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KEYWORDS Abstract Background: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP)

Hypervirulent triggered a significant public health challenge. This study explored the prevalence trends and
carbapenem- key genetic characteristics of Hv-CRKP in one Shanghai suburbs hospital during 2014—2018.
resistant Klebsiella Methods: During five years, Hv-CRKP strains identified from 2579 CRKP by specific PCR, were sub-
pneumoniae; jected to performed short- and long-read sequencing technology; epidemiological characteris-

Genomic tics, antimicrobial-resistance genes (ARGs), virulence determinants, detailed plasmid profiles
epidemiology; and conjugation efficiency were comprehensively investigated.

Virulence plasmid; Results: 155 Hv-CRKP and 31 non-Hv-CRKP strains were sequenced. Hv-CRKP strains exhibited

Carbapenem significant resistance to six common antibiotic classes (>92%). ST11 steadily increased and
resistance gene became the most prevalent ST (85.2%), followed by ST15 (8.5%), ST65 (2.6%), ST23 (1.9%), and

ST86 (0.6%). ST11-KL64 (65.2%) rapidly increased from 0 in 2014 to 93.9% in 2018. blakpc., was
the primary carbapenemase gene (97.4%). Other ARGs switched from aac(3)-1ld to aadA2 in ami-
noglycoside and from sul1 to sul2 in sulfanilamide. The time-dated phylogenetic tree was divided
into four independent evolutionary clades. Clade 1 and 3 strains were mostly limited in the ICU,
whereas Clade 2 strains were distributed among multiple departments. Compared to ybt14 in
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ICEKp12 in Clade 1, Clade 3 strains harbored ybt9 in ICEKp3 and blactx.m-65- HV-CRKP infected
more wards than non-Hv-CRKP and showed greater transmission capacity. Three plasmids con-
taining crucial carbapenemase genes demonstrated their early transmission across China.
Conclusion: The Hv-CRKP ST11-KL64 has rapidly replaced ST11-KL47 and emerged as the pre-
dominant epidemic subtype in various hospital wards, highlighting the importance of conducting
comprehensive early surveillance for Hv-CRKP, especially in respiratory infections.

Copyright © 2023, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Introduction

Klebsiella pneumoniae, as an opportunistic pathogen, can
cause a variety of hospital-acquired infections (HAI),
especially in the elderly and immunocompromised in-
dividuals." This organism accounts for about a third of all
Gram-negative infections worldwide.? Compared to clas-
sical K. pneumoniae (cKp), hypervirulent K. pneumoniae
(hvKp) typically causes life-threatening community-ac-
quired infections (CAl), including liver abscesses and other
invasive syndromes.> This hypervirulent phenotype of hvkP
was believed to be caused by the presence of a virulence
plasmid including two capsular polysaccharides (CPS)
regulator genes (rmpA and rmpA2) and several siderophore
gene clusters (such as iuc, iro, etc.).” Besides hvKP, another
worrying development is the evolution of carbapenem-
resistant K. pneumoniae (CRKP), associated with severe
morbidity and death in global public health.” One of the
most critical resistance mechanisms in CRKP is the pro-
duction of carbapenemases, including blakpc, blanpw and
blaoxa.4s family. Since the initial report of CRKP appearance
in China in 2007,° it has been progressively isolated in
clinical settings. The Chinese Antimicrobial Surveillance
Network (www.chinets.com/) stated that the resistance
rates of K. pneumoniae to meropenem in China increased
dramatically from 2.9% in 2007 to 24.4% in 2021.

However, reports on the convergence of CRKP and hvKP
strains are gradually increasing.” Since then, this conver-
gence of carbapenem-resistant and hypervirulent strains
has been detected all across the globe, with China being
one of the most endemic countries.® Hv-CRKP, possessing
high transmissibility, high resistance, and hypervirulence, is
regarded as the superbug of the next generation.’

This study investigated the epidemiological character-
istics, drug resistance profiles, and critical virulence de-
terminants of the Hv-CRKP strains in a Shanghai local
hospital from 2014 to 2018. Our findings will provide new
insights into the hybrid evolutionary mechanisms of key
virulence genes and ARGs, comprehensive plasmid profiles,
and targeted early warning for Hv-CRKP strains.

