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ABSTRACT

The release of the 2020–2030 Strategic Plan for NIH Nutrition Research (SPNR) and its emphasis on precision nutrition has provided an opportunity
to identify future nutrition research that addresses individual variability in response to diet and nutrition across the life span—including those
relevant to the Strategic Vision of the National Heart, Lung, and Blood Institute (NHLBI). The SPNR and the NHLBI’s Strategic Vision were developed
with extensive input from the extramural research community, and both have 4 overarching strategic goals within which are embedded several
objectives for research. For the SPNR, these include 1) spur discovery science and normal biological functions (e.g., role of the microbiome in health
and disease), 2) population science to understand individual differences (e.g., biomarkers including ’omics that predict disease status), 3) emerging
scientific areas of investigation and their application (e.g., data science, artificial intelligence), and 4) cross-cutting themes (e.g., training the scientific
workforce and minority health and health disparities). These strategic goals and objectives serve as blueprints for research and training. Nutrition
remains important in the prevention and treatment of heart, lung, blood, and sleep (HLBS) disorders and diseases, and the NHLBI has played a pivotal
role in supporting nutrition research. In this paper, we report important gaps in the scientific literature related to precision nutrition in HLBS diseases.
Research opportunities that could stimulate precision nutrition and their alignment with the SPNR and the NHLBI Strategic Vision Objectives are
provided. These opportunities include 1) exploring individual differences in response to varying dietary patterns and nutrients; 2) investigating
genetic/epigenetic, biological (e.g., microbiome, biomarkers), social, psychosocial, and environmental underpinnings of individual variability in diet;
3) elucidating the role of circadian rhythm and chrononutrition; and 4) applying implementation science research methods in precision nutrition
interventions relevant to HLBS diseases. Adv Nutr 2022;13:1402–1414.

Statement of Significance: This paper highlights the need to stimulate research in precision nutrition as it relates to heart, lung, blood, and
sleep (HLBS) diseases and conditions. It provides a synthesis of selected HLBS research examples that address individual variability and align
with the 2020–2030 Strategic Plan for NIH Nutrition Research.

Keywords: National Heart, Lung, and Blood Institute (NHLBI), precision nutrition, cardiovascular nutrition, nutrition in lung diseases, nutrition in
blood diseases, chrononutrition

Introduction
In 2020, the NIH unveiled the 2020–2030 Strategic Plan
for NIH Nutrition Research (SPNR) that emphasizes cross-
cutting and innovative opportunities to advance nutrition
research across all NIH Institutes under the theme of
precision nutrition (1). Precision nutrition embodies a
complex array of factors, including genetics and epigenetics,
dietary habits and eating patterns, circadian rhythms, health
status, socioeconomic and psychosocial characteristics, food

environments, physical activity, and the microbiome (1, 2).
The SPNR identified 4 strategic goals that relate to precision
nutrition, including 1) discovery science and innovative
foundational research, 2) dietary patterns and behaviors
for optimal health, 3) nutrition across the life span, and
4) reducing the burden of diseases in clinical settings. In
addition, fundamental cross-cutting themes include research
to address minority health and health disparities, the health
of women, data science, artificial intelligence, and training
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of the scientific workforce. To leverage the SPNR, the Na-
tional Heart, Lung, and Blood Institute (NHLBI) Nutrition
Research Working Group initiated a process that included a
portfolio analysis of NHLBI nutrition research, investment
in extramural research, and mapping of the NHLBI Strategic
Vision Objectives with awarded grants (2). Briefly, the find-
ings, published in the Journal of Nutrition, revealed that from
2008–2019, approximately $2.13 billion were administered
to 1,611 nutrition-related research projects, and 32% of
newly funded grants focused on pathobiological mechanisms
including novel diagnostic and therapeutic strategies and
clinical and implementation science research. The findings
also revealed significant alignment of the SPNR with the
NHLBI Strategic Vision Objectives (3).

