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Abstract Background: Metagenomic Next-Generation Sequencing (mNGS) is a rapid, non-
culture-based, high-throughput technique for pathogen diagnosis. Despite its numerous advan-
tages, only a few studies have investigated its use in patients undergoing allogeneic hemato-
poietic stem cell transplantation (allo-HSCT).
Methods: We conducted a retrospective analysis of 404 mNGS tests performed on 264 patients
after allo-HSCT. The tests were divided into three groups (Phase A, B, C) based on the time
spent hospitalized post-transplantation, and we evaluated the analytical performance of
mNGS in comparison with conventional microbiological tests (CMT), while also analyzing its
clinical utility for clinical impacts.
Results: Metagenomic sequencing demonstrated a significantly higher rate of positive microbi-
ological findings as compared to CMT (334/404 (82.7 %) vs. 159/404 (39.4 %), respectively,
P < 0.001). The detection rates by both mNGS and CMT varied across the three-phase (mNGS:
A-60/89 (67.4 %), B-147/158 (93.0 %), C-125/157 (79.6 %), respectively, P < 0.001; CMT: A-21/
89 (23.6 %), B-79/158 (50.0 %), C-59/157 (37.6 %), respectively, P < 0.001). The infection sites
and types of pathogens were also different across the three phases. Compared to non-GVHD
cases, mNGS detected more Aspergillus spp. and Mucorales in GVHD patients (Aspergillus:
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12/102 (11.8 %) vs. 8/158 (5.1 %), respectively, P Z 0.048; Mucorales: 6/102 (5.9 %) vs. 2/158
(1.3 %), respectively, PZ 0.035). Forty-five (181/404) percent of mNGS tests yielded a positive
impact on the clinical diagnosis, while 24.3 % (98/404) of tests benefited the patients in anti-
microbial treatment.

Conclusion: mNGS is an indispensable diagnostic tool in identifying pathogens and optimizing
antibiotic therapy for hematological patients receiving allo-HSCT.
Copyright ª 2023, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Introduction

Infections are the most significant and common compli-
cations that can occur following allogeneic hematopoietic
stem cell transplantation (allo-HSCT). Unfortunately,
these infections are associated with a high mortality rate
that is related to the treatment.1 Prior to immune
reconstitution, the infection risk and its associated types
of pathogens vary according to different time periods
after allo-HSCT.2,3 Graft versus host disease (GVHD) or
immunosuppressive drugs render the patients more sus-
ceptible to opportunistic infections of mixed patho-
gens.1,4,5 Accurate and timely diagnosis of pathogens are
critical for the clinical management of infections, espe-
cially for patients undergoing allo-HSCT. However, in
immunocompromised patients, the wide range of poten-
tial pathogens capable of causing infections, along with
inadequate sensitivity of conventional microbiological
tests (CMT) has made diagnosis extremely challenging in a
real-world setting.6,7 A previous study that investigated
the cause of death after HSCT have found that microbial
infection of unknown etiology is the main culprit.8 While
CMT tests such as culture, direct microscopic examination
(DME) and histopathology lack sensitivity in patients
receiving empiric antibiotics, the nucleic acid amplifica-
tion tests (NAAT) are highly sensitive but limited to a
handful of common pathogens.9,10 Therefore, a rapid,
accurate and comprehensive method of pathogen detec-
tion has become critical.

Metagenomic next-generation sequencing (mNGS) has
recently been gaining traction as a culture-independent,
high-throughput nucleic acid sequencing-based agnostic
testing for pathogen identification from clinical speci-
mens.11,12 Compared to conventional methods, mNGS has
several advantages, including the ability to detect a wide
spectrum of pathogens within a clinically actionable time
frame.13,14 With the decrease of sequencing time and cost,
mNGS has shown promise in a variety of infectious diseases,
including bloodstream infections (BSIs), respiratory in-
fections, central nervous system infections (CNSIs), sepsis,
invasive fungal infections (IFIs), urinary tract infections
(UTIs) and endocarditis.15e23 Nevertheless, few studies
have explored the utility of mNGS in allo-HSCT patients
with hematological disorders.24,25 Therefore, the aim of our
study was to evaluate the diagnostic performance and
clinical impact of mNGS in a cohort of hematological pa-
tients who underwent allo-HSCT.
12
Materials