Methods
Bacterial strains and identification

Between September 2014 and August 2018, we collected
2579 unique CRKP clinical isolates from diverse clinical
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specimens in one Jinshan hospital, Shanghai. All strains
were cultured on Columbia blood agar plate and identified
using the VITEK 2 system (bioMérieux, Marcy UEtoile,
France). Antibiotic Susceptibility results were screened
using the Kirby—Bauer disc diffusion test. This study char-
acterized CRKP isolates resistant to imipenem or mer-
openem (zone diameter <19 mm) according to CLSI and
EUCAST guidelines.”® Then, the Hv-CRKP isolates were
identified from CRKP isolates using a two-step process.'"
PCR was initially used to identify virulence genes, specif-
ically rmpA and/or rmpA2. Then, the positive strains with
rmpA or rmpA2 were validated using the string test (viscous
string > five mm). All clinical information was obtained
from the hospital’s clinical charting systems. The Ethics
Committee of Jinshan Hospital authorized this
investigation.

Antimicrobial susceptibility testing

The Kirby—Bauer disc diffusion assay (K—B) was utilized to
determine antimicrobial susceptibility, with results inter-
preted according to CLSI" and EUCAST breakpoints.'
Tested antibiotics included amikacin, gentamicin, cefazo-
lin, cefuroxime, cefotaxime, ceftazidime, cefepime, cip-
rofloxacin, imipenem, meropenem, tigecycline, colistin,
ceftolozane-tazobactam (Thermo Fisher Scientific, Wal-
tham, MA, USA). Escherichia coli ATCC 25922 was employed
as a quality-control isolate.

Whole-genome sequencing and bioinformatic
analysis

According to the criteria of one strain and one patient
every 3 months for each department, 155 from 560
confirmed Hv-CRKP strains, and 31 non-Hv-CRKP strains
during the same period were included for whole-genome
sequencing (Table S1 and Table S2). Raw data were trim-
med and filtered using fastp'® to produce high-quality
data. Then the genome data were assembled using
SPAdes 3.14.1."* Genomic sequences were annotated with
Prokka 1.14.6."°

Sequence types (STs), ARGs, virulence-associated genes,
resistance score, virulence score, and capsule serotype (K)
and O antigen (LPS) serotype prediction were identified
using Kleborate 2.1.0.® A core single nucleotide poly-
morphisms (SNP)-based tree was established by PGCGAP
1.0.35." An inferred timed phylogenetic tree was built by


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.chinets.com/

M.-Q. Guo, Y.-T. Wang, S.-S. Wang et al.

BactDating 1.1 with default parameter, '® using the core SNP
tree and isolation dates of strains as the input files.

As of September 2022, we queried the NCBI database for
the complete K. pneumoniae genomes identified in China.
Then, according to the virulence score >3 and resistance
score >2, predicted by Kleborate, we downloaded 135
reference Hv-CRKP complete genomes (Table S3). Then,
this study included 155 Hv-CRKP strains and 135 Chinese
reference Hv-CRKP strains for comparative genome anal-
ysis. A maximum likelihood (ML) phylogenetic tree was
generated by FastTree 2.1.10." The ML tree was visualized
and annotated by the online tool iTOL v5.%°

Three isolates (SH352, SH500, and SH552) from different
phylogenetic clades were further subjected to long-read
genome sequencing using the PacBio RS Il system (Person-
albio, Shanghai, China). Plasmid replicon types were identi-
fied by PlasmidFinder 2.1.6.>' ARGs were identified by
ResFinder.?? Comparative analysis of plasmid sequences and
specific genetic environments surrounding the
carbapenemase-resistant genes was performed using BLAST,
and the results were visualized with Easyfig2.2.5.2> The
presence of plasmids was analyzed based on the BLAST results.

Plasmid conjugation experiments

Donor isolates of plasmid conjugation assay were SH352,
SH500, and SH552. The recipient strain was rifampicin-
resistant E.coli C600. Briefly, Each of the three donor iso-
lates and recipient strain C600 were co-cultured in LB broth
until the logarithmic growth phase before being mixed at a
ratio of 1:32* Transconjugants were selected on LB agar
plates containing rifampicin (300 ug/mL) and meropenem
(2 ng/mL). The conjugation frequency was calculated with
three parallel replicates.