Although decades of nutrition research have led to new
discoveries and emphasis on the importance of nutrition in
preventing and treating chronic diseases—including cardio-
vascular, blood, and lung diseases and sleep disorders—the
most recent data indicate diet-related risk factors contributed
globally to 11 million deaths and 255 million disability-
adjusted life-years (4, 5). High intake of sodium and low
intake of whole grains, fruits, vegetables, and nutrient-dense
foods have contributed significantly to noncommunicable
disease morbidity and mortality, particularly cardiovascular
diseases (CVDs), which remain the leading cause of death
worldwide (4). Diet and nutrition are the fundamental causes
of many chronic disease risk factors, such as hypertension,
dyslipidemia, and inflammation (6, 7). The importance of
nutrition for optimal immune response and prevention of
infectious diseases and their effects on the gut microbiota
is undisputed (8). Many nutrients, including vitamins C,
E, and D and omega-3 fatty acids have anti-inflammatory
and antioxidant properties that reduce oxidative stress at the
cellular level and are implicated in chronic disease prevention
(9). However, the extent to which precision nutrition could
address the interrelations among the factors that contribute
to nutrition-related diseases of the heart, lung, blood, and
sleep (HLBS) is incompletely understood.
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Personalized nutrition advice based on gene–diet or gene–
nutrient interactions has successfully been used to treat in-
born errors of metabolism (e.g., phenylketonuria) in clinical
settings for decades (10, 11). Recent discoveries suggest that
personalized diets may be broadly applicable to the general
population as gains in knowledge of, for example, biomarkers
(e.g., ’omics) coupled with artificial intelligence tools are
used to address lifestyle-related subclinical outcomes and
clinical disease states. Differential responses to diet among
populations suggest that specificity may be needed in future
recommendations of the Dietary Guidelines for Americans
to ensure optimal health outcomes. To that end, further re-
search may develop approaches in certain populations where
genetic and nutritional intake data could be interrogated for
risk stratifications to refine nutrition recommendations, and
potentially reduce health disparities and inequities.

In addition, an integrated approach to advancing our
understanding of the role of nutrition in HLBS diseases
and conditions could harness nutrition information across
existing platforms to build the trajectory of evidence from
basic to translational and implementation research. Knowl-
edge derived from ancestry-based gene–diet interactions
could be used to develop algorithms that could be integrated
into clinical decision making for HLBS diet-related diseases.
These algorithms would need to be tested in randomized
controlled trials in order to become evidence based. This may
equip clinicians with evidence-based recommendations for
clinical applications and possibly lead to knowledge transfer
to benefit the health of the public. The NHLBI Trans-Omics
for Precision Medicine (TOPMed) database, which allows
for an integration of whole-genomewide sequencing and
other ’omics (e.g., epigenomics, metabolomics) data with
molecular, imaging, behavioral, environmental, and clinical
data from diverse populations, could be leveraged to better
understand and inform individual- and population-level
precision nutrition guidance (12). For efficiency, association
studies could be conducted with TOPMed data on cloud-
based platforms such as the NHLBI BioData Catalyst (13),
which allows access to many studies with study participants
from diverse ancestries. This flexible platform allows analyt-
ical activities to be collaborative, scalable, and reproducible
and genomic and phenotypic data as well as dietary data to
be pulled across multiple studies and analyzed using a variety
of interactive tools. Finally, efficiency may require that these
investigational pursuits are multidisciplinary in nature and
involve training of diverse scientists from all career stages
across the scientific spectrum and can leverage currently
existing resources, such as cloud and cyber infrastructures for
nutrition research.

This paper presents perspectives for nutrition research as
they relate to HLBS diseases and conditions. It provides se-
lected examples of individual variability of the risk factors to
HLBS disease and circadian biology (e.g., chrononutrition),
and highlights potential opportunities for future research in
precision nutrition as related to HLBS. The objective is to
provide information to research scientists and clinicians in
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order to stimulate nutrition research discoveries, particularly
as they relate to precision nutrition and HLBS diseases and
conditions. Below, we reviewed the literature and identified
selected HLBS research examples that address individual
variability in nutrition.

Nutrition and Selected Examples of Research
for Cardiovascular Health
Many studies have noted variability in the metabolism of
various macronutrients and micronutrients relevant to car-
diovascular health. For example, wide divergence exists in the
fatty acid desaturase (FAD) gene locus in African-, European-
, and American-Indian–ancestry populations, altering the
efficiency of metabolism of n−6 and n−3 dietary 18C-PUFAs
(14–16). For example, research suggests greater efficiency by
Blacks compared with Whites (17). Contrastingly, studies by
Harris et al., documented that Native Americans and certain
European and Asian groups carry FAD gene profiles that
support less-efficient conversion of 18C PUFAs into n–3 fatty
acids, potentially conferring decreased ability to generate
physiologically sufficient amounts of n–3 fatty acids (14, 15).
Based on these findings, it can be postulated that, depending
on the observed FAD gene cluster variation, exposure to
higher intakes of n–6 fatty acids and arachidonic acids for
certain subgroup of individuals may result in excessive gen-
eration of n–6 and n–6 proinflammatory metabolites (14).
Therefore, individual-level variability in the metabolism of
the dietary PUFAs may confer differences in the susceptibility
of different populations to disease, suggesting the need for
precision nutrition efforts.

