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Abstract

Objective: This research aims to develop a mathematical

model that relates the structural features of noscapine

with anti-tumor activity, to explains the mode of binding

between noscapine compounds and the target receptor

tubulin by docking analysis. By considering the results of

docking analysis and predictions of pharmacokinetic

properties/drug likeness, we designed novel noscapine

compounds as anti-tumor agents against pancreatic

cancer.

Methods: We used an in silico quantitative structure

eactivity relationship (QSAR) approach, molecular

docking analysis and online tools for pharmacokinetics

and drug likeness prediction to develop novel

compounds.

Results: A QSAR model with good validations parame-

ters and quality of fit (R2 ¼ 0.9731, Q2
CV ¼ 0.9434,

R2
adj ¼ 0.9647 and R2

test set ¼ 0.8343) was built utilizing

70% of the dataset as a training set and the remaining

30% as an external validation to ascertain its predictive

capability. Three novel compounds were designed: D3,

D4 and D6 with binding scores of �11.2, �10.2 and

10.6 kcal/mol, respectively, exhibiting high affinity to-

wards the tubulin receptor than the template (parent

compound) and the co-crystallized ligand (E*) with a

binding score of 9.2 kcal/mol.

Conclusion: The QSAR approach and molecular docking

analysis is an important approach for modern drug
pen access article under the CC BY-NC-ND license

016/j.jtumed.2022.07.013

mailto:bnulamuga@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtumed.2022.07.013&domain=pdf
www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jtumed.2022.07.013
https://doi.org/10.1016/j.jtumed.2022.07.013
https://doi.org/10.1016/j.jtumed.2022.07.013


B. Nulamuga et al. 33
discovery. Pharmacokinetics studies of the selected novel

compounds revealed good drug properties and can be

used as candidate compounds for the development of

anti-tumor agents for pancreatic cancer.

Keywords: Anti-tumor; Bioisosterism; Docking; Model;

Pharmacokinetics; Tubulin

� 2022 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cancer has been become the most common cause of death

globally. Pancreatic cancer has received significant attention
from many medicinal chemists and pharmaceutical com-
panies because of its devastating effect, impact and high

mortality rate. Despite efforts to identify, diagnose and treat
pancreatic cancer, the disease remains a significant global
challenge. The difficulties in managing and treating this
cancer type because of the late manifestation of its symp-

toms, relapse and reoccurrence. These factors render most
current chemotherapy approaches ineffective32

A recent study described the proper coordination of

synthetic and mitotic phases involved in the cell division
cycle that is responsible for the duplication and separation of
duplicate chromosomal DNA via the checkpoint pathways in

the microtubules in a cell; the microtubules represent poly-
mers of tubulin. Malignancy arises due to dysregulation in
any of these checkpoints.10

The inability to identify appropriate new drugs and poor
success rates in clinical trials has created significant chal-
lenges for drug discovery and design processes. Despite sig-
nificant cost and efforts, the majority of drugs evaluated in

clinical trials did not reach the market due to poor phar-
macokinetics parameters or unacceptable side effects. In
addition to the potency of a drug, its pharmacokinetics and

toxicity properties also dictate the success and effectiveness
of a drug in clinical trials.35

The recent development of quantitative structure-activity

relationship (QSAR) analysis provides us with a cost-
effective, easy and powerful tool for drug searches. QSAR
is based on the principle that compounds with similar
structures may show similar activities.20 Being a ligand-

based drug design (LBDD) method, QSAR relates molec-
ular properties (encoded as descriptors) to the qualitative
activities of compounds using mathematical equations. The

model reliably interprets the contribution of some structural
features of a compound within a given dataset and can also
predict the potency of a chemical compound.37

The optimal binding of a new drug to a therapeutic target
needs to be established and ascertained to ensure that it can
get to the target site at a reasonable concentration, exert

physiological effects and be eliminated in a reasonable
timeframe. The binding of a drug to its target can be studied
by docking analysis. Information obtained from docking
analysis can help to avoid late failure during the drug
development process.23 Docking refers to the computational
determination of binding affinity between molecules (the

protein structure and the ligand) and attempts to identify
the best match between the two molecules.40 Given the two
selected molecules, docking analysis can predict (1)

whether the two molecules interact or not, (2) the binding
affinity, (3) the three-dimensional structure of the complex,
(4) the optimal orientation and conformation of the inter-

acting molecules in space, and (5) the stability of the
complex.23

Therefore, balanced interactions between toxicity, phar-
macokinetics and potency is important if we are to ensure the

success of a drug. It is paramount that we identify suitable
parameters relating to the adsorption, distribution, meta-
bolism, excretion and toxicity (ADMET) of drugs during

pre-clinical trials.35

ADMET studies, as a crucial aspect of the drug devel-
opmental process, is carried out by conducting drug meta-

bolism and pharmacokinetics (DMPK) studies.25 These
studies assist help to define the viability of a drug
candidate based on information obtained from ADMET
properties/data.24

