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A B S T R A C T

The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and
also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut
epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe
complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest
in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle,
displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting
anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supple-
mentation in preventing dysfunction of the intestinal epithelium.
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Statement of Significance
This article summarizes research findings on the health-beneficial effects of α-ketoglutarate in maintaining intestinal homeostasis and explores

the associated underlying mechanisms.
Introduction

The intestinal epitheliummediates the absorption of nutrients
while serving as a barrier against foreign, potentially harmful
compounds present in the lumen [1]. Proper intestinal barrier
function is vital for overall health and the prevention of chronic
inflammatory responses [2]. Unfortunately, the prevalence of
gut barrier dysfunction continues to rise [3]. The intestinal
epithelium is affected by multiple factors, including dietary,
immunological, and microbial elements [2]. This underscores
the need for intervention strategies that protect the intestinal
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epithelium against impairment and promote its recovery to
normal conditions following exposure to stressors.

In recent years, the health-beneficial effects of α-ketogluta-
rate (AKG), an intermediate in the tricarboxylic acid (TCA)
cycle, have garnered increasing recognition. These beneficial
properties include the attenuation of adipose tissue weight
gain in high-fat diet-fed mice [4,5], the extension of lifespans
in flies [6], and the inhibition of angiogenesis in cancer cells
through the modulation of hypoxia-inducible factor 1-α and
vascular endothelial growth factor expression under hypoxia
conditions [7]. Along with these effects, AKG displays both
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antioxidative and anti-inflammatory properties [8–10]. This
article aims to provide a comprehensive overview of existing
studies that explore the beneficial effects of AKG on intestinal
health. It will shed light on the mechanisms through which
AKG maintains epithelial homeostasis and combats various
disease conditions.
AKG chemistry
AKG, an intermediate of the TCA cycle, exerts a variety of ef-

fects [11]. It aids in the production of amino acids, acts as an
antioxidant agent, and regulates gene expression related to
development and aging [12]. Additionally, AKG functions as a
bridge, linking carbon metabolism with nitrogen metabolism
[13]. In the intestines, AKG serves diverse functions, including
promoting protein synthesis and acting as an oxidative fuel source
[14].

The synthesis of AKG primarily occurs through 2 pathways:
oxidative decarboxylation of isocitrate or oxidative deamination
of glutamate (Figure 1). Isocitrate dehydrogenase (IDH) catalyzes
the former,whereas glutamate dehydrogenasemediates the latter
[15,16]. The intestinal epithelium receives additional sources of
AKG from gut bacteria synthesis and dietary intake [17,18].
α-Ketoglutaric acid, the conjugate acid of AKG, is present at low
yet detectable concentrations in many fruits and vegetables,
although in meager amounts compared to other organic acids
[18]. Given its involvement in the TCA cycle, AKG is a common
metabolite, but levels decline with age [19].

Studies have begun exploring the potential of AKG as a sup-
plement. Unlike glutamine, which displays poor stability in
water, AKG is stable and soluble [20]. Upon ingestion, dietary
AKG is largely absorbed and metabolized in the small intestine,
with low concentrations entering the bloodstream [21]. In
human studies, pure AKG or AKG salts are used at doses �30 g/d
[22–24].
FIGURE 1. Synthetic pathways of α-ketoglutarate. Isocitrate dehydrogenas
Glutamate dehydrogenase (GDH) catalyzes the reversible oxidative deami
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The intestinal epithelium in healthy and diseased
states

The intestinal epithelium plays a vital role in facilitating
nutrient absorption while serving as a protective barrier against
foreign potentially harmful compounds present in the lumen [1].
Both physical and chemical barriers, maintained by the epithelial
cells of the intestines, segregate the underlying host tissue and
immune system from contact with exogenous agents capable of
compromising homeostasis [25]. Physical barriers include tight
junction proteins linking epithelial cells together and mucus
produced by goblet cells [26,27], and chemical barriers are
established by Paneth cells that secrete antimicrobial peptides
[28].

In most mammals, the intestinal epithelial cells have a
relatively short lifespan, typically lasting 2–6 d before under-
going shedding. These cells are constantly renewed through
the proliferation of stem cells located in the crypts throughout
the intestinal tract [29,30]. Both the small and large intestines
contain crypts, but villi, finger-like protrusions that extend out
into the intestinal lumen, are exclusive to the small intestine.
The crypt-residing stem cells give rise to various differentiated
cell types, each with specialized functions. Among these,
goblet cells and Paneth cells, integral for protective functions,
are part of the secretory cell lineage. The secretory lineage
also includes hormone-producing endocrine cells [31]. The
majority of differentiated intestinal epithelial cells are enter-
ocytes, primarily responsible for the absorption of nutrients
[31,32].

