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ABSTRACT

Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a
key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being
applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of
the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address
high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in
anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore
in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman
animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-
facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set
of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies.
Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific
interventions. Adv Nutr 2022;13:1450–1461.

Statement of Significance: Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Here, we provide an
overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized
nutrition and health.

Keywords: prebiotic, probiotic, diet, microbiome, microbiota, personalized nutrition, personalized healthcare, precision nutrition, precision
healthcare
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Introduction
The gut microbiota aids in digestion, including the degrada-
tion of complex fibers and phytochemicals, the production
and absorption of vitamins, and the conversion of primary
bile acids, xenobiotics, and other bioactive compounds into
metabolites that can be readily absorbed by the host (1–
6). Thus, the metabolic activity of commensal microbes is
closely intertwined with human physiology, digestive health,
and the nutritive value of diet. Just as individuals each have
a distinct genotype, each carries a unique set of commensal
microbiota, with individual-specific functional capacities (7,
8). This person-specific gut ecology has been associated
with human population-wide heterogeneity in responses to
dietary, lifestyle, and pharmacological interventions (9–13).
However, there is limited understanding of exactly how
individual variation in the ecology of the gut microbiota
modulates the biological impact of dietary, prebiotic (i.e.,
a substrate that is selectively utilized by host-associated
microorganisms, conferring a health benefit) (14), or pro-
biotic (i.e., live microorganisms that when administered in
adequate amounts confer a health benefit on the host) (15)
interventions on human health and nutrition (16). It is,
therefore, one of the critical goals of 21st century healthcare
and nutrition to design personalized, predictive frameworks
and viable intervention strategies that target and exploit each
person’s unique gut microbiota and its specific capabilities
to optimize human health (7). This article represents the
end-product of an International Life Sciences Institute (ILSI)
Europe probiotics task force initiative on predicting individ-
ual responses to nutritional interventions, which focused, in
particular, on how the human gut microbiota (i.e., the set of
microorganisms that reside within the gastrointestinal tract)
can mediate these personalized responses.

Developing predictive frameworks for individualized re-
sponses to dietary, prebiotic, and probiotic interventions will
rely on iterative approaches that can span the full trans-
lational axis, integrating feedback between computational
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models of microbe–host interactions, in vitro approaches
for testing these model predictions, and ultimately in
vivo studies on the impact of these interventions on host
physiology and health in both nonhuman animals and in
humans. In this Perspective, we briefly outline state-of-the-
art in silico, in vitro, and in vivo approaches for the rational
design and testing of personalized dietary, prebiotic, and
probiotic interventions (Table 1).

In Silico Approaches
There have been a number of recent advances in the
application of computational models to large human cohorts
to make personalized predictions for how interventions will
influence health-relevant outcomes. Modeling approaches
are highly flexible and enable arbitrary degrees of resolution
for exploring parameter space or spatiotemporal dynamics.
These approaches fall into 2 broad categories, statistical
modeling and mechanistic modeling, which we discuss
below.

Classic univariate statistical modeling has been applied to
human cohorts undergoing dietary or lifestyle interventions,
and has identified individual taxonomic (e.g., Prevotella
dominance) and functional (e.g., bacterial amylase gene
frequencies) features of the gut microbiome (i.e., the taxo-
nomic and/or functional composition of the gut microbiota,
inferred from either DNA or RNA sequencing) significantly
associated with “responders” and “nonresponders” to weight
loss interventions (10, 11, 17). Additionally, cross-sectional
correlation-based analyses have been used to identify consis-
tent associations between gut bacterial taxon abundances and
personalized blood lipid profiles, in response to variation in
diet (12).

In addition to these simpler, univariate approaches,
personalized glycemic responses to variation in diet have
been successfully predicted using machine learning (ML)
models trained on multivariate phenotypic input data from
individuals, including data on the composition of the gut
microbiome (9). These personalized dietary predictions
were recently shown to outperform the standard Mediter-
ranean diet in managing blood glucose concentrations in
prediabetes (18). Others are working to build ML models
for predicting personalized responses to drugs or cancer
immunotherapies based on the baseline composition of
the gut microbiota (13, 19–21). Although these advances
are exciting and provide an important proof-of-concept for
personalized, microbiota-based interventions, they rely upon
the manual integration of univariate model outputs or on
complex multivariate models (e.g., random forest regression
or convolutional neural networks), which can be somewhat
opaque to mechanistic interpretation and are highly reliant
on training data. Statistical models can fail to perform well
on cohorts that are not well represented in the training data.
For example, most microbiome research has been conducted
on individuals in the United States and Europe, which means
that precision-intervention ML models trained on these
populations might not perform as well on populations from
other parts of the world (22). For a more detailed review of
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ML and its applications to microbiome-mediated precision
interventions, please see the review articles in references 20,
23, and 24.

