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Prescribing a ketogenic diet (KD) is a century-old dietary intervention mainly used in the context of intractable epilepsy. The classic KD and its
variants regained popularity in recent decades, and they are considered potentially beneficial in a variety of neurological conditions other than
epilepsy. Many patients with multiple sclerosis (MS) have attempted diet modification for better control of their disease, although evidence thus
far remains insufficient to recommend a specific diet for these patients. The results of 3 pilot clinical trials of KD therapy for MS, as well as several
related studies, have been reported in recent years. The preliminary findings suggest that KD is safe, feasible, and potentially neuroprotective and
disease-modifying for patients with MS. Research on corresponding rodent models has also lent support to the efficacy of KD in the prevention and
treatment of experimental autoimmune encephalomyelitis and toxin-induced inflammatory demyelinating conditions in the brain. Furthermore,
the animal studies have yielded mechanistic insights into the molecular mechanisms of KD action in relevant situations, paving the way for precision
nutrition. Herein we review and synthesize recent advances and also identify unresolved issues, such as the roles of adipokines and gut microbiota,
in this field. Hopefully this panoramic view of current understanding can inform future research directions and clinical practice with regard to KD in
MS and related conditions. Adv Nutr 2022;13:2002-2014.

Statement of Significance: Existing studies concerning ketogenic dietary therapy for multiple sclerosis and relevant animal models have
rarely been examined systematically. This narrative review updates and synthesizes preclinical and clinical evidence regarding the effects and
mechanisms of action of ketogenic diets in these contexts.
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Introduction

Multiple sclerosis (MS) is one of the major chronic in-
flammatory diseases of the central nervous system (CNS),
affecting ~2.3 million people worldwide (1). There is
currently no cure for MS, and treatment remains unsatis-
factory despite an increasing therapeutic armamentarium
in recent decades. A substantial fraction of patients with
MS expressed interest in and willingness for a trial of
dietary therapy in the hope that it would ameliorate their
disease (2). For instance, nearly two-thirds of the study
subjects in a clinical trial of modified Atkins diet had
already attempted dietary changes before they participated
in that trial (3). The ketogenic diet (KD) and related
dietary styles were preferred by many patients with MS.
In a survey of dietary characteristics conducted in North
America, these patients often adopted a low-carbohydrate,
low-calorie, or Atkins diet in some periods of their disease
course (4).

In contrast to the enthusiasm about diet modification on
the patients’ side, evidence supporting the use of any specific
diet for MS was considered to be insufficient (5-7), and
KD was often not specifically addressed in review articles
examining the role of dietary intervention in MS (7, 8). It has
been suggested that KD might exert anti-inflammatory and
neuroprotective effects in patients with various neurological
disorders (9-13), including progressive MS (14). However,
KD is not without potential adverse effects, and the chronic
low-grade metabolic acidosis associated with KD is a cause
for concern. To prevent the acidosis, it has been suggested
that dietary protein, which is a source of endogenous acidic
metabolites, is maintained at the level of 1-2 g/kg/d, and
consumption of alkaline mineral-rich green vegetables is
maximized (15). Moreover, it appears that the effects of
KD on the CNS are context dependent, and KD could be
detrimental in some situations. For instance, KD aggravates
cognitive impairment induced by intermittent hypoxia in
mice (16). This negative cognitive impact is mediated by
the expansion of IFN-y-producing T helper 1 (Thl) cells,
and Th1 polarization is also implicated in the pathogenesis
of experimental autoimmune encephalomyelitis (EAE) and
MS (17). Nonetheless, KD has shown promise in various
rodent models of dysmyelination or demyelination. In a
mouse model of Pelizaecus-Merzbacher disease (a kind of
inherited leukodystrophy), a KD rescued the myelination
defect and clinical phenotype (18). In EAE and cuprizone-
induced demyelination mouse models, KD also ameliorated
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disease activity in terms of neuropathology and behaviors
(19, 20). Several pilot clinical trials concerning the effects
of KD on patients with MS have been carried out in recent
years (3, 17, 21). Therefore, this is a prime time to re-
evaluate the role of KD in MS and its corresponding animal
models, and to identify knowledge gaps that deserve further
research.