The cells of the intestinal epithelium directly interact with
microbial communities and their metabolites, exerting influence
over host immune responses. For example, exposure to patho-
gens such as Listeria monocytogenes and Salmonella causes the
secretion of IL-8, promoting leukocyte infiltration [33]. Bacterial
LPS binds to receptors on intestinal epithelial cells, stimulating a
e (IDH) catalyzes the reversible oxidative decarboxylation of isocitrate.
nation of glutamate.
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proinflammatory signaling cascade involving the activation of
nuclear factor kappa-light-chain-enhancer of activated b [34].
Along with the production of chemokines and cytokines, contact
with bacteria triggers the production of reactive oxygen species
(ROS), which further stimulate signaling cascades such as those
involved with damage repair [35]. As an important mediator
between the gut lumen and the host, the intestinal epithelium is
critical for overall health, and its impairment characterizes
different disease states.

Many diseases, including autoimmune disorders such as in-
flammatory bowel diseases (IBDs) and diabetes, impair gut
epithelial barrier function [36–38]. IBDs encompass 2 condi-
tions, Crohn’s Disease (CD) and Ulcerative Colitis (UC), which
are characterized by specific components of the gastrointestinal
tract they affect [39]. CD may intermittently manifest across the
various components of the gastrointestinal tract, whereas UC is
confined to the colon. CD often involves ulceration and severe
bleeding, whereas UC is associated with complications like ab-
scesses and fistulas [39,40]. Although the exact etiologies of IBDs
remain to be fully elucidated, a combination of genetic, envi-
ronmental, and lifestyle factors contributes to the dysregulation
in innate and adaptive immune responses, driving these condi-
tions [41]. Effective management is vital to mitigate the risk of
further complications. Severe IBD increases the risk of overall
colonic cancer development, and the roles of both chronic
inflammation and immunosuppressors behind the development
of cancers such as colorectal cancer (CRC) are being investigated
[42,43].

CRCs pose a serious threat to a large proportion of the global
population. In 2018, CRCs ranked as the second leading cause of
cancer-related death [44]. Although early screening and the
promotion of lifestyle changes have proven effective in reducing
CRC incidence in some developed countries, others have wit-
nessed an increase in cases of early-onset CRCs [45]. Risk factors
contributing to the development of CRCs include personal and
family medical history, dietary patterns, cigarette use, alcohol
consumption, physical inactivity, as well as socioeconomic fac-
tors [46].

CRC is considered a heterogeneous disorder characterized by
diverse causative mechanisms leading to its development. Ge-
netic and epigenetic approaches have identified distinct subsets
within the disease [47]. The initiation of most CRCs involves the
formation of polyps, and the removal of these polyps, known as
polypectomy, has proven to be an effective strategy in reducing
CRC mortality [46,48]. Multiple genes have been identified as
contributors to the initiation and progression of CRC, with
adenomatous polyposis coli (APC) mutations being commonly
found in a vast majority of CRC cases [49]. Proto-oncogene B-Raf
mutations and the methylation of CpG islands at gene promoters
are frequently detected in polyps and tumors [50]. Aberrant
Wnt/β-catenin signaling contributes to metabolic reprogram-
ming favoring glycolysis, a phenomenon known as the Warburg
effect found in CRCs, partially through upregulation of pyruvate
dehydrogenase kinase 1 [51]. Mutations in IDH1 are also
observed in cancers, leading to elevated levels of the oncome-
tabolite, R(�)-2-hydroxyglutarate (2HG) [52]. The 2HG, a
competitive inhibitor of AKG, promotes colorectal tumorigenesis
[53]. The frequency of specific mutations and epigenetic modi-
fications differ across various demographics [50]. In addition,
patients with CRC experience alterations in the intestinal
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environment, including changes in microbial and metabolite
profiles [54]. The intricate and diverse mechanisms by which
CRCs can develop highlight the importance of safeguarding the
integrity of the intestinal epithelium against dysfunction.

Effects of AKG on mediators of inflammation
Proper protection against harmful agents present in the

lumen, such as free radicals or microbial compounds, requires a
controlled immune response. Improper immune responses can
result in unchecked inflammation, a characteristic feature of
conditions such as CD and UC. The immune homeostasis of the
gut involves communication between epithelial cells and im-
mune cells, including T cells and macrophages. These cells
dictate immune responses and impact each other largely through
the production of cytokines [55]. The dysregulation of these
cytokines can contribute to the inflammation characteristic of
CD and UC. CD patients display elevated concentrations of T
helper (Th)1 and Th17 cytokines, whereas UC patients tend to
exhibit increased concentrations of Th2 cytokines [56]. CD tissue
displays elevated concentrations of proinflammatory IL-17,
IL-23, and TNFα, whereas UC tissue shows elevated proin-
flammatory IL-4 and IL-13 [56,57].

Macrophages are ubiquitous immune cells found in almost
all tissues, performing both immune phagocytic activity
and tissue-specialized function [58,59]. Through the production
and release of cytokines and other signaling molecules, they
regulate immune responses such as inflammation as well as the
proliferation of epithelial progenitors [60]. Macrophages
can polarize into either proinflammatory M1 macrophages or
anti-inflammatory M2 macrophages depending on the stimuli
[61]. Apart from opposite effects on inflammatory status, M1 and
M2 macrophages exhibit metabolic differences. M1 macro-
phages favor glycolysis, whereas M2 macrophages demonstrate
greater mitochondrial oxidative phosphorylation and fatty acid
oxidation [62]. Dysregulated levels and activity of M1 macro-
phages can impair barrier function and contribute to intestinal
diseases, making them potential targets for the management of
inflammation and leaky gut [63].

