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ABSTRACT

Dietary components can induce epigenetic changes through DNA methylation, histone modification, and regulation of microRNAs (miRNAs).
Studies of diet-induced epigenetic regulation can inform anticipatory trials and fine-tune public health guidelines. We systematically reviewed
data on the effect of extra virgin olive oil (EVOO) and its phenolic compounds (OOPCs) on the epigenetic landscape. We conducted a literature
search using PubMed, Scopus, and Web of Science databases and scrutinized published evidence. After applying selection criteria (e.g., inclusion
of in vitro, animal, or human studies supplemented with EVOO or its OOPCs), we thoroughly reviewed 51 articles, and the quality assessment was
performed using the revised Cochrane risk of bias tool. The results show that both EVOO and its OOPCs can promote epigenetic changes capable
of regulating the expression of genes and molecular targets involved in different metabolic processes. For example, oleuropein (OL) may be an
epigenetic regulator in cancer, and hydroxytyrosol (HT) modulates the expression of miRNAs involved in the development of cancer, cardiovascular,
and neurodegenerative diseases. We conclude that EVOO and its OOPCs can regulate gene expression by modifying epigenetic mechanisms that
impact human pathophysiology. A full elucidation of the epigenetic effects of EVOO and its OOPCs may contribute to developing different pharma-
nutritional strategies that exploit them as epigenetic agents. This study was registered in the International Prospective Register of Systematic Reviews
(PROSPERO) as CRD42022320316. Adv Nutr 2022;13:2039–2060.

Statement of Significance: This systematic review analyzes accumulated data on the effect of extra virgin olive oil (EVOO) and its phenolic
compounds (OOPCs) on the epigenetic landscape. Evidence suggests that EVOO and its phenolic components can regulate gene expression
by modifying epigenetic mechanisms and, consequently, impacting human pathophysiology.
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Introduction
The Mediterranean diet (MD) is very healthy and sustainable
(1). Higher adherence to the MD is associated with
increased longevity and prevention of many age-associated
noncommunicable diseases such as cardiovascular and
neurodegenerative diseases (2–4). The MD includes many
healthy components, but extra virgin olive oil (EVOO)
stands out because it is the main source of fat in the MD
(5). The soluble fraction of EVOO mainly contains phenolic
compounds (OOPCs), including phenolic acids, phenolic
alcohols [hydroxytyrosol (HT) and tyrosol], and their
secoiridoid precursors such as oleuropein (OL), its aglycone
[oleuropein-aglycone mono-aldehyde (3,4-DHPEA-EA)],
and the dialdehydic form of deacetoxy [oleuropein-aglycone
di-aldehyde (3,4-DHPEA-EDA)]. In addition, EVOO also
contains other types of polyphenols, such as flavonoids,
lignans, and hydroxy-isocromans (6).

Several studies indicate that the consumption of EVOO
and its OOPCs, especially HT, has healthful effects (5, 7).
The mechanisms of action of OOPCs are manifold and
might be mediated by the gut microbiota (8, 9). Examples
of proposed mechanisms of action for OOPCs include: in-
creased expression and activity of glutathione (GSH)-related
enzymes, induction of nuclear factor erythroid 2-related
factor 2 (Nrf2), inhibition of the proinflammatory activity of
enzymes such as cyclooxygenase-2 (COX-2), or modulation
of different signaling pathways such as nuclear factor k-light-
chain-enhancer of activated B cells (NF-kB) or mitogen-
activated protein kinase (MAPK) among others (10–12).
Thus, the modulation of such signaling pathways can affect
inflammation, cell metabolism, cell cycle regulation, and cell
signaling, among others (13).

New research has demonstrated epigenetic actions of
EVOO and its OOPCs. Epigenetic mechanisms are processes
that produce reversible heritable variations that are not
attributable to changes in the DNA sequence but can regulate
gene expression (14). Genetics is responsible for ∼30% of
the known variability, with the remaining ∼70% depending
on epigenetics modulated by environmental factors (such
as diet). Indeed, numerous cellular processes are influ-
enced by epigenetic modifications (15). Major mechanisms
involved in epigenetic regulation are DNA methylation,
histone modification, and regulation by noncoding RNAs
[i.e., microRNAs (miRNAs)]. These epigenetic changes are
relatively stable, tissue-specific, and can be inherited across
several generations (16). Heritability failure of epigenetic
marks may result in inappropriate initiation or inhibition
of gene expression and lead to pathological conditions. In
addition, these epigenetic modifications are modulated by
environmental and lifestyle factors such as diet and physical
activity (17).

On the one hand, genomic DNA is packaged into
chromatin by the 4 core histones (H2A, H2B, H3, and H4)
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and the linker histone (H1) (18). Histone modifications in-
clude acetylation, methylation, phosphorylation, and others.
Histone acetylation is a dynamic process that regulates gene
expression by modifying the accessibility of the DNA to
transcription enzymes [histone acetyltransferase (HAT) or
histone deacetylases (HDACs)] without altering the DNA
nucleotide sequence (19, 20). The balance between HAT
and HDACs dictates gene expression; however, dysregulation
in this balance is associated with developmental defects
and the onset of many diseases (21). On the other hand,
DNA methylation originates from the addition of a methyl
group to the fifth carbon of cytosine (C), forming 5-
methylcytosine (5mC) mediated by DNA methyltransferase
enzymes (DNMTs) (22). DNA methylation predominantly
takes place in CpG dinucleotides (CpG islands), which are
often found in the promoter region (23). As a general rule,
methylation in promoters correlates with gene silencing,
whereas genetic bodies and intergenic regions are correlated
positively with gene expression (24). In several pathologies,
such as cancer, aberrant DNA methylation patterns have
been observed, which may be involved in the onset and
progression of these diseases.