The Effects of KD on MS (Human Studies)

A PubMed search using the search terms “ketogenic diet”
AND (“multiple sclerosis” OR “experimental autoimmune
encephalomyelitis”) was performed to identify relevant pub-
lications. The last search date was December 31, 2021.

Study design and execution

Three open-label clinical trials of KD therapy for MS,
including 2 randomized controlled trials (class II evidence)
(17, 21) and 1 single-arm pilot study (class IV evidence)
(3), have been published since 2016. There were also other
research articles focusing on certain aspects of KD effects in
patients with MS, including the ramifications of the clinical
trial conducted by Bock et al. (clinicaltrials.gov identifier:
NCT01538355) (22-24). In addition, a single case report was
identified (25). An overview of these studies is presented
in Table 1.

KD regimens used in these studies were heterogeneous,
including variants such as a modified Atkins diet (3) and
medium-chain triglyceride (MCT)-based KD modified from
the Wahls Paleo Diet (21). The latter was considered to be the
KD version of the modified Paleolithic diet. The ketogenic
ratio (i.e., the ratio of grams of fat to grams of carbohydrate
and protein combined) of study diets, either reported in
the articles or calculated from the diet descriptions, ranged
from 1 to 2.2 across studies (17, 21, 25) and was lower
than that of the classic KD (with a ketogenic ratio <4)
(26). The exception was the study published by Benlloch et
al. (27), in which the ketogenic ratio was far below 1. An
isocaloric KD was originally claimed as the study diet in their
article, but the carbohydrate content (40%) and the degree of
ketosis achieved [mean serum S-hydroxybutyrate (BHB) =
0.10 mmol/L] did not conform to KD in the general sense.
Therefore, the study could not be considered a genuine KD
study. Indeed, the authors admitted later that their study diet
would be more appropriately termed a “coconut oil-enriched
Mediterranean diet” (28).

The classic KD and MCT diet often result in different
levels of nutritional ketosis, even when the ketogenic ratio is
the same. They also exhibited differential clinical effects in
a mouse model of hypomyelinating disease (18). Therefore,
caution should be exercised in comparing and interpreting
research results because different KD regimens were used
across studies. Another issue that deserves attention is the
differences in the calorie content of study diets. In the case
study using KD as the sole therapy for secondary progressive
MS, the dietary regimen was actually a combination of
KD and a calorie-restricted (i.e., 75% of the recommended
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(Continued)

TABLE 1

Other notes or

Age of study

subjects, y comments

Dietary interventions Supervision or coaching Study participants
10 SPMS, 2 PPMS, 1

Study design

Author (year)

clinicaltrials.gov

36-63

Participants were taught

Experimental groups:

Randomized, waitlist

Lee et al. (2021)

identifier:

PRMS, T RRMS; 5 on

MCT-based KD, 6
on modified

the study diet by RD,
who answered all

MCT-based KD for 12
wk, or modified
Paleolithic diet.

controlled, open-label

study

21

NCT01915433

diet-related questions

Paleolithic diet, 4
on usual diet

throughout the study.
RD made nutrition

Comparator group:

usual diet. Ketogenic
ratio 0.99 4+ 047

counseling calls to

participants 2-3 d after
visit 1, then weekly for

3wk
As described in the study

Adults, mean

40 RRMS (17 on

As described in the study

Retrospective evaluation

Bock et al. (2022)

43.06 £9.7

adapted KD, 14 on

of Bock et al. (2018) (22)

(see above)

of Bock et al. (2018) (22)

(see above)

of a randomized, 3-arm

trial

(23)

FMD, 9 controls)