Models that can incorporate both longitudinal and cross-
sectional information are also important, but they can
become computationally intractable if the number of param-
eters is too large, requiring long, high-density time series
for parameter fitting and for validating predictions (25–27).
Furthermore, the timescales of dynamics must match the
timescales of sampling in these dynamical models, which is
often not the case in the human gut, where bacterial growth
rates are much faster than the defecation rate (28). Just as with
the purely cross-sectional ML models described above, the
input data sets for these kinds of models are often enriched
in healthy individuals from more affluent populations in
developed countries, which likely limits their application to
unhealthy individuals, to individuals in the developing world,
or to indigenous societies, where significant differences in gut
ecology have been observed (29–31). Thus, effective models
that require fitting to training data are often limited by a
lack of mechanistic interpretability and by a reliance on
incomplete training sets.

Alternatively, mechanistic models provide detailed in-
sights into the potentially causal associations between enteric
microbiota and human health. These kinds of models do
not require a training data set, because they rely upon a
network of validated, causal interactions. Thus, mechanistic
models can perform more robustly than statistical models
when applied across diverse populations. However, these
models are limited by information that is available in
existing knowledge bases. For instance, we do not yet have
a large enough knowledge base on immune–commensal
interactions to build a reliable mechanistic model for this
particular interface. Genome-scale metabolic models are
currently the most promising kinds of mechanistic models
in host–microbe systems due to the vast amount of pre-
existing knowledge on human and gut bacterial metabolism
(32, 33). Prior work has demonstrated that baseline microbial
metabolic gene profiles in the gut can be used to predict the
probability of engraftment of a probiotic strain, indicating
that the probiotic is unable to engraft when its metabolic
niche is occupied by other established commensals (34).

Recent progress has been made in integrating multiple
human gut bacterial commensals into a computationally
tractable metagenome-scale metabolic model, which enables
mapping of ecosystem structure to metabolic outputs and
allows for the personalized simulation of metabolic responses
to dietary, prebiotic, and probiotic interventions (35). Addi-
tionally, significant progress has been made in the last few
years in the integration of host and gut bacterial metabolism
into whole-body metabolic models (36). These types of mod-
els enable the simulation of gut commensal metabolism in the
context of host metabolic variation, such as phenylketonuria
or the loss of lactase expression in adulthood (8, 36). Indeed,
ecosystem-scale metabolic modeling is a powerful tool for
constructing a “digital twin” (i.e., a computational model of
an individual person that can be used to assess the impacts

of potential interventions in silico) for designing and testing
prebiotic, probiotic, and dietary interventions in silico (8, 37).
For a more comprehensive review of microbiome metabolic
modeling and precision medicine, see reference 8. However,
metabolism is only one piece of a broader picture, and
integration of these models with models of the immune
system, nervous system, endocrine system, and behavior
are still needed (37). The accumulation of high-quality,
longitudinal data, collected using standardized approaches
from human populations, will be crucial to the develop-
ment and validation of these mechanistic host–microbiota
models.

Overall, both statistical and mechanistic approaches are
required to make progress when it comes to precision
engineering of the gut microbiota to optimize health.
Data-intensive statistical methods are optimal for making
predictions for host–microbiota interfaces that are poorly
understood, but these models are often, by their nature,
somewhat opaque to interpretation. Mechanistic models, on
the other hand, leverage existing and emerging knowledge
bases and personalized constraints on microbiome composi-
tion and diet to make personalized, N-of-1 predictions that
do not require training data and that have more transparent,
biologically interpretable outputs. These kinds of N-of-1,
or “digital twin,” personalized models that enable in silico
precision intervention response predictions are becoming
increasingly popular in other fields (e.g., in the treatment of
cancers or infectious diseases) (38, 39).

