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A B S T R A C T   

Background: Type 2 diabetes mellitus (T2D) stands as one of the most prevalent chronic diseases globally, posing 
substantial health and economic burdens on society. Within the spectrum of T2D, familial cases emerge as a 
distinct entity characterized by a strong familial clustering of the disease. This phenomenon has long suggested 
that genetics contributes substantially to T2D susceptibility, motivating extensive research into the genetic de-
terminants of familial T2D. 
Methods: We recruited 212 multigenerational Italian families with multiple cases of T2D. The families were 
genotyped using genomic array (≥ 600k) derived from the UK Biobank Axiom Array platform. Informative 
markers were tested via Pseudomarker for linkage to and linkage disequilibrium (i.e., linkage joint to associa-
tion) with T2D across the following models: dominant with complete penetrance (D1), dominant with incomplete 
penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2). 
Results: We identified a total of 566 variants reaching genome-wide significant (P < 0.00005) linkage and/or 
association to/with the risk of T2D in Italian families. Of the 355 genes identified in our study, 341 (96%) are 
novel and have not been reported with T2D or any of its related phenotypes (i.e., obesity, metabolic syndrome, 
insulin resistance, polycystic ovary syndrome, and hyperglycemia). 
Conclusion: Our study constitutes the first familial T2D-linkage and association study in the Italian population. 
However, the functional relevance of the novel variants and genes reported in our study remains to be explored.   

1. Introduction 

Type 2 diabetes mellitus (T2D) stands as one of the most prevalent 
chronic diseases globally, posing substantial health and economic bur-
dens on society (Khan et al., 2020). Although environmental factors such 
as diet and physical activity play a significant role in T2D development 
(Dendup et al., 2018), mounting evidence underscores the critical in-
fluence of genetics (Ali, 2013). Within the spectrum of T2D, familial 
cases emerge as a distinct entity characterized by a strong familial 
clustering of the disease (Hemminki et al., 2010; Murea et al., 2012). 
This phenomenon has long suggested that genetics contributes sub-
stantially to T2D susceptibility (Laakso et al., 2022), motivating 

extensive research into the genetic determinants of familial T2D. 
Numerous genetic studies, particularly genome-wide association 

studies (GWAS), have uncovered a plethora of susceptibility loci asso-
ciated with T2D risk (Mahajan et al., 2018; Xue et al., 2018; Meigs, 
2019; Kwak et al., 2016; Shojima et al., 2023). These findings have 
emphasized the polygenic nature of the disease, implicating common 
genetic variants in its pathogenesis (Shojima et al., 2023). However, 
familial T2D presents a unique challenge, as it is marked by a heightened 
genetic predisposition that transcends the typical heritability seen in 
sporadic cases (Prasad et al., 2015). Families affected by T2D often 
exhibit a multigenerational history of the disease, suggesting the pres-
ence of rare and highly penetrant genetic variants that contribute 
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significantly to disease risk (Grarup et al., 2014). 
The study of familial T2D genetics seeks to identify the specific ge-

netic variants, pathways, and mechanisms that distinguish these high- 
risk families from the general population (DeForest et al., 2022). Such 
insights could not only illuminate the etiological basis of T2D but also 
enable the identification of at-risk individuals within families, facili-
tating early intervention and personalized clinical management (Chung 
et al., 2020) of both T2D and its complications (Nyenwe et al., 2011). 

In this study, we embark on a comprehensive exploration of the 
genetics of familial T2D by conducting the first familial genome-wide 
linkage and association study of T2D in Italian families, and we report 
several novel risk variants and genes associated with the risk of T2D. 