Early ADMET profiling of a drug candidate during pre-
clinical studies can reduce the potential risk during clinical
development. As drug development failure results from po-

tency or safety issues, there is a necessity to perform preclinical
ADMET characterization of a drug candidate to identify
drugs with potency and those with major limitations.4,9

A recent study showed that pancreatic cancer may be
treated by combining mitogen activated protein kinase
(MEK) inhibitors and hydroxychloroquine to block Kirsten

Rat Saromma viral oncogene homolog (KRAS). As mutated
KRAS is believed to be involved and be partly responsible
for this type of cancer, MEK or ERK inhibitors do not
appear to work with the majority of pancreatic cancer pa-

tients even after blocking the MEK or ERK pathways; these
attempts are often associated with increased autophagy in
many patients and a poor response. Other studies have

shown a more significant response when this treatment is
combined with hydroxychloroquine.6

Over recent years, a new approach for cancer treatment

has evolved that involves targeted and personalized therapy;
however, this approach is often ineffective despite its high
cost. This clearly indicates the need to identify new methods

to treat cancer.32

Scientific research has demonstrated the expression of
tubulin in tumors in different locations in the human body.
Class III b-tubulin (TUB b3) is the most dominant tubulin

associated with advanced tumors.38 Protein studies have
shown that tubulin plays a vital role in cell behavior and
represents a structural unit of the microtubules.

The centrosome can be monitored as an indicator for
cancer progression; this structure is a dynamic element that
organizes the machinery responsible for cell division. The

centrosome is made up of a pair of centrioles from which the
spindle and astral microtubules originate. Cancer cells often
feature extra centrosomes and chromosomal instability.
These numerical and structural changes in the centrosome

represent a useful indicator and hallmark for human cancer
and chromosomal disorders. Human tissue contains various

http://creativecommons.org/licenses/by-nc-nd/4.0/
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tubulin isoforms in a specific ratio and in many combina-
tions; this complexity highlights metabolic variation in every

tissue. Changes or alterations in the number and ratio of
these isoforms may create a mechanism for cancer progres-
sion and inversion.

Recent knowledge gained from the study of tubulin and
its functions have identified potential treatment options for
cancer that could increase the survival rate of cancer patients

with diverse tumor localizations.21 The progression of
pancreatic cancer is associated with tubulin expression,
metastasis and resistance to chemotherapy. Therefore, the
inhibition of TUB b3 may limit the growth of pancreatic

tumors and reduce the risk of metastasis. Tubulin-targeted
therapy combined with immunotherapy appears to be a
promising approach. Agents acting as anti-polymerization

and anti-depolymerization agents for microtubules have led
to increased immune response in the body.13

Therefore, optimization of tubulin-targeted agents, along

with early ADMET evaluations and predictions using the
quantum computational approach, will assist in the drug
development process and allow the selection of good drug
candidates. This will benefit the process of drug discovery

development by avoiding failure in the late stages and will
undoubtedly yield fast, novel and effective chemotherapy
options for oncology research and the treatment of cancer

patients. Furthermore, noscapine has been shown to elimi-
nate human tumors by binding to tubulins, thus leading to
distortion of the microtubule spindle and incapacitate the

assembly of chromosomes at the metaphase plate. Noscapine
can also arrest cells in mitosis with distorted and fragmented
nuclei and with apoptotic morphologies (Ye et al., 1998).

Hence, identifying the binding site of noscapine with tubulin
and optimizing binding sites to enhance binding affinity is an
important area in cancer research. These novel compounds
with enhanced affinity to tubulin represent a significant

breakthrough in the search for better drug candidates in
cancer research.

In this research, we developed anti-tumor compounds

with high potency and improved pharmacokinetics proper-
ties that will meet the requirements of a lead compound for
clinical trials. This was carried out using QSAR studies and

docking analysis; we also performed ADMET predictions of
the compounds tested to determine anti-tumor activity.
Subtle manipulation of some compounds within the dataset

led to the design of novel compounds with increased docking
scores (a high affinity towards the target receptor) and good
ADMET predictions to avoid failure in clinical trials.
Noscapine compounds are considered as a viable option for

microtubule-targeted agents (MTAs) because of their rela-
tively safe pharmacokinetic profiles, including high gastro-
intestinal absorption, blood-brain barrier permeability,

central nervous system permeability, total clearance and
toxicity.28

Studies have shown that tumor aggressiveness, invasion,

metastasis, infinite growth and chemotherapeutic resistance
are all associated to the over-expression of tubulin, particu-
larly the beta-isotype (b-isotype).1

Noscapine is an anti-mitotic agent that binds to tubulin

and effectively causes cell cycle arrest in the G2-M phase and
results in the production of irregular mitotic spindles and
adjusts the structure of microtubules to hinder proliferation
by altering the dynamics of spindle microtubules in tumors,
thus causing cell death.1

Therefore, effectively interrupting and destabilizing the
metaphase-anaphase stage in a tumor’s cell cycle can prevent
growth and metastasis and cause apoptosis. Using noscapine

compounds to target tubulin represents a safer approach to
eliminate malignant cells and provides a promising approach
to treat tumors.

