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Abstract Background: Invasion of red blood cells by Plasmodium falciparum merozoites is
governed by multiple receptoreligand interactions which are critical for bridging the two cells
together. The critical function of these ligands for invasion and their direct exposure to the
host immune system makes them lucrative vaccine candidates. This necessitates the discovery
of new adhesins with less redundancy that mediates the binding of merozoite to the red cell,
and furthermore invasion into it. Here we have identified a novel membrane associated anti-
gen (PfC2DMA) that is conserved throughout the Plasmodium species and has a membrane tar-
geting C2 domain at its extreme N-terminal region.
Methods: Recombinant C2dom was expressed heterologously in bacteria and purified to homo-
geneity. Mice antisera against C2dom was raised and used to check the expression and intrapar-
asitic localization of the protein. RBC and Ca2þ ion binding activity of C2dom was also checked.
Results: C2dom exhibited specific binding to Ca2þ ions and not to Mg2þ ions. PfC2DMA localized
to the surface of merozoite and recombinant C2dom bound to the surface of human RBCs. RBC
receptor modification by treatment with different enzymes showed that binding of C2dom to
RBC surface is neuraminidase sensitive. Mice antisera raised against C2dom of Pf C2DMA showed
invasion inhibitory effects.
Conclusion: Our findings suggest that C2dom of PfC2DMA binds to surface of red cell in a Ca2þ-
dependent manner, advocating a plausible role in invasion and can serve as a potential novel
blood stage vaccine candidate.
Copyright ª 2022, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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Introduction

The protozoan parasite Plasmodium falciparum that causes
the most severe form of malaria interacts with a variety of
host cells, during its life cycle. The clinically relevant stage
of infection is the asexual blood stage during which the
parasites repeatedly invade, multiplies within erythrocytes
and exits from them to initiate a new round of cycle. The
merozoite initially attaches to the RBC membrane and most
of the invasion ligands are stored in its apical organelles:
micronemes and rhoptries and are secreted at the time of
invasion1,2. These invasion ligands are classified into two
families namely: erythrocyte binding antigens (EBA family)
and reticulocyte binding like (RBL family)2e4 that engages
with their cognate receptors on the surface of RBCs and
forms a tight junction that bridges the two cells together.

The EBA family of invasion ligands consists of EBA-140,
175, 181, Elb1 that contains cysteine rich regionswhich binds
to red cell glycophorins5,6 in a neuraminidase sensitive
manner. These adhesins are stored in micronemes and
secreted at the time of host cell invasion. RBL superfamily
consists of the Plasmodium vivax reticulocyte binding pro-
teins (PvRBP), and the P. falciparum counterpart; reticulo-
cyte binding-like homologous proteins (PfRH). PfRH protein
family includes themembers PfRH1, PfRH2a, PfRH2b, PfRH3,
4 and 5 which localizes in the neck of rhoptries3,7e9 and also
determine the host cell specificity of Plasmodium species.
Besides this many novel parasite molecules that are crucial
for invasion are being discovered in the recent years that
includes MTRAP, PTRAMP,10 PfMA,11 GAMA etc.

However, the polymorphic nature and functional redun-
dancy of several merozoite invasion ligands has limited the
development of a promising invasion blocking vaccine12

against P. falciparum. Extensive reports of drug resistance
in P. falciparum and absence of an effective vaccine neces-
sitates the discovery of novel invasion ligands that can serve
as novel vaccine candidates. Availability of the tran-
scriptomics13,14 and proteomics15 data of P. falciparum has
enabled us to identify novel parasite ligands thatmight play a
role in binding and invasion of merozoite into host cell. We
used these databases to identify novel membrane anchored
adhesins and filtered them based on few criteria: (i) Hypo-
thetical proteins which are conserved throughout the spe-
cies; (ii) Expressed maximally during late stages of intra-
erythrocytic development (40e48 h post invasion); (iii)
Indispensable for parasite growth, as depicted by a low
mutagenesis score; and, (iv) Presence of at least one trans-
membrane region predicted to be localized to parasite
plasma membrane.