Finally, recent advances in RNA sequencing techniques
revealed that >70–90% of the genome is transcribed into
noncoding RNA (ncRNA) molecules, among which miRNAs
are gaining great traction owing to their roles as biomarkers
or therapeutic targets. miRNAs are small single-stranded
RNA molecules with regulatory function comprised of 18–
22 nucleotides, which are not translated into proteins but
participate in the regulation of gene expression in different
ways (25, 26). More than 2000 miRNAs have been identified
in humans involved in the regulation of >60% of protein-
coding genes, suggesting that a single miRNA may regulate
hundreds of messenger RNAs (mRNAs) (27, 28). Generally,
miRNAs are expressed inside the cells; however, miRNAs
are also found in the circulation and in other biological
fluids, such as blood, saliva, and urine, associated with
extracellular vesicles, argonaute RISC catalytic component 2
(Ago2) complex, or HDL (these are the so-called circulating
miRNAs) (29, 30). Indeed, the dysregulation of specific
miRNAs is being proposed as a biomarker of diagnosis
and progression of specific diseases. Moreover, adherence
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to certain dietary habits or the consumption of different
bioactive compounds influence the modulation of circulating
and tissue-specific miRNAs (31–35).

In view of the above, we systematically reviewed the
effects of EVOO and its OOPCs on the modulation of
epigenetic landmarks in relation to the development of
chronic, degenerative diseases.

Methods
This systematic review was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) (36) and was conducted following the
recommendations of the Cochrane Handbook of Systematic
Reviews of Interventions (37). This study was registered in
PROSPERO as CRD42022320316.

Search strategy
To carry out this systematic review, a literature search was
performed using PubMed, Scopus, and Web of Science
databases from their inception to 7 February, 2022. The
following search terms were combined with Boolean op-
erators, following the PICO strategy (population, interven-
tion/exposure, comparison, and outcome): (“olive oil” OR
hydroxytyrosol OR oleuropein OR oleocanthal OR oleacein
OR secoiridoids) AND (“DNA methylation” OR “histone
modifications” OR miRNA OR epigenetic). Furthermore, the
reference lists of the included articles were searched, as well
as previous systematic reviews or meta-analyses.

Study selection
All studies that examined epigenetic changes induced by
supplementation with EVOO or its OOPCs were included
in this systematic review. The inclusion criteria were: 1)
population: human line cells, animal models, and healthy
volunteers or patients with different cardiometabolic dis-
eases; 2) intervention: supplementation with EVOO or its
main phenolic compounds; 3) comparison: control diet
compared with diet supplemented with EVOO or its phenolic
compounds; 4) outcome: epigenetic changes (DNA methy-
lation, histone modification, and modulation of miRNAs).
We excluded: 1) review articles or editorials; 2) studies using
olive oil as a control; and 3) articles that were not written
in English. Two independent investigators (AdS-L and M-
CLdlH) screened titles and abstracts for relevant studies.
Disagreements between the 2 were resolved by a third or
fourth reviewer (AD or FV).

Data extraction and quality assessment
The main characteristics of the included studies are shown
in Tables 1–4. They summarize information on: 1) type
of experiment (in vivo/in vitro); 2) study model and tissue
(cells, animals, or humans); 3) treatment and administration
(EVOO or OOPCs); 4) epigenetic change induced (DNA
methylation, histone modification, or miRNA modulation);
5) fold change value; 6) quantification method; 7) metabolic
outcomes; and 8) reference.

Study quality was assessed using the Cochrane Collabo-
ration’s tool for assessing risk of bias (Rob2) (38). This tool
assesses risk of bias according to 5 domains: selection bias,
performance bias, detection bias, attrition bias, and reporting
bias. Moreover, it assesses whether a study has a low, unclear,
or high risk of bias. Differences in opinion were resolved by
group consultation (AdS-L, M-CLdlH, AD, and FV) until
consensus was reached.

Results
Flow and characteristics of included studies
Figure 1 shows the flow chart of the studies in the
review process. After removing duplicates, 209 records were
identified through the initial literature search. By reviewing
titles and abstracts, 120 potentially relevant articles were
selected for full-text assessment. Subsequently, 51 eligible
studies met the inclusion criteria (33, 35, 39–47, 49–88).
All studies included are assays, conducted both in vitro and
in vivo, and their records were published between 2012
and 2021. Figure 2 summarizes the epigenetic mechanisms
modulated by EVOO and/or its OOPCs according to the
studies analyzed in this review.