In Vitro Approaches
Developing a predictive framework for leveraging the gut
microbiota requires a quantitative and dynamic under-
standing of the properties we wish to predict within the
system. However, time-resolved and continuous data are
difficult to obtain in vivo. Thus, in vitro approaches of-
fer a compromise between accuracy and flexibility. Envi-
ronmental variables or microbial community composition
can be precisely controlled, and sampling timescales can
be arbitrarily tuned, making in vitro models ideal for
mechanistically dissecting variable responses to prebiotic
and probiotic interventions (40), testing specific hypotheses
about host–diet–microbe interactions (41, 42), or providing
in silico models with detailed training or validation data
(36).

Model complexity can vary widely in vitro (43). The sim-
plest and most versatile approaches involve short-term (i.e.,
<24–48-h) batch culturing of microbial communities. Tem-
perature, pH, oxygen, carbon dioxide, and medium/nutrient
composition can be tightly controlled, at modest cost. Batch
culturing methods are ideal for high-throughput screening
purposes, such as testing the impact of specific nutrient
challenges on a given stool homogenate sample. Over short
incubation windows, changes in metabolite abundances can
be used to assess production and consumption fluxes of these
molecules (i.e., fluxomics) in batch culture. For example, this
approach has been used to study the effects of dietary fibers
isolated from sweet potato on microbiome composition (44),
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or to study the production of SCFAs from the same fiber
inputs to different fecal microbial communities from human
volunteers (45). In the latter example, stark differences in
SCFA production found in vitro were well correlated with
significant differences in fecal SCFA concentrations from
human volunteers fed the same fibers (46), indicating some
degree of accuracy in reproducing community-level func-
tional properties of an in vivo gut microbiota. However, a key
weakness of these models lies in the absence of absorption
or transformation of microbially produced metabolites by
host tissue, resulting in their accumulation over time beyond
normal physiological concentrations.

Continuous culturing methods introduce a layer of com-
plexity by maintaining the medium contents at a steady state,
and allow for longer experimental timescales (i.e., weeks
to months) or repeat-dosing experiments. For example,
the 3-stage Macfarlane and Gibson continuous culturing
model, built to reflect different ecological niches along the
intestinal tract, was shown to reproduce the bifidogenic
effects of galacto-oligosaccharides observed in a human
trial and provided spatially resolved predictions for where
specific fermentative processes were likely occurring in the
gut (47, 48). Even more sophisticated methods include the
Simulator of the Human Intestinal Microbial Ecosystem
(SHIME), a computer-controlled set of reactors connected
by peristaltic pumps, or the TNO Gastro-Intestinal Model
(49–51), which consists of 2 compartments simulating the
upper and lower gastrointestinal tracts. These systems have
been used in numerous nutrient and microbial community-
challenge studies (50, 52–57). Although these models have
incorporated some elements of host absorption, they suffer
from certain drawbacks, notably a lack of host tissue-specific
interactions.

In vitro systems can also be leveraged to study the
effect of a microbiota on specific host tissues (50). In one
study, supernatants from batch cultures were used in cell
challenge assays with peripheral blood mononuclear cells
(PBMCs) isolated from human volunteers to study cytokine
production, finding higher IL-10 production in supernatants
derived from batch cultures supplemented with inulin and
trans-galacto-oligosaccharides, both prebiotic fibers, result-
ing in a higher production of the anti-inflammatory SCFA
butyrate (58). However, one limitation of this study was that
these supernatants were applied directly to PBMCs without
first passing through intestinal and liver tissues, which would
degrade or transform many microbially derived metabolites
before they could pass into general circulation. Similarly,
mucin-coated beads can be added to the culture medium to
simulate both the luminal and mucus-associated microbial
community in the colonic reactors, as has been demonstrated
in the SHIME system (54).

Direct contact with host tissues can be achieved in
vitro in organoid or organ-on-a-chip models (59, 60),
which can be connected microfluidically with peristaltic
pumps (61). Advances in coupling microfluidic and cell
culture approaches with 3D organ-on-a-chip systems have
allowed for novel experimental possibilities and have greatly

increased in vitro model complexity (62). In recent work,
leveraging a Caco-2 cell model, researchers investigated gut
epithelial barrier integrity in the presence of different human
commensal strains, highlighting the power of these more
advanced in vitro systems (63).