Galleria mellonella infection

We used the G. mellonella infection model to assess the
in vitro virulence and lethality of K. pneumoniae strains.®
Six strains with different virulence scores were evaluated
their various virulence (SH416, 0; SH352, 1; SH419, 3;
SH503, 4; SH552, 4; SH509, 5). PBS and K. pneumoniae
NTUH-K2044 (high-virulence strain) were the negative and
positive controls, respectively. The bacterial suspension
was cultured into 1 x 10® CFU/mL. A 25-uL microsyringe
was used to inject 10 uL of bacterial suspension into each
larvae. After injection, larvae were incubated in plates at
37 °C for 3 days. Each group contained 10 larvae, and the
experiment was repeated three times.

Statistical analysis

All data were analyzed using GraphPad Prism 9.0. P < 0.05
was considered as statistical significance.

Data availability

The whole genome sequences in this study have been
deposited in the Genome Warehouse in the National
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Genomics Data Center, China National Center for Bio-
information,?*%¢ with Bioproject Accession: PRJCA012185.

Results

Critical clinical characteristics of the Hv-CRKP
patients

Between 2014.09 and 2018.08, our study comprised 2579
patients with culture-positive results for CRKP from Jinshan
Hospital. A total of 560 Hv-CRKP isolates (21.7%) were
discovered using a positive PCR results with the rmpA and
(or) rmpA2 gene (Fig.S1). There was the highest prevalence
of Hv-CRKP (269/769, 35.0%) in 2017, followed by 2016
(194/559, 34.7%), 2015 (46/473, 9.7%), 2018 (39/351,
11.1%), and 2014 (12/427, 2.8%). Throughout these years,
the prevalence of Hv-CRKP in CRKP has steadily increased
compared to 2014 (P < 0.001).

The clinical features of 560 individuals infected with
Hv-CRKP strains were conducted (Table 1). The median
age was sixty, while the maximum period was ninety-
seven. The number of male patients (398/560, 71.1%) is
substantially more significant than the proportion of fe-
male patients (28.9%) (P = 0.002). These strains were
obtained from various source collections, including 347
(62.0%) from sputum, 90 (16.0%) from urine, 48 (8.6%)
from blood, and 75 (13.4%) from other sources. As shown
in Table 1, the intensive care unit (ICU) found the most
Hv-CRKP isolates (333, 59.5%), followed by the de-
partments of gastroenterology (45, 8.0%), infectious dis-
eases (41, 7.3%), and neurosurgery (31, 5.5%). The
detection rate of Hv-CRKP in the ICU was greater than
that in other wards (P < 0.001).

All Hv-CRKP strains exhibited substantial carbapenem
resistance (Table 1), especially to meropenem (98.9%) and
imipenem (98.0%). In addition, these isolates revealed high
level of resistance to aminoglycosides (92.0%), fluo-
roquinolones (98.4%), nitrofuran (99.6%), cephalosporins
(1st and 2nd generation) (99.5%), and cephalosporins (3rd,
4th, and 5th generation) (99.8%). All of these strains were
susceptible to tigecycline.

Molecular characteristics of the 155 Hv-CRKP
strains

Among the 155 Hv-CRKP strains, ST11 was the most prev-
alent ST (132/155, 85.2%), followed by ST15 (8.5%), ST65
(2.6%), ST23 (1.9%), ST86, ST1049, and ST2357 (0.6%,
each) (Table 2). And the percentage of ST11 detection
increased steadily from 40% in 2014 to 93.9% in 2018. In
contrast, the detection rate of the remaining STs was
relatively low. K—O serotyping results were KL64-01/02v1
(101, 65.2%), followed by KL47-OL101 (18, 11.6%) and
KL24-01/02v1 (8, 5.2%). KL64 and KL47 accounted for 101
(65.2%) and 26 (16.8%). In addition, the detection rate of
KL64 climbed annually from 0 in 2014 to 93.9% in 2018,
whereas the detection rate of KL47 has declined from 30%
in 2014 to 0 in 2018 (Table 2). Three O surface antigens
were observed. The detection rate of 01/02v1 remained
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Table 1 Clinical characteristics and antimicrobial resistance of 560 hv-CRKP strains.

