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A B S T R A C T

Low milk supply (LMS) poses a significant challenge to exclusive and continued breastfeeding, affecting ~10% to 15% of mothers. Milk
production is intricately regulated by both endocrine and autocrine control mechanisms, with estrogens and progesterone playing pivotal
roles in this process. In addition to endogenously produced hormones, external substances capable of interfering with normal hormonal
actions, including phytoestrogens, mycoestrogens, synthetic estrogens, and hormonal contraceptives, can influence milk production. The
effects of these extrinsic hormones on milk production may vary based on maternal body mass index. This comprehensive review examines
the multifaceted causes of LMS, focusing on the involvement of estrogens, progesterone, and related external factors in milk production.
Furthermore, it investigates the interplay between hormonal factors and obesity, aiming to elucidate the endocrine mechanisms underlying
obesity-associated LMS. Insights from this review provide valuable perspectives for developing interventions to improve milk production
and address the challenges associated with LMS.
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Statement of Significance:
This review constitutes a pioneering effort to integrate endogenous and exogenous hormonal factors, providing valuable insights into the

complex endocrine mechanisms associated with low milk supply in the context of obesity. Particular emphasis is placed on the significance of
hormone production and accumulation within adipose tissue.
Introduction

Human milk is the optimal food for infants, providing nutri-
tional, immunologic, and developmental advantages that extend
into childhood and adulthood [1,2]. WHO and UNICEF recom-
mend that mothers initiate breastfeeding within 1 h of giving
birth, exclusively breastfeed for the first 6 mo, and continue
breastfeeding �2 y and beyond [3]. However, as reported by
UNICEF global data for 2015–2021, only 47% of infants were
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breastfed within an hour of birth, while 48% were exclusively
breastfed �5 mo. Additionally, only 65% of infants, irrespective
of their exclusive breastfeeding status, continued to be breastfed
at 12–23 mo [4]. This illustrates that there are still persistent and
significant barriers to successful breastfeeding. A variety of
reasons for terminating breastfeeding are reported by mothers,
among which perceived lowmilk supply (LMS) is one of the most
common [5–7]. Actual LMS is believed to occur in ~10% to 15%
of mothers, and due to the increasing prevalence of obesity and
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diabetes, which is associated with LMS, this rate is likely to be
higher [8,9]. Hence, identifying and addressing the underlying
biochemical factors that contribute to LMS is crucial to
increasing breastfeeding rates.

Milk production is controlled at 2 levels. At the systemic level,
signals are transmitted to the mammary gland via the endocrine
system, while local control or autocrine regulation occurs
through a feedback control system in response to components in
the milk [10]. The complex interplay of these regulatory mech-
anisms involves multiple hormones, including estrogens and
progesterone, 2 key reproductive hormones that play a critical
role in mammary gland development [11,12]. Aside from the
naturally occurring estrogens and progesterone, external chem-
icals that interfere with normal hormone actions can also affect
milk production [13,14]. Mothers are exposed to these external
factors consciously or unconsciously through their daily diet,
personal care products, plastics, packaging materials, pesticides,
and pharmaceuticals, such as ethinylestradiol, cimetidine, and
fenofibrate [15,16]. Although most external chemicals are not as
potent as endogenous hormones [17], due to the continuous
exposure and persistent accumulation of external chemicals
[18], their roles in milk production are worthy of investigation.

In this review, we will provide an overview of the causes of
LMS and examine the roles of estrogens, progesterone, and
related external factors in milk production. This review aims to
explore potential endocrine explanations for LMS and provide
insights into developing effective interventions for improving
milk production and supporting breastfeeding.

