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A B S T R A C T

Precision nutrition (PN) considers multiple individual-level and environmental characteristics or variables to better inform dietary strategies
and interventions for optimizing health, including managing obesity and metabolic disorders. Here, we review the evidence on potential
mechanisms—including ones to identify individuals most likely to respond—that can be leveraged in the development of PN interventions
addressing obesity. We conducted a review of the literature and included laboratory, animal, and human studies evaluating biochemical and
genetic data, completed and ongoing clinical trials, and public programs in this review. Our analysis describes the potential mechanisms
related to 6 domains including genetic predisposition, circadian rhythms, physical activity and sedentary behavior, metabolomics, the gut
microbiome, and behavioral and socioeconomic characteristics, i.e., the factors that can be leveraged to design PN-based interventions to
prevent and treat obesity-related outcomes such as weight loss or metabolic health as laid out by the NIH 2030 Strategic Plan for Nutrition
Research. For example, single nucleotide polymorphisms can modify responses to certain dietary interventions, and epigenetic modulation
of obesity risk via physical activity patterns and macronutrient intake have also been demonstrated. Additionally, we identified limitations
including questions of equitable implementation across a limited number of clinical trials. These include the limited ability of current PN
interventions to address systemic influences such as supply chains and food distribution, healthcare systems, racial or cultural inequities,
and economic disparities, particularly when designing and implementing PN interventions in low- and middle-income communities. PN has
the potential to help manage obesity by addressing intra- and inter-individual variation as well as context, as opposed to “one-size fits all”
approaches though there is limited clinical trial evidence to date.
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Optimizing dietary strategies and interventions at the individual level through genetic and microbiome assessment, lifestyle pattern analysis,

and phenotyping may help advance our ability to modulate and/or manage individual physiological factors involved in obesity.
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Introduction

Obesity is among today’s most pressing global health chal-
lenges, with enormous human and economic costs. The WHO
estimated that in 2016, over 650 million adults had obesity and
an additional 340 million adolescents had either overweight or
obesity, and in 2020, nearly 40 million children had overweight
or obesity [1]. The high prevalence of obesity results in a
financial and socioeconomic burden on the healthcare system;
for example, ~$260.6 billion USD in costs is placed on the
United States healthcare system due to disease burden and
downstream health effects [2]. Among adults, high BMI is a
major risk factor for noncommunicable diseases including car-
diovascular diseases, metabolic diseases such as diabetes,
musculoskeletal disorders, and certain cancers such as those
related to the reproductive and gastrointestinal systems [3]. In
children, obesity is associated with respiratory issues such as
asthma and sleep apnea, neurological disorders including intra-
cranial hypertension, and decreased psychosocial health related
to weight stigmas and self-esteem [4]. Long-term consequences
of pediatric obesity include increased risk of multiple degener-
ative and autoimmune disorders, including type 2 diabetes,
multiple sclerosis, Crohn’s disease, and arthritis [5]. Current
efforts to manage obesity in adults range from surgical in-
terventions including bariatric surgeries such as gastric bypass or
sleeve gastrectomy [6], which have stringent eligibility criteria
such as a BMI >40 or between 35 and 40 kg/m2 with associated
comorbidities [7]; pharmacotherapies such as orlistat, metfor-
min, phentermine, glucagon-like peptide-1 agonists, and
naltrexone [8–11]; and behavior-change interventions such as
counseling to adjust diet [12], along with lifestyle modifications.
However, surgical and medicinal interventions are expensive
and not always covered by insurance, and may come with
complications or side effects, limiting the accessibility of such
interventions to only a minority of patients [13].

Clinical trials examining “one-size-fits-all” diets, which we
define as a general dietary pattern applied to all participants in a
group, such as one high-fat, low-carbohydrate, high-protein, etc.,
low-calorie diet [14], have observed interindividual variation in
blood glucose levels in response to eating the same food [15,16].
Glucose response is a significant risk factor for diabetes and is also
linked to obesity and metabolic syndrome [17]; if a given food
results in a low glucose response for individual A but a high
response in individual B, then it may be useful to only recommend
that food to individual A, not B. Individual-level glucose responses
were predicted with high accuracy by using a machine learning
algorithm to incorporate multiple individual-level clinical, bio-
logical, and physical characteristics [18,19]. Further, participants
fared better on a diet personalized for them using this algorithm
compared toa standarddiet designed to lower the glucose response
without accounting for individual-level characteristics [19].
Tailoring a diet specific to each individual is known as precision or
personalized nutrition (PN) [20]. Although there is some debate
about the difference between the 2 terms, popular usage does not
tend to differentiate between precision and personalized nutrition.
Specifically, PN is a comprehensive consideration of
individual-level and environmental characteristics or domains
such as genetic predisposition, circadian rhythms, physical activity
and sedentary behavior, metabolomics, the gut microbiome, and
behavioral and socioeconomic characteristics, some of which are
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included in the Strategic Plan (2020–2030) for NIH Nutrition
Research [21]. These domains can be assessed using a combination
of clinical, bioinformatic, and genetic approaches, such as nutri-
genomics, microbiome, and deep phenotyping [22], and can be
used to develop personalized interventions or diet plans catered to
individual nutritional needs to address metabolic syndrome and
obesity [22]. Importantly, these domains are not exhaustive; may
be influencedbyother considerations not explicitly discussed here,
such as climate change, food systems, and the built environment;
and reflect considerable variability in the consistency and quality
of evidence. As such, the objective of this review is to provide a
summary of the current state of PN, examining how variables
within each of these domains are mechanistically tied to the
outcome of interest, obesity management, and contribute to ulti-
mately the design of PN approaches for decreasing obesity preva-
lence and severity (Figure 1). Our bird’s eye view of PN discusses
the interrelatedness of variables within and between each domain,
adverse effects, limitations, and challenges toPNas an intervention
for obesity, while highlighting the future directions and consider-
ations for the field.