'CR, calorie restriction; FMD, fasting mimicking diet; HC, healthy controls; KD, ketogenic diet; MAD, modified Atkins diet; MCT, medium-chain triglyceride; MS, multiple sclerosis; PPMS, primary progressive multiple sclerosis; PRMS, progressive

relapsing multiple sclerosis; RD, registered dietitian; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis.

calorie intake) diet (25). It might be difficult to tease out
the effects of KD from those of calorie restriction in this
case, because intermittent calorie restriction per se might
exert beneficial effects in patients with MS in the absence
of significant changes in BHB concentration (29). One study
made a head-to-head comparison between KD and a fasting
mimicking diet (FMD) in this context (17). The results
suggest that both dietary regimens are safe and feasible for
patients with MS, whereas FMD leads to more significant
improvement in overall quality of life, physical health, and
mental health compared with KD. However, it might be
difficult to determine whether the improvements seen in the
FMD group can be attributed to the 7-d FMD per se or the
6-mo Mediterranean diet that followed. An ongoing study
(clinicaltrials.gov identifier: NCT03508414) aims to compare
KD and FMD regarding their intermediate-term (18-mo)
efficacy, using change in lesion load on T2-weighted MRI of
the brain as the primary outcome measure (30).

Most studies included a nutritional coach or dietitian
for diet-related instruction and/or counseling during the
implementation of dietary therapy (3, 17, 21, 22, 24). This
was not specifically mentioned in 2 studies (25, 27). The
adherence to therapeutic diet was generally assessed using
food diary, urine ketones, and blood ketones measurements
(3, 21, 23, 25), and the latter were also used to ensure that
nutritional ketosis was achieved.

Study findings and implications
Most studies reported beneficial effects of KD on some
aspects of MS-related outcomes (Table 2), including Ex-
panded Disability Status Scale (EDSS) score (3, 17, 25),
health-related quality of life (17), fatigue (3), depression (3),
and anthropometric measures such as body weight, BMI,
and/or total fat mass (3, 25). Two studies reported favorable
effects of KD on biomarkers of glucose homeostasis (3,
21), whereas 1 study reported no significant effect in this
regard (22). One study reported a significant decrease of
leptin after a 3-mo period of KD (3), which is consistent
with the KD-induced changes in anthropometric measures.
One study found that serum neurofilament light chain, a
marker of neuroaxonal damage, decreased significantly in
patients treated with KD (23). By comparison, reduction of
serum neurofilament light chain was not observed in patients
treated with FMD or common diet. It is also notable that
the temporal pattern of serum neurofilament light chain
concentration was not linear in patients treated with KD, and
significant reduction of this biomarker was only observed
after 6-mo dietary therapy, suggesting relatively late onset of
KD’s neuroprotective effects. Among the KD-treated patients
in the 3 clinical trials, only 1 patient experienced a clinical
relapse during the study period (17); other patients did
not exhibit overt disease progression. However, the clinical
course of MS is usually insidious, hence further studies with
alonger duration of follow-up could be needed to determine
ifa KD is effective in reducing disease relapse or progression.
The patient characteristics varied markedly between stud-
ies. For example, patients in the clinical trial conducted by
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Lee et al. (21) were much more severe in terms of their EDSS
score (>4.5, as imposed by the inclusion criteria) compared
with patients in Brenton et al.’s study (EDSS score 1.0-4.0)
(3). In another study, the EDSS score of study subjects was
not reported (27). Most studies recruited mainly patients
with relapsing-remitting MS, whereas a clinical trial and a
case report focused more on the effects of KD in progressive
MS (21, 25). The age distribution of enrolled patients also
differed between studies (Table 1), and pediatric MS has
been underrepresented in existing studies. It appeared that
younger patients with milder disease or a relapsing-remitting
form of the disease benefited more from KD in terms of
EDSS score, quality of life, and fatigue (Table 2), although
further studies are clearly needed to identify the patient
characteristics that lead to more favorable responses to KD
intervention.

