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ORIGINAL ARTICLE
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ABSTRACT
Background: The accuracy of an artificial intelligence model based on echocardiography video data in the 

diagnosis of heart failure (HF) called LIFES (Learning Intelligent for Effective Sonography) was investigated. 
Methods: A cross-sectional diagnostic test was conducted using consecutive sampling of HF and normal patients’ 
echocardiography data. The gold-standard comparison was HF diagnosis established by expert cardiologists 
based on clinical data and echocardiography. After pre-processing, the AI model is built based on Long-Short 
Term Memory (LSTM) using independent variable estimation and video classification techniques. The model will 
classify the echocardiography video data into normal and heart failure category. Statistical analysis was carried 
out to calculate the value of accuracy, area under the curve (AUC), sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and likelihood ratio (LR). Results: A total of 138 patients with HF 
admitted to Harapan Kita National Heart Center from January 2020 to October 2021 were selected as research 
subjects. The first scenario yielded decent diagnostic performance for distinguishing between heart failure and 
normal patients. In this model, the overall diagnostic accuracy of A2C, A4C, PLAX-view were 92,96%, 90,62% 
and 88,28%, respectively. The automated ML-derived approach had the best overall performance using the 2AC 
view, with a misclassification rate of only 7,04%. Conclusion: The LIFES model was feasible, accurate, and 
quick in distinguishing between heart failure and normal patients through series of echocardiography images.
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INTRODUCTION
Cardiovascular disease remains the leading 

cause of death globally.1 Current guidelines 
for diagnosing heart failure can only detect 
symptomatic and end-stage heart failure patients, 
who comprise only 12.2% of the population. 
However, heart failure patients who are 
asymptomatic or have a high risk of developing 
heart failure occupy 56% of the population and 
generally go undetected; hence affecting the 
prognosis of these patients.2

On the other hand, numerous studies have 
shown that artificial intelligence (AI) models 
have decent diagnostic quality in assisting the 
work of cardiologists, including diagnosing heart 
failure based on ECG and echocardiographic 
data.3-5 AI has proven to help with an accurate 
diagnosis, clinical management, and patient 
care.6 AI in cardiovascular imaging can also 
reduce costs, avoid missed diagnoses, false-
positive diagnoses, inter-observer variability, 
and improve time efficiency.7 However, no 
studies have yet built AI algorithms to diagnose 
heart failure patients based on echocardiography 
videos. Specifically, no studies have optimized 
the use of many echocardiography views (e.g., 
long axis, 4-chamber view, and 2-chamber view) 
nor provided automatic measurement of EF and 
E/A ratio.

Thus, this study proposes an artificial 
intelligence model called LIFES (Learning 
Intelligent for Effective Sonography) developed 
in this study. It is the first study of artificial 
intelligence in the field of echocardiography in 
Indonesia that can quickly, precisely, and cost-
efficiently distinguish regular patients from heart 
failure patients in the Indonesian population. The 
study results are expected to be used in heart 
centers throughout rural areas in Indonesia, 
especially in peripheral regions, so that timely 
and accurate heart failure diagnosis becomes no 
more challenging.

METHODS
The research design is a cross-sectional 

diagnostic test using consecutive sampling. 
The target population in this study is 
echocardiography videos of clinically diagnosed 
chronic heart failure and normal patients 

from the accredited echocardiography lab in 
Harapan Kita National Heart Center. This study 
was approved by the Harapan Kita National 
Heart Center Institutional Review Board. 
Echocardiographic examinations were carried 
out by a cardiologist or trained cardiovascular 
technicians using Vivid E9 echocardiography 
machines and M5Sc transducers. These data 
were analyzed in the workstation (EchoPAC PC; 
GE Vingmed Ultrasound US). Echocardiograms 
were obtained using apical 4-chamber (A4C), 
apical 2-chamber (A2C), and parasternal long-
axis (PLAX). In assessing left ventricular 
structure and function, multiple features were 
extracted, including velocity, left ventricular end-
systolic and end-diastolic volume and ejection 
fraction as calculated by Simpson’s method8, the 
ratio between early mitral inflow velocity and 
mitral annular early diastolic velocity (E/e’), left 
atrial volume likewise left atrial volume index 
(LAVI) using biplane length method. The data 
was then saved in the cine-loop format for up to 5 
heartbeat cycles with both left ventricles and left 
atrium clearly and wholly visualized. The frame 
rate of each image is 50 to 90 frames/second. 
Then, the results were validated by an expert 
echocardiologist based on national guidelines 
to reduce inter-observer variability.