Genetics

Although genetic variation only explains a small proportion of
risk of obesity in the population, it may confer a tendency for
weight gain and development of adiposity-based chronic dis-
eases based on exposure to diet and external factors [23].
Considering the biochemical basis of obesity, the impact of in-
dividual genetics—from single nucleotide polymorphisms
(SNPs) to allelic frequencies—on the predisposition to and
perpetuation of obesity may provide a biological framework in
the design of PN interventions. In animal models, genome-wide
association studies (GWASs) have identified quantitative trait
loci (QTLs) that map with confidence to various phenotypic
outcomes. In one such study, in silico QTL mapping was used to
identify 937 QTLs across 173 mouse phenotypes, with the
Adam12 and Cdh2 genes (associated with percent of fat mass and
liver weight, respectively, after 8 wk on an atherogenic diet)
being associated with diet-linked obesity [24]. High-resolution
QTL mapping resolved tightly linked loci to achieve single
gene resolution, which may be utilized to better understand the
polygenic risk of obesity. Similar GWASs in mouse models of
obesity have identified obesity-related genes on the proximal
chromosome 13 [25–27].

Conducting GWASs in animal models has allowed for exten-
sive genome-wide association analyses in humans that reveal the
involvement of multiple loci and gene products as potential
mechanisms in obesity [28]. In one study, a sample of nearly
340,000 subjects was included in a GWAS that identified 97 loci
associated with increased BMI [29]. These loci accounted for
2.7% of BMI variation and provided evidence that 21% of vari-
ation in BMI can be attributed to natural genetic variation [29].
On the mechanistic level, the study emphasized how gene
products, such as brain-derived neurotrophic factor and mela-
nocortin 4 receptor, function in hunger homeostasis via regula-
tion of glutamate receptor activity in the hypothalamus [29].
These genetic variations of key metabolites and proteins may
represent an important node of optimization for PN-based di-
etary interventions that can be examined at the individual level
via gene and gene product assays.



FIGURE 1. Schematic diagram of optimization of precision nutrition intervention. Precision nutrition interventions can be optimized through
integration of genetics, circadian rhythms, behavior and socioeconomic status, physical activity patterns, metabolomics, and gut microbiota di-
versity. Optimized precision interventions are proposed to reduce rates of obesity and improve measures of body composition. BMR, basal
metabolic rate; SES, socioeconomic status; SNP, single nucleotide polymorphism; VAT, visceral adipose tissue.
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The molecular and genetic predispositions to obesity in
humans have also been understood directly in the context of
feeding behaviors, dietary selection, and nutrient intake. In one
study, a genetic predisposition score was calculated using 32
SNPs known to be associated with obesity, which was used to
examine the impact of increased intake of sugar-sweetened
beverages [30]. Here, the genetic burden on BMI and obesity
was nearly doubled in participants consuming >1 sugary
beverage daily compared to subjects consuming <1 sugary
beverage on average per month [30]. In other words, loci
implicated in the development of obesity appeared epigeneti-
cally regulated by the nutritional composition of sugary bever-
ages [30], marking another example in which individualized
polygenic risk may be useful in the development of novel and
personalized nutrition plans. A similar GWAS used 63
obesity-related loci to create and compare a polygenic risk score
with the intake of saturated fatty acids [31]. Results indicated
that key genetic loci, including the FTO and APOA2 genes, both
hypothalamic regulators of hunger, had increased allelic varia-
tion in individuals consuming more saturated fatty acids [31]. In
this case, dietary modulation of certain genetic loci may have
resulted in greater susceptibility to obesity. Further, being active
was shown to lessen the impact of allelic variation within the
FTO gene (variant rs1121980) that increases risk for obesity
development: sedentary or inactive individuals with risk (T)
allele had greater BMI indices than those engaging in physical
activity [22,32]. The regulation of the genome and subsequent
neuroendocrine control of obesity appears to be associated with
3

the nutritional composition and frequency of an individual’s diet
as well as physical activity level [22,32–35].

Furthermore, as summarized by Heianza et al. [28], indi-
vidual genetic variation can change the effect of high-protein
diets and low-fat/high-carbohydrate diets in subjects with
obesity and overweight status. Individuals with overweight
without the C allele of PPM1K rs1440581 SNP responded
better to a high-fat diet, due to dysregulation of
branched-chain and aromatic amino acids [36]. Similarly, in-
dividuals with the CC genotype of RS1 rs2943641 SNP were
better suited to a high-carbohydrate/low-fat diet than control
counterparts [37]. These genetically predisposed and disparate
responses to dietary interventions may be rooted in a recip-
rocal relationship between macronutrient intake and genetic
SNPs in which epigenetic modifications from nutrient intake
and genetic regulation of nutrient absorption pathways occur
simultaneously. For example, one study used genetic risk
scores (GRSs) from 16 SNPs related to obesity or lipid meta-
bolism to demonstrate that high genetic risk correlated with
increased adiposity, and macronutrient intake (proteins, total
fat, saturated fatty acids, polyunsaturated fats, total and
complex carbohydrates, and fiber) can epigenetically modify
these associations [38]. A similar study of 13 replicated SNPs
related to GRS with macronutrient intake, associated increased
GRS with higher fiber intake and lower total energy intake.
The study, however, did not identify relationships between
macronutrient intake levels and modified genetic predisposi-
tion to obesity, emphasizing the need for further research that



N.H. Mehta et al. Advances in Nutrition 15 (2024) 100186
better contextualizes genetic risk, epigenetic regulation, and
dietary modifications [39]. There is a need to comprehensively
understand the molecular and genetic predispositions to
obesity and how these are epigenetically modified, which may
directly inform an individual’s response to dietary in-
terventions. Prospective randomized analyses of GWASs and
alternative genome sequencing studies may provide insights
into the effective and practical development of PN plans.
Additional studies in children and adolescents are required to
clarify the importance, or lack thereof, of these genomic as-
sociations across the human lifespan.

Circadian Rhythms

Although genetic information encodes the molecular and
biochemical pathways that can predispose an individual to
obesity, the regulation and homeostasis of various hormones,
signaling factors, and cells provides a temporal modulation of
healthy metabolism and obesity pathogenesis [40]. To under-
stand the physiology of obesity, the role of circadian
rhythms—natural fluctuations in signaling pathways and mole-
cules—must be appreciated [41]. Circadian rhythms, defined as
an individual’s “internal clock,” is largely set by the suprachi-
asmatic nucleus (SCN) of the hypothalamus and is partially
involved in parasympathetic-sympathetic regulation, metabolite
cycling, and endocrine activation [41]. In humans, this ma-
chinery is set into motion when light transduced in photore-
ceptors of the retina activates thousands of neurons in the SCN,
causing the dimerization of 2 fundamental transcription factors:
BMAL1 and CLOCK [42]. Activation of the BMAL1-CLOCK
complex induces transcription of negative regulators such as
period (PER) and cryptochrome, whose subsequent production
serves to downregulate transcriptions of various downstream
genes [42]. Activation of the PER and cryptochrome transcrip-
tional regulation also deactivates the BMAL1-CLOCK complex,
resulting in a negative feedback loop susceptible to diurnal
variations in the circadian rhythm [42]. In this manner, the
circadian machinery creates diurnal feedback loops to activate
and deactivate genomic transcription, and in doing so, serves to
regulate downstream metabolic and physiologic activity. The
impact of circadian rhythms on physiological wellness is largely
studied with chronobiological techniques aimed at understand-
ing the biochemical mechanisms of temporal regulation in non-
diseased biology and disease pathways [43].