Histone modifications induced by EVOO or OOPCs
Nine studies included in this systematic review reported
different changes in histone modification (39–47) (Table 1).
Accordingly, Juli et al. (39) observed a decrease in HDAC
levels and a consequent increase in acetylated histone H3 and
acetylated histone H4 after treatment of multiple myeloma
cell lines with oleacein (OA). In addition, Cuyàs et al. (41)
detected a decrease in lysine-specific histone demethylase
1A (LDS1) activity after treatment of breast cancer cell lines
with this compound. Similarly, supplementation of MCF-7
breast cancers with OL produced a decrease in HDAC2 and
HDAC3 (40). In the same MCF-7 model, OL was also able to
modulate HDAC1 and HDAC4 (45). Furthermore, an effect
of EVOO-rich diets on epigenetic patterns with possible roles
in neoplastic transformation has also been observed in a rat
7,12-dimethylbenz (a)anthracene (DMBA)-induced breast
cancer model (46).

In other lines of research, EVOO has also been implicated
in the regulation of inflammation by, e.g., decreasing HDAC1
expression in macrophages (44), either by inducing –
through one of its phenolic compounds, i.e., ((-)-methyl-
oleocanthal) – H3K18 acetylation or increasing H3K9 and
H3K27 methylation in murine macrophages (47). Further-
more, ArunSundar et al. observed that treatment with HT
can modulate dysregulated epigenetic mechanisms in an
Alzheimer’s disease mouse model (43). In healthy humans,
the mother’s intake of olive oil during pregnancy can affect
placental histone acetylation in immune regulatory genes
(42).

Epigenetic effects of extra virgin olive oil 2041
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Changes in DNA methylation induced by EVOO or
OOPCs
Fourteen studies included in this systematic review reported
changes in DNA methylation (44, 46, 49–60) (Table 2).

Current evidence shows the effect of MD and EVOO
supplementation on DNA methylation patterns in relation
to various pathologies in humans and animal models (48).
In this context, EVOO or its OOPCs modulates the aberrant
methylation patterns that appear during cancer progression,
in both breast tumors (46, 53) and in colon carcinogenesis
(58, 60). Furthermore, Bordoni et al. (44) observed an al-
tered global DNA methylation turnover under inflammatory
conditions, suggesting that EVOO could play a major role
in the modulation of low-grade inflammation and metabolic
syndrome prevention.

In addition, HT can prevent the hypomethylation of
DNA associated with oxidative stress in primipara Iberian
sows, which could be useful in nutraceutical research
on the treatment of different pathologies (54). Other
OOPCs affect DNMT enzymes, for instance, it has been
shown that decarboxymethyl oleuropein aglycone (DOA)
potently blocks the formation of multicellular tumor-
spheres by reducing DNMT activity in cells and animal
models (50). A dietary fatty acid regulation of adipocyte
TNF-α concentrations, through changes in the methylation
of its promoter, has been reported and could be exploited
in cardiometabolic prevention in rats (49). Finally, Arpón
et al. (51) demonstrated that the changes observed in the
methylation of CpG sites of patients following an MD are
related to intermediary metabolism, diabetes, inflammation,
and different transduction signals.

Modulation of miRNAs by EVOO or OOPCs
Regarding the modulation of miRNAs after treatment with
EVOO or its OOPCs, 34 studies were included (33, 35, 43,
58–88) (Tables 3 and 4).

In vitro modulation of miRNAs by OOPCs.
Various in vitro studies suggest that HT induces epigenetic
changes via the modulation of miRNAs, for example, HT can
counteract the hydrogen peroxide (H2O2)-induced increase
in miR-9 expression in human chondrocytes. This suggests
that HT could act as a preventive or therapeutic agent for
osteoarthritis, and that its mechanism of action could be
related to the modulation of miR-9 expression (59, 62).
The anti-inflammatory actions of EVOO and its OOPCs
have been actively investigated and their mechanisms of
action are being elucidated. Related to this review, Bigagli
et al. (65) observed an anti-inflammatory effect of HT at
nutritionally relevant concentrations for humans, which was
mediated by the induction of nuclear translocation of Nrf2
and reduction of miR-146a expression in LPS-stimulated
macrophages. Also, HT sulfate (one of the main circulating
metabolites of HT) decreases pathological phenotypes in
inflamed endothelial cells and maintains an elevated expres-
sion of let-7 miRNA (70). Moreover, treatment of Caco-2
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TABLE 4 Effects of EVOO and its OOPCs on metabolic outcomes mediated by miRNA modulation in humans

Study model and
tissue

Treatment and
administration miRNA and fold change

Quantification
method Metabolic outcomes Reference

Healthy
participants

2 diets:
+ 25 mL EVOO
+ 25 mL

sunflower oil

miR-216a–5p ↑ (5/4/3)∗
miR-20a–5p ↑ (2/2/1)∗
hsa-miR-126–5p ↑ (2/1.5/1)∗
miR-19b–3p ↑ (2/1/0.5)∗
miR-485–3p ↓ (2/2/1)∗
hsa-miR-204–5p ↓ (2.5/3/1)∗

RT-qPCR Protective role of EVOO
against the atherogenic
process through microRNA
regulation in endothelial
cells

(84)

Healthy
participants

30 mL:
Low-phenols

EVOO (250 mg
kg – 1 of oil)

