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ABSTRACT

This systematic review and meta-analysis was conducted to pool findings of cohort studies that investigated hazards of type 2 diabetes mellitus
(T2DM) in relation to intakes of SFAs. A systematic search was conducted in the PubMed, Scopus, and Embase databases up to June 2021 to find
eligible studies. Review articles or commentaries, clinical trials, cross-sectional studies, studies on gestational or type 1 diabetes patients, animal
studies, articles with no access to full-texts, articles published in non-English languages, and articles with missing critical data needed for the
systematic review were excluded from the meta-analysis. A random-effects model was used to combine study-specific results. Thirteen cohort
studies with 361,686 participants and 11,865 T2DM events were included. Dietary total SFA intake, as well as dietary palmitic acid (PA) or stearic acid
(SA) were not associated with risk of T2DM when the highest was compared with the lowest intake category (HR = 0.99; 95% CI: 0.91, 1.09; n = 13
for total SFAs; HR = 0.96; 95% CI: 0.79, 1.15; n = 4 for PA; and HR = 1.08; 95% CI: 0.79, 1.49; n = 4 for SA). However, the risk of T2DM decreased by 11%
in the highest compared with the lowest category of dietary lauric acid (HR = 0.89; 95% CI: 0.82, 0.97; n = 2), and by 17% in the highest compared
with lowest category of dietary myristic acid (MA) (HR = 0.83; 95% CI: 0.74, 0.92; n = 3). There was evidence of publication bias among studies on
dietary total SFAs and T2DM. Our results indicated no significant association between dietary total SFA and risk of T2DM. However, dietary intake of
MA was negatively associated with developing T2DM. Adv Nutr 2022;13:2125–2135.

Statement of significance: The prior published meta-analysis in this field investigated the association between dietary total SFAs and risk
of T2DM; no systematic review and meta-analysis has been conducted for the association between individual SFAs (lauric acid, myristic acid,
palmitic acid, and stearic acid) and risk of T2DM. Moreover, dose–response associations of SFAs and T2DM remained undetermined. The results
of our meta-analysis showed negative associations between dietary intake of LA and MA and risk of T2DM.
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Introduction
Although dietary guidelines generally recommend reducing
total fat and SFA intakes (1), controversy still surrounds the
diabetogenic effect of SFAs. Some of the experimental studies
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support the notion that dietary fats, and SFAs in particular,
are associated with the development of insulin resistance and
type 2 diabetes mellitus (T2DM) (2–5). On the other hand,
the majority of more recent cohort studies have indicated
no association between dietary SFAs and the incidence of
T2DM (6–9). In the case of dietary SFAs with different chain
lengths [i.e., lauric acid (LA), myristic acid (MA), palmitic
acid (PA), stearic acid (SA)], the results are inconclusive.
Whereas there was no significant association between intake
of SFAs and T2DM in some studies (5, 7, 9, 10), a significant
negative association was reported for LA and MA (6, 8), and a
significant positive association was reported for SA (11). Due
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to these challenges, dietary recommendations to limit SFAs
for T2DM prevention might need re-evaluation.

Although a prior meta-analysis investigated the asso-
ciation between dietary total SFAs and T2DM incidence
(12), no systematic review and meta-analysis has been
conducted for the association between individual SFAs (LA,
PA, MA, and SA) and risk of T2DM. Moreover, dose–
response associations of SFAs and T2DM have remained
undetermined.

Therefore, this study aimed to conduct an updated
systematic review and a dose–response meta-analysis of
cohort studies to test the linear and potential nonlinear dose–
response associations between intakes of total SFAs, LA,
MA, PA, and SA and the risk of T2DM. Further subgroup
analyses were also conducted to clarify the possible effects of
confounding factors.

Methods
We used the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) statement as guidance
for reporting this systematic review (13). We also followed
the 12-item PRISMA extension for writing the abstract (14).