Differences in vitamin D metabolism is yet another
example in which genetic variants associated with blood
concentrations of 25-hydroxyvitamin D have been found
in many different genes, including,for example, cytochrome
p450 family 27 subfamily B member 1 (CYP27B1), and
the vitamin D receptor (VDR) genes (18). The best studied
examples are in the gc-globulin (GC) gene, which codes
for the main carrier of vitamin D metabolites, the vitamin
D-binding protein (19). These variations may have key
implications for cardiovascular health because the active
metabolite of vitamin D also binds to the VDR that
regulates numerous genes involved in fundamental processes
relevant to CVD (20). These include cell proliferation
and differentiation, apoptosis, oxidative stress, membrane
transport, matrix homeostasis, and cell adhesion. VDRs
have been found in all the major cardiovascular cell types,
including cardiomyocytes, arterial wall cells, and immune
cells (20). Epidemiological evidence suggests that individuals
with low blood concentrations of vitamin D have increased
risks of heart disease, heart failure, stroke, hypertension,
and diabetes, although a meta-analysis of supplementation
trials with vitamin D has not shown definite benefit in
reducing the risk of most CVDs in adults (21, 22). A recent
systematic review for the US Preventive Services Task Force
reported that, among asymptomatic, community-dwelling
populations with low vitamin D concentrations, vitamin D
has no effect on mortality or the incidence of fractures,

falls, depression, diabetes, CVD, cancer, or adverse events
(23). These differences in findings suggest a need for further
investigation to examine, for example, individual differences
in vitamin D metabolism with varying exposure levels.

Genetic polymorphisms have also been shown for
proteins relevant in folate metabolism. Folate deficiency
elevates plasma total homocysteine (tHcy), which is modestly
associated with cardiovascular and cerebrovascular diseases
(24). For example, serum folate and tHcy concentrations
are influenced by not only folate intake but also genetic
polymorphisms in 5,10-methylenetetrahydrofolate
reductase (MTHFR) (24). This mutation results in
the inability of the MTHFR enzyme to catalyze the
conversion of 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate, leading to the increase in plasma
tHcy concentrations in homozygous mutated subjects.
Approximately 15% of the Japanese population may
have this genotype (24). Future research may explore
the interindividual variability in nutrient metabolism
that influences CVD risks and ultimately contributes to
precision nutrition approaches to prevent CVD and promote
cardiovascular health.

Another important frontier for future studies includes the
interindividual variability of the microbiome responses to
diet. There is moderate to strong evidence that more plant
sources of protein compared with the typical American diet,
which is high in animal sources of protein, reduce CVD risk
(25, 26). Plant-based proteins (e.g., nuts, legumes, beans)
are associated with decreases in Bacteroides and increases
in Bifidobacteria and Lactobacillus communities in both
human and animal studies (27). Such diets are also high in
fiber, and high fiber intake increases gut microbiota popu-
lations that generate SCFAs. Research is mixed on the role
of SCFAs: some studies suggest beneficial effects in the gut
(28), while others link SCFAs and dysbiosis to diseases such
as chronic kidney disease, atherosclerosis, and hypertension
(29). Carbohydrates, such as nondigestible sources (e.g., fiber,
whole grains, and certain starches), are fermented in the gut
and may release fatty acids and prebiotics that may increase
bacterial biodiversity and phenotypic changes in the bacteria
flora, leading to promotion of health-enhancing effects (30,
31). Conversely, in some, but not all, studies, animal proteins
such as those in red meats and fish have opposite effects
and have been linked with increases in trimethylamine
N-oxide (TMAO), which increases CVD risk (27). There
is also evidence from animal studies demonstrating that
atherosclerotic plaques have microbiota communities from
the gut or oral cavities (27), suggesting a link between CVD
and bacterial pathogens. The mechanism by which microbial
flora play a role in increasing CVD risk may include increases
in adipose tissue inflammation, oxidative stress, and glucose
intolerance (32). Overall, future nutrition research could
include the elucidation of individual variability in microbiota
and the role of nutrition in the microbiota and CVD
pathophysiology in humans (33).

In addition to the genetic and biological underpinnings of
variability in response to diet, there is also the need to explore
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the social, psychosocial, and environmental influences of
dietary choice and behavior. For example, certain commu-
nities have different availability and affordability of foods
that are recommended to maintain cardiovascular health
and prevent CVDs. This becomes increasingly relevant for
minority populations that experience health disparities in
heart disease and other CVD risk factors.

Nutrition and Selected Lung Diseases
The impact of nutrition deficiencies, supplementation, and
dietary patterns on lung development (34) and lung diseases
across the life span has been explored over the past
50 y. Macro- and micronutrients are important in lung
development and may slow the progression of pulmonary
disease. Precision nutrition interventions hold the promise
of mitigating morbidity and improving pulmonary outcomes
and health-related quality of life. We present some scientific
advances on the role of nutrition in lung health and disease
including infant lung development, asthma, chronic ob-
structive pulmonary disease (COPD), and acute respiratory
distress syndrome (ARDS).