Dietary AKG is effective in controlling the proinflammatory
signaling molecules in different animal models. Aged female
mice receiving a 2.0% AKG diet exhibited longer lifespans paired
with a reduced serum proinflammatory cytokine profile
compared to controls [64]. In dextran sulfate sodium (DSS)-in-
duced colitis mice, both 0.5% and 1.0% AKG added to their
drinking water ameliorated the induction of proinflammatory
IL-1α, IL-6, IL-17A, and IL-18 [65,66]. DSS-treated mice pro-
vided with 1.0% AKG loss less weight than their counterparts
[66]. Citrobacter rodentium-induced colitis mice receiving 0.5%
AKG in their drinking water ameliorated colon shortening and
tight junction protein suppression [67]. TNFα, interferon-γ, and
proinflammatory IL concentrations in serum were also decreased
[67]. In DSS/azoxymethane mice, 1.0% AKG supplementation
reduced inflammatory index and tumor number, associated with
decreased concentrations of IL-6, IL-22, IL-1b, and TNFα [68]. In
piglets, the LPS challenge increased phosphorylation of nuclear
factor kappa-light-chain-enhancer of activated B p65, which was
not observed in challenged pigs supplemented with 1.0% AKG
[10]. LPS challenge also decreased ileal villus height while
upregulating concentrations of proinflammatory cytokines such
as IL-6 and TNFα. Alterations to villus height and cytokine profile



FIGURE 2. Potential mechanisms by which α-ketoglutarate (AKG) ameliorates intestinal inflammation through targeting macrophage polarization
and T cell differentiation. AKG promotes polarization into anti-inflammatory M2 macrophages through epigenetic modifications and metabolic
reprogramming. It also shifts the balance between T cells 17 (Th17) and regulatory T cells (Treg) by downregulating IL-6 and RORγt while
upregulating TGF-β1/STAT5/FOXP3 signaling. These AKG-induced changes elevate concentrations of anti-inflammatory cytokines such as IL-10
and lower concentrations of proinflammatory cytokines such as IL-17. Black arrows represent promotive effects. Red lines represent inhibitory
effects. FOXP, forkhead box P; IL, interleukin; RORγt: RAR-related orphan recetor γ; STAT5: signal transducer and activator of transcription 5;
TGF-β, transforming growth factor-β.
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were mitigated by the addition of 1.0% AKG to the diet [69].
Carp fed low-protein diets supplemented with 0.4% AKG
exhibited reduced concentrations of IL-1b and IL-6α compared to
carp on low-protein diets without AKG supplementation [70].
The addition of AKG to a low protein feed improved the growth
parameters and body length [70].

Along with downregulating proinflammatory signaling mol-
ecules, AKG promotes anti-inflammatory cytokine concentra-
tions. IL-10 is an important anti-inflammatory cytokine that
suppresses the transcription of proinflammatory genes, and its
knockout in mice results in the spontaneous development of in-
testinal inflammation resembling CD [71,72]. AKG supplemen-
tation restored intestinal IL-10 concentrations in piglets
challenged with LPS [69]. In LPS-challenged piglets, dietary AKG
promoted regulatory T cell differentiation and suppressed Th17
cell differentiation in the intestine [69]. Aged mice receiving
AKG showed higher concentrations of IL-10 secreted by splenic T
cells [64]. Moreover, treatment with AKG upregulated IL-10 in
both cerebral and hepatic tissues subjected to ischemia/r-
eperfusion [73,74]. This effect was further confirmed in human
neuroblastoma SH-SY5Y cells, where transfection with IL-10
small interfering RNA significantly weakened AKG’s ability to
mitigate inflammation and apoptosis caused by Oxygen-Glucose
Deprivation/Reoxygenation, highlighting the mediating roles of
IL-10 [74].

AKG supplementation suppresses the M1 polarization elicited
by bacteria and bacterial LPS [75,76]. In adipocytes, AKG pro-
motes M2 polarization and upregulates concentrations of
ten-eleven translocation (TET) enzymes [77]. These
AKG-induced alterations to macrophages involve the promotion
of fatty acid oxidation and epigenetic modifications [75,78]. In
DSS-challenged mice, supplementation with 1.0% AKG reduced
markers of M1 macrophages and increased markers of M2
macrophages in colon tissues [66]. Additionally, staining of
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colonic tissue for the membrane protein F4/80, a pan macro-
phage marker, revealed lower macrophage infiltration in the
mice that received AKG [66]. Similarly, supplementation with
0.5% AKG ameliorated macrophage infiltration in the colon of
mice challenged with C. rodentium, as demonstrated by reduced
F4/80þ and CD11bþ staining [67]. Furthermore, 0.5% AKG in
drinking water decreased concentrations of CD11bþCD64bþ

macrophages in the spleen of mice subjected to DSS-induced
colitis [65]. CD64 serves as a marker for proinflammatory M1
macrophages [79].