Study design

We reviewed patients at the Institute of Hematology and
Blood Diseases Hospital who had mNGS for suspected in-
fections after allo-HSCT from January 2021 to December
2022. For this retrospective study, the inclusion criterion
was patients who had mNGS testing ordered post-
transplantation, with the decision made by clinicians.
Typically, transplant patients underwent mNGS testing due
to the following reasons: 1) The patient suffered from a
life-threatening infection and was in critical conditions,
such as sepsis; 2) The patient’s initial anti-infection treat-
ment was ineffective; 3) Conventional tests were negative
and no definitive evidence was available for the etiological
diagnosis. We excluded: 1) patients with non-infectious
etiologies (as confirmed by other tests that ruled out in-
fections); 2) patients whose samples failed quality control;
and 3) patients with incomplete medical records. Based on
the criteria (Fig. 1), 404 mNGS tests (involving 264 patients
and 343 infectious episodes) were included in the analysis.
This study had been approved by the Ethics committee and
Institutional Review Board (IRB number: QTJC2022043-EC-
1). Informed consent was waived due to the retrospective
design of our study.

The mNGS tests were categorized into three groups based
on the duration of hospitalization post transplantation.1,3 A’s
mNGS was conducted during the pre-engraftment phase
(before reaching an absolute neutrophil count >
0.5� 109 cells/L for 3 days). B’s mNGS was performed during
the early post-engraftment phase (within first 100 days post-
transplant, excluding pre-engraftment period). C’s mNGS
was conducted after 100 days post-transplant.

Diagnosis of infection was according to the CDC/NHSN
surveillance definitions.26 The definition of viremia (for
CMV and EBV) is positive result in real-time qPCR testing of
plasma (with the positive thresholds for CMV and EBV being
1000 copies/ml and 500 copies/ml, respectively). These
EBV and CMV real-time qPCR tests were routinely con-
ducted to monitor the viral levels in patients post trans-
plantation. Neutropenia refers to a ANC < 0.5 � 109 cells/
L.27 All patients had CMT ordered by their clinicians,
including bacterial and fungal culture, viral PCR, DME,
Aspergillus GM test (Bio-Rad Laboratories, Hercules, CA,
USA), (1,3)-b-D-glucan (BDG) test (Dynamiker Biotech-
nology Co., Ltd, Tianjin, China), GeneXpert MTB/RIF
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Figure 1. A schematic of the study profile. Abbreviations: allo-HSCT, allogeneic hematopoietic stem cell transplantation; mNGS,
metagenomic next-generation sequencing; CMT, conventional microbiological tests; *, Only cases with viral PCR test were included.
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(Cepheid, Sunnyvale, CA) and Cryptococcal antigen tests
(Dynamiker Biotechnology Co., Ltd. Tianjin, China). Clinical
impacts of mNGS were determined by a panel of two he-
matologists, one clinical microbiologist and one radiologist
based on a detailed grading criteria established in an
earlier study (Table S1).28

Metagenomic Next-Generation Sequencing

For peripheral blood, 600 ml plasma was obtained and
nucleic acid (cell-free DNA) was extracted using TIANamp
Micro DNA Kit (Tiangen Biotech). For other specimens,
genomic DNA was extracted by TIANamp Micro DNA Kit
(Tiangen Biotech) after enzymatic treatment and beads-
beating. Sequencing libraries were prepared by DNA
fragmentation, end-repair, adaptor ligation and PCR
amplification. Qubit was used to evaluate the quality of
libraries. Sequencing was performed on MGISEQ-200/
2000. Short (<35 base pairs), low-quality reads and
human sequences were removed and the remaining reads
were aligned to an in-house database for identifying
microbial species.