Overall, in vitro methods have aided greatly in determin-
ing which interventions to take forward into animal models
and human trials. However, they are limited by the fact that
many human commensal species remain difficult to culture,
making it hard to experimentally reproduce the human
digestive system and compromising the validity of any
underlying microbial community dynamics. Furthermore,
the lack of complex multitissue interactions and the buildup
of metabolites give rise to an artificial environment for the
microbiota, which leads to “bottle effects” where the ecology
of the in vitro community begins to diverge from what it
would look like in vivo (64). Nonetheless, significant progress
in culturing and isolation methods, host cell and tissue
culturing, and the release of multiple gut microbiota strain
banks that contain representative commensal strain diversity
from large and diverse human populations, such as the
Broad Institute-OpenBiome Microbiome Library (65) and
the Global Microbiome Conservancy (66), in combination
with the development of more robust experimental systems
that include host tissues (60, 61), continue to widen the scope
of applicability of in vitro models.

In Vivo Approaches
Predicting personalized responses to dietary, prebiotic, and
probiotic interventions in vivo requires adequate variation in
the study population, careful collection of relevant metadata
and biological measures that serve as covariates, and robust
approaches for characterizing the response or outcome.
Whether it is a preclinical animal model or a human
population, sampling across sufficient genetic, phenotypic,
and environmental variation is important to develop person-
alized prediction models.

Invertebrate models, like Caenorhabditis elegans, provide
the highest degree of experimental tractability and repli-
cation, but are not the most biologically relevant models
for translation to humans (67, 68). Inbred rodent models,
on the other hand, are more translationally relevant and
have been an integral component of nutrition research, en-
hancing our understanding of physiological and pathological
processes and providing mechanistic insights into causality.
The phenotypic spectrum available across various mouse
strains allows for discovery of host genetic features related
to intervention responses. However, to date, most studies
have been conducted within a small number of genetically
homogeneous mouse strains. More recently, development
of multiparent advanced generation intercross populations
(i.e., collaborative cross mice) has expanded the assessment
of host genetics on biological traits, as well as response to
dietary interventions (69). Further, it has provided an ap-
proach to characterizing mechanisms underlying the effects
of host genetics on gut microbiota composition and function
(70). Use of germ-free mice and mice treated with antibiotic
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cocktails, colonized with human fecal communities, further
extends the examination of microbe-driven differences in
responses to dietary inputs (e.g., dietary fiber sources) (71,
72). Finally, pig studies can provide a more physiologically
relevant model of the human body, while allowing samples
to be readily obtained from multiple locations along the
gastrointestinal tract at any degree of longitudinal resolu-
tion. Overall, nonhuman animal models provide detailed
spatiotemporal information on digestion, immune function,
and physiology following dietary or probiotic interventions
(73). Universal concerns related to relevance of exposures
and doses, blinding, use of appropriate comparators, and
bias related to housing conditions, handling, and overall
relevance to human biology, are important considerations
in the rigor of these experiments and supporting translation
from nonhuman animal models to humans (74). In addition,
food companies are increasingly reluctant to use nonhuman
animal models for human research due to rising consumer
concerns for animal welfare.

Traditionally, nutrition studies in humans range from
observational studies in prospective cohorts to randomized
controlled trials (RCTs). RCTs are considered the gold stan-
dard for establishing causal relations between interventions
and biomarkers or outcomes in humans. However, the
choice of study design (e.g., parallel, crossover, factorial,
cluster), the duration of intervention, and the sampling
timescales are critical to addressing the relevant biological
mechanisms and timescales on which intervention-induced
changes might occur (75). Prior work in a healthy human
cohort found that 5–9 longitudinal samples, taken 2–3 d
apart from one another, were optimal for estimating the
average population sizes of commensal gut bacteria within
an individual’s gut (65, 76). Additionally, interindividual
heterogeneity in microbiome composition makes traditional
randomized trials difficult to interpret, which suggests that
N-of-1 trial designs and crossover trials, where individuals
serve as their own controls, are best when considering
personalized microbiota–intervention interactions (77–79).
Duration of interventions to study gut microbiota-related
outcomes can vary widely, and longer duration interventions
make crossover trials impractical (77). Some aspects of
gut microbiota activity and composition respond rapidly
to short-term interventions, if the particular microbes and
pathways targeted by the intervention are already present in
the system (80, 81). Immediate diet–microbiota interactions
can be evident from looking at metabolomic or physiological
biomarkers within hours of intake (9). However, if the
goal is to substantially change gut community composition
in order to alter its functional outputs, then longer-term
interventions might be needed (82–84). Planning dietary
interventions in free-living humans poses additional chal-
lenges related to timing of intake, adherence, and sampling
(85).

