

ORIGINAL ARTICLE J Sains Farm Klin 10(3):348–352 (Desember 2023) | DOI: 10.25077/jsfk.10.3.348-352.2023

Inhibition of Edible Plant Torch Ginger (*Etlingera elatior* **(Jack) R. M. Sm.) against α-Glucosidase and α-Amylase**

[Nova Syafni](#page-0-0)1,2*, Athallah Fakhriadi¹ , Nofrizal2,3, Friardi Ismed1,2, & Deddi Prima Putra1,2

1 Faculty of Pharmacy, Universitas Andalas, Padang, West Sumatra, Indonesia 2 Sumatran Biota Laboratory, Universitas Andalas, Padang, West Sumatra, Indonesia 3 Department of Pharmacy, Dharma Andalas University, Padang, West Sumatra, Indonesia

#This research has been presented at The 3rd International Conference on Contemporary Science and Clinical Pharmacy (ICCSCP 2023), Universitas Andalas, Indonesia, 30-31 October 2023

ABSTRACT: Indonesia's diabetes cases were in the top ten list globally, with 90% of the patients being type-2 diabetes mellitus (T2DM). An approach for screening the local edible plants is made for managing or treating T2DM by inhibiting *α*-glucosidase and *α*-amylase enzymes. Results showed that inflorescence of *Etlingera elatior* inhibition toward both enzymes. TLC-autography and IC₅₀ value of fractions from *E. elatior* were used to identify the potential fractions and possible compounds for the activity. The non-polar fraction was spotted in the active substances based on TLC-autography. Then, the targeted compounds were separated by column chromatography to obtain stigmasterol as one of the active compounds. The IC $_{50}$ values of total extract, *n*-hexane, EtOAc, *n*-BuOH, and isolated compound against α-glucosidase were 16.0, 7.5, 13.5, 9.7, and 2.0 ppm, respectively. The IC_{co} values for α-amylase inhibition were respectively 88.6, 48.6, 23.2, 29.1, and 27.5 ppm. The positive control (acarbose) against *α*-glucosidase and amylase exhibited IC₅₀ values of 153.2 and 12.3 ppm. The inhibition of *E. elatior* against the two enzymes could be an alternative to delay carbohydrate absorption.

Keywords: **torch ginger; type-2 diabetes mellitus; anti-diabetes; TLC-autography.**

Introduction

International Diabetes Federation (IDF) mentioned that the population of diabetes people is 1 in 10, and these cases also increased in adults [\[1\]](#page-3-0). Indonesia was in the top ten countries listed with diabetes, and 90% of the diabetic people were type-2 diabetes mellitus (T2DM). Every province in Indonesia showed an increasing number of diabetics, with the impact of people from middle to lower economic income [\[2,](#page-3-1)[3\]](#page-3-2). Since T2DM can be managed by diet, searching for the potential plants for anti-diabetes is a crucial step [\[4\].](#page-3-3) This approach can be helpful for diabetic people to manage their normal glucose levels with action of antidiabetic drugs is inhibition toward α-glucosidase and α-amylase enzymes. This mechanism of action of those enzymes can reduce the absorption of carbohydrates in the intestine by preventing the breakdown of carbohydrate complexes into glucose [\[5,](#page-3-4)[6\].](#page-3-5) However, Indonesian people consume more carbohydrates every day, so this mechanism

of action can be applicable.

In a previous study on screening local edible plants, fourteen methanolic extracts from edible plants were selected for TLC-autography against *α*-glucosidase inhibition [\[7\]](#page-3-6). One of the active plants was the inflorescence of *E. elatior,* which exhibited active substance on the screening with the eluent CHCl₃:EtOAc:MeOH (65:20:15). This plant is well known as a vegetable in Asian countries, local people in West Sumatra call it with *kincuang* or *sambuang.* In this research, the selected plant was extracted and fractionated with non-polar, semi-polar, and polar solvents. After that, the fractions were checked for the active fraction by TLC-

autobiography and determined their IC_{50} against *a*-glucosidase. In addition, the assay was also submitted to *α*-amylase inhibition.