Criteria for a positive mNGS test

To determine the positive mNGS result microbes, we
employed a methodology anchored in the evaluation of
Stringently Mapped Read Numbers (SMRN) coupled with a
Negative Control (NTC). NTC, composed of human stem
cells without microorganisms, is tested alongside clinical
13
samples to monitor potential contamination from re-
agents and the environment. A positive mNGS result is
ascertained in this study when the following criteria are
met.

(1) The microbe was considered positive when its rela-
tive abundance was the highest within its genus, and
its SMRN must surpass that in the NTC.

(2) For Bacteria (excluding Mycobacterium tuberculosis),
Fungi (excluding Pneumocystis jiroveci), and Viruses:
A microbe is considered positive if it has an SMRN � 3
at the species level and its relative abundance at the
genus level is >30 %.

(3) M. tuberculosis and P. jiroveci (PJ) are considered
positive with the alignment of at least one SMRN.

(4) For Parasites: SMRN�100, and the species must not be
present in the NTC.

Since the read depth was not same among different
samples, normalized mapped read number to 20M was used
to compare with plasma virus detection between three
groups.

Statistical analysis

SPSS Version 25.0 software (SPSS Inc., Chicago, IL, USA)
were performed for statistical analysis. ManneWhitney U-
test, Chi-square, Fisher exact test, correlation analysis
were used for discrete variables where appropriate.
P < 0.05 was considered statistically significant.
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Results

Patient characteristics and clinical samples

The average age of 264 patients (154 males and 110 fe-
males) was 39.3 years old. We divided the 343 infectious
episodes into three groups based on different stages, and
the basic characteristics and laboratory test results were
shown in Table 1. Significant differences were found in the
transplantation methods, occurrence of GVHD, prior expo-
sure to antibiotics, and laboratory data such as white blood
cell (WBC), absolute neutrophil count (ANC), C-reactive
protein (CRP), procalcitonin (PCT) level. The details of the
collected specimens were shown in Fig. S1. Ninety patients
(involving 169 infection episodes) underwent more than one
mNGS test.
Table 1 Case characteristics and baseline of the three study g

Samples characteristics Total (n Z 343) A: Pre-engraftm
phase (n Z 83)

Mean age � SD 38.77 � 12.33 40.00 � 11.92
Male, n (%) 197 (57.4) 54 (65.1)
Underlying diseases,

n (%)
Acute myeloid
leukemia

127 (37.0) 28 (33.7)

Myelodysplastic
syndromes

76 (22.2) 24 (28.9)

Acute lymphoblastic
leukemia

87 (25.4) 18 (21.7)

Aplastic anemia 15 (4.4) 4 (4.8)
Chronic Myeloid
Leukemia

17 (5.0) 3 (3.6)

Lymphoma 11 (3.2) 4 (4.8)
Other diseases 10 (2.9) 2 (2.4)

Transplantation method,
n (%)
Haplo 253 (73.8) 68 (81.9)
MSD 83 (24.2) 15 (18.1)
URD 7 (2.0) 0 (0.0)

Laboratory examination
WBC, 10̂9/L, median
(IQR)

1.93 (0.24e3.64) 0.03 (0.01e0.1

ANC, 10̂9/L, median
(IQR)

1.08 (0.04e2.35) 0.00 (0.00e0.0

CRP, mg/L, median
(IQR)

42.94 (14.48e90.17) 58.19 (31.44e1

PCT, ng/mL, median
(IQR)

0.15 (0.09e0.37) 0.20 (0.09e0.5

aGVHD 78 (22.7) 0 (0.0)
cGVHD 24 (7.0) 0 (0.0)
Previous antibiotic

exposure
327 (95.3) 83 (100.00)

Immunosuppressive
drugs

314 (91.5) 83 (100.00)