At the molecular level, an array of literature has examined the
circadian regulation of metabolite activity, body composition, and
predisposition to metabolic disorders. One such study analyzed
over 500 liver metabolites in mice using ultrahigh performance
liquid chromatography with tandem mass spectrometry to iden-
tify the diurnal variations in metabolite concentrations [44].
Findings indicated a strong temporal bias of metabolite levels,
suggesting a highly regulated downstream metabolic activity
[44]. Similar transcriptomic and proteomic analyses in circadian
mutant mice displayed distinct temporal effects on liver metabo-
lite concentrations and genetic transcription rate [45,46]. This
epigenetic regulation of metabolite physiology has been reflected
in direct associations between circadian rhythm dysfunction and a
variety of disease states including obesity [47], type 2 diabetes
[48], and metabolic syndrome [49].
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Although the circadian clock machinery has been studied as a
facilitator for disease pathogenesis, the reciprocal regulation of
circadian rhythms via nutritional intake and dietary choices has
also been examined. In one example of thismetabolic regulation of
cellular time, in vitro glucose enrichment of rat fibroblasts was
found to downregulate PER1 and PER2 expression levels. Here, 2
variants of these transcription factors were responsible for down-
stream mediation of a peripheral cellular clock [50]. Similarly,
another study in rats found glucose actively suppressed the natural
circadian activation of the enzyme phosphoenolpyruvate carbox-
ykinase, a key enzyme in gluconeogenesis, suggesting that
high-sugar diets may also fundamentally alter the natural meta-
bolic rhythmsof the body [51].Another investigationof the impact
of diet on SCN-mediated circadian rhythms found temporally
restricted light-dark or dark-dark feeding restrictions to uncouple
central nervous circadian control from a variety of peripheral cell
types and encourage dysregulation of hunger [52]. As such, the
disruptionof thesehomeostatic physiological systems, grounded in
bidirectional crosstalk between dietary needs and genetic tran-
scription, play a role in metabolic control, hunger regulation, and
gastrointestinal disease [53].

These preclinical and in vitro studies have set the stage for the
further study of the relationships between circadian biology,
dietary habits, and human health. Recent epidemiological and
experimental studies have highlighted how food choices that
lead to diets high in fat and carbohydrates can lead to impaired
circadian clocks with sleep impairment [54,55]. Additionally,
social pressures and habits that encourage chronic sleep depri-
vation have been shown to drive calorie-dense food choices that
increase energy and food intake, resulting in a higher risk and
prevalence of obesity [56]. Social pressures toward dysregulated
circadian rhythms are numerous and may range from late night
shift work [57] to chronic stress-mediated lack of sleep,
emphasizing the need to integrate these social and behavioral
influences with circadian considerations for PN. Importantly,
functional MRI studies have suggested that sleep deprivation can
modulate olfactory neural circuits to induce a preference for
calorie-dense foods, supporting the potential role of irregular
mealtimes and sleep schedules as contributors to developing
overweight and obesity [58]. On the mechanistic level, circadian
biology is governed by glucose homeostasis via hormonal
signaling, and alterations in sleep cycles, dietary habits, and
molecular variations can impact risk of developing metabolic
disease. In this sense, understanding the timing of food intake
and its bidirectional relationship with sleep cycles and circadian
rhythms may be an important consideration in improving the
design of personalized interventions to improve clinical out-
comes [59]. With our growing understanding of gene-diet in-
teractions, circadian dysregulation, and disease pathogenesis, a
focus on the temporal optimization of dietary interventions may
serve as the target question of future prospective studies [53]. As
such, appreciating the bidirectional relationships between di-
etary habits and circadian rhythms will be key to developing the
necessary biomarkers, tools, and assessments to optimize
personalized interventions [59]. Additional large-scale ran-
domized trials in adults and children may examine the effects of
these natural temporal variations in driving the adoption,
acceptability, and physiological response to PN interventions.
Appreciating an individual’s circadian rhythm may provide
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novel insights into the biophysiological systems that mediate
obesity, and tailoring dietary interventions to both account for
and work with these natural dietary rhythms may facilitate an
increase in intervention efficacy. These considerations of sleep
patterns, circadian rhythms, dietary habits, and energy balance
can help identify the effects of adapting the timing and compo-
sition of dietary interventions based on healthy eating and sleep
patterns on an individualized basis and may improve the efficacy
of and adherence to these key PN-based interventions.

Physical Activity and Sedentary Behavior

Sedentary behavior and physical activity remain 2 of the
leading modifiable risk factors for metabolic and cardiovascular
disease. Greater levels and patterns of physical activity lead to
improved cardiovascular function, better nutritional digestion
and intake, and optimal caloric utilization, all of which
contribute to diminished rates of obesity [60]. Optimal PN di-
etary interventions must account for physical activity patterns
and cultural habits that often mediate the sociocultural and
physiological development of obesity. Large-scale ecological,
cross-sectional, and prospective studies have reported an almost
unanimous concern with the effects of a sedentary lifestyle in
promoting weight gain and subsequent obesity [61]. Recent ef-
forts in the field of “sedentary physiology” suggest that a
sedentary lifestyle may induce activation of the sympathetic
nervous system, influencing enzymatic activity, hormonal regu-
lation of hunger and digestion, and general cardiovascular health
[62]. At the molecular level, transcriptomic analyses have con-
nected chronic inactivity with epigenetic regulation of micro-
RNA (miRNA)-222, miRNA-146, miRNA-16, miRNA-126, and
miR-320, all molecular contributors to immune pathways or
cardiovascular health [63]. Further, there has also been docu-
mentation of adverse responses, consisting of exercise-induced
worsening of fasting plasma HDL-cholesterol, triglycerides,
blood pressure, or insulin, following PN interventions, suggest-
ing that study of individualized physical activity profiles is
needed to identify predictors of intervention response [64]. As
such, personalized attempts to understand the intensity and
frequency of physical activity, or lack thereof, are fundamental
in capturing the complete genetic, epigenetic, and sociological
causes of obesity.