Medium- phenols
EVOO (500 mg
kg –1 of oil)

High-phenols
EVOO (750 mg
kg – 1 of oil)

let-7e–5p ↓ (2)
miR-328a–3p ↓ (1.3)
miR-17–5p ↑ (1)
miR-20a–5p ↑ (0.9)
let-7e–5p
miR-17–5p ↑ (0.5)
miR-20a–5p
miR-192–5p ↑ (1)
let-7e–5p ↓ (0.5)
miR-10a–5p
miR-21–5p
miR-26b–5p

RT-qPCR Potential mechanism behind
the cardiovascular benefits
associated with EVOO
intake

(85)

Participants of
PREDIMED
randomized trial

MD vs. control diet miR-410 TaqMan Novel association between a
microRNA target site
variant and stroke
incidence

(86)

Coronary heart
disease patients

Mediterranean
diet or low-fat
diet

miR181c-5p ↓
let-7e–5p ↓
miR-939–5p ↓
miR-188 ↑
miR-25–5p ↑

Next-
generation
sequencing

Better modulation of
endothelial function and
balance of vascular
homeostasis

(87)

Plasma from
participants of
PREDIMED
study (1 y)

MD + EVOO
MD + Nuts

Low-fat diet (LFD)

miR-222–3p ↓
miR-185–5p ↓
miR-27a–3p ↓
miR-21–5p ↓
miR-29c–3p ↓
miR-34b–5p ↓
miR-320b ↓
miR-107 ↓
miR-20a/b–5p ↓
miR-1246 ↓
miR-106a-5p ↓
miR-23a–3p ↓
miR-28–5p ↑
miR-215–5p ↑

RT-qPCR Data showing that exosome
transported lncRNAs and
miRNAs can be modulated
by specific dietary patterns
(MD), which may help
develop therapeutic
strategies for human
diseases

(35)

PBMCs of healthy
subjects and
patients with
metabolic
syndrome

EVOO (high
polyphenols)

EVOO (low
polyphenols)

50 mL (single
dose)

miR-146b–5p ↓ (1.5)
miR-19a–3p ↓ (1.5)
miR-181b–5p ↓ (2.5)
miR-107 ↓ (1.4)
miR-769–5p ↓ (1.5)
miR-192–5p ↓ (1.5)
miR-15b–3p ↓ (1.5)
miR-548c–5p ↓ (1.6)
miR-23b–3p ↑ (1.3)
miR-519b-3p ↑ (1.5)
miR-614 ↑ (1.4)
miR-302c–5p ↑ (1.6)
miR-619–3p ↑ (1.6)
miR-1286 ↑ (1.7)

Microarray + RT-
qPCR

Modulation of genes and
miRNAs involved in
metabolism, inflammation,
and cancer

(88)

21 healthy
volunteers

25 mg/d HT or
placebo (1 wk)

miR-193a–5p ↑ (0.3)∗ RT-qPCR Hypertension, apoptosis,
proliferation, inflammation,
cancer, calcification, etc.

(33)

CAD, coronary artery disease; EVOO, extra virgin olive oil; HT, hydroxytyrosol; lncRNA, long noncoding RNA; MD, Mediterranean diet; miR/miRNA, microRNA; NGS, next generation
sequencing; OOPC, olive oil phenolic compounds; PBMC, peripheral blood mononuclear cell; PREDIMED, Prevención con Dieta Mediterránea (Prevention with Mediterranean
Diet); RT-qPCR, quantitative real time PCR. Up arrows indicate increase, down arrows indicate decrease. These changes are not always significant. The different values separated by
bars in the fold change column correspond to the different treatment concentrations used in the study (in the same order as mentioned in the respective column). Values
marked with an asterisk showed significant differences.

Epigenetic effects of extra virgin olive oil 2051



FIGURE 1 Flow diagram of the screened studies on EVOO and its OOPCs according to Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) 2020. EVOO, extra virgin olive oil; OOPC, olive oil phenolic compound.

cells with HT for 24 h repressed the expression of miR-
196b-5p; the same treatment performed in human primary
epithelial intestinal cells significantly induced the expression
of miR-1247–5p and miR-483–3p. Furthermore, miR-193a-
5p and miR-1247–5p were induced in HT-treated intestine
organoids (33).

Some research is focusing on elucidating the anticarcino-
genic properties of HT and its (poly)phenolic precursors
as mediated by miRNAs. For example, an olive leaf extract
can inhibit the pluripotency of glioblastoma cells (GSCs)
by inducing the expression of miR-153, miR-145, and miR-
137 and downregulating the expression of their target genes
(64). In addition, the exposure to OL of glioblastoma
multiforme (GBM) T98G cells significantly increased the
expression of some miRNAs, i.e., let-7d, compared with a
whole Olea europaea leaf extract (66). Also, Olea europaea