Adverse events were reported in 2 clinical trials (3, 17).
The most common adverse events in KD-treated patients
were respiratory tract infection [~67% compared with 75%
in control group (17)], gastrointestinal symptoms (diar-
rhea, constipation, nausea; 28 to 40%), and genitourinary
problems (ureteric colic, urinary tract infection, menstrual
irregularities; 11 to 20%). Serious adverse events were rarely
encountered.

The role of gut microbiota

Gut microbiota and their metabolites are considered impor-
tant players in mediating the immunological effects of dietary
intervention (31). Bifidobacterium could induce intestinal
Th17 cells (32), and the latter are implicated in the patho-
genesis of CNS autoimmunity (33). KD has been associated
with decreased abundance of Bifidobacterium in patients
with obesity, which in turn results in decreased intestinal
Th17 cells (34). Together, these findings suggest that KD can
ameliorate MS through its microbiome-modulating effects.
However, only 1 study to date reported the effects of KD
on the gut microbiota of patients with MS (24). Swidsinski
et al. (24) found that the overall mass and diversity of the
colonic microbiome were reduced prior to KD intervention
in these patients at the group level, although interindividual
differences were evident. The effects of KD appeared to be
dynamic during the 6-mo period of dietary intervention
in these patients. The overall bacterial concentrations and
diversity were further reduced initially (at ~2 wk after the
introduction of KD), then subsequently gradually recovered.
An exception to this general trend was Akkermansia, which
increased initially but declined later. Akkermansia has been
implicated in mediating the antiseizure effect associated
with KD (35). Furthermore, Akkermansia was found to be
increased in patients with MS in a recent study, and the
Akkermansia isolated from these patients ameliorated EAE
in a mouse model (36). Taken together, these findings are
broadly consistent and suggest a neuroprotective role of
Akkermansia in MS and related conditions. The dynamic
changes in gut microbiota, as reported by Swidsinski et al.
(24), underscore the importance of longitudinal evaluation
after dietary intervention. A caveat of their study was that
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the authors did not examine the associations between mi-
crobiome changes and clinical or paraclinical characteristics.
More studies are needed to elucidate the reproducibility of
their findings and the clinical significance of KD-microbiota
interactions.

Limitations

The research literature reviewed has some limitations. First,
these studies are largely pilot ones and exploratory in nature.
The sample size is likely insufficient for clarification of KD’
effects on many MS-related outcomes. In the study protocol
of a 3-armed randomized controlled trial (NCT03508414)
designed to compare KD and intermittent fasting, it was
estimated that 111 patients needed to be enrolled to achieve
a statistical power of 80%, assuming that the dropout rate
is 10% (30). Adequate sample size is also required to assess
potential effect modifiers. However, this is often practically
difficult, as illustrated by a change of inclusion criteria due
to low initial enrollment in a recent study (21). Second, the
duration of treatment and follow-up was relatively short.
Therefore, the impact of dietary intervention on relapse rate
and long-term trajectory of disability accrual could not be
assessed. Third, the ketogenic ratio of study diets was 2.2
or lower. It remains unclear whether a higher ketogenic
ratio, as used in some studies of refractory epilepsy (26,
37), could bring about more therapeutic benefits in patients
with MS. In addition, KD is considered particularly suitable
for children with drug-resistant epilepsy because children
have better dietary compliance and more efficient extraction
and utilization of blood ketones (38). However, pediatric
MS has been underrepresented in existing studies (Table 1),
thus further research is needed to assess the role of KD in
this patient population. Fourth, it has been recognized that
changes in dietary macronutrient composition could rapidly
alter the human gut microbiome (39), which in turn impacts
health and diseases. However, KD-microbiota interaction in
the context of MS was only addressed in 1 study (as reviewed
above), and clinical correlations were not examined. Hope-
tully this issue is acknowledged and incorporated into future
studies, as exemplified by an ongoing trial that listed gut
microbiome change as a secondary end point (30).