In summary, AKG targets multiple components of the immune
system, such as T cells and macrophages, to combat dysregulated
responses and minimize the production of proinflammatory
signaling molecules (Figure 2). Through these mechanisms, AKG
mitigates damage to the intestinal epithelium in various animal
models of intestinal inflammation. Despite its demonstrated
ability to combat damage induced by different stressors in mice,
pigs, and carp, the potential of AKG to manage symptoms in
patients with IBD remains largely unexamined.

Antioxidant effects of AKG
Excessive reactive molecules such as ROS lead to oxidative

stress. Heightened oxidative stress and depletion of antioxidant
concentrations are observed in various disease states, including
IBDs [80,81]. ROS exposure can cause DNA damage [82]. Mac-
rophages produce ROS to kill bacteria [83]. Mitochondria also
are a major source of free radicals because of electron leakage
during oxidative phosphorylation [84,85]. Under normal con-
ditions, mitochondrial antioxidant defenses elicited through
transcription factors such as nuclear factor erythroid 2-related
factor 2 (NRF2) act as a safeguard against excessive oxidative
stress [86]. NRF2 is an important transcription factor that, when
stabilized, coordinates the induction of various antioxidant en-
zymes [87].



TABLE 1
In vivo studies demonstrating the antioxidant effects of dietary α-ketoglutarate

Model Dose/delivery Effect(s) of AKG supplementation Citation

Piglets challenged with H2O2 1% in diet Decreased serum MDA
Increased serum T-AOC, CAT, and SOD

[92]

Mice challenged with DSS 0.5% in drinking water Decreased serum MDA and H2O2.
Increased colon GSH.
Increased colon GSS and Nqo1

[65]

Mice challenged with C. rodentium 0.5% in drinking water Decreased serum MDA and H2O2. Increased colon GSS, Nrf2, and Nqo1 [67]
Piglets challenged with LPS 1.0% in diet Increased liver GSH-Px [94]
Carp on a low-protein diet 0.4, 0.8, or 1.2% in diet Increased intestinal SOD and GSH-Px [70]

Abbreviations: AKG, α-ketoglutarate; C. rodentium, Citrobacter rodentium; CAT, catalase; DSS, dextran sodium sulfate; GSH, glutathione; GSH-Px,
glutathione peroxidase; GSS, glutathione synthetase; H2O2, hydrogen peroxide; MDA, malondialdehyde; Nqo1, NAD(P)H Quinone dehydroge-
nase 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; SOD, superoxide dismutase; T-AOC, total antioxidant capacity.
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Proliferating cells located in crypts predominantly rely on
glycolysis for their energy needs. As cells transition toward the
apex of the villi, there is a shift toward oxidative phosphoryla-
tion, mirroring the gradient of cell proliferation compared with
differentiation [88]. The transcriptional coactivator peroxisome
proliferator-activated receptor-γ coactivator 1-α regulates mito-
chondrial biogenesis and exhibits a similar pattern of expression,
with low levels in crypts and high levels in villi [89]. The high
energy demand of the epithelium’s renewal and the presence of
foreign bacteria in the lumen pose a risk for the overproduction
of free radicals. Thus, antioxidant defense is crucial to prevent
dysfunction.

AKG possesses the ability to directly scavenge free radicals
and reduce oxidized compounds [8]. It reacts directly with
hydrogen peroxide to produce succinate and water [90,91].
Additionally, AKG offers protection against the formation of lipid
peroxidation products in the liver and kidneys as measured by
thiobarbituric acid reactive substances assay [9].

AKG demonstrates the ability to alleviate oxidative stress in
different animal models, leading to the restoration of vital anti-
oxidant enzymes (Table 1) [65, 67, 70, 92, 94]. For instance, in a
mouse model of C. rodentium-induced colitis, the provision of
0.5% AKG in drinking water reduced serum concentrations of
malondialdehyde and hydrogen peroxide [67]. Exposure to
C. rodentium decreasedmRNA amounts of glutathione synthetase,
Nrf2, and its downstream target, NAD(P)H dehydrogenase
quinone 1, in the colon, all of which were restored by AKG [67].
Improvements in goblet cell numbers and mucin production
accompanied the improvements in antioxidant signaling
conferred by AKG treatment [67]. Likewise, AKG protects against
oxidative stress induced by DSS treatment, normalizing mRNA
amounts of glutathione synthetase and NAD(P)H dehydrogenase
quinone 1 [65]. Shortening of the colon and damage to the
colonic epithelium caused by DSS treatment was also abrogated
by dietary AKG [65]. Inweaned piglets, the addition of 1.0%AKG
to the diet mitigated the negative effects of oxidative stress
induced by hydrogen peroxide injection,mitigating the decline of
serum concentrations of catalase and superoxide dismutase [92].
In piglets challenged with LPS, a diet supplemented with 1.0%
AKG blunted damage to the liver and increased glutathione
peroxidase activity in the liver [94]. In carp, a low-protein diet
reduced antioxidant capabilities, including total superoxide dis-
mutase, catalase, and glutathione peroxidase. The addition of
0.4% AKG restored antioxidant enzyme content and increased
intestinal Nrf2 mRNA amounts [70]. In vitro studies have also
shown that AKG normalizes antioxidant activity and reduces ROS
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production in intestinal porcine epithelial cells exposed to
hydrogen peroxide [92,95].