Wards ICU Gastroenterology Infectious  Neurosurgery Geriatrics Outpatient  Others Total P Value
Diseases
Age, median, IQR 60 (47,69) 53 (45,61) 67 (52,75) 60 (43,68) 91 (89,95) 62 (58,73) 55 (47,68) 60 (48,70) <0.001
Sex
Male 243 (73.0%) 37 (82.2%) 21 (51.2%) 19 (61.3%) 21 (84.0%) 8 (44.4%) 49 (73.1%) 398 (71.1%) 0.002
Female 90 (27.0%) 8 (17.8%) 20 (48.8%) 12 (38.7%) 4 (16.0%) 10 (55.6%) 18 (26.9%) 162 (28.9%)
Specimen Type
Sputum 239 (71.8%) 8 (17.8%) 14 (34.1%) 28 (90.3%) 14 (56.0%) 8 (44.4%) 36 (53.8%) 347 (62.0%) <0.001
Urine 43 (12.9%) 2 (4.4%) 13 (31.7%) 2 (6.5%) 10 (40.0%) 9 (50.0%) 11 (16.4%) 90 (16.0%)
Blood 23 (6.9%) 6 (13.4%) 9 (22.0%) 0 0 0 10 (14.9%) 48 (8.6%)
Others 28 (8.4%) 29 (64.4%) 5 (12.2%) 1 (3.2%) 1 (4.0%) 1 (5.6%) 10 (14.9%) 75 (13.4%)
Year
2014 9 (2.7%) 0 0 0 1 (4.0%) 0 2 (3.0%) 12 (2.1%) <0.001
2015 25 (7.6%) 2 (4.4%) 5 (12.2%) 4 (12.9%) 2 (8.0%) 1 (5.6%) 7 (10.4%) 46 (8.3%)
2016 119 (35.7%) 15 (33.3%) 0 10 (32.3%) 17 (68.0%) 3 (16.6%) 30 (44.8%) 194 (34.6%)
2017 146 (43.8%) 28 (62.3%) 36 (87.8%) 15 (48.3%) 5 (20.0%) 14 (77.8%) 25 (37.3%) 269 (48.0%)
2018 34 (10.2%) O 0 2 (6.5%) 0 0 3 (4.5%) 39 (7.0%)
Antimicrobial resistance
Aminoglycosides 312 (93.7%) 41 (91.1%) 41 (100.0%) 23 (74.2%) 24 (96.0%) 18 (100.0%) 56 (83.6%) 515 (92.0%) <0.001
Fluoroquinolones 330 (99.1%) 44 (97.8%) 41 (100.0%) 28 (90.3%) 25 (100.0%) 18 (100.0%) 65 (97.0%) 551 (98.4%) 0.013
Nitrofuran 332 (99.7%) 45 (100.0%) 40 (97.6%) 31 (100.0%) 25 (100.0%) 18 (100.0%) 67 (100.0%) 558 (99.6%) 0.459
Cephalosporins 330 (99.1%) 45 (100.0%) 41 (100.0%) 31 (100.0%) 25 (100.0%) 18 (100.0%) 67 (100.0%) 557 (99.5%) 0.914
(1st and 2nd generation)
Cephalosporins 332 (99.7%) 45 (100.0%) 41 (100.0%) 31 (100.0%) 25 (100.0%) 18 (100.0%) 67 (100.0%) 559 (99.8%) 0.995
(3rd, 4th, and 5th
generation)
Carbapenems 332 (99.7%) 45 (100.0%) 41 (100.0%) 30 (96.8%) 25 (100.0%) 18 (100.0%) 66 (98.5%) 557 (99.5%) 0.38
Tigecycline 0 0 0 0 0 0 0 0 —
Polymyxins 0 0 0 0 0 0 2 (3.0%) 2 (0.4%) 0.022
Total 333 (59.5%) 45 (8.0%) 41 (7.3%) 31 (5.5%) 25 (4.5%) 18 (3.2%) 67 (12.0%) 560 <0.001
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high, whereas the detection rate of OL101 eventually fell
to zero (Table 2).