Dataset Selection
The medical records for all inpatients and 

outpatients with chronic heart failure from 
January 2020 to October 2021 are obtained. 
Cardiologists established heart failure diagnoses 
based on clinical data, laboratory results, and 
echocardiography, which is the gold-standard 
method. Then, the authors screened data 
quality, completeness, and compatibility using 
our inclusion criteria. The inclusion criteria 
were echocardiographic data of patients with 
clinical presentation of shortness of breath 
and diagnosed as chronic heart failure by 
cardiologists. The echocardiography exam might 
be done during the patient’s first encounter in 
clinic (non-emergency setting) or after multiple 
episodes of care/control. Exclusion criteria 
were: (1) arrhythmia, such as atrial fibrillation, 
(2) coexisting severe valvular heart disease, (3) 
incomplete echocardiography examination. The 
normal subjects included were completely health 
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population with no comorbidities, i.e., asthma 
or chronic obstructive pulmonary disease, with 
normal cardiac evaluation results. The minimum 
sample size is determined through the sample 
formula approach for diagnostic tests, where we 
find the minimum sample size to be 129 subjects, 
including a 10% possibility of dropouts.

Statistical Analysis
Statistical analysis was performed using 

RStudio program (version 2022.02.3+492.
pro3, PBC, Boston). Numerical data are 
expressed as a mean or median with a standard 
deviation, while categorical data is presented 
in a percentage. Missing variables are assumed 
to be ‘missing at random (MAR) and handled 
using multiple imputations. The technique has 
yielded unbiased results for MAR even when 
there is a considerable proportion of missing 
data.10 Next, calibration, and discrimination 
are carried out. Calibration is an agreement 
between the reported and expected outputs, 
which in this study are HF/normal and HFrEF/
HFpEF. The calibration was analyzed using the 
Hosmer-Lemeshow goodness-of-fit statistical 
test with p>0.05, indicating that the score had 
a good calibration. Meanwhile, discrimination 
suggests the ability of ML to differentiate 
between HF and non-HF patients and is assessed 
using the ROC curve to obtain the AUC between 
the independent variable parameters and the 
dependent variable, then calculated the value of 
sensitivity, specificity, PPV, NPV, and LR.

Machine Learning Method
Our proposed method consists of two 

processes: pre-processing, where we prepare 
our data, and model training, where we train and 
evaluate our classification model. The overall 
flow of our proposed method is illustrated in 
Figure 1.

Pre-processing
We conducted several video pre-processing 

techniques to get the data ready for deep 
learning models. First, we perform cropping 
to get only the video’s center and eliminate the 
unnecessary pixel from each frame. Then, we 
resized each frame to be 128 × 128 in width and 
height, respectively. Then, we perform frame 
down-sampling to reduce the number of frames 
for each video. The number of frames to use is 
decided according to which video has the least 
frame. This has to be done since the input for the 
deep learning algorithm is fixed in dimension. 
Therefore, we resized each frame to a specific 
size and down-sampled the number of frames 
for each video to a particular number of frames. 
Lastly, each frame is normalized by dividing 
each pixel by 255, resulting in a value ranging 
from 0 to 1.

Model Training
We split the data into train and test using 

StratifiedKFold cross-validation with a K value 
of 5. VGG16 is used to help represent video into a 
sequence of vectors and then train a predominant 
deep learning algorithm for sequential problems, 

Figure 1. Illustration of the machine learning flow.
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namely Long-Short Term Memory (LSTM).
VGG16 is a convolutional neural network 

(CNN) model developed by the Visual Geometry 
Group (VGG), University of Oxford13. VGG16 
was trained on the Imagenet dataset and achieved 
state-of-the-art results in a well-known computer 
vision competition, Visual Recognition Challenge 
(ILSVRC), with an accuracy of 92,70%. VGG16 
consists of 16 layers, as illustrated in Figure 2. 
Note that we only use VGG16 as an encoder 
to extract feature vectors out of each frame on 
which these feature vectors are then fed into 
LSTM to learn its sequential pattern; therefore, 
the weights and biases of VGG16 are frozen, and 
the softmax layer is removed.