Causes of LMS

Extrinsic causes
Extrinsic causes of LMS include those that limit the removal of

milk from the breast. Frequent and effective milk removal plays a
vital role in the development of robust milk production, with
early initiation of infant suckling recognized as one determinant
of successful breastfeeding [19,20]. Therefore, some infant
conditions and behaviors that affect suckling ability are known
to have a major impact on milk removal. Preterm infants with
immature suckling skills and infants who have undergone pro-
longed labor may be too weak to latch to the breast and suckle
effectively [21]. Anatomic abnormalities that impede suckling,
such as cleft palate and ankyloglossia, as well as congenital
disorders affecting infant behaviors, such as hypothyroidism,
Down syndrome, and neurologic disturbances, can also impact
milk removal and stimulation of the breast causing a delay in the
onset of lactation [2]. Further, feeding practices such as
time-limited feeds and feeding schedules that reduce breast-
feeding frequency can result in inadequate milk removal with
subsequent downregulation of milk production [22].

Importantly, sociocultural factors must be considered as some
cultural beliefs and lack of breastfeeding knowledge, prelacteal
feeding, or feeding of substances other than breast milk in the
days after birth is widespread across the world, especially in low-
and middle-income countries [23]. Prelacteal feeding is associ-
ated with delayed secretory activation and shorter breastfeeding
duration [24]. Furthermore, advertising of commercial milk
formula products has increased their popularity and use, leading
some mothers to introduce formula supplementation as they
believe it to be equal to or better than breast milk [25,26]. With
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both prelacteal and formula feeding, milk removal from the
breast through breastfeeding is reduced, thereby reducing
maternal milk production via autocrine control.

LMS can also be attributed to altered breast anatomy resulting
from external factors, including previous breast surgery and
nipple piercing, as these procedures disrupt the milk ducts and
consequently hinder milk removal [27–29]. Moreover, shorter
lactation duration and LMS have been observed in smoking
mothers [30–32]. Although there is a debate as to whether this is
a result of lower breastfeeding motivation or a physiologic effect
[33], it has been reported that nicotine from cigarettes can
reduce maternal prolactin concentrations and affect the normal
suckling activities of infants [34,35]. Further, recent research
indicates that maternal exposure to endocrine-disrupting chem-
icals (EDCs) is associated with lower rates of breastfeeding
initiation and shorter breastfeeding duration [13,36]. Numerous
EDCs have been found to impact the development or functions of
key organs involved in lactation, including the pituitary gland,
mammary gland, and placenta [11].
Intrinsic causes
Intrinsic causes of low milk production include develop-

mental and endocrine conditions that alter glandular tissue
development and function. Breast hypoplasia is a primary
reason for an inherent inability to produce sufficient milk
[37]. Features of hypoplasia include a wide intermammary
space, breast asymmetry, and a tubular shape of the breasts
[38]. Women with hypoplasia may not experience breast
development during pregnancy and lack sufficient glandular
tissue to produce enough milk to meet their newborn infant’s
needs [37]. At the genetic level, zinc transporter mutations are
linked to altered mammary gland development and function
during lactation [39,40]. For example, Thr288Ser mutation in
ZnT2 (SLC30A2) has been identified in a sample of women
with LMS. This mutation alters lysosome function and cell
energetics, thus impairing critical functions of the mammary
epithelial cells (MECs) [41].

Increasing evidence also suggests that maternal metabolic
disorders are associated with LMS. Gestational diabetes mellitus
(GDM) is the most common pregnancy complication and is
increasing in prevalence globally [42]. A few studies have found
that women with GDM are at greater risk of delayed secretory
activation and LMS [43–45]. Insulin regulates the expression of
genes involved in milk protein synthesis, including signal
transducer and activator of transcription 5 (STAT5a) and
E74-like factor 5, which are key components of prolactin
signaling [46,47]. Therefore, insulin resistance might be a po-
tential mechanism underpinning the link between GDM and LMS
that has been shown in a recent case series [43]. There is no
doubt that pre-existing type 1 and type 2 diabetes mellitus
(T1DM and T2DM) are also associated with poor breastfeeding
outcomes [48]. As compared with women without diabetes,
women with T1DM had lower breastfeeding rates and shorter
breastfeeding duration [49]. Moreover, delayed secretory acti-
vation was observed in women with T2DM as well as lower rates
of exclusive breastfeeding at 4 mo postpartum [50]. In addition
to diabetes, women with polycystic ovary syndrome (PCOS) may
have lower rates of breastfeeding exclusivity and duration [51,
52]. PCOS affects 9%–21% women of reproductive age, and key
features of insulin resistance and androgen excess might explain
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the hormonal mechanisms by which PCOS may impair lactation
[53,54]. However, one study indicated that the suboptimal
breastfeeding outcomes associated with PCOS are related to
maternal obesity rather than PCOS status per se [55], with
obesity identified in �88% of women with PCOS [56].