leaf extracts showed an anticancer effect in T98G cells
via upregulating miR-181b, miR-153, miR-145, miR-137,
and let-7d, i.e., miRNA target genes that participate in
cell cycle and apoptotic pathways (74). In addition, OL
pretreatment of ovarian cancer cells (Caov3 and Skov3) made
them more sensitive to radiation and altered the expression
profile of miRNAs. Specifically, OL was able to alleviate the
repression of miR-299, which is involved in hypoxia and its
sequelae (83). Furthermore, Xu et al. found that OL strongly
enhanced the radiosensitivity of nasopharyngeal carcinoma
cells both in vitro (HNE1 and HONE1) and in xenograft
mouse models, concomitantly reducing the activity of the
miR-519d pathway (82). Regarding the potential effects of
EVOO, it was observed that EVOO-derived triglycerides
exert higher atheroprotective effects in endothelial cells
of healthy participants than sunflower oil-derived ones,
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FIGURE 2 Diagram of the epigenetic mechanisms modulated by EVOO and/or its OOPCs according to the studies summarized in this
review. CpG, cytosine-guanine dinucleotide; DNMT, DNA methyltransferase enzyme; EVOO, extra virgin olive oil; HDAC, histone
deacetylases; LDS1, lysine-specific histone demethylase 1A; OOPC, olive oil phenolic compound; VEGF, vascular endothelial growth factor.

by upregulating 28 miRNAs which, in turn, regulate 22
atherosclerosis-related genes (84).

In vivo modulation of miRNAs by olive oil, EVOO, or its
OOPCs.
HT induces the modulation of certain miRNAs that con-
tribute to the regulation of genes involved in oxidative stress,
lipid metabolism, and other metabolic processes in animals
(33). Specific miRNA expression profiles have been identified
in different diseases. Like circulating miRNAs, tissue-specific
miRNAs can also be modulated by environmental factors
such as diet (27); hence, HT could theoretically be used
to regulate endogenous miRNAs. As a matter of fact,
the sustained consumption of HT by mice increases the
expression of miR-483–3p in the liver and miR-1982–5p in
the spleen; conversely, the small intestine expression of miR-
196b-3p and miR-483–3p is reduced (33).

Moreover, some evidence obtained in animal models
indicates that the anticarcinogenic properties of EVOO are at
least, in part, mediated by miRNA modulation. For instance,
the (single and sustained) administration of EVOO to rats
modulates the expression of miR-23a and miR-301a, which
are targets of the type 1 cannabinoid receptor (CB1) involved
in the pathogenesis of colorectal cancer (60). Interestingly,
the use of 1 g olive oil/kg body weight in a preclinical model
of 2-dimethylhydrazine-induced colon cancer rats reduced

tumor incidence and inhibited tumor development along
with modulation of miR-143 and miR-145, whose promoters
are hypermethylated during colon cancer (58).

In other research, Tong et al. (76) aimed to examine
the cardiovascular effects of exposing rats to ozone (O3)
and the protective effects of diets enriched with fish and
olive oils. The authors observed that the increase in the
expression of miR-150–5p and miR-208-5p induced by O3
was attenuated by fish oil and/or olive oil. Also, López de
las Hazas et al. (77) analyzed, via small RNA sequencing,
modulated miRNAs that respond to HT supplementation
with 45 mg HT per kg body weight per day for 8 wk,
i.e., miR-802–5p, miR-30a-5p, miR-146b-5p (upregulated),
and miR-423–3p (downregulated). Interestingly, miR-802–
5p was regulated in the liver and intestine as previously
described by Tomé-Carneiro et al. (33). In addition, the
consumption of olive oil induces transgenerational effects
in female Sprague-Dawley rats; Casas-Agustench et al. (81)
observed that maternal consumption of different types of
fatty acids during early pregnancy influences the expression
of miRNAs in both parental and offspring tissues. Treatment
with olive oil induced the expression of miR-500, miR-449c–
5p, miR-134–5p, miR-130a–3p, and miR-431 in the liver and
adipose tissue of pregnant rats, whereas a decrease in miR-
383–5p was noted in the liver tissue of newborn and adult
pups.
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Modulation of miRNAs by EVOO and its OOPCs in
human studies.
As mentioned, modulation of certain miRNAs could partially
explain the cardiovascular effects associated with EVOO
intake. Along this line, several studies evaluated circulating
miRNAs after EVOO intake, for instance, Corella et al.
examined the relation between rs13702 polymorphism and
coronary artery disease (CAD) incidence in subjects enrolled
in the Prevention with Mediterranean Diet (PREDIMED)
trial (those who consumed an MD supplemented with
EVOO). The authors found a novel association between miR-
410 and stroke incidence that could be modulated by EVOO
consumption. In addition, the MD supplemented with
EVOO produced an increase of miR-188 and miR-25–5p
expression accompanied by a reduction in miR-181c–5p, let-
7e–5p, and miR-939–5p expression compared with patients
who were given a low-fat diet (86). Furthermore, according
to a study by Yubero-Serrano et al., the alterations of miRNAs
induced by EVOO might translate to an improvement
in endothelial function (87). Indeed, Mantilla-Escalante et
al. analyzed exosomal long noncoding RNA (lncRNAs),
mRNA, and miRNAs modulation in plasma samples from
participants of the PREDIMED after 1 y of dietary inter-
ventions. The authors noted that the group supplemented
with EVOO exhibited 15 differently expressed miRNAs, of
which 14 were downregulated (hsa-miR-222–3p, hsa-miR-
185–5p, hsa-miR-27a-3p, hsa-miR-21–5p, hsa-miR-29c–3p,
hsa-miR-34b–5p, hsa-miR–320b, hsa-miR–107, hsa-miR-
20b–5p, hsa-miR-20a–5p, hsa-miR–1246, hsa-miR-106a–5p,
hsa-miR-23a–3p, hsa-miR-28–5p) and 1 (hsa-miR-215–5p)
was upregulated (35).