Methods

Materials

All the solvents, such as *n*-hexane, EtOAc, MeOH, and *n*-BuOH were distilled. The CHCl₃ p.a. and MeOH p.a were used for this research. Anisaldehyde (ANS) was used as a spray reagent of non-active UV compounds.

The assays used enzyme *α-*glucosidase (Sigma, United States) and enzyme *α-*amylase from *Bacillus licheniformis* (Sigma, United States), *p*-naphthyl-*α*-Dglucosidase (sigma, United States), Fast Blue salt (Sigma, United States), phosphate buffer solution: NaH₂PO₄ (Merck, Germany), Na₂HPO₄ (Merck, Germany), DMSO, ethanol p.a (Merck, Germany), starch (Merck Millipore, Germany), $KNaC_4H_4O_6.4H_2O$ (Merck, Germany), 3,5-dinitrosalisicylic acid/DNSA (Himedia), NaOH p.a (Merck, Germany), NaCl (Merck, Germany), DMSO, aquabidest. Acarbose (Sigma, United States) was used as a positive control.

Sample Collection

E. elatior inflorescent purchased in the traditional Guguak, Solok District, West Sumatra market.

TLC-Autography

Thin layer chromatography (TLC) plate silica gel 60 F_{254} (Merck, Germany) was done using CHCl₃:EtOAc:MeOH (65:20:15) as eluent followed previous research [\[7\]](#page-3-6). TLC-Autography followed previous studies [\[7\]](#page-3-6) and Simoes-Pires with slight modification [\[8\].](#page-3-7) Each extract and fraction were dissolved in MeOH at a 10 mg/mL concentration and spotted 8 μ L with capillary micropipette on the TLC plate.

The α-Glucosidase Inhibition Activity

Each extract was dissolved in DMSO with final concentrations 125, 62.5, 31.25, 15.63, 7.81, 3.91, and 1.95 ppm in a mixture of phosphate buffer solution (PBS) and DMSO 1%. Isolated compound and acarbose were prepared at 200, 100, 50, 25, 12.5, 6.25, 3.13, and 1.56 ppm concentrations. Aliquots of 50 μ L of the sample (triplicated) and 50 μ L enzyme (0.26 U/mL) were placed in a 96-well microplate and incubated for 10 min at room temperature (27ºC). Then, 100 µL of *p*-nitrophenyl-*α*-Dglucopyranoside (dissolved in phosphate buffer solution, pH 6.9) was added and incubated for 20 min at room temperature. The absorbance was measured at 405 nm in microplate reader (Allsheng®, China). The control for the sample consists of the sample without enzyme. The blank comprised a phosphate buffer solution with enzyme and substrate (Ac). As referred, absorbance sample minus

absorbance control of sample $[9]$.

 $\%$ inhibition = (1-As/Ac) x 100%

The α-Amylase Inhibition Activity

The *α*-amylase inhibition assay was performed using the 3,5-dinitrosalicylic acid (DNSA) [\[10\]](#page-3-9) following the method described by Wickramaratne with slight modification [\[11\].](#page-3-10) Each sample stock solution was dissolved and prepared at a concentration of 10.000 ppm for extracts and acarbose 1000 ppm for isolated compounds. Each sample was diluted eight times in PBS with DMSO 10%. Aliquots of 100 *µ*L of sample (triplicate) were incubated with enzyme (10 U/mL) at room temperature for 10 min. Then, $100 \mu L$ of the substrate (starch 1% dissolved in PBS) was added and incubated at room temperature for 3 min. After the incubation, stop the reaction by adding 100 *µ*L DNSA and heating at 105ºC for 20 min, then add 500 *µ*L aquabidest. The absorbance was measured at 540 nm [\[11\]](#page-3-10). The control for the sample consists of the sample without enzyme. The blank comprises a phosphate buffer solution with enzyme and substrate (Ac). As referred to, absorbance sample minus absorbance control of the sample.