Search strategy
We searched all English-language papers in PubMed,
Scopus, and Embase databases, using appropriate
keywords, according to the following search formula:
(“diabetes”[Title] OR “diabetes mellitus”[Title] OR “type 2
diabetes”[Title] OR “dysglycemia”[Title] OR “diabetic”[Title]
OR “NIDDM”[Title] OR ((“non-insulin”[Title] OR
“noninsulin”[Title]) AND “depend”[Title])) AND (“fatty
acid”[Title] OR “dietary fat”[Title] OR “saturated fat”[Title]
OR “butyric acid”[Title] OR “butanoic acid”[Title] OR
“caproic acid”[Title] OR “hexanoic acid”[Title] OR “caprylic
acid”[Title] OR “octanoic acid”[Title] OR “decanoic
acid”[Title] OR “capric acid”[Title] OR “lauric acid”[Title]
OR “octadecanoic acid”[Title] OR “myristic acid”[Title]
OR “tetradecanoic acid”[Title] OR “palmitic acid”[Title]
OR “hexadecanoic acid”[Title] OR “stearic acid”[Title] OR
“carbohydrate-restricted”[Title]). Evidence not published
in commercial or academic publications (gray literature)
were also searched using Google Scholar. We checked the
reference lists from reviews and original studies investigating
the potential association between dietary SFAs and T2DM,
to find other relevant articles that might have been missed in
our searches.

Eligibility and study selection
Two authors (ZG and ZB) reviewed the title and abstract of
all obtained articles. The exclusion criteria for study selection
were: 1) articles published in non-English languages; 2)
review articles or commentaries; 3) study designs other than
cohort studies including clinical trials and cross-sectional
studies; 4) studies on gestational or type 1 diabetes patients; 5)
animal studies; 6) articles with no access to full texts; and 7)
articles with missing critical data needed for the systematic
review. Studies that reported dose of SFA and adjusted

effect sizes across categories of exposures; and provided
the numbers of participants or person-years and events
across categories were included for dose–response meta-
analysis. Included studies were published between 1992 and
2020.

Study eligibility was assessed based on initial inclusion
and exclusion criteria; final relevant full-text articles were in-
cluded in the meta-analysis and retrieved for data extraction
(Figure 1).

Quality assessment for each study was conducted using
the Cochrane Risk of Bias in Non-Randomized Studies of
Exposures (ROBINS-E) tool (15) (Supplemental Table 1).
The tool includes 7 domains of bias: confounding bias,
selection of participants bias, exposure assessment bias,
misclassification of exposures, missing data bias, measure-
ment of outcomes, and selective reporting of the results.
Disagreements were solved by consulting the principal
investigator (PM).

Data extraction
Data extraction was conducted by the first author (ZG)
and double-checked by the last author (PM) to ensure
that all data were extracted correctly. The following vari-
ables were extracted from eligible studies: the first author’s
name, publication year, country, sex of participants, follow-
up duration, exposure, categories of exposure, number of
participants and cases per category, the dose of SFAs,
LA, MA, PA, and SA intake per category, risk estimates
expressed as HRs, RRs, or ORs with corresponding 95% CIs
per category, and confounding factors in the multivariable
analysis (Supplemental Table 2). For all meta-analyses, we
used the maximally adjusted effect sizes reported in primary
studies.

Data synthesis and statistical analysis
Due to the high heterogeneity observed between studies in
our meta-analysis (>50%) and considering the potential for
high variation within and between the observational studies,
we performed random-effects meta-analyses to calculate
summary HRs and 95% CIs for a 1% increase in the
percentage of fat intake from total energy (16). The reported
RRs were considered equal to HRs (17). We conducted
linear dose–response meta-analyses using the method of
Greenland and Longnecker (18). For this method, the
distribution of events and participants or person-years and
adjusted risk estimates across categories of SFAs were needed.
When studies reported the ranges of exposure categories,
instead of the direct median of each category, we estimated
approximate medians by the midpoint between the lower
and upper limit. For open categories, we assumed the same
range as the adjunct category. If a study did not report the
numbers of participants or person-years in each category, if
the exposures were defined as quantiles, the distribution of
participants and person-years was estimated by dividing the
total number of participants or person-years by the number
of categories (19). If the dietary SFA intake was reported as
grams per day, we converted them to energy percentage. For
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FIGURE 1 Flow chart of the literature search.

the 1 study (20) that did not consider the lowest category
as a reference, the effect size was recalculated, assuming the
lowest category as reference, using the method suggested by
Hamling et al. (21).