Materials and Methods

QSAR Modelling methodology

Data sourcing

Reddy and colleagues synthesized 30 imidazo[2,1,b]
thiazole-coupled natural noscapine derivatives and tested

their activities against four different human cancer cell lines
by in vitro assays.32

In vitro assays in anti-tumor drug studies incorporates the

use of isolated tumor cell(s) in an artificial environment that
is entirely different from its natural setting. Such studies seek
to identify the short-term response of a tumor to specific

drugs and determine primary resistance; however, drugs that
acquire specific resistance due to the tumor microenviron-
ment cannot be studied.33 Human immortalized cancer cell

lines isolated from a cancer patient do not provide a tumor
microenvironment; however, in vivo assays provide a native
microenvironment where the tumor can originate and
reside. The microenvironment can significantly contribute

to the behavior and response of a tumor to a drug.
Furthermore, the presence of different populations such as
endothelial, inflammatory and stromal cells may lead to

acquired resistance or may improve the effect of the drug
in terms of suppressing tumor growth, aggressiveness,
inversion and metastasis.5 An example of an in vivo model

is the human xenograft studies performed by inoculating
immortalized human cancer cells or the use of the
Genetically Engineered Mouse Model (GEMM).

We used a range of different human cancer cell lines:
HeLa (cervical), Mia Paca-2 (pancreatic), SK-N-SH (neu-
roblastoma) and DU145 (prostate cancer). In this research,

we selected only the activities (inhibitory concentration at
50% (IC50)) of noscapine compounds against pancreatic
cancer cell lines; these were reported in mM. The activities
were then converted/transformed into their corresponding

logarithm scale using Equation (1).2

pIC50 ¼ �LogIC50

106
(1)

Structure generation and optimization

Two-dimensional (2D) structures of the noscapine de-
rivatives were created using Chem draw ultra-software
version 12.0. These 2D-structures were converted to three-
dimensional (3D) structures by Spartan 14 software and

an equilibrium geometry search was carried out.14 This
equilibrium geometry structure with minimized energy
corresponds to the structure and behaviors of the

compound as it exists in nature.3 Identifying the
equilibrium structure and minimized energy was performed
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by Density Functional Theory (DFT) using Becke’s three-
parameter hybrid function and LYP correlation function

with the 6-31G* basis set.14 The optimized structures were
saved in a protein data bank (pdb) file format. Figure 1A
shows the three-dimensional structure of the ligand in pdp

file format.15

Molecular descriptors, data pretreatment and division

Independent variables (molecular descriptors) were
computed using the Pharmaceutical Data Exploration Lab-

oratory (PaDEL) descriptors tool kit for all of the calculated
structures with minimized energy. The PaDEL tool kit
generated different types of descriptors (one-dimensional,
two-dimensional and three dimensional).15 Data

pretreatment software was use to pretreat the generated
data, including the removal of uninformative data,
redundancy and constant descriptors.2 The treated data

were then divided into a training and test set by
application of the KennardeStone algorithm, in which
70% constituted the training set and 30% the test set.16

Model generation

The mathematical models were generated by applying
multi-linear regression (MLR) analysis on the training set
with genetic function approximation techniques using ma-

terial studio software. Using this approach, the biological
activities (pIC50) of the compounds were taken as response
variables and the predictors/descriptors were used as inde-
pendent variables.16

Model validation

For internal validation, the generated models were vali-
dated internally with the following statistical tools; coeffi-

cient of determination (R2), adjusted coefficient of
determination (R2

adj), cross validation coefficient (Q2
cv) and

other validation tools/techniques. The mathematical equa-
tions are described in Equation (2).

R2 ¼ 1�
P�

Yexp �Ypred

�2
P�

Yexp �Ym=trn

�2 (2)

In Equation (2), Ypred, Yexp and Ym/trn represent the
predicted, experimental and mean experimental activities of
the training set.

To authenticate the stability of a model apart from the
coefficient of correlation R2, the adjusted coefficient of
determination R2

adj was also computed as shown in Equa-

tion (3).

R2
adj ¼

ðn� 1Þ�R2 � P
�

n� P� 1
(3)

In Equation (3), P represents the number of descriptors in
the model and n represents the number of compounds in the

training set.
Leave-one-out cross validation Q2

cv was used to ascertain
the predictive power of the generated models using Equation
(4).