Intervention with AKG contributes to the restoration of
proper mitochondrial function. In vitro, 2 mM AKG restores
mitochondrial function in porcine intestinal epithelial cells
challenged with 100 μM hydrogen peroxide, leading to the re-
covery of adenosine triphosphate (ATP) production and
improvement in mitochondrial membrane potential [95].
Moreover, piglets challenged with LPS exhibited reduced intes-
tinal ATP concentrations, which were partially restored by sup-
plementation with 1.0% AKG [96]. In intestinal porcine
epithelial cells, 2 mM AKG treatment suppressed the negative
effects on respiration and ATP production induced by 200 μM
hydrogen peroxide exposure [92].

Unchecked mitochondrial dysfunction and the associated
oxidative stress render the intestinal epithelium for further
complications. As a radical-scavenging molecule and inducer of
antioxidant pathways, AKG helps control levels of free radicals in
biological systems. Through its ability to combat oxidative stress,
AKG protects the intestinal epithelium from escalating damage.
Modulation of microbiome and microbial
metabolites by AKG

IBD patients, including those in remission, display reduced
microbiome diversity, referred to as “dysbiosis” [97]. Individuals
with IBDs exhibit alterations such as reduced concentrations of
Bifidobacterium, whose species ferment carbohydrates and are
largely regarded as probiotics [98–100]. Belonging to the
phylum Actinobacteria, Bifidobacterium is a gram-positive bacte-
rium that establishes itself in the human gut very early in life,
exhibiting a negative association with low-grade inflammation
[101].

Accompanying dysbiosis in individuals with IBD, the con-
centrations of some amino acids are elevated, whereas short-
chain fatty acids (SCFAs), butyrate, and propionate are
decreased [102]. Derived from microbial fermentation in the
gut, SCFAs serve as vital energy sources for intestinal epithelial
cells and play a crucial role in intestinal homeostasis [103,104].
Most notably, butyrate exerts different positive effects on
the intestinal epithelium, such as promoting barrier
function through the upregulation of Adenosine
monophosphate-activated protein kinase (AMPK) phosphoryla-
tion, increasing mismatch repair proteins by inducing epigenetic
modifications at gene promoters and promoting epithelial dif-
ferentiation [105–107]. In recent years, targeting the gut



TABLE 2
Impact of dietary α-ketoglutarate on microbial communities

Organism Dose/delivery Microbial changes Citation

Carp 0.4% in diet ↑: (int con) Aeromonas, Firmicutes, Actinobacteria [70]
↓: (int con) Citrobacter, Cetobacterium, Pseudomonas, Proteobacteria

Pigs 1% in diet ↑: (cec con) Bifidobacterium, Lactobacillus, (ile con) Lactobacillus,
Firmicutes

[113]

↓: (ile con) Escheria coli
1% in diet ↑: (cec con) Bifidobacterium [114]

↓: (cec con) Escheria coli
1% in the diet in combination with 0.5% allicin ↑: (cec con) Firmicutes [112]

↓: (cec con) Bacteroidetes
Mice 1% in water ↑: (fec) Bacteroidetes [111]

↓: (fec) Firmicutes
1% in diet ↑: (col) Verrucomicrobia, Actinobacteria, Akkermansia, Butyricicoccus,

Clostridium, Ruminococcus
[68]

↓: (col) Firmicutes, Escherichia, Enterococcus
0.5% in drinking water before and throughout the DSS
challenge

↑: (fec) Lactobacillus [65]
↓: (fec) Turcibacter

Parentheses denote the source of microbial extraction.
Abbreviations: cec: cecum; col: colon; con: content; DSS, dextran sodium sulfate; fec: feces; ile: ileum; int: intestine; ↑: promotion; ↓: reduction.
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microbiome through prebiotics and probiotics has been explored
as a strategy for treating IBD [108].

Studies using animal models of disease and stress have re-
ported modulation of the gut microbiome following AKG sup-
plementation. In mice, exposure to DSS in drinking water not
only induced colitis but also dysbiosis, characterized by
increased Turicibacter and decreased Lactobacillus in colon con-
tent [65]. The intervention with different probiotic Lactobacillus
strains ameliorates inflammation and damage in DSS-induced
colitis mice [109,110]. The inclusion of 0.5% AKG in drinking
water blunted the changes in Lactobacillus and Turicibacter
abundance in mice exposed to DSS, potentially contributing to its
ability to mitigate disease symptoms [65]. In a mouse model of
experimental CRC, a diet supplemented with 1.0% AKG not only
mitigated intestinal inflammation and tumor development but
also promoted microbial diversity and richness [68]. Analysis of
the extracted colon revealed that AKG increased the abundance
of SCFA-producing bacteria and decreased concentrations of
Firmicutes, Escherichia, and Enterococcus [68]. In unchallenged
mice, the provision of 1.0 % AKG in drinking water decreased the
fecal ratio of Firmicutes to Bacteroidetes [111]. The addition of
AKG to drinking water also decreased weight gain, an effect that
was abolished when antibiotics were introduced to simulate
germ-free conditions [111].