A 24-wk interventional study of 171 sedentary middle-aged
adults with obesity assessed the day-to-day variability in insu-
lin areas under the curve, 2-h glucose measurements, and fasting
insulin [65]. Subjects were randomly assigned to 1 of 4 exercise
regimens: 1) no-exercise control; 2) low-amount, low-intensity
exercise; 3) high-amount, low-intensity exercise; and 4)
high-amount, high-intensity exercise [65]. After 24 wk, clinical
measure improvement fell within the day-to-day variability
across groups, and the authors emphasized the need for more
comprehensive measurements of personal activity patterns in
dietary interventions [65]. In a longitudinal cohort, increased
physical activity was associated with lower BMI and body
adiposity index at both baseline and end of follow-up, attenu-
ating the association between FTO risk allele rs1421085 and BMI
and body adiposity index (see Genetics section for additional
discussion on FTO). These findings further suggest that regular
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physical activity can, on the epigenetic level, reduce the burden
of genetic predisposition for obesity in certain individuals [66].
In this manner, recording and profiling an individual’s exercise
habits can provide a more comprehensive definition of their di-
etary and interventional needs and can be seen as an important
consideration as the field moves toward the design of prospec-
tive PN interventional trials. Similar findings were obtained in a
large cohort of 18,424 Chinese adults [67], where specific ex-
ercises including mountain climbing, walking, exercise walking,
dancing, yoga, and jogging were found to attenuate BMI, body
fat percentage, waist and hip circumferences [67]. These find-
ings suggest that an individual’s exercise routine, including their
intensity, frequency, and personal activity of choice, may be
important considerations in the design of PN-based interventions
that comprehensively acknowledge the diverse lifestyles of
people with overweight and obesity.

Metabolomics

Metabolomic profiling systematically evaluates many
metabolites—endogenous small molecules of cellular biochem-
istry [68]—resulting in the characterization of various pheno-
types as well as new biomarkers of response to diet, important
for refining PN-based interventions. Metabolites may arise from
the body as well as from human microbiota. Analyzing the
content of specific metabolites in the urine and blood can reveal
micronutrient deficiencies, provide information about food
intake and dietary patterns, and serve to record overall gastro-
intestinal health [69]. Metabolome analyses reveal the effect and
molecular signatures of food and drink processing on the body.
For example, proline betaine in the plasma has been identified as
a biomarker of orange juice ingestion [70], and 6 biomarkers
(ferritin, glycine, diacyl phosphatidylcholines 36:4 and 38:4,
lysophosphatidyl choline 17:0, and hydroxy-sphingomyelin
14:1) were associated with meat consumption and diabetes
risk, suggesting that unique metabolomic signatures can be used
to help identify obesity predisposition [71]. Ultimately, these
unique metabolomic parameters can be used to identify dietary
patterns. For example, one cohort study of 160 volunteers dis-
played 3 habitual and distinct dietary patterns as determined
through metabolomic analysis of biofluids [72]. In this way,
metabolomics provides a highly specific and individualized
mechanism or fingerprint of the digestive and metabolic pro-
cesses that drive fat accumulation and may be integrated into the
design of personally tailored dietary interventions.

Additionally, PN-based interventionsmay utilizemetabolomics
to assess digestive and metabolic processes to accurately estimate
metabolic rate. In humans, predictive equations estimating basal
metabolic rate (BMR) have been tested in a variety of cohorts,
including high-performance female athletes [73], adult volunteers
[74], multiple sclerosis consortium subjects [75], and more. The
potential metabolomic identification of BMRmay help identify the
specific environment and physiological factors that mediate the
relationships between an individual’s metabolome and their
obesity status. More directly, metabolomic techniques have also
been recently validated in identifying a specific metabolite signa-
ture for visceral adipose tissue (VAT) deposition [76]. Similar
findings have identified increased isoleucine consumption, lower
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acetate production, and decreased pyruvate/pyroglutamate con-
sumption associated with the VAT metabolic identity, suggesting
that glucose metabolic regulation pathways may mechanistically
link dietary intake, metabolic processing, and fat deposition [77].
Overall, these techniques provide state-of-the-art information that
integrates metabolite fingerprints and individualized metabolic
processing pathways with the physiological predisposition to and
development of obesity. PN-based dietary interventions may
engage these techniques to comprehensively understand an in-
dividual’s physiological response to food intake, and in doing so,
better adapt interventions to reduce the likelihoodof fat deposition
and obesity.

There have also been some attempts at utilizing metabolomics
to characterize the effects and adherence to specific dietary in-
terventions. For example, the Dietary Approaches to Stop Hy-
pertension (DASH) diet is among the recommended diets for
improved cardiovascular health. One study examining serum
concentrations of 44 known metabolites found significant vari-
ations in the assayed metabolome between patients randomly
assigned to a DASH diet and those assigned to a control or fruits
and vegetable diet [78]. These serum biomarkers included
amino acids (n ¼ 1), cofactors (n ¼ 2), vitamins (n ¼ 2), and
lipids (n ¼ 41), with N-methylproline, stachydrine, tryptophan
betaine, theobromine, and more serving to differentiate the
DASH diet [78]. In this case, metabolome profiling helped
identify a clear physiological and biochemical phenotype asso-
ciated with specific dietary intervention and may be utilized to
determine adherence to the DASH diet [78]. Similar metab-
olomic profile variations have been identified in the context of a
sodium-restricted DASH diet, which was additionally associated
with improved blood pressure and cardiovascular health in 13
patients [79]. Here, metabolite profiles in patients during
sodium-restricted dietary intervention suggested that improved
energy utilization may mediate the cardiovascular health
improvement seen clinically [79]. Taken together, these findings
suggest that metabolite profiling may provide a clear biochem-
ical means of assessing adherence and physiological response to
specific dietary interventions and serve to optimize the design of
interventions based on a person’s individualized likelihood to
respond to certain interventions.

Although these findings are promising, the applications of
metabolomics to PN remains in its preliminary phases, and large-
scale RCTs are needed to determine mechanistic relationships
between dietary intake and metabolite profiles, as well as how
these metabolite profiles can be used to measure or predict
clinical outcomes to certain interventions [80]. Importantly, a
lack of evidence in children and adolescents hinders the active
integration of these methodologies into PN interventions, and
further studies, specifically in pediatric populations, are required
to develop early and efficacious interventions against obesity.