The Effects of KD on EAE and Other CNS
Demyelination Animal Models

Observational and interventional studies in human patients
provide invaluable information regarding the safety, efficacy,
and feasibility of KD in the treatment of MS. However,
given the presence of multiple potential confounders, it has
been relatively difficult to gain mechanistic understanding of
dietary intervention from human studies. Animal research
could play a complementary role in this regard. Several well-
established animal models have been used to investigate the
effects of KD on CNS demyelination. These models differ
by their pathogenetic mechanisms and only recapitulate
MS in some aspects. In short, the demyelinating process
is immune-mediated in EAE models, whereas it is toxin-
induced in cuprizone models (40). EAE is often viewed



as the corresponding animal model of MS, and multiple
versions of EAE have been developed (41). In the studies
reviewed below, EAE was induced by myelin oligodendrocyte
glycoprotein (MOG)3s5_s5 in C57BL/6] (B6) mice. The result-
ing disease course was monophasic (42), in contrast to the
relapsing-remitting course in the majority of patients with
MS. Nonetheless, the neuropathological and immunological
features of this model could mimic aspects of human MS,
making it useful in dissecting the mechanisms of potential
therapeutic interventions.

Table 3 summarizes the animal studies investigating
the effects of KD on CNS demyelination models. Two
studies examined the effects of KD, with different timing of
initiation, in a MOGg3s5_55-induced EAE mouse model. Choi
etal. (17) compared the therapeutic effects of various dietary
regimens. KD attenuated disease severity when initiated
around the onset of EAE. However, the effect was modest
compared with that of FMD. In the other study, Kim et
al. (19) studied the effects of KD initiated 7 d prior to the
induction of EAE (i.e.,, ~2-3 wk before clinical onset of
EAE). It is worth noting that spatial memory deficits in
EAE manifest prior to the onset of motor disability, which is
reminiscent of the early appearance of cognitive dysfunction
in pediatric MS before motor handicap ensues (43). This
temporal sequence allows behavioral memory testing to
be performed in EAE mice without the interference of
suboptimal motor performance (19). The authors found that
KD-treated mice exhibited improved learning and memory
and also motor performance. The pathological effects at
structural and electrophysiological levels were also rescued.
Together these studies suggest that both preemptive (19) and
therapeutic (17) use of KD is effective in ameliorating disease
activity in EAE.

Two related studies examined the effects of KD in a
cuprizone-induced demyelination mouse model in corpus
callosum and hippocampus, respectively (20, 44). Both
studies, with somewhat different KD regimens, reported
beneficial effects of KD on neuropathological changes,
including less demyelination, enhanced oligodendrocyte
maturation, and reduced reactive astrocytes and microglia
activation as compared with those treated with normal diet.
Behavioral phenotyping showed that mice cotreated with
KD exhibited better learning and memory, emotion, and
motor performance than those treated with cuprizone alone.
Consistent with that observed in an EAE model (17), KD also
ameliorated cuprizone-induced body weight loss.

Excessive expression of proinflammatory cytokines and
chemokines in the CNS and periphery, as well as the
production of reactive oxygen species, were observed in
EAE mice. These were largely suppressed when KD was
instituted before EAE induction (19). Qualitatively similar
results were also seen in cuprizone-induced demyelination
models, in which KD-treated mice had decreased expression
of proinflammatory cytokines (IL-18, TNF-«), chemokine
(CXCL 10), and oxidative stress marker (malondialdehyde)
(20, 44). These data were also broadly consistent with
findings from patients with MS, in whom KD attenuated

the mRNA expression of proinflammatory cyclooxygenase
and lipoxygenase (22). Taken together, human and animal
research findings suggest that the beneficial effects of KD in
MS/EAE can be attributed in part to its anti-inflammatory
and redox modulatory properties.

Potential Molecular Links between KD and
MS/EAE

The study of KD therapy for MS/EAE to date, as reviewed
above, not only suggests a promising way of dietary interven-
tion but also yields potential mechanistic insights in relevant
contexts (Figure 1). It has been increasingly recognized that
the ketone body species can play dual roles. They can be
transported into neurons and converted to acetyl-CoA in the
mitochondria, thereby serving as energy substrates. On the
other hand, the ketone bodies and related metabolites, such
as decanoic acid, can also act as signaling molecules (9, 11,
45). The following is a concise review of current evidence
regarding several candidate molecular players implicated in
mediating the effects of KD on MS/EAE.