Hochreiter first introduced LSTM to cover 
the limitation of recurrent neural network (RNN) 

that suffers from vanishing gradient problems 
where the gradient cannot reach every layer. 
This problem occurs when the model is forced 
to learn a very long sequence. LSTM addressed 
this problem by introducing the so-called “Long 
Term Memory” (also known as cell state) 
denoted as C in Figure 3. This cell state does not 
go through any non-linear activation function; 
hence during the gradient descent, it is this 
cell state derivative that can prevent the LSTM 
gradients from vanishing. It has been shown 
that LSTM can learn long data sequences better 
than RNN.11 A single cell of LSTM consists of 
several parts that are often called gates.

The first gate is called forget gate as 
highlighted in Figure 4. The forget gate is 
responsible to decide whether or not the model 

Figure 2. VGG16 architecture.

Figure 3. LSTM cell.
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should keep the information from the previous 
timestamp. This gate uses a sigmoid activation 
function which produces output that’s ranging 
from 0 to 1, this can be interpreted as how much 
the information from the previous timestamp is 
necessary for the model to remember.

The second gate is called the input gate 
as highlighted in Figure 5. The input gate is 
responsible to quantify the importance of the 
information from the current timestamp which 
the model will add this information to it’s cell 
state. The input gate consists of two neurons, 
the first neuron (yellow rectangle) uses sigmoid 
activation function while the other (purple 
rectangle) uses tanh activation function. First, 
the new information along with the previous 
hidden state is being fed to the sigmoid neuron 

resulting in a value ranging from 0 to 1. Then, 
the same thing is fed to the tanh neuron resulting 
in a value ranging from -1 to 1. On top of that, 
both the result of the sigmoid neuron and the 
tanh neuron are multiplied to decide how much 
information and whether to add or to subtract the 
new information to the cell state. 

The last gate is called output gate as 
highlighted in Figure 6. The output gate is 
the final gate of the cell, it is responsible to 
calculate the new hidden state based on the new 
information, the previous hidden state, and the 
new cell state. Both this new hidden state and 
the new cell state are fed to the next timestamp 
if exist. The output of this output gate will be the 
final output of LSTM cell on the last timestamp 
denoted by Yt in Figure 6.

Figure 4. Forget gate.

Figure 5. Input gate.
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LSTM is exceptionally successful in 
many tasks such as handwriting recognition, 
speech recognition, machine translation, time-
series classification, image captioning, video 
processing, etc.12 We decided to use LSTM as we 
aim to capture the sequential pattern of a heart 
wall contraction in an echocardiography video 
with the hope that LSTM can make a reasonable 
prediction out of this pattern.

In addition, an attention layer is stacked on 
top of LSTM. When we provide a very long 
sequence of information, the models might 
ignore a few critical parts of the sequence, 
especially the starting part after processing the 
data. The attention mechanism helps the model 
memorize long sequences of information by 
taking the resulting calculation of LSTM at 
every timestamp. This mechanism also allows 
the model to pay more attention to which part of 
the sequence highly defines a specific class and 
weighs them more than others.

Lastly, the output layer consists of a sigmoid 
neuron. This layer is used to decide whether the 
patient suffers from heart failure by thresholding 
the output of the sigmoid neuron at 0.5, if the 
result of the sigmoid is greater than 0.5, then the 
patient is predicted to suffer from heart failure. 
Otherwise, the patient is predicted to be normal.