Obesity is widely recognized as a risk factor for a range of
metabolic disorders, including GDM, T2DM, and PCOS
[56–58]. Additionally, obesity itself can affect breastfeeding
and be a contributing factor for LMS. Compared to women
who have a normal BMI, women who are overweight or obese
are less likely to initiate, exclusively breastfeed, or continue
breastfeeding [59,60]. Women with obesity may have reduced
ductal branching and impaired alveolar development as a
negative consequence of increased fat deposition, similar to
that observed in rodent studies [61]. Adipose tissue is a sig-
nificant peripheral source of aromatase activity in women, and
steroid hormones are produced and stored in adipose tissue
[62,63]. Coupled with the fact that local estrogen production
is correlated with obesity [64, 65], Knight [66] hypothesized
that local estrogen production by aromatization might account
for the shorter breastfeeding duration observed in women with
obesity. It is also postulated that these women may have a
delayed decline in blood progesterone concentration after
birth as a result of the progesterone produced or stored in
excess adipose tissue [66–68]. Another potential reason for the
shorter breastfeeding duration associated with obesity may be
pervasive exposure to EDCs [15,36,69]. These EDCs are known
to alter endocrine regulation by acting directly through
cellular steroid receptors within the mammary gland or by
influencing the synthesis of estrogens [11]. Darbre [70] has
suggested a potential vicious cycle between obesity and EDCs,
whereby EDCs act as obesogens and increase the amount of
body fat, which in turn results in greater retention of lipophilic
EDCs. The greater amount of adipose tissue in large breasts
may produce or store higher levels of endogenous steroid
hormones and environmental lipophilic chemicals, ultimately
exerting an adverse impact on milk production. Moreover,
health care providers have reported that when compared to
Figure 1. Potential cause

3

women with obesity and women with large breasts, women
with both obesity and large breasts face greater challenges in
initiating breastfeeding [71]. Some studies have shown that
women with large breasts find it more difficult to position
their infants for breastfeeding [72,73]. Although the subopti-
mal breastfeeding outcomes associated with obesity are likely
multifactorial, evidence of endocrine disruption deserves
further investigation.

Figure 1 integrates the causes of LMS. The remainder of the
review will discuss the roles of estrogens, progesterone, and
related external factors affecting milk production, thereby sup-
porting the endocrine explanations for obesity-associated LMS.
The roles of estrogens and progesterone in milk
production

Estrogens
Estrogens are a type of 18-carbon steroid that derive from

cholesterol and are predominantly produced by the ovaries and
placenta [74]. The 3 most common endogenous estrogens are
estrone (E1), 17β-estradiol (E2), and estriol (E3), with E2 being
the most potent and extensively studied form [75]. Although E1
and E3 can interact with estrogen receptors, their binding af-
finity is typically lower [76], resulting in limited research
attention concerning their implications for lactation. As sum-
marized in Table 1, E2 is involved in the development of the
breast during pregnancy by stimulating prolactin secretion from
the anterior pituitary and increasing prolactin receptor expres-
sion in the mammary epithelium [77–79]. It has been shown that
E2 promotes lipid formation in mammary epithelium cells via
the regulation of lipid synthesis enzymes [80,81]. Nevertheless,
during the subsequent lactation period, estrogens exert a sup-
pressive effect on milk production. According to a prospective
observational study of 91 women, there was a negative associ-
ation between plasma E2 concentration and milk output at 4 wk
postpartum [82]. It was also demonstrated in bovine studies
that E2 injection decreased milk production and accelerated
s of low milk supply.