The vast majority of 155 Hv-CRKP isolates harbored
the blaypc., carbapenemase gene (151, 97.4%), followed by
b[aO)(A.232 (1 .3%), blaKpc.g (0.6%), and blaNDM.5 (06%) (Table 2)
All ST11 strains only carried blakpc,. These bacteria also
possessed a high rate of extended-spectrum-beta-lactamase
(ESBL) gene (136, 87.7%). blactx-m genes were detected in
85.8% of Hv-CRKP isolates, with blacrx.m.¢5 being the major
blactx.m gene (Table 2). The detection rate of strains carried by
both blactx.m-es and blasyy.12 grew dramatically from 20% in
2014 to 69.7% in 2018. Besides, we also observed a high prev-
alence of porin defects in these strains, such as truncation or
loss in OmpK35 (134/155, 86.5%) and OmpK36GD mutation
(132/155, 85.2%). Mutations in OmpK35 (P < 0.001) and

OmpK36GD (P = 0.012) showed significant statistical differ-
ences in the distribution between the Hv-CRKP group and the
non-Hv-CRKP group.

aadA2 (65.8%) and aac (3)-1ld (18.1%) were the two pri-
mary aminoglycoside resistance genes. The rate of aadA2
was from 20% in 2014 to 90.9% in 2018. In addition, the
gnrS1 gene associated with quinolone resistance was
discovered in 63.2% of isolates, and its detection rate
increased from 40% in 2014 to 93% in 2018. We found sul-
fonamide resistance mediated by sul1 (11.6%) and sul2
(61.3%). sul2 was discovered more often over time,
whereas sul1 was detected less frequently.

Among these Hv-CRKP genomes, the predominance of
siderophores was iuc 100%, ybt 99.4%, iro 12.3%, and clb
5.2%. The frequency of the rmpADC was 70.3%. The

Table 2  Molecular characteristics of 155 hv-CRKP strains during 2014—2018.

Year 2014 (n = 10) 2015 (n = 11) 2016 (n = 41) 2017 (n = 60) 2018 (n = 33) Total (n = 155) P value

Sequence type
ST11 4 (40.0%) 9 (81.8%) 36 (87.8%)
ST15 5 (50.0%) 2 (18.2%) 0
ST23 0 0 1 (2.4%)
ST65 0 0 4 (9.8%)
ST86 0 0 0
ST2357 1 (10.0%) 0 0
ST1049 0 0 0

K loci
KL64 0 2 (18.2%) 22 (53.7%)
KL47 3 (30.0%) 7 (63.6%) 12 (29.3%)
KL24 4 (40.0%) 2 (18.2%) 0
Others 1 (10.0%) 0 7 (17.0%)
Unknown 2 (20.0%) 0 0

O locus
01/02v1 6 (60.0%) 4 (36.4%) 24 (58.6%)
OoL101 4 (40.0%) 7 (63.6%) 5 (12.2%)
01/02v2 0 0 5 (12.2%)
Unknown 0 0 7 (17.0%)

Carbapenemases
blaKPC-2 10 (100.0%) 11 (100.0%) 40 (97.6%)
blaNDM-5 0 0 1 (3.6%)
blaKPC-3 0 0 0
blaOXA-232 0 0 0

ESBL
blaCTX-M-65 2 (20.0%) 7 (63.6%) 24 (58.5%)
blaSHV-12 0 0 0
blaCTX-M-65 2 (20.0%) 2 (18.2%) 12 (29.3%)
+SHV-12
Others 2 (10.0%) 0 1 (2.4%)
Negative 4 (40.0%) 2 (18.2%) 4 (9.8%)

Virulence genes
Yersiniabactin 9 (90.0%) 11 (100.0%) 41 (100.0%)
Colibactin 1 (10.0%) 0 5 (12.2%)
Aerobactin 10 (100.0%) 11 (100.0%) 41 (100.0%)
Salmochelin 3 (30.0%) 4 (36.4%) 6 (14.6%)
rmpADC 3 (30.0%) 6 (54.5%) 30 (73.2%)
rmpA2 10 (100.0%) 10 (90.9%) 41 (100.0%)

52 (86.6%) 31 (93.9%) 132 (85.2%) <0.001

6 (10.0%) 0 13 (8.5%)

0 2 (6.1%) 3 (1.9%)

0 0 4 (2.6%)

1.(1.7%) 0 1 (0.6%)

0 0 1 (0.6%)

1.(1.7%) 0 1 (0.6%)