Appropriate maternal nutrition during pregnancy is
critical for infant lung development and pulmonary out-
comes. Low-birth-weight infants often have poor maximal
lung function, which correlates with an increased risk of
developing COPD in late adulthood (35–37). Adult-onset
diseases such as pulmonary fibrosis and COPD could have
their origins in early life (38). Targeted nutritional strategies,
such as vitamin C in pregnant women who smoke (39), have
been shown to improve airway function in infants at 3 mo of
age. Vitamin D in premature African-American infants (12)
decreased parent-reported wheeze at 1 y of age, suggesting
that precision nutrition interventions could mitigate chronic
lung diseases of prematurity (40). More research is needed to
validate these observations.

Individual metabolic responses to specific dietary patterns
and nutrients are unique and are influenced by genetics, race,
gender, gut microbiome, health history, lifestyle habits, sleep,
physical activity, and timing of meals, among others. Thus,
the impact of maternal nutrition on infant lung development
and pulmonary outcomes in later life must be studied in
these contexts with a focus on precision nutrition. The field
is largely unexplored. Some examples of research questions
related to precision nutrition in lung disease include 1)
how individual factors, such as genetics and metabolomics,
maternal smoking, and alcohol and fatty food consumption,
affect the development of the lung, ventilatory control, and
future pulmonary outcomes in the offspring, and 2) how to
standardize and dynamically measure and monitor nutrient
intakes of pregnant and lactating mothers.

The NHANES has revealed an independent association
of dietary fiber intake with self-reported asthma, respiratory
symptoms, and inflammation. Those reporting high fiber
intake have a lower prevalence of asthma and respiratory
symptoms, especially in women and non-Hispanic White
adults (41). Possible mechanisms include SCFAs and anti-
inflammatory factors derived from the high-fiber diet. In

addition, beneficial effects of the Dietary Approaches to
Stop Hypertension (DASH) diet on asthma control were
reported in a pilot randomized trial of 90 predominantly
middle-aged women (42). A meta-analysis examining the
impact of fish intake on childhood asthma suggests that
the introduction of any type of fish early in life (6–9 mo)
and regular consumption of fish (at least once a week)
reduces asthma and wheezing in children up to 4.5 y of
age (43). A randomized controlled trial revealed that a
Mediterranean diet supplemented with 2 fatty fish meals
per week ameliorated airway inflammation in childhood
asthma (44). More research on individual variability in
response to dietary anti-inflammatory factors (e.g., n–3 fatty
acids) and other nutrients such as vitamin D is needed to
better understand the role of diet in the development and
treatment of lung diseases, including asthma, COPD, and
ARDS.

Optimal nutrition is important for prevention and man-
agement of COPD. Western diets high in calories and pro-
cessed foods were associated with a higher occurrence of se-
vere respiratory symptoms in COPD compared with prudent
diets composed of whole grains, fish, fruits and vegetables
in the Atherosclerosis Risk in Communities (ARIC)) study
(45, 46). The association of COPD with vitamin D deficiency
was reported in NHANES (47). Low concentrations of 25-
hydroxyvitamin D has also been suggested as a potential
marker for COPD exacerbations and adverse outcomes (48).
Furthermore, vitamin D supplementation in smokers with
COPD was shown to be beneficial in decreasing progression
of disease, suggesting a critical role of micronutrients in
mitigating COPD (49, 50).

Nutritional aspects of ARDS and acute pulmonary disease
continue to be areas of controversy where much remains to
be elucidated. Any acute illness is associated with a catabolic
state wherein the breakdown of fats, proteins, and complex
molecules occurs faster than the synthesis of these same
macromolecules. Nutritional support in this context could
be both preventive in decreasing severity of disease and
curative by its potential effects on the pathological trajectory
of disease.