TABLE 1
The roles of estradiol and progesterone in lactation

Hormone Stage Study model Effects on lactation Negative (�) or Positive (þ) or No effects (�) Refs.

Estradiol Pregnancy Mouse � Stimulates MECs to promote alveologenesis þ [78]
In vitro � Mammary epithelium proliferation þ [79]
In vitro � Promotes lipid formation in MECs þ [80,81]
Human � Ensures adequate prolactin secretion and permits lactogenesis in

response to prolactin
þ [77]

Established lactation Cow � Decreases milk production � [83]
Cow � Decreases milk production � [84]

� Increases lactose in plasma and urine
� Loss of mammary TJ integrity

In vitro � Enhances apoptotic processes in MECs � [85]
Postweaning Cow � Accelerates mammary gland involution � [83]

Mouse � Increases inflammation, cell death, and adipocyte repopulation � [86]
Progesterone Pregnancy Mouse � Mammary epithelium proliferation þ [91]

Mouse � Ductal morphogenesis þ [92]
In vitro � Promotes lipid formation in MECs þ [80, 81]
In vitro � Blocks glucocorticoid receptors in mammary tissue � [93]
Rabbit � Blocks the ability of prolactin to increase the number of prolactin

receptors in the mammary gland
� [94]

Rabbit � Prevents casein mRNA translation � [95]
In vitro � Regulates lactose synthesis and acts to repress the formation of

α-lactalbumin throughout pregnancy
� [96]

1–4 d postpartum Progesterone withdrawal triggers:
Human � secretory activation þ [97,98]
Mouse � mammary TJ closure þ [99]
Human � prolactin receptor signaling via STAT5 þ [100]

Established lactation Rat � Inhibits apoptosis in the presence of the normal suckling stimulus þ [101]
Rat � No effects on milk production � [102]

Abbreviations: MEC, mammary epithelial cell; STAT, signal transducer and activator of transcription; TJ, tight junction.
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involution during the drying off period [83,84]. If a high con-
centration of E2 persists for long periods of time, the mammary
tight junctions (TJs) can be disrupted and result in the transfer of
lactose from milk to plasma or urine [84]. Additionally, E2 en-
hances apoptotic processes in bovine MECs, and this may
contribute to the negative effects on milk production [85]. After
weaning, E2 promotes mammary gland involution by increasing
inflammation, cell death, and adipocyte repopulation, which was
described in a mice model [86].

Estrogens are also produced in extragonadal sites and act
locally as paracrine or even intracrine factors [87]. Studies have
shown that adipose tissue contains high levels of the
estrogen-metabolizing cytochrome P450 enzymes, which allow
the conversion of androgens to estrogens [88]. Hence, local es-
trogen production within mammary adipose tissue could poten-
tially explain LMS in women with obesity or other obesity-related
metabolic disorders [66]. In fact, one study found that women
with prepregnancy overweight/obesity had a delayed decline in
serum E2 concentration at 48 h postpartum, whichwas correlated
with delayed onset of secretory activation [89].

Progesterone
Progesterone is a 21-carbon steroid hormone made from

cholesterol. During the menstrual cycle the majority is produced
by the corpus luteum in the ovary, whereas during pregnancy the
placenta is the main source of progesterone [90]. Antenatal
serum progesterone levels have a positive association with
postnatal milk production [82], because they promote mammary
epithelium proliferation and ductal morphogenesis during
pregnancy [91,92]. At the same time, however, progesterone
blocks lactogenesis in the antenatal period, due to its suppression
of prolactin and glucocorticoid receptors in mammary tissue [93,
4

94]. Moreover, it was also reported that progesterone inhibits
the synthesis of α-lactalbumin, casein, and lactose, thereby
inhibiting the onset of lactogenesis [95,96]. It is not until after
the placenta is delivered following birth that progesterone con-
centration declines rapidly, which triggers the onset of secretory
activation [97,98]. The immediate withdrawal of progesterone
also triggers the closure of mammary TJs and prolactin receptor
signaling via STAT5, which are required for copious milk pro-
duction [99,100]. Additionally, progesterone appeared to inhibit
apoptosis in the lactating rat mammary gland in the presence of
normal suckling stimulus [101]. Despite this, progesterone is
shown to have little effect on milk production. This is evident
from studies conducted on rats, where the administration of 2 mg
of progesterone injections during the first or second week after
parturition did not markedly affect lactation [102].