2. Materials and methods 

Two hundred and twelve multigenerational Italian families with 
multiple cases of T2D were recruited for the study. The families have 
three generational ascendants from the Italian peninsula. T2D was 
diagnosed according to the National Diabetes Data Group Criteria: 
“Presence of hyperglycemia plus the classical signs and/or symptoms of 
diabetes, or by elevated fasting plasma glucose ≥ 140 mg/dl” (Classi-
fication and diagnosis of diabetes, 1979). Additionally, for affected in-
dividuals, the updated American Diabetes Association criteria were 
applied, requiring either two instances of fasting glycemia at or above 
126 mg/dL, or random glycemia reaching 200 mg/dL with accompa-
nying symptoms, or levels of at least 200 mg/dL 2 h post an oral glucose 
tolerance test using 75 mg of glucose. Secondary causes of diabetes were 
systematically excluded, such as pancreatectomy or cystic fibrosis. T2D 
had to be present in more than one first-degree family member. The 
mean age at diagnosis stood at 47.85 years (ranging from 7 to 81, with a 
median of 41). The ratio of males to females was 1.04:1, with an average 
family size of 5.45. The families were genotyped using genomic array (≥
600k) derived from the UK Biobank Axiom Array platform. Tested 
variants were filtered for quality control (QC ≥ 0.96) and kinship cor-
relation. All Mendelian and genotyping errors were excluded using 
PLINK tool (Purcell et al., 2007). The informative markers were tested 
via Pseudomarker (Hiekkalinna et al., 2011) for linkage to and linkage 
disequilibrium (i.e., linkage joint to association) with T2D across the 
following models: dominant with complete penetrance (D1), dominant 
with incomplete penetrance (D2), recessive with complete penetrance 
(R1), and recessive with incomplete penetrance (R2). Since there is no 
prior knowledge of whether the risk variants will be monoallelic or 
biallelic, we performed the statistical analysis for all inheritance models. 
Pseudomarker proves to be a robust tool, as it effectively examines both 
linkage and linkage disequilibrium (LD) within datasets comprising 
families of diverse structures, doing so with statistical and computa-
tional efficiency. Pseudomarker estimates marker allele frequencies, 
linkage disequilibrium (LD; referring to marker allele frequencies 
dependent on the putative disease-locus allele), and recombination 
fractions. It also incorporates LD through “conditional allele fre-
quencies,” a methodology that diverges from conventional approaches, 
as it enables the specification of marker allele frequencies contingent 
upon the putative disease-locus allele instead of explicitly defining 
haplotype frequencies (Hiekkalinna et al., 2011). P-values of < 0.00005 
were considered statistically significant at genome-wide level. We 
compared the four models for maximum logarithm of the odds score 
(LOD) score achieved, to test which one was more informative. 

All participants consented to participate in the study which was 
approved by the Bios Ethical Committee. 

2.1. In-silico analysis 

Per our initial assessment, we analyzed the significantly detected risk 
variants using SNP Function Prediction (Xu et al., 2009), SNP2TF 
(Kumar et al., 2017), and SNPnexus (Chelala et al., 2009) to predict their 
potential impact on transcription factor binding, splicing, miRNA 

binding, as well as protein pathogenicity. We used Reactome (Gillespie 
et al., 2022) to analyze the genes-sets for related pathways and also 
cross-mapped the positions of the detected risk variants with pancreatic 
islet enhancer clusters particularly enriched in T2D (Pasquali et al., 
2014). 

3. Results 

We identified a total of 566 variants genome-wide significantly 
linked and/or associated to/with the risk of T2D in Italian families (P <
0.00005) (Figs. 1–4). 362 (64%) variants are within 355 genes (39 
variants are within two genes) and 204 (36%) are intergenic. Sixty-nine 
test statistics from 38 variants have P < 1.5E-45 which is the lowest P 
reportable by Pseudomarker as zero. The number of genome-wide sig-
nificant variants under D1, D2, R1 and R2 are 247, 152, 235, and 171, 
respectively (Fig. 5). The number of variants significant under only one 
model and multiple models are reported in the Venn diagram (Fig. 5). 
The majority of intragenic variants are intronic (74%) followed by 
missense (12%) (Supplementary Table 1). Five variants were in 3′-UTR, 
and 4 and 7 variants were downstream and 7 upstream, respectively. 
Splicing and nonsense variants were rare (3 variants each), and 8 vari-
ants were synonymous (Supplementary Table 1). The reference allele 
was the risk allele in half (283) of the variants (50%) (Supplementary 
Table 1). The most mutated genes were HEAT repeat containing 4 
(HEATR4) (8 variants) and myosin heavy chain 7 (MYH7) (4 risk vari-
ants) and major histocompatibility complex, class II, DR beta 1 (HLA- 
DRB1) (3 risk variants). Comparing the four models for maximum LOD 
score achieved shows that R models are more “informative” (with more 
linkage information) than D models. The markers with the top LOD 
scores per model are shown in Fig. 6. Interestingly, two markers are 
within the same gene (MYH7). 