In critical lung disease, such as pneumonia, acute lung
injury, or ARDS, the benefits of feeding the gut early,
and not increasing food intake too quickly, are shown in
several studies in adults and children (51, 40). The ongoing
CALORIES trial, a phase III, open, multicenter, randomized
controlled trial comparing the clinical and cost-effectiveness
of early nutritional support in critically ill patients via
parenteral versus enteral routes, has not yet convincingly
shown that meeting targeted daily calorie goals necessarily
improves outcomes in sepsis and ARDS, although enteral
feeds have been shown to be of greater benefit than parenteral
feeding (52). A retrospective analysis of calorie intake as
a function of resting energy expenditure in critically ill
patients suggested that feeding to achieve approximately
70% of calorie goals conferred a survival advantage, and
that neither overfeeding nor underfeeding were beneficial to
survival (53). A recent prospective trial of intensive versus
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standard nutritional goals in 78 patients was terminated early
as intensive nutrition (>75% of calorie goals) resulted in
a trend towards higher mortality compared with standard
nutrition strategies (75% of calorie goals) (54). An area of
inquiry that is gathering momentum is the careful attention
to carbohydrate load and its importance as a source of energy
in the setting of likely impaired mitochondrial bioenergetics
in acute lung injury. This could give rise to complex issues
of increased carbon dioxide production, necessitating greater
respiratory effort to eliminate the extra carbon dioxide. These
and other metabolic considerations are likely to gain more
importance in the future and necessitate a personalized
approach to nutrition interventions. For example, one of
the comorbidities during the current coronavirus disease
2019 (COVID-19) pandemic is obesity (55, 56). Obesity also
plays a key role in the development of obstructive sleep
apnea and obesity hypoventilation syndrome. Asthma is
more common and often harder to treat in populations with
obesity (57). The nutritional imperative to control obesity in
the population may decrease morbidity from this pandemic
in the short term and may improve societal pulmonary health
for the future. The mechanistic links between obesity and
respiratory diseases, as well as worse outcome as a result
of COVID-19, need to be elucidated (58). The multisystem
inflammatory syndrome in children (MIS-C) attributed to
COVID-19 continues to perplex clinicians and investigators.
Similar to COVID-19 in adults, obesity is a risk factor for
increased severity of presentation and morbidity for children
with MIS-C (59).

In summary, research on diet and nutrition in lung
diseases is at a nascent stage. There are many research gaps
that could be addressed by epidemiological studies, animal
models, and novel 3-dimensional (3D) culture models to
elucidate the influence of diet and nutrition on the impact of
immunometabolism on the airway and lung microbiome in
the pathobiology of lung disease. Well-designed randomized
controlled clinical trials of dietary intervention to assess the
efficacy of specific personalized nutritional approaches to the
management of lung diseases are limited. Such trials may help
identify novel nutrition strategies to treat and/or mitigate
debilitating pulmonary diseases. Studies examining individ-
ual variability in response to various dietary interventions
in lung diseases and conditions may further knowledge of
nutrition in lung diseases and establish the foundation for
precision nutrition interventions.

Nutrition and Selected Blood Diseases
Precision nutrition may have a significant role in blood
conditions, such as in hemoglobinopathies [sickle cell disease
(SCD), thalassemia], iron deficiency anemia (IDA), and
venous thromboembolism (VTE), through a host of factors.
This section will address multiple factors relevant to preci-
sion nutrition in blood diseases and conditions, including
single nucleotide polymorphisms (SNPs), nutrition-related
genes (i.e., VDR), epigenetic modifications, the interaction
of diet and nutrients with gut microbiota (metagenomics), as
well as environmental factors such as social determinants of

health and culture. The selected blood conditions included
in this review are not exhaustive of all blood conditions or
diseases that are related to precision nutrition. However, they
are illustrative of the role of nutrition in blood conditions
and interconnections of preclinical, clinical, translation, and
implementation stages of research.

The role of diet and nutrition in patients with SCD is lim-
ited (60) but available data provide a basis for understanding
the importance of specific nutrients in the pathophysiology
of SCD. A phase 1 study of broccoli sprouts concentrate to
patients with SCD over 21 d showed a decreased level of
dysregulation in the pathogenesis of SCD (61). Although no
changes in hemoglobin F (HgbF) gene expression occurred
during the study, there was an increase in mRNA levels of
proteins, which are targets of nuclear factor erythroid 2–
related factor 2 (NRF-2), the regulator of cellular resistance to
oxidants. The study suggests that NRF-2 activation through
sulforaphane-rich foods, such as broccoli sprouts, could
regulate a pathophysiological pathway in SCD.

Vitamin D deficiency in pediatric and adult patients
with SCD is associated with an increase in disease severity,
specifically pain crises (62). Investigations on the role of
VDR polymorphisms among this population are limited
but provide intriguing results that suggest the SNPs may
be involved in vaso-occlusive severity and specific VDR
genotypes may be involved in reduced bone mineral density
(63). Similar studies suggesting a role for VDR in reduced
bone mineral density for individuals with thalassemia have
been reported (64, 65).

The prevention and management of IDA are dependent
on the regulation of iron metabolism and bioavailability of
iron. The identification of genetic polymorphisms involved
in iron bioavailability is an important aspect of precision
nutrition and could play a significant role in targeting
populations at risk for IDA for interventions. To date, genes
that affect iron bioavailability include TMPRSS6 mutations
that increase systemic hepcidin concentrations in humans
(66), mutations in the transferrin (TF) gene, the calcium
channel gene (CACNA2D3), and the histone micro cluster
gene (HIST1H2BJ) have been associated with low iron status
in iron-deficient young women (67, 68).