Feh�er et al. [103] reported that the human adipose tissue:
serum concentration ratio of progesterone is 6.3. This ratio is
even higher in individuals with obesity, reflecting the signifi-
cantly higher concentration stored in adipose tissue. As a bovine
study has shown substantial progesterone to be sequestrated in
adipose tissue that may not be released at parturition [104], it
has been speculated that progesterone sequestration in adipose
tissue might impair the onset of secretory activation in women
with obesity [66]. However, studies comparing serum proges-
terone concentrations between prepregnant obese and healthy
BMI groups found no significant differences in the rate of decline
of serum progesterone concentrations from 37 wk of gestation to
48 h postpartum and from 48 h to 7 d postpartum [89,105].
Nonetheless, this hypothesis merits further investigation with
larger sample sizes and sequential sampling across the early
postpartum period. Another aspect to consider is that serum is
not the sole pathway for progesterone excretion. During



X. Jin et al. Advances in Nutrition 15 (2024) 100129
lactation, progesterone stored in adipose tissue can also be
released through breast milk, given its high affinity for milk fat
[106]. To date, no studies have reported a comparison of human
milk progesterone concentrations between groups of women
with normal, overweight, and obese BMI classifications.

External factors affecting milk production

Phytoestrogens
Phytoestrogens, also known as “dietary estrogens,” are es-

trogenic compounds found in various plant-based sources,
including legumes, flaxseed, fruits, vegetables, and cereals
TABLE 2
The roles of exogenous hormones in lactation

Exogenous hormones Study model Effects on lactation Nega

Phytoestrogens Biochanin A In vitro � Decreases intracellular
� Downregulates mRNA
and α-lactalbumin

� Decreases activated ST
Genistein In vitro � Inhibits ductal branchi

� Induces apoptosis in M
� Decreases intracellular
� Downregulates mRNA
and α-lactalbumin

� Downregulates express
by a decrease in STAT5

� Changes expression of
p-ethylphenol In vitro � No effects on bovine M

� Upregulates β-casein an
Formononetin In vitro � Increases activated STA

� Decreases intracellular
Daidzein In vitro � Increases claudin-3 [th

� Increases activated STA
� Upregulates β-casein, w
� Does not inhibit milk p
� Weakens TJ barrier fun

Equol In vitro � Increases claudin-3
� Increases activated STA
� Decreases activated ST
� Upregulates β-casein, w

Coumestrol In vitro � Inhibits ductal branchi
� Decreases intracellular
� Downregulates mRNA
α-lactalbumin

� Downregulates express
by a decrease in STAT5

� Changes expression of
� Induces apoptosis in M

Mycoestrogens ZEN Human � Delays onset of secreto
Rat � Enhances damage and

� Coexposure with AFB1
Nonpersistent
synthetic
estrogens

BPA Rat � Delays mammary gland
� Modifies synthesis and
fatty acid composition

Rat � Delays mammary gland
� Lower milk production
� Modifies milk protein s

Human � Increases risk of early b
BPS Mouse � Alters mammary gland

� Alters prolactin signali
� Alters expression of est
� Causes difficulties in in

Phthalates Rat � Impaired mammary gla
Human � No significant associati

Abbreviations: AFB1, aflatoxin B1; BPA, bisphenol A; BPS, bisphenol S; M
transcription; TJ, tight junction; ZEN, zearalenone.
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[107]. They are classified into 3 main classes: isoflavones, cou-
mestans, and lignans [108]. Due to their structural similarity to
E2, these polyphenolic compounds can interact with estrogen
receptors, exerting estrogenic or antiestrogenic activities in the
body [109]. Investigations into the impact of phytoestrogens on
milk production have primarily relied on animal models and in
vitro data. Most attention has been devoted to isoflavones,
including biochanin A, formononetin and their metabolites
genistein, daidzein, p-ethylphenol, and equol. Tsugami et al.
[110–113] and Kumai et al. [114] have demonstrated using
mouse and cow models that isoflavones have different effects on
mammary gland development, TJ formation, and expression of
tive (�) or Positive (þ) or No effects (�) Refs.