Using this approach, we identified a gene (PlasmoDB ID:
PF3D7_1110100) that encodes for a membrane antigen,
hereby denoted as PfC2 domain containing membrane anti-
gen, PfC2DMA. The encoded polypeptide contains a single C2
domain at the N-terminus (amino acid residues: 48 to 164)
along with four transmembrane domains toward its C-ter-
minus. We report that PfC2DMA is expressed during asexual
stages of intraerythrocytic development and the C2dom of
this antigen binds to Ca2þ ions. Importantly, the C2dom ex-
hibits binding to human erythrocytes. Furthermore, poly-
clonal antisera against C2dom of PfC2DMA show potent
invasion inhibitory activity. Overall, this study identifies a
140
novel antigen from P. falciparum that might serve as a novel
adhesin mediating the interaction between the merozoite
and the erythrocyte. Thus, we propose that C2dom of this
protein might serve as novel subunit vaccine candidate tar-
geting blood stage of malaria.

Methods

Parasite culture

P.falciparum 3D7 was cultured in Oþ erythrocytes along
with RPMI-1640 medium (Gibco) supplemented with 0.5%
albumax II (Gibco, CS, USA), 2 g/L sodium carbonate,
40 mg/L hypoxanthine (SigmaeAldrich, MA, USA) under
mixed gas conditions (5% CO2, 5% O2, 90% N2) at 37�C.
Parasites were tightly synchronised at the ring stage by
treatment with 5% sorbitol in two successive cycles ac-
cording to previously published methods.16

RT-PCR analysis of PfC2DMA

Stage specific expression of PfC2DMA was checked using
Reverse-transcriptase PCR. The transcripts encoding for
PfC2DMA and 18S rRNA gene were amplified from cDNA
derived from synchronous culture of P. falciparum 3D7
strain at Ring, trophozoite and schizont stages using the
folllowing set of primers:

PfC2DMA: 50-ACCCTACTTACATGTGGTCTTAGT-30

50-TGGTACGTCTTCTTTTTCTTTCCA-30

Pf18S rRNA: 50- CCGCCCGTCGCTCCTACCG-30

50-CCTTGTTACGACTTCTCCTTCC-30

The conditions used for amplification of PfC2DMA and
Pf18S were: denaturation at 95 �C for 30 s, annealing at
56 �C for 30 s and furthermore extension at 68 �C for 30 s.

Cloning, overexpression and purification of C2
domain of PfC2DMA

The nucleotide sequence encoding for the C2dom (48e164 aa)
of PfC2DMA was amplified by PCR from the genomic DNA of
Pf3D7, using the primers: Forward: 50-CCGCGTGGATCCAT-
GAAAGTTACATTTAATGCAAAAAAAACAAAAGG-3’; and, Reve-
rse 50-GCTCGAGTCGACTTAAATCATATCATATTTCGTATTAAAT
TTTAAATTC-3’. The gene was cloned into pET-28a(þ) vector
(Novagen), at BamH1 and Xho 1 (ThermoScientific) restric-
tion sites. The positive clones were then transformed into E.
coli BL21 (ʎDE3) strain for optimization of His-tagged C2dom
expression. The bacterial cells grown in terrific broth (sup-
plemented with 5% glycerol) were induced at an OD600 of 0.8
with 1 mM IPTG (Sigma) followed by growth at 18 �C for 24 h,
and harvested by centrifugation at 4000g. The cell biomass
was then lysed by sonication in lysis buffer (20 mM Tris, pH
8.0; 200mMNaCl; 5% glycerol and 2mMPMSF) and clarified by
centrifugation. His-C2dom was purified by Ni-NTA affinity
chromatography under native conditions, as described pre-
viously,17 and buffer exchanged against 20 mM Tris, pH 8.0;
200mMNaCl. Purity of the purifiedHis-C2domwas assessed by
SDS-PAGE analysis and western blotting.

Polyclonal antisera generation was done as described
previously.18 The specificity of the raised anti-C2dom sera
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was checked by western blotting of bacterial lysate
expressing recombinant C2dom.

Detection of PfC2DMA in parasite

Immuno-fluorescence Assay (IFA) was performed on syn-
chronized Pf3D7 culture to check for expression of PfC2DMA
in mature stage of the parasite, as described earlier19.

Probing was done with anti-C2dom antisera (1:100) and anti-
MSP-1 antibody (1:200), followed by using secondary anti-
bodies (anti-mice Alexa fluor 488 and anti-rabbit AF 546).
The prepared slides were mounted with DAPI antifade
(Invitrogen) and visualized under confocal microscope
(Olympus Corporation). For unpermeablized conditions,
parasite smears were fixed with 0.25% glutaraldehyde20 (in
PBS) at 4 �C for 15 min, followed by subsequent washing
with PBS and processed furthermore, as described above.
For determining the in vivo expression of PfC2DMA in the
parasite, late staged saponin released schizonts were lysed
in RIPA buffer supplemented with Protease inhibitor and
was probed with anti- C2dom antibody (dilution: 1:1000).