Consideration and collection of appropriate metadata,
including relevant host factors and environmental exposures,
is critical to crafting robust, covariate-adjusted prediction
models using data from observational studies, as well as

from RCTs. Multiple host factors affecting microbial and host
phenotypes include: dietary habits, genetics, age, adiposity,
gut permeability, bile acids, mucus production, glycosylation
and fucosylation, macrophysiology (e.g., gut transit; stomach
and intestinal pH), and clinical factors. Environmental
factors, both direct and indirect, that affect diet–microbiota
interactions include: pollution, stress/anxiety, medication
use, physical activity, smoking, etc. Often studies are
hampered in their capacity to capture this information
accurately due to limitations of participant recall, inade-
quate databases, and financial constraints. Technologies that
enable cost-effective, accurate, and comprehensive systems-
scale data collection on human populations, such as the
expanding diversity and availability of wearable devices
and smartphone-based applications (86–88), will provide
greater insight into the causal mechanisms that underlie
how the microbiota mediates personalized responses to
dietary, prebiotic, and probiotic interventions. Finally, it is
important to decrease the costs and logistical hurdles of
these precision approaches to increase the representation
of indigenous, nonindustrialized, and rural populations in
microbiome research so that the societal benefits of precision
nutrition and healthcare are more equitably distributed
(22, 66, 89).

Synthesis
It has become clear that the human gut microbiota influences
how humans respond to dietary, prebiotic, and probiotic
interventions (9–12, 17, 34, 90). In the specific case of
postprandial blood glucose responses, these insights have
been commercialized by DayTwo, Inc, by integrating mi-
crobiome data, clinical data, and blood glucose responses
to standardized meals into predictive models that can
be leveraged to design optimal personalized interventions
that perform better than the current standard-of-care (9,
18). However, many current commercial precision dietary,
prebiotic, and probiotic interventions remain nascent, often
overpromising on their predictive capabilities in a highly
underregulated market. In this context, it is incumbent upon
researchers to collect more evidence from well-designed,
hypothesis-generating human observational studies and
hypothesis-testing experimental intervention trials where
dense phenotypic, clinical, and behavioral information is
combined with gut microbiome profiling. Furthermore, it is
unclear whether or not precision nutrition models trained
on relatively affluent developed-world cohorts are broadly
applicable to the rest of the world, necessitating a sharper
focus on running observational and interventional trials in
indigenous, nonindustrialized, and rural populations (22, 66,
89).

Large, diverse, densely phenotyped human cohorts can
be leveraged to build statistical learning models that enable
personalized predictions of phenotypic responses to inter-
ventions (9). However, these statistical modeling approaches
are limited in that they do not necessarily provide detailed
mechanistic insights and they rely upon a training cohort.
If new data come from individuals who are sufficiently
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FIGURE 1 Conceptual schematic of the current nonpersonalized state of healthcare that focuses on population-based approaches to
treating symptoms, and a vision for a future state of healthcare that leverages personalized data (e.g., microbiomes, dietary intake,
genomes, blood analytes, etc.) to inform precision interventions (e.g., combinations of prebiotic, probiotic, lifestyle, dietary, or clinical
regimes) aimed at addressing the root causes of illness to improve health and well-being.

different from the training cohort, predictions will begin to
break down. Thus, our growing knowledge bases should be
leveraged to build better mechanistic models, which enable
robust personalized predictions based on causally validated
host–microbe and microbe–microbe interactions. Recent
advances in host-microbiota metabolic modeling enable
high-throughput, personalized predictions of responses to
dietary, prebiotic, or probiotic interventions (8, 35, 36). In
order to properly validate these in silico model predictions,
it is necessary to have controlled in vitro models that
allow for high-resolution, spatially resolved, longitudinal
sampling. For instance, metabolic model predictions for
personalized SCFA production in response to specific fiber
amendments could be directly validated using fluxomics
data collected from in vitro batch or continuous culture
systems (45). In addition to validating existing statistical or
mechanistic models, sophisticated in vitro models and in
vivo nonhuman animal models can be directly leveraged to
explore uncharacterized microbe–host associations (2, 60,
73). Feedback from these experiments can be exploited to
build upon our knowledge bases and eventually to serve as a
foundation for better mechanistic modeling. Finally, human
observational and intervention trials are critical components
to the final validation and potential regulatory approval of
personalized dietary, prebiotic, and probiotic interventions.
In order to achieve regulatory approval, it will be important to
have quantitatively validated outcomes, predicted by in silico,
in vitro, and in vivo models, that leverage the composition of
the gut microbiota to optimize human health, nutrition, and
overall wellness.