Q2
cv ¼ 1�

P�
Yexp �Ypred

�2
P�

Yexp �Ym=trn

�2 (4)
In Equation (4), Ypred, Yexp and Ym/trn represent the
predicted, experimental and mean experimental activities of

the training set.
For external validation, we further validated and ascer-

tained the robustness and predictive power of the coefficient

of determination of a model; this was calculated using the
test set with Equation (5).

R2
tst ¼ 1�

P�
Yexp �Ypred

�2
P�

Yexp �Ym=tst

�2 (5)

In Equation (5), Ypred, Yexp and Ym/tst represent the

predicted, experimental and mean experimental activities of
the test set.

Randomization test, mean effect and multi-co-linearity evaluation

Another important validation tool commonly employed

to determine the robustness of a QSAR model is the Y-
randomization test. This is carried out by adjusting depen-
dent variables with respect to the independent variables
which were not adjusted. This test was performed on a

training set where the R2 and Q2 generated should be lower
than the actual R2 and Q2; this would indicate that the model
is reliable, robust and not based on chance correlation. The

CR
2
p was also calculated; this should be greater than or equal

to 0.515,27; the formula is shown in Equation (6).

cR2
P ¼ R�

h
R2 � ðRrÞ2

i2
(6)

In Equation (6), CR
2
p represents the coefficient of

determination for Y-randomization, R represents the
coefficient of correlation for Y-randomization and RR

represents the average ‘R’ of random models.
Effective participation and contribution of each

descriptor in a given model, also known as the mean effect,
was calculated by Equation (7).

MJ ¼
�
bJ
Pi¼n

i¼1dij

�

b
�Pm

j bj
Pn

1dij

� (7)

In Equation (7), MEj represents the mean effect of the

descriptor j, bj represent the coefficient of the descriptor j,
dij represents the value of the selected descriptors of each
compound and m represents the number of descriptors in a

generated model; n represents the number of molecules
that made up the training set. The calculated ME value
shows the significance and direction of the contribution of

each descriptor in a model.2

To identify multi-co-linearity between the descriptors used
in amodel,we calculated the variance inflation factor (VIF) for

each descriptor. This revealed whether these descriptors
correlate with another descriptor or not. If the VIF value is
equal to 1 then there is no correlation between one descriptor
and the other; if it ranges from 1 to 5, there is a chance of

accepting the model but if greater than 10, the model has to be
rejected because the descriptor is highly correlated with
another.15,29 VIF was calculated by Equation (8).

VIFi ¼
1

1� R2
ij

(8)
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In Equation (8), VIFi represents the variance inflation
factor of a descriptor i and R2

ij represents the correlation

coefficient of a multiple regression between the descriptor i
and the rest j in the developed model.

Applicability domain of the generated model

The theoretical region within a chemical space is known

as the applicability domain (AD). This is a William’s plot
delineated by standardized residual value (differences be-
tween predicted and observed activities) and the leverage

value of the compounds in a given data set. AD identifies if
there are outliers or influencer molecules and checks if a new
chemical lies within the applicability domain by calculating

its leverage value.29 The leverage value hi of a given molecule
was calculated by Equation (9).

hi ¼ Xi

�
XTX

��1
XT
i (9)

In Equation (9), Xi represents the training compounds
matrix i, X represents the n � k descriptor matrix of the

training set compound and XT represents the transpose
matrix of X used in generating the model

h* is a threshold or warning leverage value determined by

Equation (10).

h* ¼ 3ðPþ 1Þ
n

(10)

In Equation (10), n and p represent the number of training

compounds and descriptors used in a generated model,
respectively.

Molecular docking methodology

Identification of active sites in the tubulin receptor

The crystalline structure of the receptor was downloaded
from https://www.rcsb.org with the protein data bank (pdb)
entry data code 1sa0. The receptor was visualized with dis-
covery studio software and found to be co-crystallized with a

ligand molecule (Shown in Figure 1B) that facilitated the
identification of active sites based on the ligandecomplex
interaction.7 The amino acid residues identified as the

active sites were SER178, VAL177, GLY146, ALA122,
SER140, THR145, ASN206; some of these were involved
in conventional hydrogen bonds while other bonds were

donoredonor, acceptoreacceptor, pi-sigma, piepi stacked
and amine pi-stacked.