 $\%$ inhibition = 1-As/Ac) x 100%

Isolation of Targeted Compounds from Non-Polar Fraction

Fresh *E. elatior* inflorescence (10 Kg) was chopped into small pieces and macerated with MeOH for 3 x 72 h. Each maceration was filtered and combined, evaporating inrotary evaporator (Buchi®, Switzerland) until it gained 92.1 g. After evaporation, the extract was fractionated using *n*-hexane, EtOAc, and *n*-BuOH, respectively. All fraction was evaporated in a vacuum using a Rotary evaporator to obtain *n*-hexane, EtOAc, and *n*-BuOH extracts.

The dry load of *n*-hexane fraction was prepared by dissolving the *n*-hexane extract (12 g) with EtOAc and then adding 24 g silica gel. The silica column chromatography was packed with a slurry of 480 g silica gel 60 F_{254} (Merck KGa®, Germany) in *n*-hexane. The column was eluted by step gradient polarity of *n*-hexane 100%, *n*-hexane-EtOAc (4:1, 3:2, 1:1, 2:3, 1:4), EtOAc 100%, EtOAc: MeOH (3:2, 1:1), and MeOH 100%. The results were collected in vial and monitored using a TLC plate with eluent CHCl₃:EtOAc:MeOH (65:20:15). The targeted fractions were combined, which were vial 50-165 for sub-fraction C and vial 166-260 for sub-fraction D. Sub-fraction C was separated using silica column chromatography with isocratic eluent *n*-hexane:EtOAc (9:1) then the isolated

Figure 1. Results of TLC-autography of *n*-hexane (H), EtOAC (E), and *n*-butanol (B) fractions, **I**. TLC visualization under UV 254 nm, **II**. TLC visualisation under UV 366 nm, **III**. TLC plate after spraying with ANS reagent, **IV**. TLC plate after spray with α-glucosidase enzyme, white spots indicated the active substances inhibition toward α-glucosidase

compound was recrystallized with *n*-hexane and EtOAc to obtain compound **1**. Sub-fraction D was prepared similarly to sub-fraction C with EtOAc 100% as eluent and recrystallized in EtOAc and MeOH to gain compound **2**.

Identification of Isolated Compounds

Both isolated compounds were identified using LC ACQUITY UPLC and MS: Xevo G2-S QTof (Waters, United States) with C18 column (1.8 µm, 2.1x100 mm) [temperature at 25ºC, flow rate 0.2 mL/min for 23 min, eluent water + ammonium format 5mM (A) and acetonitrile + formic acid 0.05% (B)], spectrophotometer UV-Vis at 200-800 nm (Shimadzu®, Japan), spectrophotometer FT-IR (Perkin Elmer, United States), and melting point apparatus Melting Point Stuart SMP30 (Cole-Palmer, United States).

Data Analysis

The IC₅₀ calculation of *α*-glucosidase and *α*-amylase used linear regression and Excel probit analysis.

Result and Discussion

Screening local edible plants for anti-diabetes would increase the scientific evidence on traditional medicine for α-glucosidase inhibition later. The selected extract was from inflorescent of *E. elatior*, then fractionated with different polarity solvent. The extraction process obtained

total extract, *n*-hexane, EtOAc, and *n*-butanol fractions of 92.1, 15.0, 10.0, and 17.0 g, respectively. TLC-autography screened all fractions based on the previous method [\[7\].](#page-3-6) The TLC-autography was depicted in [Figure 1](#page-2-0), which showed two white spots after spraying with substrate, α-glucosidase, and fast blue salt [\[8\].](#page-3-7) The white spot indicated the inhibition of substance against *α*-glucosidase. This method was simple, fast, effective, and compatible for *α*-glucosidase inhibition. The result guided the active compounds were in non-polar fraction, *n*-hexane fraction.