All detected risk variants are novel, including those detected in 
established T2D risk genes. Of the 355 genes identified in our study, 341 
(96%) are novel and have not been reported with T2D or any of its 
related phenotypes/traits (i.e., obesity, metabolic syndrome, insulin 
resistance, polycystic ovary syndrome, and hyperglycemia). The full list 
of detected intragenic variants is available in Supplementary Table 1. 

3.1. In-silico analysis 

Two hundred and fifty-five genome-wide-significant genes identified 
in our study clustered in several pathways related to metabolic functions 
(Gillespie et al., 2022). The topmost significant pathways are signal 
transduction (13%), metabolism (9%), immune system (9%), meta-
bolism of proteins (8%), and disease (mostly related to carbohydrate 
metabolism) (7%). The pathways with more than 10 genes (3%) are 
shown in Fig. 7. And the full list of identified pathways is listed in 
Supplementary Table 2. 

4. Discussion 

Elucidating novel genes and pathways associated with the risk of 
T2D is pivotal to understand the diseases’ pathogenesis, predict risks, 
and develop targeted therapies. In this study, we report several novel 
variants and genes significantly linked to and/or associated with the risk 
of T2D under genome-wide significance level. Our study constitutes the 
first familial T2D-linkage and association study in the Italian population. 
The risk alleles are equally distributed between major, less common, and 
minor alleles, thus supporting that both common, less common, and rare 
variants contribute to the risk of T2D, allowing for both a polygenic and 
oligogenic disease model underlying the disorder. 

Our study replicated the previously reported association with T2D, in 
both similarly and different ethnic populations for the following genes: 
Janus kinase 2 (JAK2), EBF transcription factor 1 (EBF1), solute carrier 
family 22 member 3 (SLC22A3), thyrotropin releasing hormone recep-
tor (TRHR), protein kinase AMP-activated non-catalytic subunit gamma 
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2 (PRKAG2), A-kinase anchoring protein 6 (AKAP6), hydroxysteroid 11- 
beta dehydrogenase 1 (HSD11B1), ectonucleotide pyrophosphatase/ 
phosphodiesterase 1 (ENPP1), potassium voltage-gated channel sub-
family C member 2 (KCNC2), alpha kinase 1 (ALPK1), HNF1 homeobox 
A (HNF1A), and HLA-DRB1 (Mahajan et al., 2018; Jing et al., 2012; 

Hwang et al., 2016; Chinniah et al., 2021; Devang et al., 2017; Shimo-
kata et al., 2013; Zhang et al., 2022; Li et al., 2022). The EBF1, SLC22A3, 
HNF1A, TRHR, and AKAP6 genes were previously reported in Caucasian 
patients with T2D (Mahajan et al., 2018; Voight et al., 2010), and the 
PRKAG2, ALPK1, JAK2, ENPP1, KCNC2, HLA-DRB1, and HSD11B1 

Fig. 1. Manhattan plot for genome-wide linkage to and linkage disequilibrium with T2D under the dominant model with complete penetrance (D1). 
Legend. For each genomic-wide significant SNP in T2D in D1 (N = 247), we present the − log10(P) as a function of the significant test statistics [(Linkage, Linkage 
disequilibrium (LD)|Linkage, LD|NoLinkage, Linkage|LD and LD + Linkage)] per inheritance model. D1: dominant, complete penetrance. The dotted black line 
indicates level of suggestive significance (P < 0.0017), while the solid black line indicates level of genome-wide significance (P < 0.0005). The dashed red line 
indicates level of nominal significance. The upper graph shows the different test statistics for the genome-wide significant variants only (P < 0.0005). They are a 
magnification of the most significant variants. The aim of both these graphs is to show the genomic location (X axis) of the genome-wide significant variants (Y axis). 
Alternating blue and orange colors in the lower graph represent separate chromosomes. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 