RESULTS
The characteristics of the subjects included 

in this study are given in Table 1. Male 

represents 81,3% and 62.5% of normal and HF 
patients subjects, respectively. The median age 
is 36 in normal subjects, compared to 58 in HF 
patients, and both subject groups’ median/mean 
of SBP and DBP are within the normal range. 
NTproBNP values were not obtained for normal 
patients as it was deemed unnecessary. The EF, 
E Peak Vel, A Peak Vel, E’med T0, and E’lat T0 
in the HF group is lower compared to the normal 
group. On the other hand, the E/med e’, E/lat e’, 
E/ave e’, LVEDV, LVESV, LA Volume and LAVI 
are higher than the normal category. The wall 
motion abnormality was also assessed during the 
echocardiographic examination. It turns out that 
45 show global normokinetic, 21 with regional 
wall motion abnormality, 14 have apical akinetic, 
and 19 exhibit global hypokinetic.

We conducted a binary classification 
experiment to distinguish heart failure. The 
HFpEF and HFrEF classes are merged into 
one category, Heart Failure, while the normal 
category is left unchanged. In the end, it results 
in two types: Normal and Heart failure. The result 
of this experiment is shown in Table 2.

The sensitivity, and specificity of A2C 
for discriminating between HF and normal 
patients were 96.29% and 87.23%, respectively. 
Likewise, the highest accuracy was yielded by 
92.96% in A2C and had the highest F1 score of 
94.54%. The sensitivity and specificity of A4C 
were 96.34% and 80.43%, respectively, which 
yielded the highest sensitivity. Meanwhile, the 

Figure 6. Output gate.
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PLAX-view gave sensitivity and specificity 
of 95% and 77.08%, respectively. The overall 
diagnostic accuracy of A2C, A4C, PLAX-view 
were 92.96%, 90.62% and 88.28%, respectively. 

The models yielded good diagnostic 
performance for discriminating between HF 
and normal patients. The models had the best 
overall performance using the 2AC view, with 
a misclassification rate of 7.04%.

Figure 7 shows the receiver operating 
characteristic (ROC) curve of the resulting 
models where the more the line curved to the 
upper left, the better the model performance. The 
ROC curve could be quantified by calculating 

the area under the curve (AUC), which we 
provided in the legend of the ROC figure. The 
random classifier indicated by the dashed red 
line assigns a score sampled from the uniform 
distribution between 0 and 1 to each instance. 
The rule of thumb is that no machine learning 
which roc curve should be under this red line. 
Our AUC values ranged from 0.84 (PLAX) 
to 0.93 (A2C). Furthermore, we performed 
significance testing between the test performance 
scores with a p-value threshold of 0.05, which we 
provided in Table 3. It can be inferred that there 
is no significant difference in terms of accuracy 
between each view compared to others.

Table 1. Baseline study population characteristics.

Variables Normal (N = 48) Heart failure (N = 90)

Physical information
Age, years 36 + 9.65* 58 + 12.78*

Gender, male 39/48 (81.3%) 55/88 (62.5%)

Systolic blood pressure, mmHg 125 + 19.33* 120.3 + 21.51***

Diastolic blood pressure, mmHg 75 + 11.89* 70 + 12.08*

Height, cm 166.6 + 8.87*** 160 + 12.59*

Weight, kg 70.11 + 15.59*** 67 + 15.52*

NTProBNP N/A 1806 + 15649.4*

Echocardiographic information
EF (55-70) 68.40 + 6.09*** 47 + 17.09*

E/A Ratio (0,75-1,5) 1.57 + 0.37*** 1.07 + 1.01*

E Peak Vel (70-120) 85.36 + 18.05*** 79 + 26.47*

A Peak Vel (42-70) 55.1 + 17.98* 67.9 + 31.64*

E’med T0 (>8) 10.65 + 2.43*** 4.9 + 1.76*

E’lat T0 (>10) 13.30 + 2.18* 7.18 + 2.57*

E/med e’ (<8) 7.9 + 2.26* 16.11 + 8.06*

E/lat e’(<8) 6.15 + 1.59* 10.4 + 5.31*

E/ave e’ (<8) 7.00 + 1.36* 13.3 + 6.10*

LVEDV 64-85 101.0 + 20.76* 132.0 + 73.72*

LVESV 24-37 44.0 + 9.78* 77.4 + 67.41*

LA Volume (A4C) <28  38.00 + 11.22* 60.9 + 36.16*

LAVI A4C <28 21.10 + 6.96* 36.8 + 24.39*

*Median + SD; **Proportion; ***Mean + SD 

Table 2. Test performance characteristics of the model.