Molecular docking analysis

The downloaded receptor from RCSB PDB in pdb file

format was prepared using Discovery Studio in which resi-
dues, such as ligands, water molecules and other traces
associated with the receptor protein were removed.22 The
ligand (the optimized compound, shown in Figure 1A) in

pdb file format and the prepared receptor (Figure 1C) were
imported in to PyRx docking software to carry out the
docking simulation.19

Design of a novel compounds

The design of new compounds involved enhancing and
improving the affinity of noscapine analogs towards the re-
ceptor with the aim of increasing drug likeness. Compounds
20 and 30 shown in Figures 5 and 6 were chosen because of
their higher activities, as evidenced by a PIC50 of 5.2 and 5.4,

respectively (as seen in Table 1) against pancreatic tumor
cells; these were also within the applicability domain. This
was carried out by subtle manipulation of these two

compounds, by either addition, deletion or substitution of
their substituents based on the knowledge of bioisosterism
(a strategy adopted by medicinal chemists for the ration

design of new drug candidates applied on a target
compound as a special process of molecular modification).
This led to the design of six different novel compounds.8,30

SWISSADME (http://www.swissadme.ch/index.php) a

free online web tool, along with pkCSM, an online web
server (http://structure.bioc.cam.ac.uk/pkcsm), were used to
predict the pharmacokinetics, drug-likeness and medicinal

chemistry of these compounds (Antoine et al., 2016).17,18,36

Result and discussion

QSAR model

The quantitative structureeactivity relationship (QSAR)
model was generated by employing the biological activity

as a response or dependent variable and molecular de-
scriptors as the independent variable. This QSAR model
quantitatively relates the activity of noscapine to its chemical
structure and forms the basis for predicting the biological

response of a novel compound that falls within the same
chemical domain.

QSAR model generation

The QSAR model was generated based on the Genetic
AlgorithmeMultiple Linear Regression approach using

material studio software. Five different models were gener-
ated for the data set, from which the best model was selected
based on a high squared correlation coefficient R2, a low

residual value and a high coefficient of determination value
for the test set, R2

test set. Equation (10) shows the selected
model. The predicted pIC50 value and the residual values
of the data set generated by the selected mathematical

model are shown in Table 1.

pIC50 ¼ 3.117190356*(MATS8p) þ 10.848890534*

(SpMin1_Bhv) � 378.303268598*(VE2_D) þ 0.119179001*

(RDF70p) � 0.015170243*(RDF75i) � 17.661807511 (10)

R2 ¼ 0.9731, Q2
CV ¼ 0.9434, R2

adj ¼ 0.9647, R2
test set ¼ 0.8343

The QSAR model generated was robust, reliable and
powerfully predictive, as determined by the validation test

results indicated below.

R2 ¼ 0.9731, Q2
CV ¼ 0.9434, R2

adj ¼ 0.9647, R2
test set ¼ 0.8343

This made the model good and powerfully predictive as it
passed the validation tests shown in Table 3.

The two-dimensional (2-D) and three-dimensional (3-D)

descriptors used in the model were as follows: Moran
autocorrelation � lag 8/weighted by polarizabilities

https://www.rcsb.org
http://www.swissadme.ch/index.php
http://structure.bioc.cam.ac.uk/pkcsm


Figure 2: Plot of predicted activities against observed activities.

Figure 1: Ligand structure, co-crystallized receptor and the prepared receptor.11

Figure 3: Plot of standardized residuals against observed

activities.

Figure 4: Plot of standardized residuals against leverages; an

applicability domain/Williams plot.
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(MATS8p) 2D, smallest absolute eigen value of Burden
modified matrix � n 1/weighted by relative van der Waals
volumes (SpMin1_Bhv) 2D, average coefficient sum of the
Figure 5: Structure of compound 20 used as a first template for

design.



Table 1: Observed and predicted activities, residuals and

docking score of 30 noscapine compound against pancreatic

(Mia PaCa-2) cancer (see also the Supplementary table).

S/

no.

Observed

pIC50

Predicted

pIC50

Residuals Docking

score

(kcal/mol)

1a 5.37675 5.160952 0.215799 �9.5

2 4.245651 4.318454 �0.0728 �8.1

3 4.272458 4.319147 �0.04669 �9.9

4 4.36957 4.376663 �0.00709 �9.5

5 4.328827 4.308319 0.020508 �7.7

6 4.300162 4.319354 �0.01919 �9.2

7 4.272458 4.241228 0.031231 �8.8

8 4.260427 4.190956 0.069472 �8.9

9 4.301029 4.4257 �0.12467 �9.2

10 4.313363 4.303806 0.009558 �9

11 4.328827 4.448648 �0.11982 �9.1

12 4.339134 4.29763 0.041504 �9.4

13 4.312471 4.240756 0.071715 �8.3

14 4.298432 4.212189 0.086243 �9.1

15 4.347753 4.394798 �0.04705 �9.4

16 4.318758 4.341063 �0.0223 �8.6

17 5.408935 5.509189 �0.10025 �8.4

18 5.37675 5.333544 0.043206 �9.2

19 4.349692 4.271134 0.078559 �9.7

20 5.16115 5.074242 0.086909 �9.6

21a 4.356547 4.56621 �0.20966 �9.4

22a 4.37059 4.446317 �0.07573 �8.8

23 4.343901 4.404393 �0.06049 �7.8

24a 4.365522 4.281083 0.084439 �9.5

25a 4.389339 4.532786 �0.14345 �9.6

26a 4.336299 4.190657 0.145642 �9.4

27a 4.375717 4.436243 �0.06053 �9

28 4.312471 4.306833 0.005638 �8.7

29a 4.333482 4.369651 �0.03617 �9.3

30 5.443697 5.367885 0.075813 �9.4

a Denote test set.