Ion binding activity of C2dom

The Ca2þ binding affinity of recombinant C2dom was assessed
using MST analyses, using the instrument Monolith NT.115
(Nanotemper technologies, Munich, Germany), as described
previously.21 Briefly, 10 mM of recombinant C2dom in HEPES-
NaCl, pH 7.4 buffer was tagged with 30 mM of amine reac-
tive dye, NT-647 NHS (Monolith Protein Labelling Kit Red-
Maleimide 2nd Generation, NanoTemper). Increasing con-
centrations of CaCl2 (3.04 mMe100 mM), diluted in HEPES-
NaCl buffer supplemented with 0.01% tween-20, were
titrated with the labelled C2dom, followed by loading into
standard treated capillaries (K002 Monolith NT.115) and read
by the instrument. The experiments were carried out at 20%
LED power and 40% MST power, respectively, and the data
was analysed using Monolith software (Nanotemper, Munich,
Germany). Mg2þ ions were used as negative control and
titrated at different concentrations (3.04 mMe100 mM) with
fixed concentration of the labelled protein.

RBC binding assays

The RBC binding activity of C2dom was confirmed by incu-
bating 2 � 107 washed RBCs with 2 mg of the recombinant
protein in PBS, under mild shaking conditions, at 37�C. The
reaction mixture was then centrifuged through dibutyl
phthalate (Sigma) and the supernatant was removed by
aspiration. The RBC bound proteins were then eluted with
1.5 M NaCl solution and the eluted fractions were immu-
noblotted with anti-6X-His antibody (Invitrogen) to check
for the presence of His-C2dom in the eluted fraction. RBC
binding assays were also carried out with RBCs priorly
treated with trypsin, chymotrypsin or neuraminidase, using
methods described in.11,22

Invasion inhibition assay using anti-C2dom hyper-
immune sera

Heat inactivated anti-C2dom mouse sera or pre-immune sera
derived from healthy mice, diluted in incomplete RPMI in
141
the ratio of 1:5 or 1:10 was added to schizonts adjusted to
1e2% parasitaemia and 2% haematocrit. The newly formed
rings were then scored by drawing thin smears of each assay
condition after 24 h. Mouse pre-immune sera served as a
negative control and antisera against PfAMA-1 as a positive
control. At least 5000 red blood cells were counted to
calculate the percent parasitaemia for each group.
Statistical analysis

Statistical analyses were performed using GraphPad 8
(GraphPad Software Inc.) and p-values were calculated by
two-tailed Student’s t-test wherever required.
Results

Sequence analysis of PfC2DMA and expression of
recombinant C2dom

Simple Modular Architecture Research Tool (SMART; http://
smart.embl-heidelberg.de/) was used to identify conserved
domains in PfC2DMA, which revealed that it encodes for an
850 aa long polypeptide with C2dom (residue 48 to 164) at its
N-terminus and four transmembrane helices: 1 between the
N & C-termini and other 3 at the extreme C terminus. A
pictorial representation depicting domain architecture of
PfC2DMA is represented in Fig. 1A. Sequence data of
PF3D7_1110100 and orthologues from other Plasmodium
species were retrieved from PlasmoDB (www.plasmoDB.
org.in). The protein was found to be conserved
throughout the Plasmodium species with orthologues
present in P. vivax (PVX_091,155), Plasmodium berghei
(PBANKA_0937,500), Plasmodium knowlsei (PKNH_
0907,400), Plasmodium yoelii (PY03705) and Plasmodium
malariae (PmUG01_09019600). Multi-sequence alignment
of putative C2 domains from different Plasmodium species,
Mus musculus and Homo sapiens is presented in Fig. 1B.