Gut Microbiome

Another key component of gastrointestinal health and disease
relevant to the discussion of PN is the gut microbiome, defined as
the gut microbiota and its associated genes plus its functional
profile [81]. The gut microbiota, of which bacteria have been
most studied, are fundamental in modulating the immune
response, producing vitamins from diet-derived substrates,
digesting nutrients otherwise inaccessible to the host, and
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maintaining cell membrane integrity [82,83]. With its wide
array of physiological functions, the gut microbiome has also
been shown to be diverse and highly individualized [84].
Compared to the gut microbiome found in healthy individuals, a
“dysbiotic” gut microbiome is often presented as deviations in
the relative abundance of specific types of bacteria or reduced
diversity; these alterations have also been associated with many
disease states including hypertension [85], cancer [86], Alz-
heimer’s disease [87], and cardiovascular health [88].

Certain gut bacteria may affect the response to dietary in-
terventions in particular individuals [89]. In one study, Eubac-
terium xylanophilum, Desulfovibrio, Terrisporobacter, Clostridium
sensu stricto, and Coprococcus positively impacted glycemic
variability among females with obesity who received a
high-protein diet [90]. Here, the authors hypothesized that
regulating short-chain fatty acid production mediated an indi-
vidualized response to high-protein diets [90]. Similarly, the
Dorea genus of bacteria was also found to be moderately pre-
dictive of subsequent weight loss in a trial that, otherwise, found
no differences in gut microbiome composition across various
dietary interventions [91]. In another study that compared daily
energy restriction with intermittent fasting in adults with over-
weight and obesity, significant intergroup differences in the
abundance of Akkermansia was found [92]. In this case, these
differences and their resulting impact on intervention success
were attributed to positive regulation of glucose homeostasis and
decreased gut inflammation [92].

Development of gut microbiota-directed foods to target
interindividual variation and ultimately improve clinical health
outcomes is an active area of research, considering that the gut
microbiome appears to have distinct taxonomic profiles in states
of either under- or over-nutrition. For example, studies in un-
dernourished children have observed that the gut microbiome is
often immature for their chronological age, has lower diversity
of microbiota, and/or has higher abundances of inflammation-
associated bacteria compared to normal weight children [93,
94]; a recent trial examining microbiota-directed complemen-
tary foods (MDCFs) in children with moderate acute malnutri-
tion found that children who received complementary foods
containing ingredients previously shown to beneficially impact
the gut microbiome also had better growth and bone health
outcomes [95]. Considering that the gut microbiome has been
shown to be altered in individuals with obesity compared to
those with normal weight, including lower diversity and richness
as well as greater abundance of inflammatory taxa such as Pro-
teobacteria [96], there is potential to design MDCFs that target
underrepresented taxa in the gut microbiome during obesity,
which ultimately may lead to weight loss. However, more
research is needed: randomized trials examining the effect of
fecal microbial transfer have failed to show a clinical effect on
body weight, and it is unclear whether the taxa associated with
obesity are a cause or consequence of excess weight [97].

Overall, the role of the gut microbiome has been linked to the
individualized response to dietary interventions [98]. From basic
variation in postprandial glycemic responses attributed, in part,
to individual differences in microbiome diversity [99] or to the
bidirectional relationships between poor diet-microbiome acti-
vity-dietary response [100], diverse research suggests a funda-
mental role of bacterial populations in mediating the individual
immune, glycemic, and gastrointestinal response that drives food
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absorption. Further, a recent randomized trial identified the
largest relative variation in gut microbiota following Roux-en-Y
gastric bypass against a comparative cohort assigned to medical
weight loss or adjustable gastric banding [101]. Specifically,
notable increases in F. prausnitziiwere observed following bypass
surgery and medical intervention, whereas microbial diversity
decreased following adjustable gastric banding [101]. In this
sense, integrating an understanding of the baseline variations in
gut microbiome diversity and dysbiosis becomes important in
predicting responses to dietary interventions. As such, although
the individual variations and baseline differences in microbiome
parameters seem indicative of the efficacy of certain diets,
further research is needed to better understand the exact role
that individualized assessments of microbiome health may play
in the development and optimization of precise dietary
interventions.

Behavioral and Socioeconomic Characteristics

Certain behavioral and socioeconomic characteristics are
linked to health outcomes including obesity [102]. For example,
earning income below the poverty line, being unemployed, and
using food stamps was positively associated with obesity prev-
alence and BMI in one study [103]. Understanding the structural
and systemic drivers of overweight and obesity, as well as which
behavioral and socioeconomic phenotypes are linked to various
obesity-related outcomes, is critical to further refine PN in-
terventions. On the macrolevel, historical and systemic media-
tors of socioeconomic or political factors—ranging from the
neighborhood walkability and district redlining [104] to housing
instability and food insecurity [105]—represent key consider-
ations in the equitable delivery of dietary interventions. Unfor-
tunately, given the scope and nature of PN-based interventions,
considerations of behavioral and socioeconomic characteristics
largely occur at the micro-level, focusing on an individual’s or
family’s unique set of circumstances. As such, there has been a
recent push to develop machine learning models and psycho-
metric measures that can phenotypically assess psychological
and socioeconomic characteristics of the individual in a way in
which they may have the potential to inform the development
and effectiveness of precision health interventions.

In an attempt to introduce a standardized psychosocial phe-
notyping methodology, one group applied a novel machine
learning approach to determine which psychosocial characteris-
tics were correlated with increased BMI in adults [106]. Here,
common phenotypic traits associated with increased BMI
included (but were not limited to) insufficient or poor sleep, lack
of vigorous activity, and passive engagement with healthcare
(limited urge to get second opinions, lack of self-advocacy).
Additionally, common phenotypic traits negatively associated
with elevatedweight included habits of activity, belief in personal
responsibility for healthcare, and limited comorbidities [106].

The analysis of psychosocial phenotypes as informative of
eating habits and dietary interventions has also been examined
in children and adolescents. Here, in toddlers from low-income
countries, maternal education, sex, and age predicted eating
behavior in absence of hunger (EAH) situations, defined as the
continued consumption of foods past satiety [107]. In girls aged
5 to 7, eating behavior in EAH situations remained stable
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longitudinally, suggesting a lingering psychological inertia
involved in dietary behaviors [108]. The psychosocial charac-
teristics of other disruptive eating behaviors including binge
eating, caloric restriction, and satiety sensitivity have also
revealed the interpersonal variation that predicates a predispo-
sition to obesity [109,110]. Although the categorization of
disruptive eating behaviors provides some level of psychosocial
nuance, additional implementation of large-scale machine
learning models in children and adolescents is needed to create a
thorough repertoire of behavioral fingerprints that can associate
downstream with having overweight or obesity.