Abbreviations: Haplo, Haploidentical; MSD, Matched-sibling Donor;
neutrophil count; CRP, C-reactive protein; PCT, procalcitonin; aGVH
host disease.
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Infection sites and pathogens detected after
allo-HSCT

For the 343 infectious episodes, the sites of infection
among the three groups were shown in Fig. 2. In the Pre-
engraftment phase (Group A), gastroenteritis was most
common at 44.6 %, followed by both perianal and oral
mucositis at 31.3 %. In the early post-engraftment (Group
B), the leading infections were viremia (37.7 %), pneumonia
(36.7 %), and gastroenteritis (21.0 %). In the late phase
(Group C), pneumonia was predominant at 59.8 %, with
gastroenteritis (12.9 %) and viremia (12.7 %) trailing. We
observed differences in microbial detection rates of both
CMT and mNGS among the three groups. Both mNGS testing
(A-67.4 %, B-93.0 %, C-79.6 %, P < 0.001) and CMT (A-23.6 %,
B-50.0 %, C-37.6 %, P < 0.001) showed the highest detection
roups.

ent B: Early
post-engraftment
(n Z 128)

C: Late
post-engraftment
(n Z 132)

P

37.81 � 12.68 38.31 � 12.49 0.416
70 (54.7) 73 (55.3) 0.271

0.201

40 (31.3) 59 (44.7)

27 (21.1) 25 (18.9)

38 (29.7) 31 (23.5)

9 (7.0) 2 (1.5)
6 (4.7) 8 (6.1)

3 (2.3) 4 (3.0)
5 (3.9) 3 (2.3)

0.015

98 (76.6) 87 (65.9)
25 (19.5) 43 (32.6)
5 (3.9) 2 (1.5)

1) 2.87 (1.96e4.73) 2.16 (0.69e4.03) <0.001

3) 1.84 (1.19e3.38) 1.19 (0.11e2.49) <0.001

10.62) 29.36 (7.80e70.00) 50.02 (16.91e91.21) 0.001

9) 0.13 (0.07e0.31) 0.17 (0.07e0.35) 0.019

41 (32.0) 37 (28.0) <0.001

0 (0.0) 24 (18.2) e

124 (96.9) 120 (90.9) 0.005

128 (100.00) 103 (78.0) e

URD, Unrelated Donor; WBC, White cell count; ANC, absolute
D, acute Graft-versus-host disease; cGVHD, chronic Graft-versus-



Figure 2. Distribution of the infection sites involved and the comparison of the detection rates among three phases after

allo-HSCT. Abbreviations: mNGS, metagenomic next-generation sequencing; CMT, conventional microbiological tests; BSIs, blood
stream infections; SSTIs, skin and soft-tissue infections; UTIs, urinary tract infections; CNSIs, central nervous system infections;
URTI, upper respiratory tract infections; *P < 0.05; **P < 0.01; ***, P < 0.001; ns, no statistically significant; na, not appropriate.
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rate in Group B, followed by Groups C and A (Fig. S2A-D).
This trend was also observed in the mNGS results for plasma
samples (Fig. S3). Our results indicated that Klebsiella,
Escherichia, and Pseudomonas spp. were the most-
frequently detected bacterial species after allo-HSCT and
were also the most commonly detected in plasma samples.
The detection rate of these bacteria in Phase A was higher
than in the other two phases (Fig. S2E). Among fungal
pathogens, only PJ’s detection rate varied notably, peaking
in Phase C. For respiratory samples, Acinetobacter and
Pseudomonas aeruginosa were the most commonly detec-
ted bacteria, while Aspergillus spp. and PJ were the most
frequently identified fungi.

Since detecting viruses in plasma is common but not
always a sign of infection, we conducted an analysis of the
detection rates of different viruses. Among viruses
commonly found in plasma, the top five were CMV (56.2 %),
Torque teno virus (TTV) (43.8 %), EBV (21.0 %), BK virus
(BKV) (15.2 %), and Herpes simplex virus type 1 (HSV-1)
(9.5 %). The frequency and abundance of viral reads also
varied at different stages after allo-HSCT (Fig. S4). Since
the pathogenicity of TTV was still under debate, it was not
included in the analysis of pathogens.