Three-dimensional structure of C2dom was modelled by I-
TASSER23 and furthermore refined using ModRefiner,24 and
quality of the modelled structure was checked using Pro-
check.25 Ramachandran plot of the modelled structure of
C2dom showed that 87% of the residues lie in the most fav-
oured region. The modelled structure depicted that C2dom
consists of six b-sheets that are connected to each other by
variable loops. C2dom of PfC2DMA showed no sequence
similarity with the well characterized C2 domains present
in humans, but forms the characteristic b-sandwich scaffold
characteristic of C2 domain26 (Fig. 1C i). The tertiary
structure of PfC2dom was also superimposed with C2dom of
cytosolic Phospholipase A2 from H. sapiens. Root-Mean-
Square Deviation (RMSD) score was found to be 1.28 Å,
suggestive of a close relatedness between tertiary structure
of both the polypeptides, despite of no sequence similarity
between them [Fig. 1C ii)].

Phylogenetic tree of C2dom from genus Plasmodium and
its orthologues from other organisms was generated using
Molecular Evolutionary Genetics Analysis (MEGA11)27 soft-
ware via Neighbour adjoining method. Phylogenetic anal-
ysis revealed that the C2dom of genus Plasmodium are
evolutionary conserved and formed a separate cluster,

http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://www.plasmoDB.org.in
http://www.plasmoDB.org.in


Figure 1. A. Domain organization, structural analysis and over-expression of recombinant C2dom in E. coli. A. Schematic
representation of PfC2DMA. Predicted C2 domain is represented with red pentagon and blue rectangular boxes represent trans-
membrane (TM) helices. B. Multi sequence alignment of C2dom from Plasmodium genus, mouse and human counterparts. Residues
with high consensus values (>90%) are marked in red color whereas with low consensus values (>50%, <90%) are marked in blue
color. b-sheets are indicated as arrowheads. C. i) Homology modeling based predicted structure of C2dom of PfC2DMA, bound Ca2þ

ion is represented by green sphere. ii) Superimposed modelled structure of PfC2dom (green) with crystal structure of H. sapiens
cytosolic Phospholipase A2 (blue). D. Phylogenetic analysis of C2dom from Plasmodium, H. sapiens and other eukaryotes. E. SDS-
PAGE showing purified recombinant C2dom at 15 kDa and recognition of protein by anti-6X-His monoclonal antibody.
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suggestive of its divergence from human and other
eukaryotic counterparts (Fig. 1D).

Purified recombinant C2dom of PfC2DMA migrated as a
single band corresponding tow15 kDa on SDS-PAGE depicting
high purity of protein, and its identity was confirmed by
immunoblotting with anti-6X His tagged antibody (Fig. 1E).

C2 domain of PfC2DMA binds Ca2D ions with high
affinity

To assess the ability of C2dom to bind Ca2þ ions, Microscale
thermophoresis (MST) was employed. It is a biophysical
technique that measures binding affinities between bio-
molecules in free solution with high sensitivity. It is based on
the principle of movement of molecules in aqueous form on
application of a thermal gradient (induced by an infrared
laser in MST) and this phenomenon is termed as thermo-
phoresis. This temperature induced molecular movement of
molecules is very sensitive to alterations in size, charge and
solvation shell of amolecule. The thermophoretic properties
of a fluorescently labelled protein are altered when it is
bound by a peptide, small molecule or even ions.28,29 Ther-
mophoresis is a measure of the state of protein, and binding
induced change in thermophoretic parameters allow MST to
determine binding affinities of protein ligand pair.

Upon titration of labelled C2dom with CaCl2, change in
thermophoretic mobility of the labelled protein was
Figure 2. C2dom binds specifically to a crucial divalent ion A.
concentrations of CaCl2. ii) Dose response curve plotted between
Capillary scan data of labelled C2dom with varying concentrations o
concentrations of MgCl2. ii) Dose response curve between normaliz
Capillary scan data of labelled C2dom with varying concentrations
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observed, suggestive of an effective binding with Ca2þ ions
(Fig. 2A i). A dose response curve was constructed using
Monolith software (Nanotemper, Munich, Germany) which
represented a decrease in fluorescence of the bound labeled
protein, as comparedwith its unbound form. The equilibrium
dissociation constant, Kd came out to be 35 mM (Fig. 2A ii).
Our observation corroborated with a previous study which
reported that C2dom from tomato phospholipase Da has a Kd
for Ca2þ ions in the micromolar range (59.73 mM).30 As a
control, MST of C2dom was carried out with MgCl2 (Fig. 2B i)
and Kd of 61.4 mM was observed (Fig. 2B ii), which is sug-
gestive of a very weak or negligible affinity of C2dom for Mg2þ

ions. Thus, our results demonstrate that C2dom of PfC2DMA
folds into a functional module that is capable of binding to
Ca2þ ions both with high affinity and specificity.