Fig. 2. Manhattan plot for genome-wide linkage to and linkage disequilibrium with T2D under the dominant model with incomplete penetrance (D2). 
Legend. For each genomic-wide significant SNP in T2D in D2 (N = 152), we present the − log10(P) as a function of the significant test statistics [(Linkage, Linkage 
disequilibrium (LD)|Linkage, LD|NoLinkage, Linkage|LD and LD + Linkage)] per inheritance model. D2: dominant, incomplete penetrance. The dotted black line 
indicates level of suggestive significance (P < 0.0017), while the solid black line indicates level of genome-wide significance (P < 0.0005). The dashed red line 
indicates level of nominal significance. The upper graph shows the different test statistics for the genome-wide significant variants only (P < 0.0005). They are a 
magnification of the most significant variants. The aim of both these graphs is to show the genomic location (X axis) of the genome-wide significant variants (Y axis). 
Alternating blue and orange colors in the lower graph represent separate chromosomes. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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genes were reported in Tunisian (Nouira et al., 2010), Japanese (Shi-
mokata et al., 2013), Chinese (Jing et al., 2012; Zhang et al., 2022), 
Korean (Hwang et al., 2016), and Indian (Chinniah et al., 2021; Devang 
et al., 2017) patients with T2D, respectively. The HSD11B1 and 
engulfment and cell motility 1 (ELMO1) genes reported in our study 

have previously been associated with metabolic syndrome (Gandhi 
et al., 2013), obesity and insulin resistance (Stewart, 2003), and diabetic 
nephropathy (Wu et al., 2013), respectively, highlighting the possible 
bidirectional risks or better the underlying genetic comorbidity of these 
concomitant phenotypes. 

Fig. 3. Manhattan plot for genome-wide linkage to and linkage disequilibrium with T2D under the recessive model with complete penetrance (R1). 
Legend. For each genomic-wide significant SNP in T2D in R1 (N = 235), we present the − log10(P) as a function of the significant test statistics [(Linkage, Linkage 
disequilibrium (LD)|Linkage, LD|NoLinkage, Linkage|LD and LD + Linkage)] per inheritance model. R1: recessive, complete penetrance. The dotted black line in-
dicates level of suggestive significance (P < 0.0017), while the solid black line indicates level of genome-wide significance (P < 0.0005). The dashed red line indicates 
level of nominal significance. The upper graph shows the different test statistics for the genome-wide significant variants only (P < 0.0005). They are a magnification 
of the most significant variants. The aim of both these graphs is to show the genomic location (X axis) of the genome-wide significant variants (Y axis). Alternating 
blue and orange colors in the lower graph represent separate chromosomes. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 4. Manhattan plot for genome-wide linkage to and linkage disequilibrium with T2D under the recessive model with incomplete penetrance (R2). 
Legend. For each genomic-wide significant SNP in T2D in R2 (N = 171), we present the − log10(P) as a function of the significant test statistics [(Linkage, Linkage 
disequilibrium (LD)|Linkage, LD|NoLinkage, Linkage|LD and LD + Linkage)] per inheritance model. R2: recessive, incomplete penetrance. The dotted black line 
indicates level of suggestive significance (P < 0.0017), while the solid black line indicates level of genome-wide significance (P < 0.0005). The dashed red line 
indicates level of nominal significance. The upper graph shows the different test statistics for the genome-wide significant variants only (P < 0.0005). They are a 
magnification of the most significant variants. The aim of both these graphs is to show the genomic location (X axis) of the genome-wide significant variants (Y axis). 
Alternating blue and orange colors in the lower graph represent separate chromosomes. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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The remaining genes reported in our study are all novel and their 
functional relevance in the context of T2D is a critical aspect to explore. 
None of the variants reported in our study intersected with pancreatic 
islets regulatory elements (Pasquali et al., 2014), however several of the 
genes were found to play important regulatory roles in insulin signaling 
and/or β cell function. The growth factor receptor bound protein 14 
(GRB14) gene controls insulin signaling and action (Gondoin et al., 
2014), while the G protein-coupled receptor 142 (GPR142) gene stim-
ulates the release from islets of glucagon-like peptide-1, which improves 
β cell function (Lin et al., 2018), and whose receptor agonist is used in 
T2D therapies (Lizarzaburu et al., 2012). The RYR2 gene, encoding for 
the ryanodine receptor 2, a component of the family of ryanodine re-
ceptors forming calcium ion channel transporters, regulates insulin 
release and glucose homeostasis (Santulli et al., 2015), and the NME7 
gene modulates glucose tolerance in rats (Šedová et al., 2021). The 

phosphodiesterase 7B (PDE7B), nuclear receptor corepressor 2 (NCoR2), 
and paired box 5 (PAX5) genes are T2D-candidate genes since they 
encode important metabolic regulators (Pasquali et al., 2014; Paluvai 
et al., 2023; Bacos et al., 2023). 