Identification of the responsible compounds for the activity was continued by doing isolation steps [\[12,](#page-3-11)[13\].](#page-3-12) Silica column chromatography was used to separate the substances from the *n*-hexane fraction. The eluent from previous research [\[7\]](#page-3-6) isolated the target compounds. The pure isolated compound was obtained in amounts of 72.8 mg for compound **1** and 10 mg for compound **2**. However, compound **2** cannot be completely identified and tested because of its limited quantity. Compound **1** was identified as stigmasterol based on LC-MS data with ion *m/z* $[M+H]^+$ 413.2647, same as stigmasterol $[14]$. The Infrared spectrum and melting point of compound **1** was the same as the reference [\[15\].](#page-3-14) The infrared spectrum showed the hydroxyl group at 3428 cm^{-1} , C-H group at 2937 cm^{-1} . The measured melting point was 168.3-170.9ºC while the literature was 169-171ºC. The UV spectrum exhibited λ max at 212.5 nm.

Maintaining the glucose level is essential for diabetes

No.	Sample	$IC_{\scriptscriptstyle{50}}$ for α -glucosidase inhibitor (ppm)	IC _{ερ} for α-amylase inhibitor
1.	Total extract	16.0	88.6
\mathfrak{D} .	n-hexane extract	7.5	48.6
3.	FtOAc extract	13.5	23.2
4.	n-BuOH extract	9.7	29.1
5.	Compound 1	2.0	27.5
6.	Acarbose	153.5	12.3

Table 1. The IC₅₀ value of each sample

patients to reduce complications and mortality [\[16\]](#page-3-15). Socioeconomic issues can cause complications. In this case, inhibition towards enzymes responsible for glucose metabolism and absorption is essential. The inhibition values against *α*-glucosidase and *α*-amylase were calculated for all extracts and compound **1**. Based on the assay from those two enzymes, *α*-glucosidase inhibition from all extracts and compound **1** of *E. elatior* had more potential than acarbose in [Table 1](#page-3-16). However, *α*-amylase inhibition of acarbose was higher than all extracts and compound **1** from *E. elatior*. Stigmasterol was also reported from seaweed and fruit of *Morinda citrifolia* as anti-diabetic through inhibition against *α*-glucosidase and *α*-amylase [\[17,](#page-4-0)[18\]](#page-4-1).

Conclusion

The edible part of E. *elatior* could inhibit α-glucosidase and α-amylase activities. The non-polar fraction identified stigmasterol as one of the responsible compounds for the activity through initial TLC-autography method.

Acknowledgement

Thanks to the Institute for Research and Community Service Universitas Andalas, contract number: T/29/ UN.16.17/PT.01.03/KO-RDP/2022 for α-glucosidase assay and Thanks to the Faculty of Pharmacy for α-amylase research fund with number 25/UN16.10.D/PJ.01./2023.