C2 domain of PfC2DMA binds to human
erythrocytes

Because many invasion ligands show erythrocyte binding
activity, we assessed the ability of C2dom of PfC2DMA for
binding to erythrocytes. C2dom binds specifically to surface of
human RBCs and this binding was abrogated in the presence
of EGTA, suggestive of Ca2þ mediated binding of the protein
to RBC surface (Fig. 3A). To furthermore delineate the nature
of RBC receptor boundby C2dom, its ability to bind untreated,
chymotrypsin, trypsin and neuraminidase treated
i) Graph showing MST signal of labelled-C2dom with different
normalized fluorescence and ligand (Ca2þ) concentration. iii)
f Ca2þ ions. B. i) MST analysis of labelled C2dom with different
ed fluorescence of protein and ligand (Mg2þ) concentration. iii)
of Mg2þions.



Figure 3. Recombinant C2dom binds to surface of human erythrocytes A. Erythrocyte binding activity of rC2dom was assessed in
the presence of extracellular Ca2þ ion chelator, EGTA (2.5mM). SDS-PAGE gel represents RBC pellet boiled in laemmli buffer and run
to serve as a loading control in order to ensure that equal number of RBCs are used for the assay. PC represents positive control. B.
The binding of rC2dom to different enzymatically treated erythrocytes was also assessed.
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erythrocytes was also analysed. The C2dom of PfC2DMA
showed binding to untreated, trypsin and chymotrypsin
treated RBCs, however, it fails to bind neuraminidase
treated RBCs (Fig. 3B). This suggests that C2dom binds to the
erythrocyte in a sialic acid dependent manner and it binds to
a heavily sialiated receptor on the erythrocyte surface.

PfC2DMA is expressed during intraerythrocytic
blood stages of parasite

After functionally characterizing the C2dom of PfC2DMA, we
checked the expression of this antigen, both at RNA and
protein levels. Transcript levels of PfC2DMA were detected
by Reverse transcriptase PCR and qPCR using cDNA derived
from synchronous cultures of Rings, trophozoites and schiz-
onts infected RBCs. The transcripts encoding for PfC2DMA
was amplified using specific primers which revealed that it is
expressed maximally during late stages of intraerythrocytic
development (Fig. 4A). 18S was used as a housekeeping gene
to confirm that equal amounts of RNA from each stage was
used for RT-PCR analysis.

For checking the protein expression of full-length
PfC2DMA in parasite, lysate from schizont staged parasites
was probed with anti-C2dom antisera. Desired band of
w101 kDa corresponding to the expected size of protein was
observed (Fig. 4B), in addition with two bands of lower mo-
lecular weight, below the 101 kDa band. A prominent band
was observed at w55 kDa that might correspond to the
processed form or degradation product of the protein or
some unrelated protein.
144
PfC2DMA localizes to the merozoite surface and
colocalizes with MSP-1

To check the intracellular localization of PfC2DMA within
the parasite, fixed smears of late staged parasites were
probed with C2dom antisera along with MSP-1 antisera,
which serves as a marker for merozoite surface. PfC2DMA
was found to localize to the merozoite surface in punctated
schizonts and individual merozoites (Fig. 4C). It colocalized
with the GPI-anchored membrane protein marker, Mero-
zoite Surface Protein-1 (MSP-1), suggesting that it localizes
to parasite plasma membrane.

Also, the spatial arrangement of PfC2DMA on the mero-
zoite surface was detected by staining parasites at mero-
zoite stage, under unpermeabilized conditions, so that the
antibodies can only recognize and bind to extracellularly
exposed antigens. Both staining of PfC2DMA and MSP-1 were
observed in unpermeablized merozoites (Fig. 4D), sug-
gesting that C2dom region of PfC2DMA localizes on the outer
leaflet of parasite plasma membrane, facing toward the
extracellular space.