46 (76.7%) 31 (93.9%) 101 (65.2%) <0.001
4 (6.7%) 0 26 (16.8%)

2 (3.3%) 0 8 (5.2%)

6 (10.0%) 2 (6.1%) 24 (12.9%)

2 (3.3%) 0 4 (2.6%)

55 (91.7%) 31 (93.9%) 119 (76.8%) <0.001
3 (5.0%) 0 19 (12.3%)

2 (3.3%) 2 (6.1%) 9 (5.8%)

1.(1.7%) 0 8 (5.1%)

57 (95.0%) 33 (100.0%) 151 (97.4%) 0.815
0 0 1 (0.6%)

1.(1.7%) 0 1 (0.6%)

2 (3.3%) 0 2 (1.3%)

34 (56.7%) 6 (18.2%) 73 (47.1%) <0.001
2 (3.3%) 1 (3.0%) 3 (1.9%)

14 (23.3%) 23 (69.7%) 53 (34.2%)

4 (6.7%) 0 7 (4.5%)

6 (10.0%) 3(9.1%) 19 (12.3%)

60 (100.0%) 33 (100.0%) 154 (99.4%) 0.006
0 2 (6.1%) 8 (5.2%) 0.074
60 (100.0%) 33 (100.0%) 155 (100.0%)  —

4 (6.7%) 2 (6.1%) 19 (12.3%) 0.013

28 (46.7%) 33 (100.0%) 109 (70.3%) <0.001
59 (98.3%) 33 (100.0%) 153 (98.7%) 0.17
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prevalence of rmpADC has increased significantly during the
previous five years (P < 0.001). Moreover, the rmpA2 gene
was found in 98.7% of strains.

Time-dated phylogeny of 186 clinical K.
pneumoniae isolates

Time-dated phylogenetic analyses resolved these strains
into four primary clades 1—4, with subclades 3.1-3.4
distinguishable within the largest clade 3 (Fig. 1). The Clade
1 comprised 21 strains, 16 in the Clade 2, 145 in the Clade 3,
and 4 in the Clade 4. The Clade 1 strains were primary ST15
clones, The Clade 2 comprised diverse ST clones, The Clade
3 were ST11 clones, and the Clade 4 were ST23 clones. This
tree indicated that the Clade 1 strains shared a most recent
common ancestor in 1981, the Clade 2 in 1978, the Clade 3
in 1995, and the Clade 4 in 2015.

Strains within the Clades 1 and 3 were restricted in ICU
from 2014 to 2018. Isolates of the Clade 4 were primarily
recovered from ICU in 2018, whereas the Clade 2 was ob-
tained from several departments between 2014 and 2018.
All isolated in 2018 were concentrated in Clade 3.2, the
largest sub-clade of the Clade 3. The Clade 3.1 strains
were only found in 2017. Both of the Clade 3.3 and 3.4
strains were primarily recovered in 2016 and 2017.
Importantly, non-Hv-CRKP strains were not found in
outpatient and infection disease departments compared to
Hv-CRKP.

There was a significant difference in the distribution of
yersiniabactin in clades 1 and 3. ybt9 in ICEKp3 was pre-
dominantly found in clade 3 (143/145, 98.6%), whereas
ybt14 in ICEKp12 was only found in clade 1 (19/21, 90.5%).
Clade 3 strains were deeply related to fosA3 and blactx-m.
¢5. In clade 3, most non-Hv-CRKP strains were in clade 3.3
(11/13, 84.6%). clb2 and clb3 were substantially associated
with the Clade 4 and Clade 2, respectively. The distribution
of resistance genes in clade 4 was significantly lower than in
other clades (P < 0.001).