Histone deacetylases

Histone deacetylase 3 (HDAC3), a member of class I
HDAG:, is involved in regulating inflammatory responses
through deacetylase activity-dependent and -independent
mechanisms (46). Its mRNA is expressed in significantly
higher amounts in the peripheral blood mononuclear cells
(PBMCs) of patients with MS (47), and it appears to be
causally linked to IL-33 overexpression in these patients
(48). Class I HDAC inhibition attenuates LPS-induced IL-
33 expression in PBMCs derived from patients with MS
(48). BHB inhibits HDAC3 in a dose-dependent manner
(49), and KD ameliorates the increase in HDAC3 protein
expression in the corpus callosum in a cuprizone-induced
demyelination mouse model (20). HDACI1 is also involved in
the pathogenesis of EAE (50), and it could also be inhibited
by BHB (49).

On the other hand, sirtuin 1 (SIRT1), a member of
class III HDACs, appears to have neuroprotective roles in
MS and EAE (51, 52). KD is associated with enhanced
SIRT1 expression in various cell types in the CNS, as well
as better neurological outcomes in a cuprizone-induced
demyelination mouse model (44). Taken together, these
findings suggest that class I HDAC inhibition and/or SIRT1
augmentation could be potential mechanism(s) underlying
the effects of KD on MS/EAE.

Acid-sensing ion channel

Acid-sensing ion channel (ASIC) subunit 1, encoded by the
ASICI gene, is overexpressed in both acute and chronic MS
lesions (53). The acidosis in the spinal cord of EAE mice
is sufficient to activate ASIC1. Both genetic ablation and
pharmacological blockade of ASIC1 attenuate disease activity
in EAE mice (54). A pilot study showed radiological evidence
of a neuroprotective effect of amiloride, an ASIC1 blocker, in
a cohort of primary progressive MS patients (53). The main
ketone body species, namely BHB, acetoacetate, and acetone,
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FIGURE 1 A graphical summary of effects of a ketogenic diet in patients with MS and animal models of MS. MS is a multifactorial

condition involving both genetic and environmental factors. Diet is 1

of the modifiable risk or protective factors. Specifically, the ketogenic

diet could ameliorate neuroinflammation, demyelination, and their attendant behavioral effects in MS and related conditions, presumably
through a variety of epigenetic and other molecular mechanisms, modulation of adipokines, and alterations of gut microbiota. EAE,
experimental autoimmune encephalomyelitis; MS, multiple sclerosis.

could inhibit ASIC-mediated currents in rat hippocampal
neurons (55). Therefore, ASIC blockade might contribute to
the beneficial effects of KD in patients with MS.

Forkhead box class O family

Members of the forkhead box class O (FOXO) gene family,
FOXO1 and FOXO3A in particular, are implicated in the
genetic susceptibility of relapsing-remitting MS (56). BHB
upregulates the expression of Foxol (57) and Foxo3a (49)
via histone fS-hydroxybutyrylation and acetylation, respec-
tively. Furthermore, FoxO1 is involved in oligodendrocyte
regeneration and CNS myelination (58, 59), and FOXO3A
contributes to oxidative stress resistance (49, 60). Taken
together, members of the FOXO family could also be
downstream mediators of KD in the context of MS/EAE.