View Accuracy F1 Precision Sensitivity Specificity NPV LR+ LR-

2 Chamber 92.96 94.54 92.85 96.29 87.23 93.18 7.54 0,0425

4 Chamber 90.62 92.94 89.77 96.34 80.43 92.50 4.92 0.0455

Plax 88.28 91.01 87.35 95.00 77.08 90.24 4.15 0.0649
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DISCUSSION
Cardiac emergencies necessitate a quick 

patient assessment, in addition to basic vital signs 
such as blood pressure, heart rate, and oxygen 
saturations, clinicians may need more information 
than vital signs. With echocardiography-ML, 
promptly collecting the echocardiographic helps 
reduce treatment options and discover plausible 
explanations for unstable vital signs in critically 
ill patients, especially in distant areas.

We provide a state-of-the-art comparison of 
machine-learning algorithms with human readers 
for diagnosing heart failure. On our findings, the 
mean age of the heart failure population was 58 
±12.78 and male 62.5% (Table 1), which was 
also shown previously by Reyes and colleagues 
with a mean age of 57.8 and predominantly male 
(66%) in Indonesia.14

The  mode l  was  t e s ted  us ing  128 
echocardiograms and showed specificity levels 
ranging between 77% and 87%. The highest 
sensitivity levels above 96% were depicted 
in the A4C view. We found that our approach 
delivered accurate information with the area 
under the curve (AUC) above 0.84 using the 
echocardiography parameter. Similarly,  a single-
center study by Omar AM et al. (2017) involved 
130 patients and showed a slight difference of 
AUC of 0.853 for estimating left ventricular 
diastolic dysfunction.15,17

From our findings, the A4C view has the 
highest level of sensitivity compared to the other 
two views. A two-center study showed different 
results, which yielded accuracies of 97%, 97%, 
and 91% by using A2C, PLAX, and A4C views, 

Figure 7. Receiver operating characteristic curve.

Table 3. The difference results in terms of accuracy 
between chamber and plax.

T-test P-Value

2 Chamber / 4 Chamber 0.2381

2 Chamber / Plax 0.1356

4 Chamber / Plax 0.4334

respectively.8 The A4C view is one of the hardest 
to achieve accuracy. Apical views (A4C and 
A2C) also seem to suffer the most from lower 
resolution images. In A4C views, the program 
also captures the movement of the right ventricle, 
which can bias learning and make it difficult 
to detect the endocardial border, in contrast to 
2CH and PLAX views which are more focused 
on one side.

The high sensitivity score of 4AC is mainly 
caused by the imbalanced class on which we 
train the model. Since we merged the HFpEF 
and HFrEF classes into a single category, 
namely HF, the class distribution turned out to 
be 1:2 for normal and HF. As a result, the model 
will make prediction attempts on the majority 
class more often than the minority class as the 
misclassification is mainly caused by the model 
mistaking normal for HF.

There are false positives and false negatives 
in our results. For this reason, we have carried 
out internal validation with several experts to 
match the misclassifications we found with 
clinical parameters. In our analysis, there are 
some discrepancies, such as an increase in the 
left atrial pressure with the normal ejection 
fraction, considered heart failure but detected 
by the machine as normal.

I n t e r o p e r a t o r  v a r i a b i l i t y  d u r i n g 
echocardiography and retrieval of several 
echocardiographic windows with an intermittent 
or absent endocardial border during analysis, 
such as lateral or anterior windows that disappear 
in the systole or diastole phase, could result in 
misclassification. Furthermore, the shifting of 
several windows between A2C and A4C can also 
influence the false positive and false negative 
rates in our study, where a subset of diagnosis 
has normal echocardiographic features but was 
read as heart failure and vice versa. Hence, this 
supports our hypothesis that using only one view 
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to differentiate between HF / normal through ML 
is possible.