In contrast, in pigs, a diet supplemented with 1.0% AKG in
combination with allicin resulted in higher abundance of Firmi-
cutes and reduced Bacteroidetes in cecum content [112]. Growing
pigs on 1.0% AKG diets had increased abundance of Lactobacillus
in both their cecum and ileum, with the former organ also
exhibiting greater Bifidobacterium and reduced Escherichia coli,
whereas the latter had higher Firmicutes [113]. The cecum con-
tent of pigs fed low-protein diets with the addition of AKG had
increased Bifidobacterium and decreased Escherichia coli
compared to the low-protein group [114]. In carp fed low--
protein diets, a promotive effect of AKG on Firmicutes in intesti-
nal content was reported [70]. The ratio of Firmicutes to
Bacteroidetes is associated with gut homeostasis, with a lowered
ratio commonly found in IBD [115]. Additional studies are
needed to uncover the impact of AKG on the gut microbiome,
especially the potential effects on the gut microbiome of humans.
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Studies have also investigated the impact of AKG on the in-
testinal metabolome, particularly on SCFAs. When combined
with allicin, dietary AKG supplementation in pigs increased cecal
concentrations of butyrate and total volatile fatty acids
compared to controls on a basal diet [112]. AKG supplementa-
tion in pigs on a low-protein diet increased cecal concentrations
of valerate and isovalerate while concurrently reducing
ammonia concentrations [114]. Similar results were also
observed in growing pigs, with AKG supplementation leading to
elevated cecal concentrations of butyrate and valerate alongside
decreased ammonia [113]. Growing pigs fed AKG also exhibited
increased butyrate concentrations and reduced ammonia con-
centrations in their ileum [113]. Urea, a natural byproduct
produced by the body to eliminate harmful ammonia, can also
adversely affect the integrity of the intestinal barrier [116].
Experimental colitis mice provided with AKG in their drinking
water exhibited reduced concentrations of urea in their cecal
content [117].

In recent years, there has been a surge in animal studies
investigating the impact of dietary AKG on the gut microbiome
(Table 2) [65, 68, 70, 111, 112, 113, 114], including its effects
on the metabolome. Compelling evidence suggests that AKG
increases the concentrations of SCFAs and the relative abun-
dance of bacteria responsible for their production. However, the
effects of AKG on the major phyla, Firmicutes and Bacteroidetes,
are less certain. Inhibitory effects on Firmicutes concentrations
were observed in mice given AKG [68,111], whereas pigs and
carps receiving AKG displayed heightened concentrations [70,
112,113]. The disparity in Firmicutes concentrations may stem
from differences in the samples used for analysis. The mice
studies analyzed the microbiome extracted from the colon and
feces [68,111], whereas the pig and carp studies utilized content
from the small intestine and cecum [70,112,113]. These findings
underscore the need for further exploration into the interply
between the microbiome and AKG.
Beneficial effects of AKG on tight junction assembly
Tight junction proteins play a crucial role at the apical sur-

face, serving as a barrier to seal cells together, establish polarity,
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and prevent leakage [118]. The tight junctions are primarily
composed of 3 categories of proteins, including occludins, clau-
dins, and junctional adhesion molecules. The expression of tight
junction proteins is mediated by multiple signaling pathways
and intracellular molecules, including those found in the lumen
[119]. The assembly of tight junctions is hindered by proin-
flammatory cytokines such as TNFα [120]. The disruption to
tight junctions and barrier function induced by proinflammatory
cytokines involves increased phosphorylation of myosin II reg-
ulatory light chain (MLC) and upregulation of MLC kinase
(MLCK) [121,122]. Both UC and CD patients exhibit increased
MLCK expression and activity in their affected epithelial tissue
[123], accompanied by reduced expression of tight junction
proteins such as junctional adhesion molecule A [124]. Phos-
phorylation of MLC jeopardizes epithelial barrier function
through tight junction remodeling, leading to increased perme-
ability [125]. To control inflammation and safeguard barrier
function, cells produce anti-inflammatory cytokines.
Anti-inflammatory IL-10 downregulates proinflammatory genes
through Janus Kinase 1/signal transducer and activator of tran-
scription 3 signaling [126,127]. The importance of IL-10 is
further exhibited by IL-10 deficient mice, which spontaneously
develop colitis and exhibit lower RNA and protein levels of tight
junction proteins [128,129].