Comparative genome analysis

The phylogenetic tree was composed of three major clades
(Fig. 2). Clade 1 and Clade 3 consisted primarily of ST11
clones, with 100% (108/108) and 97.8% (137/140), respec-
tively. Over half of the Clade 1 strains were isolated in 2017,
while most clade 3 strains were isolated in 2018. Most of the
Clade 1 reference strains were isolated in Shanghai, while
most Clade 3 reference strains were obtained in Zhejiang. This
may suggest that the Clade 1 Hv-CRKP isolates were restricted
to Shanghai, but the Clade 3 Hv-CRKP isolates were distributed
throughout Shanghai and Zhejiang. The Clade 2 possessed
numerous hypervirulent STs, including ST15, ST23, ST65, and
ST86. The Clade 3 predominantly carried KL64 (79/140, 56.4%)
and KL47 (50/140, 35.7%), whereas the Clade 1 had KL64. the
Clade 2 possessed more varied carbapenemase than the other
two clades (mainly carrying blakpc.2). blaoxa-232 Were discov-
ered in the Clade 2 but were absent from all different clades.
blactx-m-65sHv-12 Was detected primarily in Clades 1 and 3,
while blactx-m-15 was predominant in clade 2. The fosA3 gene
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was mainly detected in Clades 1 and 3. Regarding the ybt
virulence gene, the Clade 1 predominantly carried ybt14-
ICEKp12 and ybt1-ICEKp10, whereas the other two clades
essentially had ybt9-ICEKp3.

Important characteristics of virulence and
resistance plasmids

According to the combined short- and long-read sequencing
results, strain SH352, SH500, and SH552 have respective
genome sizes of 6,290,840, 6,175,253, and 5,983,274bp.
These three genomes had one chromosome and seven
plasmids (Fig. 3). A plasmid carrying rmpA2 was identified
(pSH552p1, 256,515 bp). Two blakpc., carrying plasmids
(pSH500p2, 170,835 bp and pSH552p3, 106,850 bp) and one
blaypm.1 carrying plasmid (pSH352p3, 112,642 bp) were
found. Both pSH352p3 and pSH500p2 were IncFll plasmids.
Unlike most 170 kb KPC-2-encoding plasmids, pSH552p2
belonged to the cointegrated FIl (pBK30683) plasmid.?” In
Fig. 3B, pSH500p2 was transmitted to numerous wards, such
as the ICU, the Department of Infectious Diseases, and
Gastroenterology. And the dissemination of the pSH552p2
was restricted to the ICU, Neurosurgery, and Geriatrics.

The structure surrounding blaypm-1 Was rmtC-blaypm.1-
ble-trpF-dsbD-cutA-groS-groL-1S3. The genomic environ-
ments surrounding blaxpc., indicated the presence of two
distinct genetic structures. The structure of surrounding
blaypc., of pSH500p2 was 1S26-I1SKpné-blaypc.,-1SKpn27-Tn3-
1S26, while pSH552p2 was [S26-Tn3-hin-klcA-blaypc.2-
ISKpn27-Tn3-1S26. Both types were composite transposons
based on IS26. The conjugation efficiency of pSH352p3 was
(6.5 + 1.8) x 1077, pSH500p2 was (1.5 + 0.2) x 107¢,
pSH552p2 was (3.6 + 0.6) x 1077 (Table S4).

G. mellonella infection model

Six isolates with different virulence scores were chosen to
conduct the G. mellonella larvae infection experiment (Fig
S2). After 18 h of injection, the hypervirulent NTUH-K2044
strain showed 100% mortality, slightly higher than in larvae
injected with SH352 and SH416 (P = 0.0446). The group
SH419, SH503, SH509, and SH552 achieved 100% mortality at
18 h, 72 h, 18 h, 48 h, and 48 h, respectively. There was no
statistical difference between the other groups. These re-
sults indicated that SH352 and SH416 had lower virulence
than the NTUH-K2044 strain, and strains with higher viru-
lence scores were about as virulent as NTUH-K2044.

Discussion

Hv-CRKP is currently documented in many countries and re-
gions across the globe, causing more mortality than CRKP
strains.”® Here, we described the genomic characteristics and
epidemiology of Hv-CRKP strains in this Jinshan hospital.
Our results indicated that Hv-CRKP is becoming an
increasingly relevant clinical infectious agent in this hospi-
tal. The proportion of ICU patients with Hv-CRKP was sub-
stantially higher than that in other departments. We
hypothesize that ICU patients are at a higher risk of Hv-CRKP
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according to the isolation time. ST, wards, plasmid replicon types, antimicrobial resistance genes, and virulence genes present in each strain.

infections due to immune status alteration, significantly
higher antimicrobial exposure than in other departments,
and more invasive procedures during treatment.”’