The integration of psychosocial characteristics into the field
of precision medicine serves to acknowledge the importance of
psychological behavior and socioeconomic factors on the de-
livery and efficacy of precision dietary interventions but requires
much additional study in children and adolescents [111].
Importantly, improved assessment of these considerations may
now be feasible with recent technological advances, including
the Universal Eating Monitor [112] and Automatic Ingestion
Monitor [113], which use standardized methods to assess rates
of food consumption, temporal eating patterns, and daily habits.
Integrating these novel and standardized assessments of eating
patterns and behaviors can provide an additional level of preci-
sion for dietary interventions that may then integrate this in-
formation to optimize responses to dietary and behavioral
interventions. Despite tangible advances in the field’s apprecia-
tion of sociological phenomena as mediators of disease, a lack of
randomized controlled trials (RCTs) testing these considerations
is apparent, and further research is needed to elucidate the
optimal integration of individual biogenetic state and sociolog-
ical characteristics to develop PN interventions. “One-size--
fits-all” recommendations and interventions to manage obesity
largely fail to consider factors such as income level and socio-
economic status, religion-based food restrictions or preferences,
dietary preferences, e.g., veganism, other dietary behaviors, the
built environment such as availability of recreational spaces, and
access to certain nutritious, high-quality, affordable food—i.e.,
food deserts. These factors are critical to account for to make any
dietary recommendations realistic and actualizable.

Translating PN: Evidence from RCTs

Key randomized trials examining PN interventions are high-
lighted here. In 2017, the Food4Me European RCT examined the
effect of either standardized virtual dietary advice or virtual
personalized dietary advice on dietary intake and anthropo-
metric and blood biomarkers. In this study, personalized dietary
advice incorporated insights from baseline dietary information,
genetic phenotypes, and baseline anthropometric and blood
markers [114]. Results indicated that participants assigned to
the precision intervention displayed improvements in dietary
behavior (lower consumption of red meat, saturated fat, and salt)
and reductions in body weight relative to controls [114].
Although the trial reaffirmed the importance of PN advice, it did
not directly assess the efficacy of a directly administered dietary
intervention.

In 2021, Ben-Yacov et al. [115] randomly assigned adults
with prediabetes to a standardized Mediterranean diet or a
personalized postprandial targeting diet (PPT) for 6 mo (n ¼
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225) with an additional 6-mo follow-up among a smaller sub-
group (n ¼ 177). Here, the PPT diet implemented a previously
developed machine learning algorithm [19] to use individual
clinical and microbiome features to predict the personalized
glucose response following a meal [115]. At 6 mo, the trial found
significant improvements in individual glycemic control, defined
as the time spent with glucose levels >140 mg/dL or 7.8
mmol/L, for participants administered the PPT diet relative to
the standard Mediterranean diet, which was maintained at the
12-mo follow-up [115]. Average body weight decreased by 2.9%
and 3.5% of baseline weight in the Mediterranean diet and PPT
diet, respectively, but there was no significant difference be-
tween groups at 6 or 12 mo. Adverse events were not related
specifically to the personalized nature of the interventions and
included tolerance and side effects to either diet (bloating,
indigestion) or in a small group of participants, allergy to the
adhesive from continuous glucose monitoring sensors connected
to each participant. This study provides evidence of the utility of
PN interventions in addressing the glycemic dysregulation
characteristic of diabetes among individuals with prediabetes
and further affirmed the need to better understand PN in-
terventions against “one-size-fits-all” dietary interventions.

A similar 6-mo randomized trial to investigate the effect of
precision dietary interventions compared to the one-size-fits all
approach was recently published [116]. In this study, 204 adult
participants were randomly assigned to either a low-fat stan-
dardized diet (<25% of caloric intake) or a personalized diet
predicting postprandial glycemic response with machine
learning algorithms [116]. Here, both groups displayed negative
changes in weight across the 6 mo of intervention (control:
�4.31%, personalized: �3.26%), with no differences in weight
loss between groups [116]. This trial’s results indicated no
variation between a personalized diet and standardized inter-
vention, possibly due to low adherence to the study in-
terventions. Adverse events were not reported. These mixed
findings reinforce the need for additional RCTs with large and
diverse samples and longer follow-up periods to consolidate the
literature and to include children and adolescents with obesity.

Comparisons of nutrition-based precision interventions with
baseline placebo supplements have also been conducted through
the Personalized Prevention of Colorectal Cancer Trial (PPCCT),
in which the magnesium status of 250 participants at high risk of
colorectal cancer was related to vitamin D status [117],
medium-chain fatty acids (MCFAs), and the gut microbiome
[118]. In 2018, researchers assigned the PPCCT cohort to either
a customized magnesium supplementation optimized to baseline
dietary intakes or a placebo group and measured the effect on
baseline 25-hydroxyvitamin D [25(OH)D], a product and regu-
lator of vitamin D catabolism [117]. Here, baseline 25(OH)D
significantly impacted the effect of magnesium supplementation,
with increases in 25(OH)D postsupplementation, when baseline
concentrations were ~30 ng/mL and decreases in 25(OH)D
postsupplementation with baseline concentrations >30 ng/mL
[117]. These findings place great importance on the individual
variation of metabolites in mediating the impacts of supple-
mentation and provide evidence for a need to integrate these
personalized dietary factors in supplementation trials. In a recent
extension of the PPCCT, Fan et al. [118] examined the effect of
personalized magnesium supplementation and a placebo control
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on blood glucose, plasma MCFAs, citric acid cycle metabolites,
and microbiome status in fecal samples. Findings indicated that
personalized optimization of the Ca:Mg ratio increased circu-
lating levels of MCFAs, resulting in important biochemical
downstream effects such as improved microbiota-mediated
metabolism. Overall, these studies highlight the important
integration of a precision-based framework into the effective
design of nutrition interventions, with individual variations of
circulating metabolites, physiological risk, or mineral baselines
serving as important factors contributing to intervention
response and efficacy. Although the PPCCT marks a recent and
ongoing effort to implement PN interventions in clinically rele-
vant groups, further research must expand into children and
adolescent groups and provide an added emphasis of biochem-
ical and mechanistic links.