An individual’s microbiota may also have a role in IDA.
A recent mouse study demonstrated that microbial coloniza-
tion of the gut can impact the intestinal proteins that are
involved in iron transport (69). Clinical studies supporting
this finding suggest the consideration of the microbiome
when planning for iron fortification. For example, Hoppe
et al. (70) found that, after the addition of probiotics to an
iron-fortified drink, iron absorption increased significantly
in healthy menstruating women.

Choline supplementation may also be an important
adjunct therapeutic nutrient when severe fetal IDA is present,
as studies show the ability of choline supplementation to
ameliorate neurological symptoms in the setting of iron
deficiency (71, 72). Given this connection, interest for future
studies may be the role of choline-deficient genes in the
management of IDA.
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Dietary intake influences thrombotic and fibrinolytic
factors related to VTE, including factor VIIc, factor VIIIc,
von Willebrand factor, and plasminogen activator inhibitor-
1 (PAI-1), an inhibitor of fibrinolysis (73, 74). n–3 Fatty
acid intake may be a protective nutrient for lowering the
risk of initial and recurrent VTE (74–76), although fish
intake alone may not explain this protection from VTE
(77, 78). Studies evaluating the role of nutritional factors
and dietary patterns on known genetic and epigenetic
conditions associated with VTE risk are limited. To our
knowledge, studies that specifically evaluated nutrition and
VTE risk in the context of specific VTE-provoking factors,
such as surgery, immobilization, and pregnancy, also need
investigation.

Social determinants of health (SDOH) and lifestyle
factors, including dietary intake, can influence blood con-
ditions through their role in influencing genetic and epige-
netic control mechanisms. Studies evaluating SDOH factors
and neighborhood and socioeconomic status (SES) factors
among individuals with blood conditions are scant but do
show interesting results worthy of further exploration. For
example, Isma et al. (79) found an association between lower
income and education, single marital status, and an increased
risk of VTE during a 13-y follow up of adults living in
Sweden. Kort et al. (80) found that higher neighborhood SES
was associated with a lower incidence of VTE over 4 y among
individuals aged 15 y or older living in urban districts in the
Netherlands. Food insecurity may also play a role in both
IDA and SCD. Child-level food insecurity is an identified risk
factor for IDA among children in the United States (81). and
globally (82). Among individuals with SCD, studies show that
food insecurity is associated with increased disease severity
and reduction in quality of life (83–85).

In summary, preclinical and clinical research supports the
intake of specific nutrients and dietary patterns in preventing
and managing certain blood conditions. However, blood
conditions can have significant underlying genetic factors. A
significant gap in this area, particularly for VTE, is exploring
differences in individual nutrition status and the role of
nutrients in the setting of specific gene polymorphisms that
confer an increased risk. Due to significant evidence on
the role of SDOH, including neighborhood, SES, and food
insecurity, on outcomes in blood conditions, future studies
may include SDOH as contributing factors in both exposures
and outcomes.

Nutrition, Sleep, and Circadian Biology
Feeding behavior and nutrient metabolism are regulated
daily by a complex network of organ-specific circadian, or
daily rhythms (86, 87). Circadian “clocks,” the molecular
circuitry that orchestrates biological function on a 24-h
rhythm, are present in the brain and almost all the peripheral
tissues and organs, creating a network of synchronized
biological processes. These clocks act as nutrient sensors
that drive the cell-signaling pathways underlying metabolic
mechanisms that motivate feeding behaviors during specific

times of the day. Cycles of feeding–fasting, including hor-
mone regulation, appetite, and food seeking, are coordinated
with other circadian-regulated behavioral cycles such as sleep
and activity. Epidemiological and experimental studies show
that dietary patterns and food choice, particularly those
that are high in fat and carbohydrate intake, may lead to
sleep and circadian clock disruption (88, 89). Conversely,
staying up late due to work or social schedules can delay and
shorten sleep duration, which has been shown to increase
daily energy expenditure and presumably drives food intake
to restore the energy imbalance, often towards calorie-dense
choices later in the evening (91, 92). As a result, a new concept
is emerging from the intersection of circadian biology and
nutrition: When you eat is equally as important as what you
eat, and there are individual differences related to the effects
of timing of food intake and health outcomes.

Circadian clocks regulate metabolic and energetic pro-
cesses at biologically appropriate times of the day. For exam-
ple, glucose homeostasis and insulin release are governed by
peripheral clocks in the liver and pancreas (93). During the
night cycle, circadian clock transcription activity initiates a
decrease in glucose production in the liver and an increase
in glucose uptake through insulin secretion, lowering blood
glucose concentrations during the rest phase. Similar to
animal studies, human epidemiological and clinical studies
have shown that variations in genes are central to the
molecular regulation of circadian rhythms.