Other human studies have addressed the modulation of
miRNAs during the postprandial state. For instance, Daimiel
et al. studied the concentrations of circulating miRNAs after
the intake of EVOOs with various concentrations of OOPCs.
The authors reported that EVOO intake alters the miR-17–
92 cluster, which is proposed to be involved in fatty acid
metabolism and nutrient sensing (89).

miRNAs most frequently modulated by OOPC.
As the above-mentioned studies describe the modulation of
several miRNAs in response to OOPCs, we reasoned that
bone fide candidates should respond in similar ways under
different experimental settings. Thus, based on the literature
search on in vitro, in vivo, and human studies involving
miRNAs and OOPCs we performed a global analysis of
modulated miRNAs. The Venn diagram we created shows the
modulation of miRNAs in animals compared with humans,
animals compared with in vitro, and humans compared with
in vitro, and among all models (Figure 3A). The literature
also shows that the regulation of some miRNAs has been
consistently described in several studies (Figure 3B); the most
frequently reported are miR-181, let-7 family, miR-34, and
miR-21.

Risk of bias
The overall risk of bias of the included studies assessed using
the revised Cochrane risk of bias tool (38) showed low risk
of bias in 15.7% of studies, moderate risk of bias in 39.2% of
studies, and high risk of bias in 45.1% of studies. Regarding
the specific domains, in missing outcome data almost 100%
of the studies were rated as low risk of bias; in deviations
from intended interventions, around 50% of the studies were
rated as some concerns; in selection of the report results,
the studies were divided among the 3 categories; and finally,
in the randomization process and measurement of outcome
domains, close to 100% of the studies were rated as low bias
(Supplemental Figures 1 and 2).

Discussion
This systematic review aimed to analyze the epigenetic
changes induced by supplementation with EVOO or its
OOPCs. Our findings provide a synthesis of the evidence
supporting that these compounds could induce different
histone modifications, changes in DNA methylation, as well
as modifications in the modulation of miRNAs, both in vitro
and in vivo (summarized in Figure 2).

Previous evidence has shown a possible role of dietary
compounds in the regulation of histone modification mech-
anisms. More specifically, there are several polyphenols from
different foods that exert effects like those induced by OOPCs
present in EVOO. A good example of this is the study
carried out by Dani et al. (91), in which they analyzed the
impact of red grape juice consumption on the global levels
of histone H3 and H4 acetylation in healthy elderly women.
Another interesting example is the study by Bo et al. (92),
in which they observed a significant reduction of histone
H3 acetylation at lysine residue 56 (H3K56ac) following
sirtuin-1 (SIRT-1) induction by resveratrol supplementation
in patients with type 2 diabetes mellitus.

Likewise, several studies have shown that some bioactive
compounds of food can also modulate different changes
in DNA methylation. An example of this is the study of
Crescenti et al. (93), which shows that cocoa consumption
(with a high polyphenol content) decreases global DNA
methylation of peripheral leukocytes in humans with cardio-
vascular risk factors. It also suggests the possibility that cocoa
may exert this effect, in part, through downregulation of key
genes involved in this epigenetic process, such as DNMT.
Another study worth mentioning is that of Zhu et al. (94),
which examined whether trans-resveratrol supplementation
in women at high risk of breast cancer resulted in changes
in the methylation of 4 cancer-related genes (p16, RASSF-1α,
APC, CCND2).

Finally, the increasing interest in miRNAs and their
regulatory mechanisms has led to the discovery that this
epigenetic mechanism can be modulated by external agents,
such as diet. Many studies have analyzed the changes
produced in miRNAs by different bioactive compounds in
food. For example, Tomé-Carneiro et al. (95) observed that
supplementation with grape extract containing resveratrol
in patients with type 2 diabetes and hypertension could
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FIGURE 3 A: Venn diagram of the miRNAs studied in the different experimental models. B: Number of studies including each miRNA.

modulate inflammation-related miRNAs in peripheral blood
mononuclear cells.

miRNAs most frequently modulated by OOPCs
miR-34.
The miR-34 family is known to inhibit tumorogenesis
and to exert a tumor suppressor role. For these reasons,
the deregulation of miR-34 in different types of cancer is
becoming the focus of current research with the aim of using
it in cancer therapy (96, 97). In fact, re-expression of miR-
34a and the use of miRNA mimics have been investigated
in clinical trials as a potential treatment of advanced cancers
(98).