In addition to its anti-inflammatory properties and regulation
of gut microbiota, AKG enhances barrier function by modulating
the expression of tight junction proteins (Figure 3). In a study
involving female mice exposed to DSS to induce colitis, the
addition of 1.0% AKG in drinking water upregulated colonic
occludin and E-cadherin compared to challenged controls [66].
Similarly, male mice receiving 0.5% AKG in their drinking water
exhibited a mitigated impairment of tight junction protein levels
and protection against DSS-induced colitis [65]. In
FIGURE 3. Hypothesized mechanisms underlying the enhancement of in
epithelial barrier function through both direct and indirect mechanisms. It
tight junction (TJ) protein concentrations. Additionally, AKG mitigates i
intestinal epithelium, decreasing concentrations of stressors that hamper ba
which function as energy substrates. NF-κB, nuclear factor kappa-light-cha
ulatory T cell; Th17, T helper 17 cell.
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early-weaning pigs, a diet containing 1.0% AKG ameliorated
LPS-induced reduction of occludin, claudin-1, claudin-3, and
claudin-7 protein levels in the small intestine [130]. The pro-
tection of intestinal tight junction protein levels by AKG was also
observed in the duodenum of rats undergoing gastric bypass
surgery [131]. Furthermore, carp on 1.0% AKG diets, challenged
with Aeromonas hydrophila infection, had improved expression of
various tight junction proteins, including zonula occludens and
claudin-1, compared to challenged carp on normal diets [93].
The addition of AKG in the diet also mitigated MLCK upregula-
tion induced by infection with A. hydrophila [93]. Although the
capacity of AKG to enhance tight junction protein hasn’t been
explored as extensively as its anti-inflammatory or antioxidant
properties, the existing literature reveals promising potential. In
various models of intestinal disease, dietary AKG demonstrated
the ability to mitigate the downregulation of tight junction
proteins in the small and large intestines. However, our under-
standing of the underlying mechanisms is limited. The suppres-
sion of MLCK and subsequent phosphorylation of MLC may be a
crucial factor contributing to the positive effects of AKG against
leaky gut.
Impact of AKG on pathways and mechanisms
regulating proliferation and differentiation balance

An array of signaling pathways intricately regulates the
delicate balance between proliferation and differentiation to
maintain epithelial homeostasis. Among these pathways, ca-
nonical Wnt signaling plays a central role in modulating
epithelial homeostasis by regulating the expression of multiple
genes related to proliferation [1,132]. Wnt signaling is highest in
the crypts, where progenitor stem cells reside and proliferate
[133,134]. Transforming growth factor-β/bone morphogenic
testinal epithelial function by α-ketoglutarate (AKG). AKG safeguards
reduces the activity of myosin light-chain kinase (MLCK) and enhances
nflammation and modulates the microbiome, further supporting the
rrier function, and increasing levels of short-chain fatty acids (SCFAs),
in-enhancer of activated B; TNFα, tumor necrosis factor α; Treg, reg-
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protein signaling serves as a counterbalance, downregulating
Wnt/β-catenin signaling as cells migrate away from the base of
the crypts [135–137]. Activation of the Wnt pathway stabilizes
β-catenin, enabling its nuclear translocation and subsequent
formation of a complex with the T cell factor/lymphoid enhancer
factor family to initiate gene expression [138,139]. In the
absence of Wnt signaling, β-catenin is targeted for degradation
by a complex composed of APC, axin, casein kinase 1, and
glycogen synthase kinase 3 [49,132]. Bone morphogenic protein
signaling is also required for proper villus formation [140], and
Wnt plays a critical role in the proper differentiation of Paneth
cells [141].

As intestinal epithelial cells migrate away from the crypts,
there is a concomitant decrease in Wnt signaling while differ-
entiation signaling increases [134]. The transcription factor
atonal homolog 1 (Atoh1) plays a central role in driving the
differentiation of secretory lineage cells. Notch signaling, how-
ever, acts as a suppressor of Atoh1, favoring the differentiation of
absorptive lineages at the expense of the secretory lineages
[142]. Acting as a transmembrane receptor, Notch down-
regulates Atoh1 through activation of hairy enhancer of split 1,
inhibiting targets such as Krüppel-like factor 4, a transcription
factor required for goblet cell differentiation [143,144]. Key li-
gands for Notch include δ-like1 (DLL1), DLL4, and jagged1. The
ablation of DLL1 augments intestinal goblet cell concentrations
[145]. In contrast to other differentiated secretory cells, Paneth
cells reside within the crypts and express both DLL4 and Wnt3,
thereby contributing to the support of the intestinal stem cell
niche [146]. In summary, the balance between proliferation and
differentiation in intestinal epithelial cells is carefully orches-
trated to maintain the intestinal epithelium.

AKG supplementation effectively countered abnormal stem-
ness and activation of Wnt signaling in a mouse model of colitis
[147]. It mitigated the induction of β-catenin signaling in
DSS-induced colitis mice, and co-administration of the β-catenin
agonist, SB-216763, nullified the beneficial effects of AKG
against colon damage [65,66]. In ApcMin/þ mice, intraperitoneal
injection of 400 mg/kg AKG reduced the development of intes-
tinal tumors and downregulated Wnt signaling [147]. In intes-
tinal organoids culture in vitro, AKG is beneficial against TNFα
stimulation, including the downregulation of β-catenin [67]. In
addition to targeting Wnt/β-catenin to ameliorate colitis, AKG
treatment also modulates related metabolic signaling. The
addition of 1.0% AKG to the drinking water of DSS-challenged
mice downregulated mRNA amounts of pyruvate dehydroge-
nase kinase 1 and upregulated protein expression of IDH1 [66].
AKG additionally promoted a transition away from glycolysis
and toward oxidative phosphorylation in the colon of challenged
mice [66].