According to Khamis, H. et al. (2017), 
there were several elements at play when 
working toward fully automatic heart functional 
assessment of echocardiograms and automatic 
classification of their standard views hence 
developing different values in each parameter.8 
In addition to clutter, noise lowers the clarity of 
the images, thus limiting the ability to perform 
accurate view classification, (1) Physiological 
differences across participants, varying 
acquisition settings (angle, depth, scanning 
machine characteristics, foreshortening, etc.), 
and the sonographer’s experience all contribute 
to intra-view variability of echocardiograms of 
the same cardiac view; (2) Identical information 
in both views (such as valve motion, wall motion, 
left ventricle, etc.), as well as poorly defined 
transducer location during collection, which may 
result in imprecise capture and confusing view, 
echocardiograms of various cardiac perspectives 
exhibit inter-view similarity; (3) Duplicated 
data, such as test details (examination date and 
time, ECG, heart rate, frame rate, and scanner 
details), which are present in all echocardiograms 
regardless of view, could taint the categorization 
procedure. Machine learning-based algorithms 
could reduce those shortfalls.9

The computational cost of our model is 
measured according to how much time it takes 
for the model to take the data from the input layer 
and gives the result on the output layer. We found 
that our model takes approximately ±0.1489 - 
0.1906 seconds to predict a single sample of 
data. This prediction speed is also universally 
rapid, while normal examination would take 
around 15 to 60 minutes. Please note that this 
measurement does not include data acquisition 
from the pre-processing phase, and it ran on the 
following hardware:
• RAM 32 GB
• GPU: NVIDIA GeForce GTX 1080 Ti
• Processor: Intel (R) Core (TM) i7-6800K 

CPU @ 3.40GHz

Although there has been fully automated 
echocardiographic interpretation, which can 
automatically measure cardiac parameters 

(ejection fraction, LV mass index, and left 
atrial volume index), which has been widely 
used to assist in diagnosis, our study provides 
a different approach using sequential pattern 
memory of echocardiographic.16 This tested 
machine learning algorithm proved fairly 
accurate and delivered relatively high sensitivity 
of echocardiogram videos compared to manual 
echocardiography calculation.

Additionally, as accurate interpretation of 
echocardiographic pictures may depend heavily 
on clinician expertise, performance performed 
by trained AI models may be superior to that 
of conventional, inexperienced doctors. Our 
approach, however, has the potential to be an 
effective prescreening tool for heart failure 
diagnosis because it is quick, accurate, and only 
reliant on 2AC, 4AC, and PLAX views. It also 
provides an automatic diagnostic workflow.

Study Limitation
This was a single-center study performed 

on patients with clinical indications for 
echocardiography. Even though the size of our 
test group can be considered negligible (128 
patients) in the era of big data, the number 
of patients was sufficient to reach high levels 
of statistical significance compared with the 
reference technique. However, it is essential 
to note that this study may risk overfitting due 
to its small population. Extensive validation, 
preferably multi-center randomized controlled 
trials with a more significant number of patients, 
is required before they may be approved, 
reproducible, and generalizable for clinical 
use. In addition, combining multiple views to 
discriminate HF might help improve accuracy. 
Afterward, more studies to investigate the effect 
of clinical use of machine learning algorithms on 
patient outcomes. That being said, the prospect 
of high-performance computing may require 
significant financial investment and ethical 
clearance, yet it will reduce associated costs in 
the future.

Nevertheless, future studies with more 
significant numbers of patients and specific 
pathologies spanning a more comprehensive 
range of RV volumes and EF would be needed 
to confirm our findings further.
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CONCLUSION
Method for automated categorization of 

HF and normal patients using a novel deep 
learning method called LIFES was presented. 
The proposed approach performs well in relation 
to manual echo by experts with high accuracy, 
sensitivity, and specificity rate. This study 
adds to the growing literature that ML-based 
algorithms can improve image interpretation 
efficiency and reliability and is the first of its 
kind to utilize LSTM to categorize HF and 
normal patients solely from echocardiography 
images. Further research is warranted to validate 
the method on a larger dataset and reduce bias. 
In the future, this method can be used in real-
time in complete software that streams images 
directly from an ultrasound scanner. Hence, 
it can serve as a promising way to overcome 
challenges associated with current clinical 
workflow, streamline repetitive tasks, and 
provide preliminary interpretation in areas with 
insufficiently qualified cardiologists. 
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