Several studies have demonstrated that supplementation
with EVOO or its OOPCs modulates the expression of miR-
34 (61, 63, 69, 73, 72, 79, 81). On the one hand, Carpi et al.
studied the antimelanoma activity of OA and its mechanism
of action in cutaneous melanoma cells, and found an increase
in the concentrations of miR-34a–5p, after OA treatment
(69). On the other hand, Asgharzade et al. studied the effect
of OL on MCF-7 and MDA-MB-231 breast cancer cell lines.
OL decreased cell viability and increased apoptosis, which
could be mediated by the modulation of certain miRNAs. The
authors observed an increase in the expression of miR-34a,
miR-125b, and miR-16, and a decrease in the concentrations
of miR-221, miR-29a, and miR-21 (71). OL also induced
apoptosis, inhibited cell proliferation, and decreased cisplatin
resistance in ovarian cancer cell lines via increased expression
of both miR-34 and miR-16 (75).

Many studies have analyzed miR-34 expression in relation
to other diseases. For instance, HT significantly coun-
teracted the inflammation-induced increase in miR-34a–
5p and miR-155–5p concentrations in human Simpson–
Golabi–Behmel syndrome (SGBS) adipocytes (61). Similarly,
Carpi et al. observed that EVOO counteracted the TNF-
α-induced upregulation of miR-34a–5p and miR-155–5p
expression levels, and at the same time counteracted the

TNF-α-induced downregulation of let-7c–5p expression,
suggesting that EVOO represses the activation of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
kB)(73). Regarding neurodegenerative effects, Luceri et al.
carried out a study with mice fed for 6 mo with EVOO rich
in phenolic compounds, including HT. The authors observed
cognitive and motor improvements compared with mice fed
the same olive oil without phenolics. Downregulation of
miR-34a-5p correlated with improved contextual memory
(80).

miR-21.
miR-21 has been associated with cardiac functions. Its
expression increases in response to OO intake after O3
administration to rats, which induces alterations in miRNAs
linked to inflammation, cardiac function, and endothelial
dysfunction (76). However, the administration of virgin olive
oil enriched with 750 mg (poly)phenols/kg olive oil reduces
the expression of miR-21–5p in the postprandial state (88).

A high expression of miR-21 is associated with prolifera-
tion, invasion, and metastasis by targeting programmed cell
death-4 (PCD4) and tropomyosin genes (TM1) (99, 100).
OL prevents cell proliferation and produces antineoplastic
actions via decreasing the expression of miR-21, which is
accompanied by an increase in apoptosis of MCF-7 and
MDA-MB-231 breast cancer cells (71) and in A2780S and
A2780/CP ovarian cancer cells (79).

In addition, miR-21 expression is involved in inflam-
mation and is associated with the release of prosenescence
signals affecting DNA methylation and cell replication. Its
concentrations remain low in healthy elderly patients (101)
and the administration of a nutraceutical formulation based
on an oil mixture (2.5 mL/kg) and OLE (100 mg/kg) to
Wistar rats aged 24 mo for 21 d reduced miR-21 expression
levels (86). Further, the expression of miR-21 increased
in vitro after supplementation with HT oleate, promoting
keratinocyte cell migration (63).
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miR-181.
miR-181 expression is associated with neurodegenerative
disorders and/or senescence. The administration of EVOO
rich in phenolic compounds (6 mg/kg) – for 6 mo – to
middle-age C57Bl/6 J mice mitigates the expression of this
miRNA in the cortex (80). In line with these data, the
CORDIOPREV (Coronary Diet Intervention With Olive Oil
and Cardiovascular Prevention) trial (87) described that the
circulating expression of this miRNA in elderly patients
following an MD is lower than that in patients who adhered
to a low-fat diet. Of interest, this miRNA is also involved in
reactive oxygen species production and might be associated
with endothelial dysfunction (87).

Regarding the involvement of miR-181 in carcinogenesis,
supplementation with an Olea europaea extract (74) and OL
(66) enhanced the expression of this miRNA in GBM cells. In
addition, miR-181–5p expression is suggested to be increased
in fibrosis (102). Furthermore, the daily administration of
oleocanthal to Balb/C mice with CCl4-induced liver fibrosis,
reduced the hepatic expression of miR-181–5p (78).

Let-7 family.
Numerous studies have described how EVOO, and its
phenolic compounds, modulate the expression of the let-
7 family. For instance, the CORDIOPREV study aims to
compare the effect of low-fat versus MD on the incidence
of cardiovascular events (103). This trial found low levels of
miRNA let-7e–5p expression in patients who were given an
MD compared with the low-fat diet. This miRNA appears to
participate in the activation of NF-kB and the consequent
activation of the inflammatory pathways (87). Also, in
a cellular model of human adipocytes, the expression of
let-7c–5p was upregulated after cellular pretreatment with
oleocanthal and oleacein before stimulation with TNF-α
(73). The same effects have been described for HT in
human SGBS adipocytes (61). In addition, OL exhibited an
antitumor effect in GBM cells, mainly via increasing let-7d
expression (66, 74). Further, Terzuoli et al. demonstrated
that HT sulfate (the main phase II metabolite produced after
HT consumption, see above) restored the expression of let-
7 in human umbilical vein endothelial cells (HUVEC) and
human retinal endothelial cells (HREC) after exposure to IL-
1b (70).

Finally, it has been suggested that let-7e–5p target genes
are involved in different types of cancer and related processes,
fatty acid biosynthesis, and FOXO and PI3K/AKT signaling.
As Daimiel et al. demonstrated, the postprandial expression
of let-7e–5p decreases dose dependently after the consump-
tion of 30 mL of EVOO containing different concentrations
of OOPCs (250, 500, and 750 mg total phenols/kg of oil) (85).