The Hv-CRKP strains exhibited high resistance to carba-
penems, aminoglycosides, fluoroquinolones, and cephalo-
sporins. The aminoglycoside resistance mechanism
eventually moved from aac(3)-lld to aadA2. Changes in the
predominance of sulf and sul2 imply that sulfanilamide
resistance may be mediated dominantly by sul2. Additionally,
polymyxin resistance was identified in two isolates, which
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possessed mgrB truncation. Our data demonstrated that all
Hv-CRKP strains remained susceptible to tigecycline, a higher
susceptibility level than in earlier research.?’

Seven STs were identified among 155 Hv-CRKP isolates in
this hospital, indicating a higher clonal number than the non-
Hv-CRKP in this hospital. Among the seven STs, ST11 increased
sharply and became the most common ST. Comparative ge-
nomics also revealed that ST11 was responsible for the most
significant fraction of domestic Hv-CRKP. In this hospital,
ST11-KL64 and ST11-KL47 were the predominant strains.
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Phylogenetic analysis of domestic K. pneumoniae strains
revealed that clade 1 of ST11-KL64 clones and clade 3 of ST11-
KL64 and ST11-KL47 clones were independent. A recent study
also indicated that the ST11 clone in China was connected
with KL64 and KL47.%° It suggests that the spread of ST11-
specific sublineages drives the spread of Hv-CRKP in China,
underscoring the significance of genetic monitoring to detect
high-risk clones during their initial propagation.

The time-based Bayesian phylogenetic tree revealed
that clinical strains were separated into four clades, with
Clade 3 predominant. Importantly, all inferred each Clade’s
most recent common ancestor predating the initial bacte-
rial isolation. This revealed that Hv-CRKP circulated before
this study. The fact that strains recovered from multiple
wards within the same Clade means that nosocomial
transmission occurred in this hospital. Furthermore, Hv-
CRKP strains involved more wards than non-Hv-CRKP, sug-
gesting the urgent need for stricter surveillance and
infection-control measures to prevent further dissemina-
tion in nosocomial settings.>’

It was found that blaxpc., was the most frequently
identified carbapenemase gene in Hv-CRKP from 2014 to
2018. In this investigation, we found the blakpc., gene on
the IncFll and FlI (pBK30683) plasmids critical for horizontal
gene transfer of the blakpc., gene.’** The transmission
ward range and the conjugation efficiency of pSH552p2
were relatively lower than pSH500p2, indicating that the
cointegrated Fll plasmid has a lower transmissibility or
high adaptation cost. Besides, other published plasmids
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p205880-NDM separated from Chongging in 2012, pF726925-
1 from Jiangsu in 2015, p628-KPC from Beijing in 2015,
pKPC2_020,002 from Sichuan in 2016, pJX5-2 and pJX6-2
from Jiangxi in 2018.3¢ The fact that these plasmids were
recovered from multiple regions in China suggests that
blanpm-1-carrying pSH352p3 and blaypc.,-carrying pSH500p2
and pSH552p2 plasmids were present existed and possibly
disseminated in China previously.

In addition to resistance genes, our results revealed
abundant virulence genes. In this study, iuc was the most
frequent virulence-associated gene, followed by ybt. ybt9in
ICEKp3 and ybt14 in ICEKp12 were respectively connected
with ST11 and ST15 clones. This result shows that distinct
clones of CRKP acquire a virulence plasmid to transform into
Hv-CRKP. Furthermore, ST23 clones were highly correlated
with clb2, whereas ST65 and ST86 clones were associated
with clb3. The results of our infection model with G. mel-
lonella demonstrated that strains with higher virulence
scores have the same hypervirulent phenotype as NTUH-
K2044. This study suggests that hvKP could be detected
rapidly and accurately by deploying genomic techniques.

In conclusion, this study uncovered the genetic epide-
miology of Hv-CRKP in Jinshan Hospital. A high degree of
gene commonality was detected among the Hv-CRKP in this
hospital, specifically the ST11-KL64 and ST11-KL47 clones,
prone to horizontal spreading throughout hospital wards.
Therefore, there is an immediate need to increase sur-
veillance for Hv-CRKP, deploy molecular and genomic
technologies for accurate and quick detection of high-risk
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Hv-CRKP clones, and take stringent measures to control its
further spread in this institution.
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