A Vision of the Future: Microbiome-Informed
Precision Nutrition and Healthcare
Historically, healthcare and interactions with healthcare
professionals (HCPs) have been triggered by patients
reporting disease symptoms, visiting practitioners, and
receiving standard-of-care, population-based treatments
(Figure 1). Preventative, personalized interventions have
not been widely integrated into our current health systems,
and public health messages remain largely untargeted
to specific populations. It is possible to imagine a not-
too-distant future where a relatively healthy individual
walks into a healthcare center and receives an effective,
personalized, microbiome-informed intervention (Figure 1).
In our example, the individual is known to be prediabetic.
Before their visit, the individual would have provided both
blood and stool samples for data generation on blood
proteins, blood metabolites, whole genome sequencing, gut
metagenomic sequencing, live stool homogenates for in
vitro stool assays, and questionnaire data on dietary intake,
lifestyle, medication use, and health history. The individual’s
data are processed through a clinically interpretable artificial
intelligence platform, which provides individual-specific
predictions based on ML models trained on a large
reference population, and also includes mechanistic model
predictions for thousands of host–microbiota–diet metabolic
interactions. The HCP or dietitian is given a dashboard of
the individual’s data profile, which includes a number of
well-validated recommendations (e.g., genomically inferred
disease risk or pharmacogenomic recommendations on
drug usage) and a high-level summary of the data. The
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individual is overweight, has elevated hemoglobin A1c,
shows a relatively low amylase gene copy number in
their genome, and has a Prevotella copri–enriched gut
microbiome. The data dashboard informs the HCP or
dietitian that individuals with low salivary amylase and
a Prevotella-enriched gut microbiome are known to lose
weight readily in response to a high-fiber dietary intervention
(11). Therefore, based on this data profile, the healthcare
provider can see that the individual should respond well to
a healthy lifestyle intervention, including a high-fiber diet
and a 1-h walk in the evenings after dinner, and should
not need a pharmaceutical intervention to achieve and
sustain weight loss and improved cardiometabolic health.
In addition, the individual shows elevated levels of systemic
inflammation and reports constipation. The dietary and
exercise interventions should help, in part, to alleviate
these issues. However, to further reduce constipation
the healthcare provider prescribes supplementation with
prebiotic inulin, which has been shown to increase bowel
movement frequency (91). Furthermore, inulin has been
associated with increased fat oxidation and the promotion
of SCFA production (92). Finally, the in silico metabolic
simulations predict that a diet rich in pectin is likely
to greatly increase butyrate production in this person’s
gut, which should further reduce systemic inflammation
and help with maintaining weight loss. To validate this
personalized prediction, the HCP orders the hospital lab to
run the individual’s stool homogenate through a panel of
dietary fibers on a gut-on-a-chip bioreactor system prior to
their visit, measuring SCFA fluxes. Indeed, of the dozens
of dietary compounds tested, pectin elicited the greatest
increase in butyrate production in vitro, and the HCP
prescribes more pectin-rich foods, like carrots, tangerines,
and apples to the individual. The healthcare provider sends
the individual home with their personalized, microbiome-
informed intervention regime. The individual is given a
wearable activity tracker and a cell phone application with
a patient-facing data-health dashboard, which provides
healthy lifestyle advice, allows the individual to report
adverse symptoms to the HCP in real time, and schedules a
follow-up appointment in 6 mo for another blood draw and
stool sample. This data-driven, personalized, participatory
process involves feedback between an individual and
their HCP and helps to drive better compliance and
sustained progress towards individually defined, goal-
oriented, precision health outcomes (93). Additionally,
the information gained from tracking individual-specific
responses to interventions across many people can be used
to design impactful public health messages targeting specific,
at-risk subpopulations. As such, this approach would result
in a reduced risk of many chronic diseases associated
with obesity, systemic inflammation, and poor metabolic
health, potentially extending healthspan and lifespan (18,
94, 95).