References

- [1]. International Diabetes Federation, IDF Diabetes Atlas, 10th ed, Brussel, Belgium; 2021, available at: [https://diabetesatlas.org/atlas/](https://diabetesatlas.org/atlas/tenth-edition/) [tenth-edition/](https://diabetesatlas.org/atlas/tenth-edition/)
- [2]. Sutanegara D, Darmono, Budhiarta AAG.The epidemiology and management of diabetes Mellitus in Indonesia, Diabetes Research and Clinical Practice. 2000; 50(2):S9–S16.DOI: 10.1016/s0168- 8227(00)00173-x
- [3]. Infodatin, Pusat Data dan Informasi Kementerian Kesehatan RI. 2020. ISSN 2442-7659.
- [4]. Rawal LB, Tapp RJ, Williams ED, Chan C, Yasin S, Oldenburg B. Prevention of type 2 diabetes mellitus and its complications in developing countries: A review. Int. J. Behave. Med. 2012; 19:121- 33. DOI: 10.1007/s12529-011-9162-9
- [5]. Khoo CM. Diabetes mellitus treatment. In: Cockerhan WC (Eds), Reference module in biomedical science international encyclopedia of public health (2nd edition). 2017:288-293. [https://doi.](https://doi.org/10.1016/B978-0-12-803678-5.00108-9) [org/10.1016/B978-0-12-803678-5.00108-9](https://doi.org/10.1016/B978-0-12-803678-5.00108-9)
- [6]. Zheng Z, Huang S-Y, Sun T. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Ther. 2020; 11:2521-38[. https://doi.](https://doi.org/10.1007/s13300-020-00922-x) [org/10.1007/s13300-020-00922-x](https://doi.org/10.1007/s13300-020-00922-x)
- [7]. Syafni N, Arifa N, Ismed F, Putra PP. Preliminary study: Bioautography screening on edible local plants with α-glucosidase inhibitor. Proceeding of the 2nd International Conference on Contemporary Science and Clinical Pharmacy 2021 (ICCSCP 2021). 2021;40, Advance in Health Sciences Research, Atlantis Press. 10.2991/ ahsr.k.211105.043
- [8]. Sioes-Pires CA, Hmicha B, Marston A, Hostettmann K. A TLCbioautographic method for detection of α- and β-glucosidase inhibitors in plant extracts. Phytochem Anal. 2009;20(6): 511-5.
- [9]. Yang Y, Gu L, Xiao Y, Liu Q, Hu H, Wang Z, Chen K. Rapid identification of α-glucosidase inhibitors from Phlomis tuberosa by sepbox chromatography and thin-layer chromatography. Plos ONE. 2015;10(2):1-13.
- [10]. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959; 31(3):426-8. [https://doi.](https://doi.org/10.1021/ac60147a030) [org/10.1021/ac60147a030](https://doi.org/10.1021/ac60147a030)
- [11]. Wickramaratne MN, Puchihewa JC, Wickramaratne DBM. In vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavoniva. BMC Complementary and Alternative Medicine. 2016; 16:466. <http://doi.org/10.1186/s12906-016-1450-y>
- [12]. Syafni N, Putra DPP, Arbain D. 3,4-Dihycroxybenzoic acid and 3,4-dihydroxybenzaldehyde from the fern Trichomanes chinense L; Isolation, antimicrobial, and antioxidant properties. Indo. J. Chem. 2012;12(3):273-8. <https://doi.org/10.22146/ijc.21342>
- [13]. Arbain D, Nofrizal, Syafni N, Ismed F, Yousuf S, Choudhary MI. Bicyclo[3.2.1]octanoid neolignans from Indonesian red betle leaves (Piper crocatum Ruiz & Pav.). Phytochemistry Letters. 2018;24:163- 6.<https://doi.org/10.1016/j.phytol.2018.02.006>
- [14]. Rozenberg R, Ruibal-Mendieta NL, Petitjean G, Cani P, Delacroix DL, Delzenne NM, Meurens M, Quetin-Leclercq J, Habib-Jiwan J-L. Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. Spelta L.) and wheat (T. aestivum L.) lipids by LC/APCI-MS. J. Cereal Sci. 2003;38:189-97. doi:10.1016/S0733-5210(03)00022-5
- [15]. Nayak PS, Kar DM, Nayak SP. Isolation and characterization of stigmasterol from chloroform fraction of aerial part of Argemone mexicana L. Int. J. Pharm. Sci. 2015;7(12):25-9.
- [16]. Ghani U. Alpha-glucosidase inhibitors clinically promising candidates for antidiabetic drug discovery. Elsevier. 2020.1-12.

[17]. Poulose N, Sajayan A, Ravidran A, Chandran A, Priyadharshini GB, Selvin J, Kiran GS. Anti-diabetic potential of a stigmasterol from seaweed Gelidium spinosum and its application in the formulation of nanoemulsion conjugate for the development of functional biscuits. Front. Nutr. 2021;8:694362. doi: 10.3389/fnut.2021.694362

[18]. Lolok N, Sumiwi SA, Sahidin I, Levita J. Stigmasterol isolated from the ethyl acetate fraction of Morinda citrifolia fruit (using the bioactivity-guided method) inhibits α-amylase activity: in vitro and in vivo analyses. World Acad. Sci. J. 2023;5(25). DOI: 10.3892/ wasj.2023.202.

Copyright © 2023 The author(s). You are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the
material for any purpose, even commercially) under the foll