Environmental and behavioral cues have a robust in-
fluence on systemic misalignment, or the disruption of
normal biological circadian function, which is associated
with several chronic diseases (86, 87). The timing and
nutrient composition of food itself serve as robust cues that
reinforce the alignment of clocks associated with energy and
metabolism and the larger circadian network. Macronutri-
ents (e.g., fats and carbohydrates) can modulate circadian
clock activity, suggesting that interventions that address
healthful dietary patterns and changes in food choice may be
effective in attenuating adverse health outcomes associated
with circadian disruption (94). In cross-sectional studies,
evening chronotypes (people who eat late at night) were
associated with increased intake of calorie-dense foods and
alcohol, and lower intake of fruits and vegetables (95). Global
surveys show that wide regional variations in mealtime,
energy intake, and nutrient composition reflect a critical role
of sociocultural factors in determining dietary patterns and
behaviors (96). An analysis of NHANES data found that
mealtimes occurring later in the day have increased over the
past 5 decades, presumably due to work schedules and other
social factors (97, 98). Evidence from a number of clinical
studies show that delaying the timing of food intake by a
few hours in the evening has adverse effects on the circadian
regulation of glucose homeostasis and energy metabolism,
and may contribute to obesity and obesity-related disease
(99–101).

One proposed mechanism by which short sleep duration
influences food choice was presented in a recent study in
sleep-deprived participants showing greater functional MRI
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TABLE 1. Alignment between the NHLBI Strategic Vision Objectives and the Strategic Plan for NIH Nutrition Research.1

NHLBI Strategic Vision Objectives Components of the SPNR

Objective 1: Normal biologic functions and resilience2 SG 1: Spur discovery and innovation through foundational
research2

Objective 2: Pathobiology, onset, and progressions of HLBS
disease2

SG 2: Investigate the role of dietary patterns and behavior for
optimal health2

Objective 3: Differences in health among populations3 SG 3: Define the role of nutrition across the lifespan for healthy
development and aging3

Objective 4: Individual differences in response to treatments4 SG 4: Reduce the burden of disease in clinical settings
Objective 5: Novel diagnostic and therapeutic strategies to

prevent, treat, and cure HLBS diseases3
CC Theme 1: Minority health and health disparities4

Objective 6: Optimization of clinical and implementation science
research3

CC Theme 2: Health of women4

Objective 7: Emerging opportunities in data sciences5 CC Theme 3: Rigor and reproducibility5

Objective 8: Further develop, diversify and sustain a scientific
workforce6

CC Theme 4: Data science, systems science, and artificial
intelligence5

CC Theme 5: Training the scientific workforce6

1CC, cross-cutting; HLBS, heart, lung, blood, and sleep; NHLBI, National Heart, Lung, and Blood Institute; SG, strategic goal; SPNR, Strategic Plan for NIH Nutrition Research; SVO,
Strategic Vision Objectives.
2Objectives 1 and 2 of NHLBI SVO align with SPNR SG 1 and SG 2, respectively.
3Objectives 3, 5, and 6 of the NHLBI SVO align SPNR SG 3 and SG 4, respectively.
4Objective 4 of NHLBI SVO aligns with SPNR CC Themes 1 and 2.
5Objective 7 of NHLBI SVO aligns with SPNR CC Themes 3 and 4.
6Objective 8 of NHLBI SVO aligns with SPNR CC Theme 5.

response to food odor in the part of the brain that encodes
odor, thus modulating olfactory circuits toward energy-
dense food options (102). These studies implicate irregular
mealtimes, increased food intake, and lower-quality food,
specifically later in the day, as possible contributors to obesity
and obesity-related disease (100, 103).

Modifying the timing of food intake and nutrient
composition throughout the day could be a cost-effective
intervention to promote healthful dietary and sleep patterns
while lowering the risk of adverse health outcomes (104, 105).
Future research on best practices and standardized method-
ologies and assessments across populations is necessary to
fully examine how chrononutrition impacts cardiometabolic
health outcomes. It is important to define the bidirectional
relation between circadian rhythms and dietary patterns
(e.g., identifying metabolic biomarkers for circadian rhythms
and circadian misalignment), and developing comprehensive
methods and tools for evaluation of nutrient status and
circadian alignment. Such information could be used in
ecologically valid settings to produce personalized and
sustainable interventions.