We performed subgroup analyses by sex, geographical
location, follow-up duration, number of participants, expo-
sure assessment method, study quality, and adjustment for
main confounders. Also, sensitivity analyses were conducted
to evaluate the potential influence of each study on the
results by re-estimating the HRs after excluding 1 study
at a time. We evaluated between-study heterogeneity by
using the I2 statistic (specific categories such as low = 25%,
moderate = 50%, and high = 75%) (22). Publication bias
was assessed using funnel plots and Egger regression test
asymmetry (23) if sufficient studies existed (n ≥ 10) (24).

Moreover, we performed a Pnonlinearity r dose–response
meta-analysis, using the Wald test, to determine whether
there was departure from linearity, and to test the potential
nonlinear association between dietary SFAs and risk of
T2DM (25). For the nonlinear dose–response meta-analysis,
we modeled curvilinear dose–response associations using

a 1-stage weighted mixed-effects meta-analysis (26). The
exposures were modeled using restricted cubic splines (27):
a spline function set of smoothly joined curves that curve at
knots. The knots were based upon Harrell’s recommended
percentiles for 3 knots at 10th, 50th, and 90th percentiles
(27). The correlation within each category of published RRs
was taken into account, and the study-specific estimates were
combined by using a 1-stage weighted mixed-effects meta-
analysis (26, 28). This method estimates the study-specific
slope lines and combines them to obtain an overall average
slope in a single stage (18, 25).

Finally, we repeated meta-analyses with the inclusion of 1
unpublished dataset in the full data (Supplemental Figures
1–4).

All analyses were conducted with Stata software, version
16 (Stata Corp). P < 0.05 was considered statistically signifi-
cant.

Results
After removing duplicates, 167 publications were found
through database searching. We reviewed the titles and
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FIGURE 2 Forest plot of cohort studies showing weighted mean differences in risk of type 2 diabetes between highest vs. lowest
category of total saturated fat intake, for all eligible studies. Analysis was conducted using a random-effects model. DL, DerSimonian &
Laird.

abstracts of all articles, and 153 were removed. The full texts
of the remaining studies were assessed for eligibility, and 1
study was excluded. Ultimately, 13 prospective cohort studies
with 361,686 participants and 11,865 T2DM events were
included in the final meta-analysis (5–11, 20, 29–33).

Characteristics of included studies
Of the 13 studies, 6 were from Europe, 5 from the United
States and 2 from Australia. Follow-up durations were
between 4 and 17 y (median follow-up duration was 8.0 y,
with IQR = 5.1–13.0 y). Of the 13 studies, 12 studies reported
the risk of T2DM for total dietary SFAs (5–11, 20, 29–31, 33),
2 studies reported the risk for dietary LA (6, 8), 3 studies for
MA (6, 8, 32), 4 studies for PA (6, 8, 11, 32), and 4 studies
for SA (6, 8, 11, 32). Four studies included only women (9,
10, 30, 33), 1 study included only men (5), and another 9
studies included both men and women (6–8, 11, 20, 29, 31,
32). T2DM diagnosis was based on self-report in 5 studies
(6, 9, 30, 33, 34); however, 8 studies confirmed self-reports
of T2DM by assessing the glucose concentrations in blood
samples. The general characteristics of the included studies
are presented in Supplemental Table 2.