Figure 6: Structure of compound 30 used as asecond template for

design.

Table 2: Descriptors, definitions and descriptor types.

Descriptor Descriptor definition

MATS8p Moran autocorrelation

by polarizabilities

SpMin1_Bhv Smallest absolute eigen

modified matrix � n 1/w

relative van der Waals v

VE2_Dt Average coefficient sum

vector from detour mat

RDF70p Radial distribution func

weighted by relative po

RDF75i Radial distribution func

weighted by relative firs

potential
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last eigen vector from detour matrix (VE2_Dt) 2D, radial
distribution function � 070/weighted by relative polariz-

abilities (RDF70p) 3D and radial distribution
function � 075/weighted by relative first ionization potential
(RDF75i) 3D (Table 2).

The Y- randomization test value shows that the Model
was not based on chance correlation. This is because of the
lower average randomized values of R2 and Q2 shown in

Table 4. Also, the cRp2 value was greater than 0.5.
The descriptors showed no multi-co-linearity and the VIF

value in Table 4 was within the acceptable range. This
signified that the generated model was acceptable.

The effective contribution of each descriptor, known as
the mean effect, is shown in the last column of Table 4. This
shows the contribution of each descriptor in predicting the

response activity; a negative value means that the
descriptor contributes negatively (the presence of the
descriptor lowers the activity, while its absence increases

the activity). A positive value shows a positive contribution.
The plot of the predicted activities against the observed

activities in Figure 2 shows a linear correlation between the
predicted and observed activities, thus proving the strength

of the model in the response variables. The plot of
standardized residuals against observed residuals, shows a
distribution for the compound on both sides of zero

(Figure 3); this ensured the absence of systematic error in
the developed model.

The William’s plot (Figure 4) identified four influential

compounds among the test set; this is due to their high
leverage value greater than the threshold (h* ¼ 0.82) value.
This means that the compounds are outside the

applicability domain and should be disregarded when
designing novel noscapine compounds.

Docking results

Docking analysis was conducted between novel noscapine
compounds and the downloaded tubulin receptor with pro-
tein data bank code 1sa0. The results of interactions known

as binding scores are shown in Tables 5 and 6, and represent
the affinity of a compound to its receptor and can also
explain as readiness and strength of the interactions.26

Docking studies revealed strong interactions between all
the docked ligands and receptors. We observed a range of
bonding interactions, including hydrophobic, electrostatic

bonds, amide and pieepie interactions within the ligande
Descriptor type

� lag 8/weighted 2D

value of Burden

eighted by

olumes

2D

of the last eigen

rix

2D

tion �070/

larizabilities

3D

tion �075/

t ionization

3D



Table 3: Accepted QSAR Validation tool.41

Validation tools Interpretation Acceptable value Developed model value Remarks

R2 Co-efficient of determination �0.6 0.9731 Pass

Q2
CV Cross validation co-efficient ˃0.5 0.9434 Pass

R2
adj Adjusted co-efficient of determination ˃0.5 0.9647 Pass

R2�Q2
cv Different between R2 and Q2

cv �0.03 0.0297 Pass

Next/test set Minimum number of external test set �5 8.0000 Pass

R2
test set Co-efficient of determination of external and test set �0.5 0.8343 Pass

Table 4: Y-Randomization test, descriptor variance inflation factor (VIF) and mean effect (M/E).

Model R R2 Q2 Descriptor VIF M/E

Original 0.885843 0.784718 0.565892 MATS8p 2.229932 0.002544

Random 1 0.294292 0.086608 �0.36191 SpMin1_Bhv 1.203092 0.869475

Random 2 0.372131 0.138482 �0.62327 VE2_DzZ 3.071484 �0.03337

Random 3 0.590231 0.348373 0.089259 RDF70p 2.453743 0.152919

Random 4 0.440807 0.194311 �0.16057 RDF75i 6.255071 0.008427

Random 5 0.502612 0.252619 �0.22613

Random 6 0.536386 0.287709 �0.22521

Random 7 0.428398 0.183525 �0.75932

Random 8 0.433775 0.188161 �0.28028

Random 9 0.449071 0.201664 �0.22311

Random 10 0.630951 0.398099 �0.21973

Random models parameters

Average r: 0.467865

Average r2: 0.227955

Average Q2: �0.29903

cRp2: 0.66634

cRp2: 0.66634

Table 5: Novel ligands from template 20 and their binding energies.