Effects of AKG on differentiation are less explored. In
C. rodentium-induced colitis mice, the inclusion of 0.5% AKG in
drinking water mitigated goblet cell dysfunction and restored
mRNA amounts of Mucin 2 (Muc2) and Muc3 [67]. Similar
outcomes were observed in DSS-challenged mice, where 1.0%
AKG in drinking water promoted the expression of Muc2 as well
as goblet cell markers, Krüppel-like factor 4, and Trefoil factor 3,
in the colon [117]. In ApcMin/þ mice organoids, AKG treatment
upregulated differentiation-related genes and decreased stem-
ness [147]. AMPK, a regulator of metabolism, also exerts a
positive influence on intestinal epithelial differentiation through
8

the upregulation of transcription factors dictating differentiation
[148]. In flies, AKG upregulates AMPKα and downstream targets
[6]. In piglets, a 1.0% AKG diet ablated induction of AMPK
phosphorylation by LPS in the small intestine [95]. Additional
studies should continue to uncover the mechanisms by which
AKG promotes secretory cell differentiation.

Preserving the balance of proliferation and differentiation is
crucial for maintaining intestinal homeostasis. Perturbations to
this balance are evident in intestinal disease states, often mani-
festing as excessive proliferation. AKG treatment downregulates
Wnt/β-catenin and glycolysis signaling and favors differentia-
tion. The upstream targets responsible for this shift remain to be
elucidated.

Epigenetic modifications induced by AKG
Epigenetic modifications, such as DNA methylation, are

instrumental in regulating gene expression without causing
permanent changes to the DNA sequence. Distinct methylation
patterns distinguish genes in the biopsy tissue of IBD patients
from controls [149,150]. For example, children with UC
exhibited elevated CpGmethylation ofMuc2 in colonic epithelial
cells compared to healthy controls [151]. AKG serves as a vital
cofactor for enzymes such as TET1, TET2, and TET3, which play
a pivotal role in catalyzing DNA demethylation [152]. These 3
TET enzymes are oxygenases responsible for converting 5-meth-
ylcytosine to 5-hydroxymethylcytosine (5hmC) [153,154]. In
certain cancers, such as pancreatic ductal adenocarcinoma,
diminishing concentrations of 5hmC parallel the progression
from benign to malignant stages [155]. Mice lacking TET2
exhibited exacerbated symptoms, increased inflammation, and
higher IL-6 expression after exposure to DSS compared to
wild-type counterparts [156]. The oncogenic metabolite, 2HG,
inhibits TET enzymatic activity, resulting in decreased 5hmC
[157].

A limited amount of studies have explored the impacts of AKG
on epigenetic status. In cultured macrophages, AKG supple-
mentation elevated TET protein concentrations and promoted
demethylation [77]. In DSS-treated mice, the inclusion of 1.0%
AKG in drinking water reduced colonic concentrations of 2HG
[66]. In intestinal organoids, AKG treatment mitigated gluta-
mine deprivation-induced stemness and hypermethylation
[147]. Additionally, AKG treatment decreased DNA hyper-
methylation of Wnt antagonists, tumor suppressors genes, and
genes related to differentiation, leading to increased expression
compared to controls [147].

Epigenetics is a novel area of study that has gained increased
focus in recent years. Because of its identification as a necessary
cofactor for demethylation, studies have begun exploring how
AKG treatment impacts the epigenetics of genes regulating
different processes, such as aging, development, and differenti-
ation [19]. The exploration of how AKG and its harmful,
competitive inhibitor 2HG induce epigenetic changes driving
intestinal homeostasis is still in its early stages, which warrants
further research to establish a more comprehensive
understanding.

In conclusion, ensuring proper intestinal epithelium function
is paramount for overall health. The maintenance of intestinal
epithelium homeostasis hinges on a delicate balance between
cell proliferation and differentiation. Disturbances in these reg-
ulatory pathways manifest in various intestinal pathologies,
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contributing to dysfunction and setting the stage for further
complications. Given the significant impact of conditions like
IBDs and CRC on the gut, there is a pressing need for additional
strategies to fortify the intestinal epithelium. In vitro experi-
ments and animal models of intestinal disease suggest the po-
tential of AKG to enhance gut epithelial health. AKG exerts
immunomodulatory effects, downregulating proinflammatory
cytokine production and shifting macrophage polarization away
from the proinflammatory M1 state. It further safeguards the
intestinal epithelium against damage by upregulating antioxi-
dant pathways. AKG mitigates dysfunctional signaling, including
aberrant proliferation and downregulation of tight junction
proteins. In addition, AKG alters metabolic pathways, gene
methylation status, and the microbiome, but additional investi-
gation is warranted to fully understand how these contribute to
the beneficial effects of AKG. Moving forward, future studies
should aim to fill gaps surrounding the ability of AKG to
strengthen the intestinal epithelium and to test how to translate
these promising findings from animal models to clinical trials
and human applications.
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