Quality assessment of included studies, using the
ROBINS-E tool, revealed that 9 studies were at serious risk of
bias, and 5 studies had moderate risk of bias (Supplemental
Table 1). Mostly, the high risk of bias was due to not
controlling confounders, selection bias due to the selection
of participants into the study, or bias due to changes in
exposure during follow-up that were not measured.

Total saturated fats
Figure 2 summarizes the results of the meta-analysis for total
dietary SFAs as a risk factor for T2DM. Dietary SFA intake
was not associated with risk of T2DM when the highest was
compared with the lowest intake category (HR: 0.99; 95%
CI: 0.91, 1.09; n = 13), with high heterogeneity (I2 = 54.4%;
Pheterogeneity = 0.010). In sensitivity analysis, summary results
did not change when each study was sequentially excluded
from main analysis (HRs = 0.96–1.01). In the subgroup
analyses, we observed no significant differences in meta-
analysis results between the categories of studies based
on sex, geographical location, follow-up duration, diabetes
diagnostic method, number of participants, study quality,
and main adjustments (Table 1).

The linear dose–response meta-analysis of the main 13
studies showed no linear association between increasing
intake of SFAs and T2DM risk (HR: 0.93; 95% CI: 0.84,
1.03). From 13 cohort studies regarding the association
between total SFAs and T2DM risk, 7 studies (5–7, 9, 31,
33, 34) reported sufficient data for the nonlinear dose–
response analyses. There was no evidence of a U- or J-
shaped association between total SFA intake and risk of
T2DM (Pnonlinearity = 0.153; n = 7; Figure 3). Supplemental
Figure 5 presents the results for publication bias. Overall,
there was evidence of publication bias with the Egger test
(P = 0.032).

Individual SFAs
Figure 4 summarizes the results of the meta-analysis for
dietary LA, MA, PA, and SA regarding T2DM. Risk of
T2DM decreased by 11% in the highest compared with
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TABLE 1 Subgroup analyses of total saturated fat intakes (energy percentage) and risk of type 2 diabetes

Characteristics n HR (95% CI) I2, % P-heterogeneity P-interaction1

All studies 13 0.99 (0.90, 1.09) 54.4 0.010
Sex 0.513

Women 5 0.95 (0.83, 1.07) 0 0.564
Men 1 0.97 (0.79, 1.20) —
Men and women 7 1.06 (0.91, 1.22) 74.2 0.001

Geographical region 0.584
United States 5 0.97 (0.87, 1.09) 0 0.922
Europe 6 1.05 (0.88, 1.25) 72.1 0.006
Oceania 2 1.15 (0.44, 2.98) 89.5 0.002

Follow-up duration, y 0.175
<10 7 1.15 (0.89, 1.49) 55.5 0.036
>10 6 0.95 (0.88, 1.03) 54.4 0.085

Diabetes diagnosis method 0.075
Self-report 6 0.93 (0.85, 1.01) 0 0.676
Blood sampling 7 1.09 (0.93, 1.29) 73.4 0.001

Number of participants 0.160
<10,000 5 1.26 (0.86, 1.84) 64.2 0.025
>10,000 8 0.95 (0.89, 1.02) 34 0.157

Study bias 0.055
Moderate 5 1.07 (0.98, 1.17) 0 0.519
Serious 8 0.94 (0.85, 1.04) 47.5 0.064

Main confounders adjustments 0.681
Yes 9 0.97 (0.90, 1.06) 46.8 0.058
No 4 1.06 (0.73, 1.53) 72 0.013

1P-interaction (or P-between) refers to the significance of the difference between subgroups.

lowest category of dietary LA (HR: 0.89; 95% CI: 0.82, 0.97;
n = 2), with no evidence of heterogeneity (I2 = 37.8%;
Pheterogeneity = 0.205). Dietary MA intake was associated
with a 17% lower risk of T2DM when the highest was

compared with the lowest intake category (HR: 0.83; 95%
CI: 0.74, 0.92; n = 3), with no evidence of heterogeneity
(I2 = 0%; Pheterogeneity = 0.522). The risk of T2DM was not
associated with categories of PA (HR: 0.96; 95% CI: 0.79, 1.15;