Pathogens identified in patients with and without
GVHD

We compared the detection rates of bacteria and fungi in
infectious episodes with and without GVHD (Fig. S5A-D).
Bacterial detection was higher in GVHD cases regardless of
the diagnostic method (mNGS: 37.3 % vs. 22.2 %, P Z 0.008;
CMT: 20.6 % vs. 9.5 %, P Z 0.011), especially in severe
15
Grade III-IV acute GVHD. This trend was similar with mNGS
findings both in plasma and respiratory samples (Fig. S6A-
B). Although fungal differences weren’t statistically sig-
nificant overall, GVHD cases had higher detections of
Aspergillus (11.8 % vs. 5.1 %, P Z 0.048) and Mucorales
(5.9 % vs. 1.3 %, P Z 0.035) (Fig. S5E-F). In plasma,
Aspergillus was more detected in GVHD patients (8.1 % vs.
2.1 %, P Z 0.032). Notably, only patients with GVHD mNGS
tested positive for Aspergillus and Mucorales in respiratory
samples (Fig. S6 C-D).

The diagnostic performance of mNGS and CMT

Among the 404 tests, mNGS had a significantly higher pos-
itive rate (82.7 %) than CMT (39.4 %, P < 0.001) (Fig. S7).
Furthermore, mNGS detected more viruses, bacteria, and
fungi than CMT (Virus: 73.5 % vs. 24.3 %, P < 0.001; Bac-
teria: 31.2 % vs. 14.9 %, P < 0.001; Fungi: 14.9 % vs. 10.2 %,
P Z 0.043). Toxoplasma gondii was only identified via
mNGS, exclusively in plasma samples, involving two pa-
tients. mNGS detected bacteria in 21.5 % (74/344) of tests
and fungi in 10.5 % (38/363) where CMT was negative.
Conversely, CMT was positive in 5.5 % (19/344) of tests
where mNGS found no fungi. The main fungi identified by
mNGS were Aspergillus spp., PJ, and Mucorales. Of the 404
mNGS tests, 377 had cultures within 48 h, with a 10.1 %
positive rate. Using culture as a reference, mNGS had a
97.4 % sensitivity and 64.4 % specificity, with a 67.4 %
agreement rate. Compared to CMT, mNGS’s sensitivity was
86.7 %, specificity 26.8 %, and a 50.2 % agreement rate
(Table 2). Patients detected with bacteria/fungi/parasites
by mNGS had worse prognosis (14-day improvement and 30-



Table 2 The diagnostic performance of mNGS results versus of culture, culture and PCR, and conventional microbiology tests.

mNGS Positive mNGS Negative Sensitivity (%) Specificity (%) PPV (%) NPV (%) Kappa, agreement

Culture* positive 37 1 97.4 64.4 23.3 99.5 0.254, 67.4 %
Culture negative 122 217
Culture or PCR**

positive
100 2 98.0 27.7 31.8 97.6 0.153, 45.7 %

Culture and PCR
negative

214 82

CMT positive 137 21 86.7 26.8 43.2 75.9 0.115, 50.2 %
CMT negative 180 66

Notes: *Culture refers to bacterial and fungal culture; ** PCR testing includes CMV, EBV PCR tests, and GeneXpert testing. Abbreviations:
mNGS, metagenomic next-generation sequencing; PPV, positive predictive value; NPV, negative predictive value; PCR, polymerase chain
reaction; CMT, conventional microbiological tests.
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day survival rates) than those with only viral detection or
negative results (Fig. S8).
Clinical impacts of mNGS on etiological diagnosis
and antibiotic adjustment