Compound R1 R2 R3 Binding energy (kcal/mol)

D1 CH3 NH2 Cl �9.2

D2 H3CO Cl CH3 �8.0

D3 NH2 CH3 Cl �11.2

Table 6: Novel ligands from template 30 with their binding energies.

Compound R1 R2 R3 R4 Binding energy (kcal/mol)

D4 H3CO OCH3 CH3 Br �10.2

D5 Cl Cl CO2H CH3 �8.9

D6 CH3 NH3 Cl NH2 �10.8

E* C0-crystallized ligand �9.2

E* indicates the ligand co-crystallizes in the pocket of the downloaded receptor.
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receptor complex. Re-docking of the co-crystallized ligand
with the receptor validated the docking protocol used in this

study.
D1, D2, and D3 compounds with binding energies

of �9.2, �8.0 and �11.2, respectively; those of D4, D5 and

D6 compounds were �10.2, �9.8 and �10.8, respectively.
This data indicates a lower energy of binding when compared
to the co-crystallized ligand E* except for D2 and D5. D1

had a binding energy that was equivalent to E*. With this
discovery compounds D3, D4 and D6 were found to be
better compounds with activity against pancreatic tumors

(Figs. 7e10).
Three compounds (D3, D6 and D4) were selected out of

the six newly designed novel compounds by virtue of their

high affinity towards the receptor. Table 7 shows the types of
interactions and amino acid residues involved in the
interactions with the receptor. Carbon hydrogen bonds,

conventional hydrogen bonds and van der Waals are the



Figure 7: 2-D and 3-D visualization of compound D3 in the active pocket of the receptor.

Figure 8: 2-D and 3-D visualization of compound D6 in the active pocket of the receptor.
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predominant interactions among the designed ligands and
are common to those of the co-crystalline ligand, E*. The
higher binding score shown by these novel compounds may
be attributed to the presence of van der Waals, pi-donor,

amide-pi stacked and piealkyl interactions.
The different amino acid residues that are involved in

these interactions were LYS, ASN, LEU, GLY and SER, as

indicated in Table 7. The D3 compound predicts a higher
binding score; this may be attributed to the presence of the
THR145 residue that added an unfavorable donoredonor
interaction and MET259 acid residues that formed pie
Figure 9: 2-D and 3-D visualization of compou
sulfur interactions; these interactions were absent in the
other ligandereceptor interactions.

Pharmacokinetics and ADMET predictions of some
selected novel noscapine compounds are shown in the first

column of Table 8. Compounds D3, D4, D6 showed high
human intestinal absorption values of 94.799, 91.997 and
95.957, respectively. The gastro-intestinal solubility (over

90%) of these compounds determine the handling and
formulation of the drug and also ensure delivery of the
target. Therefore, these novel noscapine compounds have

absorbance values between 91.997 and 95.957%;
nd D4 in the active pocket of the receptor.



Figure 10: 2-D and 3-D visualization of the re-docked co-crystalline in the active pocket of the receptor.

Table 7: Binding scores, types of interactions and amino acid residues associated with the novel compounds with that of the co-

crystalline ligand.

Compound Binding score

(kcal/mol)

Type of interactions Amino acids residues involved

D3 �11.2 Van der Waal, conventional hydrogen

bond, unfavorable donoredonor, Pi
edonor hydrogen bond, Piesulfur,

amideePi stacked alkyl, and Piealkyl

MET 259, LYS352, LEU 248, ASN 101,

ALA 180, GLY 143 and THR 145

D6 �10.8 Van der Waal, conventional hydrogen

bond, carbon hydrogen bond, amideePi
stacked and Piealkyl

LYS 394, ASN 349, PRO348, GLU34,

PHE343, and LEU 333

D4 �10.2 Van der Waal, carbon hydrogen bond,

conventional hydrogen bond, Piedonor

hydrogen bond, amideePi stacked, alkyl

and Piealkyl

LEU 255, LYS 254, GLN 11, ALA 12,

GLY 10, SER 178, GLU 183, ALA 180,

ASN 101 and LYS 352

Ea �9.2 Salt bridge, attractive charge,

conventional hydrogen and carbon

ehydrogen bond

ASN 206, TYR 224, SER 178, GLY,142,

GLY 143, GLY 146, THR 145, ALA 12,

SER 140, GLY 144 and LYS 254

a Co-crystallized ligand downloaded with the receptor.
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consequently, these values passed the minimum recom-

mended values of 30%, thus indicating good human in-
testinal absorption. Bloodebrain barrier (BBB)
permeability (log BB) was predicted to be �1.066e1.391