and secreted β-casein � [110,112]
expression of whey acidic protein, lactoferrin

AT5 and increased activated STAT3
ng and alveolar formation � [111–114]
ECs
and secreted β-casein
expression of whey acidic protein, lactoferrin,

ion of prolactin receptor and STAT5, accompanied
phosphorylation

TJ proteins, weakens barrier function
ECs � [110]
d whey acidic protein þ [112]
T3 � [110,112]
and secreted β-casein
e main component for less-permeable TJs in lactation] þ [110,112]
T5
hey acidic protein, and α-lactalbumin
roduction � [111,114]
ction � [113]

þ [110–112]
T5
AT3
hey acidic protein, and α-lactalbumin
ng and alveolar formation � [112–114]
and secreted β-casein
expression of whey acidic protein, lactoferrin, and

ion of prolactin receptor and STAT5 accompanied
phosphorylation

TJ proteins and weakens TJ barrier function
ECs
ry activation � [124]
toxicity caused by AFB1 � [125]
reduces lactation capacity
alveolar maturation during secretory activation � [134]
secretion of milk fat, altered milk lipid content, and

differentiation � [135]

ynthesis and secretion
reastfeeding termination � [132,133]
histoarchitecture � [136]
ng
rogen receptors
itiating breastfeeding
nd development � [137]
on with breastfeeding exclusivity or duration � [138]

EC, mammary epithelial cell; STAT, signal transducer and activator of
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milk components, thereby affecting milk production (Table 2).
Specifically, biochanin A and its metabolite genistein have been
shown to inhibit mRNA expression and secretion of both β-casein
and lactoferrin [110,112]. Biochanin A also reduced activated
STAT5 and increased activated STAT3, which are the negative
indicators for milk component production and TJ barriers [110].
Genistein can induce apoptosis in MECs and alter the expression
of TJ proteins, leading to weakened barrier function [113].
Furthermore, formononetin had an adverse effect on milk pro-
duction by decreasing intracellular and secreted β-casein and
increasing activated STAT3 [110,112]. In contrast, the effects of
daidzein remain uncertain. Most studies suggested that daidzein
had no inhibitory effects on milk production [110–112,114],
whereas one study indicated its potential to weaken TJ barriers
[113]. Regarding secondary metabolites, both p-ethylphenol and
equol have been associated with positive effects on milk pro-
duction [110–112]. It appears that inhibitory actions of the up-
stream isoflavones may be rendered ineffective through
metabolic conversion by intestinal bacteria [112]. Apart from
isoflavones, coumestrol has also been the focus of some research
with in vitro studies using mouse MECs showing that coumestrol
has an inhibitory effect on milk production, similar to the effects
observed with biochanin A and genistein [112–114].

Interestingly, phytoestrogens seem to have a beneficial
impact on obesity, with reduced weight and adipose tissue
observed in mice exposed to phytoestrogens [115]. However,
results of clinical studies on the influence of phytoestrogens on
human body composition and the prevalence of obesity are
inconsistent [116]. It is suggested that the effects of phytoes-
trogens on adipogenesis are dose-dependent, with inhibition of
adipogenesis at low doses and stimulation of adipogenesis at
high doses [117]. Moreover, the presence of specific intestinal
bacteria capable of producing bioactive metabolites is another
important factor [118,119]. For instance, in individuals who do
not produce equol, overweight and obesity are more common,
and supplementation with isoflavones is less effective in
improving serum glucose and low-density lipoprotein choles-
terol concentrations [120]. Overall, considering that obesity is
one of the risk factors for LMS, harnessing the beneficial prop-
erties of phytoestrogens to alleviate obesity may have the po-
tential to positively influence milk production.

