
CD20+CD38+IgG− CD27− IgD-CD24− CD21− , with other common marker 
profiles including CD20+CD38+CD27+IgG− IgD-CD24− CD21− , 
CD20+CD38+IgG− CD27− IgD-CD24+CD21− and CD20+CD38+IgG−

CD27− IgD-CD24+CD21+ (Fig. 2). These marker combinations have not 
been previously described as physiological B cell subtypes; the pro-
portions of different phenotypes present were largely different between 
the different LCLs, with only C017 and C045 being similar (Fig. 2). 

4. Conclusions 

This is the first study to systematically characterise the cells present 
in EBV transformed B cell lymphoblastoid cell lines using a consensus B 
cell marker panel (Sanz et al. (2019). Together, these data showed that 
LCLs were comprised of largely distinctively heterogeneous cell pop-
ulations, which were frequently IgG secreting; however, only some cells 
were a defined B cell subtype, with the majority of cells displaying an 
unphysiological phenotype. Further investigation of the nature of the 
secreted antibodies is clearly warranted. These data unify published 
data (Supplementary Table 1), helping to explain some of the seemingly 
contradictory results, particularly given the observed heterogeneous 
nature of marker expression between cell lines, and the discrepancies 
with CD19 and CD21 expression and IgG secretion in LCLs. Conse-
quently, it is unlikely that these cells will behave in a manner consistent 
with B cells in vivo or primary B cells in vitro. This study provides clarity 
on the nature of the B cell subtypes present in the LCLs, which helps to 
inform interpretation of past and planning for future studies. 
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org/10.1016/j.crimmu.2024.100079. 

Fig. 2. Heat map of percentage of B cell population by FMO determined marker profiles. 
The heatmap displays the percentage of each marker profile identified by FMO gating present in each LCL. The highest percentage is represented by green and lower 
percentages/zero in red. 
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