Growing evidence supports a vision of personalized,
participatory nutrition and healthcare that is achievable in
the near term (96). Indeed, nascent microbiome-mediated

precision nutrition and health interventions, like those im-
plemented by the companies DayTwo or Zoë for optimizing
blood glucose responses and blood lipid profiles, respectively
(9, 12, 18), are already available to consumers. However,
there are many other quantitative nutritional and health-
related targets, beyond blood glucose and blood lipids, such
as increasing colonic SCFA production to reduce systemic
inflammation levels (97), reducing toxic bacterial metabolites
(e.g., trimethylamine N-oxide or imidazole propionate) in
the bloodstream (98, 99), or weight loss (10), which will
require new kinds of precision intervention strategies. The
existing tools and techniques discussed in this Perspective
bring us closer to an even wider array of personalized
dietary, prebiotic, and probiotic interventions that leverage
the unique ecological capacities of our gut microbes to
improve our individual lives and reduce the societal burden
of chronic disease. However, an enormous engineering and
optimization challenge lies ahead of us, where we must
learn to harness these tools to achieve specific, quantitative
outcomes across a range of diverse contexts. It is unlikely
that we will find a general-purpose algorithm, so we must
move forward, one targeted application at a time, to build
up an ecosystem of precision intervention tools. Thus, we
will need to generate more and more dense phenotypic
data from small-to-large-scale longitudinal human trials
to help refine and optimize our targeted models, where
individual-specific responses to prebiotic, probiotic, and/or
dietary inputs are tracked. Finally, we will need to develop
a rigorous set of standards and best practices for designing
and assessing the efficacy of personalized interventions (100).
Although the pace of progress in this field is accelerating, the
ultimate timescales for translating microbiome science into
personalized nutrition and healthcare will be limited by the
availability of funding, by the size of the scientific workforce,
by access to diverse human cohorts, and ultimately, by buy-in
from healthcare systems.

Glossary
Batch culture: A closed system in which cells are grown
in a fixed volume of growth medium under controlled
environmental conditions for a limited period of time.
Continuous culture: An open system in which cells are
grown on balanced inflow and outflow of growth medium,
under specific environmental conditions, over a potentially
indefinite period of time, with long-term growth conditions
approaching a steady-state.
Digital twin: A computational model of an individual that
can be used to assess the impacts of potential interventions
in silico.
Ex vivo: Research conducted or produced by means of taking
biological material out of its in vivo context into an in vitro
context.
Fluxomics: A variety of techniques that aim to determine
the rates of metabolic reactions within a cell, a tissue, an
organism, a microbial community, or any other kind of
biological system.
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Gut microbiome: The genomic/metagenomic/metatrans-
criptomic content of the gut microbiota, as inferred from
sequencing nucleic acids (i.e., DNA or RNA).
Gut microbiota: The microorganisms that reside in the
gastrointestinal tracts of nonhuman animals and humans.
In silico: Research conducted or produced by means of
computer modeling or computer simulation.
In vitro: Research conducted or produced in the laboratory,
outside the context of an intact, living host organism.
In vivo: Research conducted or produced within a living host
organism.
Machine learning: A broad range of statistical modeling
techniques that are designed to draw inferences from data
and improve performance on a set of user-specified tasks (i.e.,
to “learn” from data).
N-of-1 study design: Longitudinal studies that leverage
individuals as their own controls to assess individual-specific
responses to interventions. For example, crossover trials
apply a sequence of interventions (e.g., alternating between
placebo and active treatment several times) to the same
individual, with the ordering of these interventions depend-
ing on randomized assignment to a cross-sectional group,
to quantify both individual-specific and cross-sectional
responses.
Organ-on-a-chip: A continuous-culture, multichannel, 3D,
microfluidic system that is designed to simulate the structure
and physiology of an entire organ or organ system.
Prebiotic: A substrate that is selectively utilized by host
microorganisms, conferring a health benefit.
Probiotic: Live microorganisms that when administered in
adequate amounts confer a health benefit on the host.
Training data: Data used to train a machine learning
algorithm to make user-specified inferences.
Validation data: A collection of data that is independent of
the training data set, which is used to test the performance of
a machine learning algorithm.
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