Some of the reported genes in our study are differentially expressed 
in T2D and/or its associated complications (e.g., ischemic heart disease 
[IHD]). Notably, the ATPase H+ transporting V1 subunit H (ATP6V1H) 
gene is down-regulated in T2D (Molina et al., 2011), and is a potential 
critical regulator of the development of T2D due to its vacuolar-ATPase 
activity, which is implicated in T2D (Molina et al., 2011; Lu et al., 2008). 
The RYR2 and placenta associated 8 (PLAC8) genes are over-expressed 
in cardiomyocytes in concomitant T2D with IHD (Afanas’ev et al., 
2021) and obese rats (Sasaki et al., 2015), respectively. The PLAC8 gene 
is linked to gestational diabetes (GD) but with reverse causality (Blue 
et al., 2015). Intrauterine exposure to GDM causes epigenetic changes in 
the PLAC8 gene (Blue et al., 2015), but to the best of our knowledge, no 
risk variants have been reported in T2D patients. The expression of 
contactin 5 (CNTN5) and cadherin 13 (CDH13) genes is associated 
respectively with variations in fructosamine levels (which measures 
short-term glycemic control) (Riveros-Mckay et al., 2022) and circu-
lating adiponectin levels (Breitfeld et al., 2012). 

The functional roles of the remaining novel variants and respective 
genes reported in our study are yet to be elucidated. Our in-silico analysis 
of the risk variants yielded no predicted results. 

We used Reactome (Gillespie et al., 2022) to analyze the genes-sets 
for related pathways. We found that the genome-wide-significant 
genes identified in our study clustered in several pathways related to 
metabolic functions. The topmost significant pathways are signal 
transduction (13%), metabolism (9%), immune system (9%), meta-
bolism of proteins (8%), and disease (mostly related to carbohydrate 
metabolism) (7%) (Supplementary Table 2). All pathways with 10 or 
more genes (2.9%) were previously associated with T2D (signal trans-
duction (Bottini et al., 2004), metabolism (Galicia-Garcia et al., 2020), 
immune system (Prasad et al., 2020), protein metabolism (Sha et al., 
2021), disease (Galicia-Garcia et al., 2020), post-translational protein 
modification (Yang et al., 2018), developmental biology (Christensen 
et al., 2019), gene expression/transcription (Vorotnikov et al., 2022), 
RNA polymerase II transcription (Vorotnikov et al., 2022), innate im-
mune system (Zhou et al., 2018), metabolism of lipids (Silva et al., 

Fig. 5. Venn diagram showing number of genome-wide significant (P < 0.00005) variants under each model (D1, D2, R1, R2) 
Legend. The number of genome-wide significant variants are reported if present only under D1, D2, R1, R2 models or if present under the combination of one, two, 
three, or four models. 

Fig. 6. Markers with maximum logarithm of the odds score (LOD) per each 
inheritance model. 
Legend. D1: dominant, complete penetrance, D2: dominant, incomplete 
penetrance R1: recessive, complete penetrance R2: recessive, incomplete 
penetrance (MYH7 = myosin heavy chain 7, MYO1F = myosin IF, SEMA3C =
semaphorin 3C). 
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2014), generic transcription pathway (Rui, 2014), transport of small 
molecules (Jaberi et al., 2021), neuronal system (Tumminia et al., 
2018), hemostasis (Arsana et al., 2022), axon guidance (Satake et al., 
2021), nervous system development (Lundqvist et al., 2019), signaling 
by receptor-tyrosine kinases (Majumder et al., 2019), cytokine signaling 
in immune system (Donath et al., 2019), sensory perception (Al-Ru-
beaan, 2021), G-protein coupled receptor-downstream signaling (Bare-
lla et al., 2021), expression and translocation of olfactory receptors 
(Shepard et al., 2019), and infectious disease (Carey et al., 2018)). 

Of note, the mitogen-activated protein kinase 10 (MAPK10) gene is 
part of the pathway involved in hyperglycemia-induced myocardial 
infarction (Deng et al., 2022). 

In conclusion, the findings presented in this article contribute valu-
able insights into potential mechanisms underlying T2D pathogenesis, 
opening doors for further research. Interestingly, the GPR142 is a known 
potential target for the treatment of T2D (Guo et al., 2016) and obesity 
and reduction of cardiovascular risk (Strassheim et al., 2021), which 
paves the way for personalized approaches to T2D management. 
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