Mycoestrogens
Mycoestrogens are secondary fungal metabolites that can

mimic natural estrogens by acting as ligands for estrogen re-
ceptors [121]. One of the most prevalent mycoestrogens is
zearalenone (ZEN), primarily produced by the Fusarium species.
ZEN exhibits a strong binding affinity to estrogen receptors due
to its structural similarity to E2 [122]. Despite the prevalence of
ZEN exposure among reproductive-age women [123], there are
limited reports on its effects on milk production. Memiş et al.
[124] has reported that mothers with delayed onset of secretory
activation were likely to have higher ZEN levels in their breast
milk, suggesting ZEN exposure may contribute to lactation
initiation difficulties. Another study using a rat model demon-
strated that coexposure to ZEN and aflatoxin B1 (AFB1) could
reduce lactation capacity, with ZEN enhancing the damage and
toxicity caused by AFB1 [125]. This might be attributed to the
ability of ZEN to impact various sex hormone concentrations by
altering the function of reproductive organs, such as the ovary,
6

uterus, and placenta [126]. However, it has also been shown that
low-dose ZEN partially alleviated the damage caused by AFB1
[125], possibly due to its promotion of cell proliferation and
metabolism to repair damaged cells [127].

From the limited studies available, it appears that obesity can
influence the toxicity of ZEN. Gonz�alez-Alvarez et al. [128] found
that obesity acted additivelywith ZEN-induced toxicity in ovaries.
Another study reported an increase in the concentration of
serum-free ZEN with an increase in BMI [123]. This occurred
despite a decline in total ZEN and a trend to decreased circulation
of ZEN conjugates. Therefore, mothers with obesity are more
likely to convert ZEN into free forms, which are considered more
biologically active and potent than conjugated forms [129].

Synthetic estrogens
The vast majority of what are commonly referred to as EDCs

are synthetic estrogens, which are widely used in everyday
consumer products and industrial manufacturing processes
[130]. They can be categorized as persistent and nonpersistent
chemicals. Persistent organic pollutants (POPs), listed in the
Stockholm Convention, are known for their significant threats to
human health and so have been subjected to elimination or re-
striction in production [131]. These POPs have been shown to
have adverse effects on mammary gland development and
lactation. Criswell et al. [36] summarized that per- and poly-
fluoroalkyl substances can reduce breastfeeding duration by
impairing lactogenesis and suppressing endocrine signaling,
while the associations of halogenated aromatic hydrocarbons
and organochlorine pesticides with breastfeeding duration have
been modest or equivocal in epidemiologic studies. Besides
POPs, emerging evidence suggests that nonpersistent chemicals
may also influence milk production (Table 2). Recent observa-
tional studies have found a link between high exposure to
bisphenol A (BPA) during pregnancy and shorter breastfeeding
duration [132,133]. Rodent studies have revealed that offspring
of BPA-exposed rats experienced delayed mammary gland dif-
ferentiation and alveolar maturation as well as alterations in
milk protein and fat compositions [134,135]. Similarly, pups
treated with bisphenol S were less likely to initiate lactation
[136]. Further, toxicologic research has indicated that phtha-
lates may impair mammary gland development through estro-
genic mechanisms [137]. However, one study involving 725
women found no association between 9 maternal pregnancy
urinary phthalate metabolites and the duration of exclusive or
any breastfeeding [138].