Strategic Alignments of the NHLBI Strategic
Vision Objectives with the SPNR and Research
Opportunities
Table 1 depicts the alignment of the SPNR and the NHLBI
Strategic Vision Objectives. The table was developed with
input from NHLBI staff who are members of the Nutrition
Research Working Group and have expertise in nutrition. As
shown, the NHLBI Strategic Vision Objectives 3 (Differences
in health among populations), 4 (Individual differences in
response to treatments), 5 (Novel diagnostic and therapeutic
strategies), and 6 (Optimize clinical and implementation

science research) align with the SPNR’s Strategic Goals 3
(Define the Role of Nutrition Across the Lifespan for Healthy
Development and Aging) and 4 (Reduce the Burden of
Disease in Clinical Settings). Similarly, Objectives 1 and 2
of the NHLBI Strategic Vision align with SPNR Goals 1 and
2, and Objectives 4, 7, and 8 align with several of the cross-
cutting themes of the SPNR. These associations demonstrate
the synergy between the scientific objectives and goals of
both visions and suggest the potential for precision nutrition
in HLBS diseases and conditions.

Table 2 presents examples of potential research opportu-
nities that are HLBS specific and their alignment with the
NHLBI Strategic Objectives and with the SPNR Strategic
Goals and cross-cutting themes. The opportunities are
presented across the translational spectrum (from basic to
implementation sciences) and represent research gaps and
opportunities that were identified from our scientific review
of the literature and could be stimulated in future scientific
endeavors. Given the state of the science in nutrition and
HLBS and emerging topics such as chrononutrition, these
future research opportunities offer avenues to advancing
knowledge in precision nutrition. The application of imple-
mentation science approaches to address research translation
gaps will play a key role in maximizing the health impact of
nutrition in the prevention and treatment of HLBS diseases
and conditions, the elimination of health inequities, and
facilitation of the uptake of evidence-based practice and
research into regular use by practitioners and policymakers.

Limitations
Although the overall objectives of the NHLBI Strategic
Vision Objectives align with those of the SPNR, the former
did not explicitly address nutrition in its development. The
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NHLBI Strategic Vision Objectives focused primarily on
HLBS disease prevention and treatment but also on cross-
cutting themes (e.g., training the workforce, addressing
minority health). There were also knowledge gaps in the role
of nutrition, particularly in diseases of the lung, sleep, and
blood but also of the cardiovascular system that were not
a focus of the NHLBI Strategic Vision. While expertise of
the extramural community involved in the development of
the strategic vision and SPNR varied, the timing of release
did not enable collaboration between the SPNR extramural
staff with those of the NHLBI extramural staff. (Note, the
NHLBI released its Strategic Vision objectives in 2016 and
the Office of Nutrition Research released the SPNR in 2020.)
Additionally, a limited number of SPNR extramural staff
participated in both the development of the SPNR and the
NHLBI Strategic Vision Objectives. Despite these differences,
similarities exist in both the SPNR and the NHLBI Strategic
Vision Objectives: both integrated input from the extramural
community and both addressed unique cross-cutting themes.

Discussion
This paper provides perspectives and examples of potential
research opportunities to advance knowledge about the role
of nutrition in HLBS diseases and conditions and suggests
the promise of an integrated and transformative nutrition
research approach that addresses fundamental discoveries
and implementation science across HLBS. Nutrition research
is nascent in diseases of the lung and blood and disorders
of sleep and is ripe for future study. Investigations spanning
the spectrum of basic, epidemiologic, clinical trial, and
implementation science research and addressing precision
nutrition approaches could benefit public health. Advances
in “Big Data” analytics have the potential to stimulate
research that addresses diet and nutrition and their relations
in various aspects of the objectives of the SPNR and the
NHLBI Strategic Vision. A holistic approach to precision
nutrition in the prevention, treatment, and management
of HLBS diseases and conditions could harmonize data
from various sources, including those from the NHLBI
TOPMed program and biodata Catalyst. Data (13) on
genetics (e.g., polygenic risk scores), immunologic, behav-
ioral, environmental, metabolomic, psychological factors,
health status (e.g., related to HLBS), and dietary patterns
may be combined through machine-learning algorithms to
identify phenotypes and to stimulate specific dietary and
lifestyle strategies for management of HLBS diseases and
conditions. An integrated approach to nutrition in HLBS
diseases and conditions may advance the nutrition field
to understand the role of macro- and micronutrients in
normal biological processes. Understanding the role of diet
and nutrition in preventive treatment and management of
HLBS diseases and conditions also has the potential to
stimulate translational and implementation science research.
The development of the scientific workforce in nutrition is
yet another avenue to stimulate future research and develop
precision nutrition approaches to enhance population health.
Training in nutrition research, data analytics, and precision
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nutrition are needed and could provide knowledge that can
be translated into clinical practice by both nutritionists and
clinicians. Overall, precision nutrition research in HLBS
diseases and conditions has the potential to improve the
health of the nation.
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