Most recently, the relationship between tissue-specific in-
sulin resistance and individual dietary modulation was studied
in a 12-wk PN trial. Here, 242 adults were categorized into
groups based on muscle-insulin resistance (MIR) and liver in-
sulin resistance (LIR) [119]. Participants then followed either
a high-monounsaturated fatty acid diet (HMUFA) or a low-fat,
high-protein, and high-fiber diet (LFHP). Individuals with MIR
and a HMUFA diet alongside participants with LIR and LFHP
diets were considered to be part of the phenotypic diet group A
(PhenoDiet A) [119]. Individuals with MIR and an LFHP diet
alongside subjects with LIR and a HMUFA diet were consid-
ered to be part of the phenotypic diet group B (PhenoDiet B)
[119]. With this methodology, tissue-specific insulin resistance
phenotype was used to assess differential response to dietary
intervention. The trial found clinically significant improve-
ments in insulin sensitivity, triglyceride concentrations, fasting
plasma insulin, glucose tolerance, and C-reactive protein in
PhenoDiet B relative to PhenoDiet A, suggesting that inte-
grating insulin resistance phenotype into dietary intervention
design can concretely improve cardiometabolic health [119].
Overall, the trial provided a proof-of-concept that insulin
resistance phenotyping can be used to induce clinically pro-
nounced improvements in metabolic health, reiterating the
efficacy of PN-based dietary interventions. Future trials may
expand the physiological breadth of individualized phenotyp-
ing, further optimizing the clinical improvements mediated by
PN.

On the Horizon: Ongoing Investigations of PN

Importantly, there are many ongoing clinical investigations of
personalized dietary interventions and assessments that are
aimed at clarifying the role of these domains on anthropometric
and other health-related outcomes. For example, one Romanian
based trial is currently underway to determine how the re-
lationships between genotype and nutrient plasma levels can be
normalized via PN intervention (NCT05342766). Further at-
tempts at assessing PN-based interventions include imple-
mentation of machine learning algorithms, with one ongoing
trial using these technologies to use dietary intake, nutritional
status, and other markers to tailor dietary interventions for
maximal efficacy (NCT05701657). Similarly, another ongoing
trial is aimed at determining optimal dietary strategies for par-
ticipants with variations in metabolic phenotype, focusing on
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tailoring interventions to metabolic function and cardiovascular
health (NCT04131166). Finally, there are multiple ongoing in-
vestigations assessing PN-based dietary interventions for thera-
peutic benefit in metabolic diseases. These include the
PRECISION_T2D study, which will attempt to integrate gut
microbiota profiles and glucose metabolic profiles to assess re-
sponses to specific dietary interventions (NCT05885828), as well
as the VIOME Precision Nutrition Program, which will use
personalized diets based on questionnaires, blood, stool, and
FIGURE 2. Potential mechanisms for PN interventions. Sample mechanis
socioeconomic status, metabolomics, gut microbiota, circadian rhythms, an
conducted in high income countries. BFP, body fat percentage; Ile, isole
circumference.
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saliva-based assays to reduce HbA1c (NCT06185192). Although
these trials represent significant investment and advancement of
the field, there persists a great need for additional RCTs to assess
the efficacy of PN, with a focus on integrating various clinical,
demographic, and biophysiological domains. Overall, as the
current literature on PN continues to identify potential targets
and mechanisms (Figure 2), future research must address per-
sonal glycemic response, microbiome diversity, genetic predis-
position, socioeconomic factors, circadian rhythms, and
ms across 6 domains of consideration, including genetics, behavior/
d physical activity are displayed. All studies using human subjects were
ucine; PN, precision nutrition; SES, Socioeconomic status; WC, waist
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psychosocial characteristics in precision dietary inter-
ventions—and in addition, must involve longer follow-up pe-
riods to determine long-term sustainability of effect. Although
RCTs have started to implement nutrition-based precision med-
icine interventions in relatively large cohorts, further research is
required to integrate clinical insights with population-based in-
terventions. Such efforts are being carried out by, for example,
the recent Nutrition for Precision Health initiative funded by the
NIH, which aims to examine how individuals respond to
different diets and whether this response can be predicted using
novel artificial intelligence and machine learning methods.

Limitations

Despite large-scale efforts to advance the optimization and
implementation of PN interventions, numerous limitations must
also be acknowledged. These may be binned as 1) more data or
evidence needed for a given domain, such as circadian rhythms;
2) better methods for harmonizing complex multimodal data
needed as well as their analysis and interpretation, such as ge-
netics; and 3) better translation into guidelines and imple-
mentation, such as trials examining multiple-domain-predicted
interindividual glucose responses, across diverse populations.

Although our review emphasizes the need to consider the
aforementioned domains in the design and implementation of
PN interventions, there is considerable variation in the meth-
odology, design, and strength of evidence across the 6 domains.
For example, the genetic predisposition to obesity and its po-
tential utility in optimizing tailored interventions has been
widely documented in animal models and human studies.
However, examination of circadian rhythms and temporal vari-
ations in dietary patterns has been largely limited to in vitro
analyses and animal studies. Other domains, such as physical
activity, metabolomics, and the gut microbiota, are supported
largely in theory by correlative studies connecting clinical out-
comes to dietary patterns. As such, primary randomized clinical
and nutritional interventions need to be conducted to truly
determine whether the consideration of these 6 domains is
warranted in practice.

In the large-scale implementation of PN, logistical questions of
informed consent, data management, and the process of optimi-
zation seem ample [120,121]. Although PN interventions attempt
to target the individual variations in obesity diagnosis and pro-
gression, they largely fail to address the large-scale systemic factors
that impact public health: healthcare systems, systemic racial
inequity, and population food distributions and supply chains. As
such, tailored interventions at the individual level may fail to
address global obesity prevalence if it cannot address the cultural,
economic, and political variations of these systemic factors. Simi-
larly, it is unclearwhether PNcanbeeffectively utilized in low- and
middle-income countries, where healthcare infrastructure and the
financial feasibility of these extensive interventions become
questionable and questions of equitable access to PN interventions
become apparent. The ongoing development of PN-based inter-
vention also raises a variety of important ethical concerns,
including concerns of family dynamics, access to resources, and
cultural beliefs toward scientific tests of genetics and metab-
olomics [122]. Further work is needed to ensure that PN in-
terventions are deliverable to all socioeconomic and cultural
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populations [123]. The optimization and design of PN in-
terventions also raises the important question of technical feasi-
bility and implementation. As previously mentioned, the strength
of evidence and readiness for cooperative implementation across
variables into PN interventions is highly varied across the 6 do-
mains, and current technologies are likely not sensitive, standard,
and powerful enough to optimally integrate all 6 domains.
Although machine learning models and the ongoing development
of generative artificial intelligence may provide the computing
power and technological precision needed to integrate individu-
alized factors in the design of a dietary intervention, there are
sustained barriers to implementation including incomplete stan-
dardization and characterizations based on these domains, sample
acquisition, and personalized dataset construction. Given these
considerations, it becomes clear that the substance of these 6 do-
mains of PN must be examined alongside the evolving technolog-
ical landscape of precision interventions to truly push the field
forward.