FIGURE 3 Dose–response association between dietary total saturated fat and risk of type 2 diabetes. The solid line and the dashed lines
represent the estimated HRs and 95% CIs, respectively. The solid circles and the open circles represent the reference categories and other
categories of dietary saturated fats intake, respectively. E%, percentage from total energy intake.
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FIGURE 4 Forest plot of cohort studies showing weighted mean differences in risk of type 2 diabetes between highest vs. lowest
categories of different saturated fatty acids intake. Analysis was conducted using a random-effects model. DL, DerSimonian & Laird.

I2 = 33.9%; n = 4), or SA (HR: 1.08; 95% CI: 0.79, 1.49;
I2 = 78.2%; n = 4).

The linear dose–response meta-analysis of the association
between dietary MA intake and risk of T2DM showed a
12% lower risk of T2DM with each 1% increase in MA
intake (HR: 0.88; 95% CI: 0.82, 0.95). However, there was no

evidence that increased intakes of PA and SA were associated
with risk of T2DM (HR: 0.82; 95% CI: 0.63, 1.06 for PA; and
HR: 0.75; 95% CI: 0.42, 1.36 for SA). Furthermore, there was
no evidence of a U- or J-shaped association between each
SFA intake and risk of T2DM (Pnonlinearity for MA = 0.395;
Pnonlinearity for PA = 0.549; Pnonlinearity for SA = 0.795;
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Figure 5). Potential publication bias was not assessed
(n < 10). We could not assess the dose–response association
between LA and risk of T2DM, because only 1 study reported
sufficient data for the dose–response analysis of LA and risk
of T2DM.

We repeated the meta-analyses after inclusion of 1
unpublished dataset (Supplemental Figures 1–4). As with
the analysis excluding the unpublished data, those including
the unpublished results showed no significant associations
between total SFAs, PA, and SA and risk of T2DM, whereas
higher intakes of LA and MA were associated with lower risks
of T2DM (published articles only: HR: 0.89; 95% CI: 0.82,
0.97, n = 2 for LA; HR: 0.83; 95% CI: 0.74, 0.92, n = 3 for
MA; adding unpublished data: HR: 0.90; 95% CI: 0.84, 0.96;
n = 3 for LA; HR: 0.85; 95% CI: 0.75, 0.96; n = 4 for MA).
Because the unpublished data had sufficient data regarding
dose–response analyses, we repeated dose–response meta-
analyses for total SFAs, and all 4 individual SFAs. There was
a 20% lower risk of T2DM with each 1% increase in LA
intake (HR: 0.80; 95% CI: 0.70, 0.92). However, there was no
evidence that increasing intakes of total SFAs, MA, PA, and
SA were associated with risk of T2DM.

Discussion
In the present systematic review and dose–response meta-
analysis, we pooled current data from available prospective
cohort studies to present a relatively broad overview of the
association between dietary SFAs, LA, MA, PA, and SA and
risk of T2DM. Our findings showed no significant association
between dietary SFA intake and the risk of developing
T2DM; however, medium-chain SFAs (LA and MA) exerted
protective association against the development of T2DM.

The lack of association between dietary total SFA intakes
and risk of T2DM is consistent with findings from previous
meta-analyses of cross-sectional studies (12, 35, 36). In
a meta-analysis of randomized controlled feeding trials
estimating the effects of isocaloric replacements between
macronutrients, there was no significant change in fasting
glucose concentration by replacing 5% energy from carbo-
hydrate with SFAs (+0.02 mmol/L; 95% CI = −0.01, +0.04;
n trials = 99) (37).