As previously mentioned, the obesogenic effects of synthetic
estrogens contribute to the accumulation of adipose tissue,
which in turn can act as a reservoir for enhanced retention of
lipophilic chemicals [15,70]. Considering the established asso-
ciations between obesity and metabolic disorders, it is plausible
that synthetic estrogens may also be implicated in maternal
metabolic disorders [139]. This is supported by epidemiologic
evidence linking high dioxin levels to an increased risk of dia-
betes and altered glucose metabolism [140]. Collectively, the
impact of synthetic estrogens on milk production can occur
through direct impairment of mammary gland development or
indirect effects on maternal metabolic systems. Further research
is warranted to investigate the influence of various synthetic
estrogen exposures across different BMI groups and their impli-
cations for lactation outcomes.
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Hormonal contraceptives
In addition to dietary or environmental intake of exogenous

hormones, breastfeeding mothers may also use hormonal forms
of contraception that contain estrogens and/or progesterone.
Hormonal contraceptives are generally classified as progestin-
only contraceptives (POCs) administered orally, by injection,
implant, or intrauterine device, and combined hormonal con-
traceptives (CHCs) administered orally. Their effects on milk
production have been systematically summarized in recent
studies [141–144]. Although the findings are not entirely
consistent, the overall weight of evidence suggests that POCs
have no detrimental impact on breastfeeding outcomes [142,
144]. It is recommended to initiate POCs after the onset of
secretory activation considering potential adverse effects on
lactation as well as the risk of intrauterine device expulsion and
prolonged vaginal bleeding [142,145]. In the case of CHCs, some
studies have reported decreased breastfeeding duration and
higher rates of supplemental feeding among mothers using
CHCs, whereas others have found no differences in these pa-
rameters [141,143,146]. Use of CHCs before 6 wk postpartum is
less common, with the US Medical Eligibility Criteria for Con-
traceptive Use suggesting that CHCs can be used with no re-
strictions in breastfeeding women beyond 42 d postpartum
[147]. However, several studies have observed lower exclusive
breastfeeding rates and reduced breastfeeding duration even
when CHCs were initiated after 42 d postpartum [148,149]. This
may explain whyWHO guidelines contraindicate the use of CHCs
in breastfeeding mothers between 6 wk and 6 mo after birth
[150]. It is advisable that in the weeks following the onset of
secretory activation, progestin-only methods of contraception
are used for breastfeeding women. Combined hormonal methods
of contraception containing estrogen and progestin may be
considered as a viable alternative �6 wk postpartum in breast-
feeding women.

The altered pharmacokinetics observed in obesity provide a
biological basis for potential changes in the metabolic effects of
hormonal contraception in women with obesity [151]. For
example, elevated levels of lipoprotein in women with obesity
may compete with steroid contraceptives for binding sites on
albumin, leading to higher concentrations of unbound forms
[151]. Additionally, decreased levels of circulating sex
hormone-binding globulin in women with obesity may
contribute to higher levels of free and bioactive estrogens and
progestins available to hormonally sensitive tissues [152,153].
Combined with higher levels of locally produced and stored
steroid hormones, the use of hormonal contraceptives could
potentially exert a more pronounced effect on milk production in
women with obesity. Therefore, it is crucial to investigate
whether the influence of hormonal contraceptives on milk pro-
duction varies across populations with diverse BMI.

Discussion

This review provides a comprehensive overview of the causes
of LMS and highlights the significance of maternal obesity. It
explores the roles of estrogens, progesterone, and related
external factors in influencing milk production. Estrogens and
progesterone contribute to mammary gland development, regu-
late prolactin actions, and participate in the synthesis of milk
components. Maternal exposure to hormones from external
7

sources, such as diet or environmental factors, can interact with
estrogen receptors, impacting milk production with potential
variations based on maternal BMI. However, the current under-
standing of human lactation is limited, primarily relying on an-
imal studies and in vitro data. Furthermore, existing
epidemiologic studies have predominantly focused on serum
hormone concentrations, neglecting the important excretion
route of breast milk, indicating the need for future in-
vestigations. The dose-dependent effects of exogenous hormones
require further exploration, as they hold promise for potential
strategies to mitigate the risks of obesity-associated LMS through
low-dose interventions. Moreover, additional research is neces-
sary to reassure the optimal timing for initiating different hor-
monal contraceptives in breastfeeding women. Importantly, the
implications and interactions of these factors in diverse BMI
populations remain to be elucidated. Advancing our under-
standing of lactation endocrinology through studies in these
areas will provide valuable insights for the development of
effective interventions aimed at optimizing milk production.
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