and �1.406, respectively; while central nervous system
permeability (log PS) was predicted to be �2.433, �3.183
and �3.192, respectively, as shown in the second and third
columns of Table 8. The recommended limits for bloode
brain barrier (BBB) and central nervous system perme-
ability are >0.3 to <�1 Log BB and >�2 to <�3 Log PS,
respectively (Carpenter & Krishner, 2014).15 For these

selected novel noscapine compounds, the Log BB was
>�1, thus implying that the compounds are better
distributed to the brain with a Log PS >�2; thus, these

compounds are predicted to better penetration of the
central nervous system. Cytochrome P450 (CYP450) is
an isoenzyme that is involved in the metabolism of drugs
and the biotransformation of drugs in the body. Several
isoenzymes play a major role in drug metabolism (1A2,

2C9, 2C19, 2D6 and 3A4), as indicated in Table 8.
Members of the 3A4 family was found to act as both a
substrate and an inhibitor of the selected novel noscapine

compounds; these represent an important family with
regards to the metabolism of the noscapine drug
candidates. Total clearance was used use to show the
relationship between the rate of elimination of a drug

and its concentration in the body. The selected
compounds showed total clearance values within the
permissible limit of a drug molecule in the body. Two of

the designed compounds (D4 and D6) were found to be
non-toxic while D3 was found to be mildly toxic because
it inhibited C II (ether-a-go-go related gene), inhibitor II

but did not inhibit type I. Both D4 and D6 are non-toxic
and do not act as an inhibitor of hERG I and II. hERG
(ether-a-go-go related gene) is an anti-target; blockade by a
drug candidate leads to QT prolongation (thus delaying



Table 8: Adsorption, distribution, metabolism, excretion and toxicity of the novel compounds.

Absorption Distribution Metabolism Excretion Toxicity

Substrate inhibitors

CYP

Compound Intestinal

absorption (human)

BBB

permeability

CNS perm. 2D6 3A4 1A2 2C19 2C9 2D6 3A4 Total AMES

(log BB) (log PS) Clearance Toxicity

D3 94.799 �1.066 �2.433 No Yes No Yes No No Yes 0.69 YES

D4 91.997 �1.391 �3.183 No Yes No No No No Yes 0.72 No

D6 95.957 �1.406 �3.192 No Yes No No Yes No Yes 1.195 No

Table 9: Molecular weight (MW), number of H-bond acceptors, number of H-bond donors, MLOGP, number of Lipinski violations,

bioavailability scores and drug-likeness.

Molecule MW No. of H-bond

acceptors

No. of H-bond

donors

MLOGP No. of

Lipinski’s

violations

Bioavailability

score

Drug-

likeness

D3 512.975 7 2 2.5 1 0.55 Yes

D4 527.986 8 1 2.98 1 0.55 Yes

D6 572 8 1 2.57 1 0.55 Yes
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ventricular repolarization) and cardio-toxicity12 The

ADMET properties of these compounds revealed their
good pharmacokinetic profiles in most of the predictions.

The selected novel noscapine compounds respect Lip-

inski’s rule of five with only one violation; the molecular
weight of all three compounds were greater than 500 kDa but
were still within the permissible limit for drug molecules to be

orally bioavailable, as shown in Table 9. The remaining rules
(Number of hydrogen bond donors � 5, Number of
hydrogen bond acceptors � 10, and Calculated Log p � 5)

were all respected. All of the selected novel compounds
(D3, D4 and D6) had a good bioavailability score of 0.55,
thus confirming the drug-likeness properties of these
selected and reported compounds, shown in Table 9. As

such, these compounds are orally bioavailable with good
pharmacokinetic properties and represent lead compounds
for developing anti-tumor drugs. Lead drugs need to be

small and less hydrophobic so that they can be optimized
further to become drug candidates31; minor manipulations of
our newly designed compounds could lead to promising

noscapine based anti-tumor drugs.

Conclusion

Quantitative structureeactivity relationship (QSAR) and
molecular docking studies were carried out on 30 noscapine
analogs as potential anti-tumor agents for pancreatic cancer.

We also developed predictive and robust models. Based on
our results, novel noscapine compounds were designed; we
studied the pharmacokinetics of these drugs and performed

docking analysis to determine potency against tumor cells
(pancreatic cancer). In this study, we targeted the tubulin
receptor as it is believed to be associated with different types

of cancer in humans. Noscapine binds to tubulin and causes
arrest at the G2-M checkpoint in the cell cycle (the mitotic
checkpoint), thus preventing cell growth, delaying division

and inducing apoptosis. These newly designed novel com-
pounds exhibit improved potency, safe pharmacokinetics
profiles and low binding scores to tubulin, thus confirming

that noscapine might be used as lead candidate for devel-
oping anti-tumor drugs against pancreatic cancer.
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