Antisera against PfC2DMA inhibits merozoite
invasion into erythrocyte

Because like other invasion ligands, C2dom also showed
erythrocyte binding activity, we wanted to assess whether
antibodies against it have any effect on merozoite invasion.
For this, late schizonts were allowed to infect fresh RBCs in
the presence of heat inactivated mice PfC2dom antisera at a



Figure 4. PfC2DMA is expressed during asexual blood stages of P. falciparum. A. Semiquantitative and quantitative RT-PCR
analysis of PfC2DMA in cDNA derived from Ring, trophozoites and schizonts stages of P. falciparum. 18S rRNA transcripts were
taken as a loading control. B. Immunoblot using C2dom antisera showing PfC2DMA (w101 kDa) in schizont lysate. C. Localization of
PfC2DMA within mature schizont and free merozoite; green represents PfC2DMA, red represents MSP-1. TD represents transmitted
light channel. Parasite nuclei were stained with DAPI. D. The spatial organization of C2dom of PfC2DMA on parasite plasma
membrane was also analyzed in merozoites under unpermeablized conditions.
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Figure 5. Hyperimmune sera against C2dom inhibit merozoite invasion. A. Representative images of giemsa stained smears
showing successful formation of rings in untreated and Pre-immune sera groups. However, merozoites failed to invade RBCs in the
presence of PfC2dom antisera and found attached to the RBCs. B. Graph showing percent inhibition in invasion under different
dilutions of pre-immune and immune antisera (p < 0.0001). Results are represented as mean � s.d. C. Graph representing per-
centage of merozoites attaching to erythrocytes in the presence of mice pre-immune or PfC2dom antisera.
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dilution of 1:5 and 1:10. The number of new rings formed
were scored by observing thin Giemsa-stained smears of the
assay wells. Mice pre-immune sera served as negative
control. Healthy rings were seen in control and pre-immune
control groups at both the dilutions. The merozoites were
found bound to the RBCs in the presence of PfC2dom anti-
sera and found stuck at mid and/or later stages of inva-
sion, unable to form rings (Fig. 5A). Antiserum against
PfC2dom was able to inhibit w87% of parasite invasion at
146
dilution of 1:5, and w54% at dilution of 1:10. A significant
inhibition of merozoite invasion was observed in the pres-
ence of PfC2dom hyperimmune sera when compared with
pre-immune control groups (*)))p < 0.0001) (Fig. 5B).
Mice Pre-immune sera at dilutions of 1:5 and 1:10, served as
a negative control which showed negligible invasion in-
hibitions of 15% and 7% respectively. Apical Membrane
Antigen-1 (AMA-1) anti-sera (1:5 dilution) was used as a
positive control which showed potent invasion inhibitory
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effect of w93%. The experiment was done twice in dupli-
cates, and each group consists of sera derived from three
individual mice. The merozoites attached to erythrocytes
were also quantified and represented as a percentage of
merozoites attached to total erythrocytes in Fig. 5C. A high
number of merozoites were found attaching to RBCs which
failed to invade erythrocytes in the presence of PfC2dom
antisera as compared with pre-immune controls (p < 0.05)
pointing toward a defect in invasion event.
Discussion

C2 domains, originally discovered in Protein Kinase C
conserved 2 are ubiquitous structural modules that function
as membrane tethering domains of 80e160 aa residues,
which independently folds into a functional module that
binds to phospholipids in a Ca2þ- dependent manner.26,31

These domains are usually a part of eukaryotic proteins
involved in signal transduction or membrane trafficking,
recruiting them to biological membranes. Proteins harbour-
ing these domains includes kinases such as PKC, phospholi-
pases (PLA2, PLC, PLD)

32 and membrane trafficking proteins
including synaptotagmin33 and rabphilin 3A. C2 domain from
various organisms share a compact eight stranded anti par-
allel b-sandwich, connected by variable loops that co-
ordinates multiple Ca2þ ions and binds to biological
membranes in a Ca2þ dependent manner. However, some C2
domains have diverged evolutionarily and have lost Ca2þ

binding activity,34,35 majority of them still possess it. The
Ca2þ binding sites are formed by aspartate side chains that
serves as bidentate ligands for the metal ion.35 This activity
enables the domain to bind to biological membranes in a
Ca2þ -dependent manner thus serving as a Ca2þ effector
domain.

Recent studies point toward the importance of C2 domain
containing proteins in micronemal secretion and subsequent
invasion process of Pf merozoite. Conditional knockout of
double C2 (Doc 2) protein compromised the invasion effi-
ciency of parasites36. The cytoadhering protein PfEMP1 also
harbours C2 domain which along with DBL2b domain binds to
host ICAM-1.37 A recent study illustrates a C2 domain con-
taining rhoptry protein PfCERLI2 which is essential for inva-
sion and rhoptry morphogenesis. Ribozyme based
knockdown of PfCERLI2 in parasites leads to a defect in
merozoite invasion and alters the overall morphology of
rhoptries, characterized by elongated rhoptries in the
knockdown parasites.38,39 These evidences are suggestive of
involvement of C2 domain containing proteins in the growth
and pathogenesis of the parasite, particularly during the
event of invasion.