Additionally, as evident from all 6 domains of PN, current
evidence and research on PN and obesity prevention largely
centers on adult populations. Given the novelty of the field and a
dearth of studies on children and adolescents, further work is
needed to address how PN dietary interventions can be used to
specifically target obesity and its related biophysiological com-
plications in children. Future prospective and retrospective
studies in children and adolescents may attempt to integrate one
or more of these 6 key domains and provide an early and unique
perspective on our ability to control overweight and obesity
prevalence in pediatric populations. In short, the future of PN
must consider the physiological and socioeconomic factors that
influence obesity at the individual level while also acknowl-
edging the need for whole-scale reevaluations of global health
disparities, nutritional outcomes, and healthcare access.

Future Directions and Conclusions

Over the last decade, there has beenan increased andwarranted
focus on addressing obesity using PN and personalized dietary
interventions. In considering the pathogenesis and prevalence of
obesity, dietary interventions must continue to acknowledge the
importance of genetic variation, social conditions, biological
circadian rhythms, and psychosocial phenotypes in mediating
obesity. Optimizing standardized dietary interventions at the in-
dividual level through genetic and microbiome testing, lifestyle
pattern analysis, and phenotypingmay help advance our ability to
optimize diets to the highly nuanced and individualized physio-
logical factors involved in obesity, and in doing so, inform the
development of state-of-the-art PN methods. PN research requires
tools that enable accurate nutritional impact prediction on health
using -omics technology, enhanced patient bioinformatics and
database management, precise biomarkers, microbiome and
metabolomics assessment of disease progression, and patient
response to nutritional treatment [124]. Although we categorize
relevant information across 6 domains, this is largely done to
facilitate organization of current considerations for PN-based in-
terventions, and there is certainly overlap across these domains.
Over the coming years, we anticipate rigorous evidence on other
macro-influences, such as climate change, food system architec-
ture, and global geopolitics, to ultimately add to the puzzle of PN.



BOX 1
Recommendations for obesity management in children

� In 2023, the American Academy of Pediatrics released the first edition of clinical practice guidelines for evaluation andmanagement of children
and adolescents with obesity [125].

� These guidelines recommend that behavioral and lifestyle changes should be the first-line approach to combat obesity in children [126].
� The guidelines also note that there is no evidence to support “watchful waiting” and the unnecessary delay of treatment; instead, weight loss
pharmacotherapy should serve as an adjunct to health behavior and lifestyle treatment in adolescents as young as 12 y old with BMIs �95th

percentile [126].
� Further, the guidelines indicate that the existing data showmetabolic bariatric surgery is safe for adolescents older than 13 y with severe obesity
(BMI �120% of the 95th percentile for age and sex) [126].

� The WHO plans to release guidelines on the prevention and treatment of obesity in children and adolescents, specifically in the 0 to 9 and 10 to
19-y-old age groups, for its Member States in the near future [127].

� NIH’s Strategic Plan for Nutrition Research for 2020–2030 emphasizes the role of PN, and though the evidence to date is limited, there are
multiple studies published or underway, mostly in adults but some in children [21].

� The limited evidence thus far along with its mechanistic basis in summarized in this article (see “Translating PN: Evidence from RCTs”); a
number of studies are currently underway particularly in children [128–130].
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As a result, integrating the 6 domains in the development of PN
interventions is crucial in providing a comprehensive and effective
approach against obesity. Considering assessments of the gut
microbiota, metabolomics profiling, and genetics enables person-
alized dietary recommendations that incorporate individualized
physiological parameters that may contribute to obesity patho-
genesis, response to interventions, and clinical outcomes. Further,
inclusion of socioeconomic criteria that can influence dietary
choices, eating habits, and access to resources allows for further
tailoring of interventions to an individual’s socialized nutritional
landscape. Finally, integrating characterizations of an individual’s
physical activitypatterns andcircadian rhythmsmayhelpoptimize
the temporal delivery and management of dietary interventions,
acknowledging the role of daily habits and variations inmediating
the development of and response to obesity. The future of PN in-
terventions may lie in the holistic integration of these 6 domains,
providing a multifaceted approach that combines habits and daily
variations with external pressures and internal physiology to
develop a comprehensive approach to obesity management. As
artificial intelligence and machine learning methods evolve to be
able to incorporate and analyze complex multimodal data, our
models for PN will improve.

With these considerations in mind, future research must
involve additional RCTs that compare precision dietary in-
terventions to one-size-fits-all dietary interventions with long-
term follow-up, effectiveness studies to assess the viability of
these interventions in real-world settings, as well as methodo-
logic studies characterizing the nuanced development of PN. In
children (Box 1), challenges in obtaining appropriate biological
samples warrant further research to better understand the
-omics analyses of less invasive biological sampling including
urine, saliva, and hair. Particularly, socioeconomic and physi-
ological predispositions to obesity and other metabolic condi-
tions place children at further risk, and an emphasis on
understanding the pathogenesis of these conditions in children
as well as the effects of dietary interventions in this high-risk
population is needed. Currently, there is sparse evidence of
PN and other dietary interventions in these groups, and careful
consideration of nutritional physiology and intervention to
prevent overweight and obesity in high-risk subgroups is
needed. As such, there is a need to study and implement inte-
grated nutrition-based precision medicine interventions in
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children, adolescents, and other groups at risk of poor nutrition,
and future research should attempt to deliver these in-
terventions to a wider array of populations. Clarifying the role
of these interventions in high-risk populations may provide an
early and efficacious means of combating obesity at its source,
providing clinical benefits across the age spectrum by targeting
metabolic diseases in childhood that are often the source of
numerous complications that increase morbidity, mortality,
and reduce the quality of life.
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