A total of 44.8 % (181/404) of mNGS tests had a positive
impact on etiological diagnosis, and 24.3 % (98/404) led to
proper antibiotic adjustment (Fig. 3AeC) (Table S1). In the
caseswithpositiveCMTresults, 53.5% (85/159) ofmNGS tests
had a positive impact due to detecting more pathogens. In
the cases with negative CMTresults, 39.2 % (96/245) ofmNGS
tests provided valuable etiological insights. However, 26.0 %
(87/335) ofmNGSpositive resultsweren’t deemed infectious
after clinical review. In terms of antibiotic adjustments, In
terms of antibiotic adjustments, 54.0 % (181/335) of the
positive mNGS tests had a positive impact.

The positive impact of mNGS was more evident in non-
plasma samples, such as BALF and cerebrospinal fluid
(Fig. 3 D). For pathogen diagnosis, the positive impact was
62.7 % in non-plasma samples versus 41.2 % in plasma
samples (P Z 0.001). For antibiotic adjustment, the posi-
tive impact was 40.3 % in non-plasma samples compared to
21.1 % in plasma samples (P Z 0.002). Furthermore, mNGS
showed greater benefits in etiological diagnosis for patients
with multi-site infections compared to those with single-
site infections or fever of unknown origin (61.6 % vs.
42.5 % and 19.2 %, respectively, P Z 0.001).
Discussion

We explored the differences in clinical utility of mNGS and
CMT in terms of etiologic diagnosis and antibiotic manage-
ment in hematological patients after allo-HSCT. Our results
showed that mNGS outperformed CMT in detecting a wider
range of pathogens and had a higher detection rate,
providing clues for diagnosis and treatment of infectious
diseases. Two previous studies have reported the applica-
tion of mNGS in allo-HSCT patients, but the sample size was
considerably larger in our study.6,29 In addition, we
analyzed the detection rate and types of pathogens during
different stages after allo-HSCT, which can help clinicians
16
choose appropriate diagnostic tests and know more about
the characteristics of infections in this cohort.

Allo-HSCT patients have different risks of opportu-
nistic infection and types of pathogen among three phase
after allo-HSCT.2 During the pre-engraftment phase,
bacterial infections are common until neutrophil recov-
ery, which is reminiscent of the cohort of febrile neu-
tropenic patients after chemotherapy. Conditioning
regimens can cause damage to the intestinal, perianal,
and oral mucosa, leading to the entry of colonizing mi-
croorganisms into the bloodstream. In our study, the
detection rate of bacteria (47.0 %) was the highest based
on mNGS method. In the early post-engraftment phase,
virus replication was significantly increased, and virus
detection rates were the highest, as reflected in both
CMT and mNGS results. It is notable that in many cases,
viral detection is only a phenomenon and not the cause
of infection. TTVs were commonly found in our study.
Although rarely pathogenic, this virus was reported to be
correlated with immune status in HSCT patients.30,31 In
the late post-engraftment phase, we noted the most
common type of infection was pneumonia (close to 60 %
of cases). In this phase, the detection rate of fungi rose
to over 20 % by mNGS and the most frequently detected
fungal pathogen was Aspergillus spp., PJ, and Mucorales.
For detecting PJ and Mucorales, mNGS played a crucial
role due to the low sensitivity of cultures, gomori-
methenamine silver staining and DME.31,32

GVHD and its treatment can aggravate and increase the
risk of infections.33 GVHD adds to the difficulty of diag-
nosing infections since its symptoms can mimic that of an
infection, such as fever, diarrhea, and mucositis. Our re-
sults indicated that mNGS had value in GVHD patients, since
the detection rate of bacteria was significantly increased,
particularly in those with grade III-IV acute GVHD. When we
considered Aspergillus spp. and Mucorales (the most com-
mon types of mold infections after allo-HSCT), the detec-
tion rates in GVHD patients was also significantly higher.
This suggested that we need to be more vigilant about the
possibility of invasive fungal infections in GVHD patients
who do not respond to anti-bacterial treatment.