Vesicular glutamate transporters

Vesicular glutamate transporter 1 (VGLUT1), encoded by the
SLC17A7 gene, is implicated in the remyelination process
(61). Its expression was downregulated in a mouse model
of progressive EAE (62). KD ameliorates age-related decline
in VGLUT1 expression in rat hippocampus (63). Taken
together, these findings suggest that VGLUT1 might be
another potential molecular player mediating the effect of
KD in the context of MS/EAE. Other VGLUTs might also
be relevant. For example, a 6-fold increase in VGLUT2

expression has been observed in demyelinated lesions com-
pared with the normal-appearing white matter in people
with MS, and VGLUT2 expression is presumably linked to
the remyelination process in this scenario (64). A recent
study showed that KD resulted in a significant increase in
the abundance of VGLUT2 (encoded by Slc17a6) in the
hippocampus of rats with status epilepticus (65). On the other
hand, it has been demonstrated that acetoacetate and BHB
could inhibit glutamate transport through VGLUT?2 in an in
vitro system (66). Whether and how VGLUT2 is modulated
by KD, as well as its consequences, remains to be investigated
in the context of MS/EAE.

NOD-, LRR- and pyrin domain-containing protein 3
inflammasome

NOD-, LRR-, and pyrin domain-containing protein 3
(NLRP3) inflammasome, the most abundant inflammasome
in the CNS, has been implicated in the pathogenesis of
MS, EAE, and the cuprizone-induced demyelination model
(67-69). KD ameliorates the increase in NLRP3 protein
expression in the corpus callosum in the cuprizone-induced
demyelination mouse model (20). Ketone body species,
specifically BHB, can attenuate NLRP3 activation in vitro and
in vivo in the brain (70, 71). These together suggest that KD
might also exert a beneficial effect through modulation of
innate immune mechanisms in people with MS.
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Peroxisome proliferator-activated receptor y

Markedly decreased expression of peroxisome proliferator-
activated receptor y (PPARy) mRNA has been found in
monocytes derived from patients with relapsing-remitting
MS (72). PPARy could suppress Th17 cell differentiation,
and its downregulation has been associated with exacer-
bation of EAE (73). Activation of PPARy in various cell
types in the brain also contributes to remyelination, as well
as protection from neuroinflammation and demyelination
(74-76). Decanoic acid, a major component of the MCT-
based KD, is a well-known PPARy agonist (9, 77). KD is
also associated with significantly increased PPARy protein
expression in hippocampus in a cuprizone-induced demyeli-
nation model (44). Taken together, these findings suggest
that KDs, particularly those enriched in decanoic acid, might
confer protection against neuroinflammation in part through
enhanced PPARy action.

Adipokines

Several adipokines, both proinflammatory (leptin, fatty acid
binding protein-4) and anti-inflammatory (adiponectin),
have been implicated in the regulation of disease activity
in MS and EAE (73, 78-80). Indeed, an animal study
suggested that adiponectin could ameliorate disease activity
in EAE through enhanced SIRT1/PPARy expression and
suppression of Th17 cell differentiation (73). On the other
hand, PPARy agonism also induces adiponectin expression
(81, 82), suggesting a bidirectional relation between PPARy
and adiponectin. KD has been associated with increased
serum adiponectin concentration in human and rodent
studies (83-85). Research into the effects of KD on fasting
adipokines of patients with MS, however, was scarce. One
study reported significantly decreased leptin and borderline
increased adiponectin concentrations after a 3-mo period of
KD in MS patients who were largely obese or overweight
(3). More studies are clearly needed to elucidate the role of
adipokines in dietary therapy for MS.

Conclusions

Nutritional care for MS has gained wide clinical and
scientific interest among patients and clinicians. Thus far,
the published studies on the effects of KDs on MS are
either pilot clinical trials with small sample size or anecdotal
reports. Nonetheless, their findings together showed that KD
is feasible and well tolerated, and it exhibits neuroprotective
and disease-modifying potential in this patient population.
Similarly, investigations on the effects of KDs in the cor-
responding rodent models of CNS demyelination yielded
promising results. It has also been better recognized that
major metabolites in KDs, particularly BHB and decanoic
acid, are not only energy substrates but also important
signaling molecules in the context of neuroinflammation.
Further research in this direction is needed to elucidate the
mechanisms of action and to inform evidence-based clinical
practice of KDs in MS and related conditions.
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