The genome for P. falciparum 3D7 encodes for four C2
domain containing proteins namely: Ferlin-like protein pu-
tative (PF3D7_0806,300), double C2 like domain containing
protein (PF3D7_1243900), Ferlin putative (PF3D7_1455600)
and a conserved Plasmodium protein of unknown function
(PF3D7_1110100, PfC2DMA). All other proteins except for
PfC2DMA contains multiple C2 domains that is five in ferlin-
like protein, two in DOC2 and four in ferlin putative pro-
tein. On the contrary, PfC2DMA is the only protein that
contains a single orphan C2 domain (rather than multiple
147
tandem C2 domains in other proteins) at its extreme N-ter-
minal and whose function remained uncharacterized till
date.

The conservation of this novel protein across the Plas-
modium species and its essentiality as pointed by a low
Mutagenesis Index score, intrigued us to study this protein
in detail and furthermore characterize its role in the growth
of parasite. We found that C2dom of this protein can inde-
pendently fold into a structural module that is capable of
binding to Ca2þ ions and also to the surface of erythrocytes.
Transcripts of PfC2DMA were found in abundance during
trophozoite and schizont stages of intraerythrocytic
development. This is in support with other proteins
involved in invasion whose expression peaks up during the
schizont stage.40 IFA analysis in segmenters and individual
merozoites revealed a surface localization of the protein,
colocalizing with the well-established merozoite surface
marker MSP-1.41 This confirms the membrane association of
PfC2DMA as predicted by the presence of four trans-
membrane domain in the polypeptide. Full length PfC2DMA
was also detected at proteomic level in schizont staged
parasite lysate in addition with smaller fragments of low
molecular weight, that might correspond to the processed
forms of the protein. This has also been reported for many
invasion ligands that are proteolytically processed during
invasion.10,42e45 Similar processing is observed for well
characterized invasion associated proteins such as MSP-1,46

AMA-147 and this processing is thought to enable removal of
receptor ligand interactions so that the merozoite can gain
entry into the host cell.48 Like other adhesins, C2dom of
PfC2DMA alone could bind to surface of RBCs which was
reduced upon chelation of extracellular Ca2þ ions by EGTA.
Binding studies of recombinant C2dom with enzyme-treated
erythrocytes revealed that it binds to erythrocytes in a
sialic acid-dependent manner. This is also observed with
invasion ligands belonging to the erythrocyte binding family
(EBL) that binds to heavily sialiated glycophorins49e51 on
the erythrocyte surface thus making the binding sensitive
to neuraminidase treatment. Interestingly, C2dom exhibits
higher level of binding to trypsin and chymotrypsin treated
erythrocytes which can be because of the exposure of
specific receptor as a result of removal of other hindering
receptors by the respective enzyme treatments. This is in
line with another study which reported increased binding of
PfTRAMP to enzyme treated erythrocytes.10

Furthermore, mice antisera were potent in inhibiting
merozoite invasion to about 87% and 54% at a dilution of 1:5
and 1:10 respectively. The merozoites were found binding
to erythrocytes in the presence of PfC2dom antisera, sug-
gesting that PfC2DMA is not involved in the initial attach-
ment to the red cell. Moreover, it is involved in later stages
of invasion events, probably during the formation of tight
junction between the two cells. Furthermore, immunoloc-
alization of PfC2DMA under unpermeablized conditions
depicted that C2dom is accessible to the antibodies and in-
teracts directly with the erythrocyte at the time of mero-
zoite invasion. This point toward the involvement of
PfC2DMA; present on the surface of merozoite in directly
binding to erythrocytes and mediating invasion into it.

Conclusively, our study reports a novel membrane local-
ized PfC2DMA protein that is expressed during late
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intraerythrocytic stages of parasite development and its
C2dom bindswith erythrocytes andCa2þ ions. Antisera against
the protein show invasion inhibitory activity supporting its
role as an invasion ligand. It would be intriguing to access the
effect of purifiedmonoclonal antibodies against PfC2DMA on
merozoite invasion in combination with antibodies against
known key invasion ligands to provide an additive invasion
inhibitory effect, as reported in previous studies.43,52,53
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