The included studies were heterogeneous; this high
heterogeneity can be explained by differences in follow-
up duration of studies or number of participants, varying
population groups, or differences in dietary sources of SFAs
that each population consumed. Processed and red meats, as
the major sources of SFAs in the European and American
populations’ diet, were associated with a higher risk of T2DM
(38, 39). In contrast, total dairy products, low-fat dairy
products, and cheese, which are also primary sources of
SFAs, had an inverse association with the risk of T2DM (40).
Intakes of dairy products (3 servings/d) in the context of a
healthy diet could reduce the risk of T2DM (41).

Recently, particular attention has focused on the effects
of dairy products on cardiometabolic health. Randomized
controlled trials (RCTs) have supported the hypothesis that
a complex food matrix such as milk, cheese, or yogurt can

ameliorate the potential adverse effects of SFAs on metabolic
health (42). More RCTs with a large sample and long follow-
up duration are needed to fully determine the effects of
dairy products and other sources of SFAs on cardiometabolic
outcomes.

The potential effects of dietary SFAs on insulin sensitivity
are under debate. Reducing dietary SFAs in subjects with
metabolic syndrome did not affect insulin sensitivity (43). An
SFA-rich diet induced whole-body insulin resistance after a
24-h period (44). Replacement of a MUFA-rich diet with an
SFA-rich diet had favorable effects on insulin sensitivity (45).

In contrast to the epidemiological findings, experimental
studies and high-fat-diet–induced animal models of T2DM
and insulin resistance mostly support diabetogenic effects of
dietary fats, and SFAs in particular (46–48). The result of an
animal study that tested the impact of SFAs with different
chain lengths on insulin resistance is notable. It reported that
animals fed a high-fat obesogenic diet with high amounts
of medium-chain SFAs, particularly LA, had greater insulin
sensitivity compared with animals fed an obesogenic diet
with high concentrations of long-chain SFAs, although both
obesogenic groups still had greater insulin resistance than a
control group fed a normal-fat diet (49).

In vitro studies suggested that exposure of cultured muscle
cells to SFAs, specially PA, can induce insulin resistance
due to their proinflammatory properties and induction of
cytokines, such as TNFα, in blood or tissues, activation
of cell stress pathways, elevation of SFA metabolites (such
as ceramides), inhibition of the phosphorylation cascade
downstream of the insulin receptor, and insulin-induced
glucose uptake (50–53). Also, an animal study showed that
the markers of adipose tissue inflammation and systemic
insulin resistance were lower in mice fed a high-LA diet,
compared with mice fed a high-PA diet (54). However,
the studies revealed that some potential confounders in
experimental conditions, such as SFA-solubilizing agents,
might affect interpretation of the effects of SFAs on in-
flammation and other cellular responses, so re-evaluation
of the results of the culture studies seems essential (52).
However, because T2DM is a multifactorial and multistage
metabolic disorder, misclassification and missing actual cases
have been suggested as a reason for reduced magnitude
of the RR for dietary fat intakes in population-based co-
horts (55). Different case definitions (e.g., hyperinsulinemia
with normal glucose tolerance compared with established
T2DM) could be responsible for inconsistent findings of
epidemiological studies (55). Therefore, the case definition
might need to consider the T2DM stage because a large
number of steps are involved in the progression of T2DM
where nutrient influences might occur (55). The variables
included in multiple regression analyses could be a source of
diverse findings of population-based studies; overadjustment
for confounders modifying the potential association between
dietary fats and T2DM risk (e.g., genetic susceptibility and
physical activity) could underestimate the strength of the fat-
T2DM associations (55). On the other hand, the divergent
results could be real because the association of dietary fat
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FIGURE 5 Dose–response association between different saturated fatty acids and risk of type 2 diabetes. The solid lines and the dashed
lines represent the estimated HRs and 95% CIs, respectively. The circles represent the categories of dietary saturated fatty acids. E%,
percentage from total energy intake.
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and T2DM might vary with population characteristics, such
as age, BMI, and physical activity, that are associated with
insulin sensitivity (5). Notably, the high-fat diets used to
induce T2DM and insulin resistance in animal models are
usually composed of 45% fats (approximately one-third SFAs
and two-thirds unsaturated fats) (47), which differs from
the high-fat diets prescribed in human studies to induce
metabolic alterations.