When comparing mNGS and CTM for diagnosing in-
fections in patients undergoing allo-HSCT, mNGS showed a
higher diagnostic rate, which was consistent with previous



Figure 3. Clinical impacts on infection diagnosis and antibiotic adjustment. (A), Comparison of diagnosis performance be-
tween metagenomic next generation-sequencing (mNGS) and conventional microbiological tests (CMT). (B), Clinical impacts of
etiological diagnosis by mNGS between different CMT results. (C), Clinical impacts of antibiotic adjustment by mNGS between
different CMT results. (D), Clinical impacts comparison of different sample types and timing of mNGS sample collection.
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studies on HSCT patients.6,29 However, the value of CMT
should not be underestimated, and mNGS should be used as
an adjunct to CMT.12 Without GM test, we would miss 24.1 %
of IFD diagnoses. Additionally, culture and antibiotic sus-
ceptibility tests can provide important information on
bacterial resistance, which can guide treatment decisions.
While mNGS can detect antibiotic resistance genes and
provide drug-resistance information, the use of these
17
databases in clinical diagnosis is still in development and
has certain limitations.34,35

We conducted an evaluation of the clinical effectiveness
of mNGS in terms of pathogen diagnosis and antibiotic
adjustment, using a previously established Grading Criteria.
Our findings indicated that mNGS has a positive impact on
pathogen diagnosis in nearly 45.0 % of cases, and that
antibiotic adjustments were made in 24.3 % of cases. It is
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worth noting that mNGS was not only useful in cases with
negative CMT, it can detect co-infecting pathogens or
identify pathogens earlier than CMT.

Although mNGS has a higher positive rate than CMT, not
all microorganisms detected by mNGS are necessarily
pathogenic.36 Therefore, mNGS findings need to be evalu-
ated carefully. In 20.3 % of cases, the microorganisms
detected by mNGS were not considered pathogenic, espe-
cially viruses. No standards existed for interpretation of
mNGS results and factors such as the quality of sample and
experimentation, the abundance of microorganisms,
genomic coverage, and contamination monitoring must be
taken into consideration when reporting and interpreting
mNGS results.37

The timing and sample selection are crucial for mNGS
testing. Primarily, obtaining specimens directly from the
infection site is advocated over plasma samples. For
instance, in pulmonary infections, the detection rate in
BALF was markedly superior to that in plasma. Secondly, in
instances where there is no identifiable infection site, it is
ideal to collect plasma samples prior to the administration
of antibiotics and during episodes of fever. While the
detection rate of mNGS in patients with infections involving
multiple sites was notably higher than those with fever
alone, the diagnostic value of mNGS was significant for both
groups. For hematological patients, fever of unknown origin
(FUO) is common, and the etiology is often ambiguous with
negative conventional microbiological tests (CMT). As a
result, overuse of antibiotics is typical in these patients,
leading to a rise of antimicrobial resistance. However, by
potentially identifying the causative pathogen, mNGS of-
fers a promising strategy to prevent the improper use of
antibiotics. Lastly, employing a combined diagnostic
approach is crucial. CMTs and mNGS testing results can
validate each other and help clinicians identify pathogens
more accurately and efficiently. Collecting multiple sam-
ples and using traditional methods in parallel with mNGS
enhances pathogen detection.

Our study has limitations that should be carefully
considered. Firstly, its retrospective and single-center
design could lead to participant selection bias. Secondly,
antibiotic use prior to mNGS testing may have interfered
with the objective evaluation of diagnostic performance.
Thirdly, the CMT we employed covered fewer bacterial and
fungal molecular tests. Finally, we did not take the cost of
mNGS testing into consideration for the assessment of
clinical utility, which might potentially bias the findings.

In summary, our study suggested that mNGS had great
potential for pathogen diagnosis in patients undergoing
allo-HSCT. With improved methodologies and cost reduc-
tion, mNGS can serve as a valuable tool in addition to CMT.
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