Exogenous miRNAs and their biological actions. Olea
europaea as an example
Foods contain miRNAs [exogenous miRNAs (exog-
miRNAs)] which can survive the harsh conditions of
the gastrointestinal tract and, possibly, modulate host gene

expression (104–107). The putative effects of exog-miRNAs
might approximate those of the endogenous ones.

miRNAs from different kingdoms share a common
ancestor that provides certain degrees of similarity, and in
the specific case of plant miRNAs, the modification is 2′-
O-methylation at the 3′-terminal nucleotide (108), which
provides resistance against degradation. In addition, exog-
miRNAs can be found encapsulated in vesicle carriers,
which further contributes to protection during digestion
and classifies exog-miRNAs as potentially bioactive food
components (107). Despite their similarities and in contrast
with mammals, most plant miRNAs regulate their targets
by directing mRNA cleavage at single sites in the coding
regions (109). Suggestive evidence of the therapeutic effects
of plant miRNAs (106, 107) is available, with some evidence
indicating that certain plant miRNAs may find functional
homology in mammals and modulate the translation of
mammalian miRNA genomic targets (110). Nevertheless,
there is still controversy about the actual (if any) biological
impact of exogenous miRNAs on host gene expression (111,
112).

Certain plant miRNAs have been shown to be stable under
cooking conditions and during digestion (113). Given the
above, miRNA mediation and the bioactive effects of Olea
europaea miRNAs are plausibly connected, at least to some
extent. Olive miRNA varies between fruit and olive leaves
and during the developmental phase-transition process, with
miR156 and miR166 appearing to be the 2 most abundant
conserved miRNAs in the olive tree. In the plant, the miRNA
targeted genes are involved in many different biochemical
pathways such as those of carbohydrate metabolism (114).
Surprisingly, certain Olea europaea miRNAs, oeu-sR20,
oeu-sR27, and oeu-sR34, possess sequence homology with
hsa-miR34a and have antitumoral potential modulated by
protein expression of hsa-miR34a specific targets, e.g., SIRT-
1, B-cell lymphoma 3-encoded protein (BCL-3), and zinc
finger protein SNAI1 (SNAIL), as shown in some cell lines.
An experimental approach in humans failed to identify plant
miRNAs circulating in plasma 2 h after the acute intake of
40 mL EVOO. The authors hypothesize that fruit processing
may reduce plant miRNA stability because it breaks the tissue
structure, releasing different RNases that impair miRNA
stability (115). Although EVOO may transport the above-
mentioned and other miRNAs, their possible biological
function, if any, on the human genome deserves further
investigation.

Strengths and limitations of the study
As far as we know, this is the most comprehensive systematic
review on the epigenetic effects induced by EVOO or its
OOPCs (90). It also summarizes changes in DNA methyla-
tion, histone modification, and RNA modulation following
supplementation with EVOO or one of its phenolic com-
pounds. In addition, in this review we discuss the biological
and physiological importance of the most widely studied
miRNAs (miR-34, miR-21, miR-181, and let-7 family), as well
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as the possibility that olive miRNAs may exert an effect on the
regulation of epigenetic mechanisms in the host.

However, there are some limitations of this study that
should be acknowledged. First, we must consider the vari-
ability (EVOO composition, outcomes, methodologies, etc.)
that characterizes different studies, which makes it necessary
to interpret our results with caution. Second, EVOOs have
differing contents of phenolic compounds depending on the
cultivar, which means that the beneficial effects on health
may vary. Third, the effects differ among olive oil, virgin
olive oil, and EVOO, because the more processed the oil
is, the lower the phenolic compound content. Possibly, the
more important limitation of the study is that most of the
articles analyzed do not indicate the variety of olive oil
used. Fourth, most in vitro studies use a supraphysiological
concentration of phenolic compounds. Moreover, none of
them include information on their metabolism or on the
phase 2 metabolites that may be generated. For instance, OL
is one of the main phenolic compounds in raw olive oil,
but during processing various enzymatic reactions transform
it into other compounds. Fifth, any study involving the
participation of humans and/or animals raises various ethical
issues; however, using foods rather than isolated compounds
often facilitates in vivo studies. Therefore, more studies
of higher quality, with a larger number of subjects, and
greater diversity are needed to elucidate the molecular
mechanisms involved in the epigenetic changes generated by
supplementation with OOPCs and/or EVOO.

Conclusions
Elucidating the epigenetic effects of EVOO and its OOPCs
may contribute to identifying and developing different
pharma-nutritional strategies focused on the use of these
compounds as epigenetic agents. Here, we summarize sev-
eral studies showing the regulation of different epigenetic
mechanisms involved in many biological fields. The results
of this review show that adherence to the MD or a regular
consumption of EVOO or its phenolic compounds could
prevent the development of certain chronic pathologies, such
as cancer or cardiovascular disease, through these epigenetic
mechanisms. Of course, more research is required using
appropriate in vitro and, especially, in vivo models to clarify
the epigenetic effects of EVOO and its OOPCs and their
potential future role as adjunct “therapeutic” agents.
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