To the best of our knowledge, this is the first meta-analysis
of prospective cohort studies examining the associations of
individual SFAs with different chain lengths (LA, MA, PA,
and SA) with risk of T2DM. We found that higher dietary
intake of SFAs with medium chain lengths (LA and MA)
might have a protective association with the risk of T2DM,
whereas there was no significant association between SFAs
with longer chain lengths (PA and SA) and T2DM.

One remarkable finding of our meta-analysis was that
each 1% increase in energy intake from MA was associated
with a 12% lower risk of T2DM. However, due to the
limited number of studies with sufficient data for the dose–
response analysis of LA and risk of T2DM (n = 1), we
could not assess the dose–response association between LA
and risk of T2DM. Two large prospective cohort studies
indicated that higher dietary intake of LA was associated with
significantly lower risk of T2DM (6, 8). There are limited data
regarding the association of LA intake and T2DM, although
the effect of coconut oil, as a rich source of LA (56), has
been examined in a number of studies. An RCT conducted in
48 subjects with metabolic syndrome reported that subjects
who consumed 30 mL virgin coconut oil for 4 wk had
a significantly lower concentration of fasting blood sugar,
compared with the control group (56). Also, a case report
of a 66-y-old man with T2DM who had insulin treatment,
found that he began experiencing hypoglycemia within 1–
2 d of starting the coconut oil supplementation (57). On
the other hand, a protective association between dietary MA
and T2DM was reported by most of the previous studies
(6, 8, 58, 59). This finding is largely consistent with studies
that examined circulating concentration of MA, which could
more accurately reflect its concentrations from both dietary
intake and endogenous synthesis (11, 60).

To sum up, considering the null association between di-
etary total SFAs and risk of T2DM and the protective associ-
ation between dietary SFAs with medium-chain lengths and
T2DM observed in this meta-analysis and previous studies,
and given the importance of early prevention strategies for
reducing the risk of T2DM, it seems necessary to reconsider
the dietary recommendations regarding limitation of SFAs
to prevent hyperglycemia and instead emphasize the types
and quality of fats consumed within the context of a healthy
dietary pattern.

Strengths and limitations
To the best of our knowledge, this is the first study
that provides a comprehensive review and dose–response
meta-analysis of the association between dietary SFAs with

different chain lengths and the risk of T2DM. Also, dose–
response associations of SFAs and T2DM have not been
investigated before. However, our study has some limitations.
The high level of heterogeneity among the studies can be
attributed to the diversity of populations, their different
cultural and genetic backgrounds, geographical variation,
and different follow-up durations. However, we tried to
detect potential sources of heterogeneity of the studies
by conducting subgroup analyses. Moreover, we did not
assess the dose–response association between LA and risk of
T2DM, because only 1 study reported sufficient data for such
analysis.

We had some limitations for selecting the eligible studies
because we searched only for English-language databases.
Due to the limited number of included studies, publication
bias could only be assessed for total SFAs; there was evidence
of publication bias, which can lead to downgrading of
evidence. The number of studies in each subgroup was also
limited, especially for studies with men participants and
studies in Oceania, which could affect the results of the
subgroup analysis. Also, all of the included studies relied
on questionnaires to estimate typical fat intake, which is
a significant source of measurement errors in estimating
food and nutrient intakes. It should be noted that SFAs
are consumed as components of foods and meals and they
are not eaten in pure form, and composition of fatty acids,
particularly from animal sources like dairy and beef, can
vary greatly with management conditions such as breed
and food source. Further, well-designed prospective cohort
studies and clinical trials with appropriate controlling for
potential confounders and validated dietary intakes with
nutrient concentrations in blood and tissues are needed.

Conclusions
In conclusion, this study supports the null association
between dietary total SFAs and risk of T2DM. However,
dietary LA and MA seem to have a protective association with
developing T2DM.
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