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ABSTRACT

The ASN Board of Directors appointed the Nutrition Research Task Force to develop a report on scientific methods used in nutrition science to
advance discovery, interpretation, and application of knowledge in the field. The genesis of this report was growing concern about the tone
of discourse among nutrition professionals and the implications of acrimony on the productive study and translation of nutrition science. Too
often, honest differences of opinion are cast as conflicts instead of areas of needed collaboration. Recognition of the value (and limitations) of
contributions from well-executed nutrition science derived from the various approaches used in the discipline, as well as appreciation of how their
layering will yield the strongest evidence base, will provide a basis for greater productivity and impact. Greater collaborative efforts within the
field of nutrition science will require an understanding that each method or approach has a place and function that should be valued and used
together to create the nutrition evidence base. Precision nutrition was identified as an important emerging nutrition topic by the preponderance
of task force members, and this theme was adopted for the report because it lent itself to integration of many approaches in nutrition science.
Although the primary audience for this report is nutrition researchers and other nutrition professionals, a secondary aim is to develop a document
useful for the various audiences that translate nutrition research, including journalists, clinicians, and policymakers. The intent is to promote
accurate, transparent, verifiable evidence-based communication about nutrition science. This will facilitate reasoned interpretation and application
of emerging findings and, thereby, improve understanding and trust in nutrition science and appropriate characterization, development, and
adoption of recommendations. Adv Nutr 2022;13:1324–1393.
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Introduction
The strongest, most reliable, and actionable knowledge stems
from confirming research findings by applying dissimilar
methods and approaches to study common problems. Hence,
embracing the varied methodologies used by nutrition
scientists within the American Society for Nutrition (ASN)
is critical to the conduct of nutrition science and the
formulation of healthful and equitable dietary recommen-
dations. However, recent events have tended to polarize,
rather than harmonize, perspectives among ASN members,
as evidenced by increasing advocacy of certain points of
view at the expense of reasoned consideration of alternate
interpretations of the evidence base. This comes with the

risk of compromising the quality of science, member pro-
ductivity, preeminence of the ASN, and credibility of science
itself.

The current climate also threatens the translation and
application of nutrition science. Trust in science, researchers,
and health care practitioners has historically been high (1),
and a recent poll by the Pew Research Center indicates a high
proportion of the public continues to believe scientists act in
the public’s interest (2). However, there are growing threats
to this status. The credibility of scientists and the work they
undertake is increasingly attacked by public leaders, misre-
ported by the media, and questioned, to varying degrees, by
segments of the population based on their political views,
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economic status, ethnicity, and social standing. This has
been exacerbated by caustic public controversies that extend
beyond normal scientific debate among scientists themselves.
This threatens the advancement of science and acceptance
and adoption of credible recommendations to improve health
and well-being. The issue is particularly salient for nutrition
science. It has been reported that only,

� 10% of Americans say they know “a lot” about what
nutrition scientists do, and 26% say they know nothing
at all,

� 12% of Americans believe nutrition scientists are trans-
parent about conflicts of interest while 37% believe
nutrition researchers rarely or never are transparent
about conflicts of interest,

� 24% of Americans indicate that nutrition scientists
provide fair and accurate accounts of their work,
but 43% think research misconduct among nutrition
scientists is a moderate or very big problem, and

� 28% of Americans report that nutrition scientists do a
good job in conducting research most or all the time,
although 41% believe that nutrition researchers do not
take responsibility for professional mistakes (2).

Most Americans derive their knowledge of what nu-
trition scientists do from traditional and social media.
Thus, it is critical that information from these sources be
clear, unbiased, and transparent. This has been increasingly
difficult to ensure with growing polarization of views by
nutrition scientists on issues such as the roles of different
methodologies in addressing important research questions.
Importantly, Americans who are more knowledgeable about
science hold higher confidence that scientists act in the
public’s interest. Thus, efforts to promote interdisciplinary
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work, recognition, and respect for cross-functional skills,
and to improve the accuracy and transparency of com-
munication about nutrition science to the media, are
warranted.

Charge
In May 2020, the ASN Board of Directors commissioned
a task force to prepare a white paper to highlight how
the breadth of methods used in nutrition science can and
should harmonize to advance discovery, interpretation, and
application of knowledge in the field. This ASN white
paper addresses this charge by discussing the strengths
and limitations of a wide array of methodologies used
in nutrition research, as well as the appropriate scope of
interpretation of the evidence each yields. This paper is
not intended to be a compendium of all methodologies;
rather, the goal is to highlight how different approaches
and methods can be used together to build strong science.
Greater collaborative efforts within the field of nutrition
science will require an understanding that each method or
approach has a place and function that should be valued and
used together to create the strongest nutrition evidence base
possible.

Although the primary audience for this report is nutrition
researchers and other nutrition professionals, a secondary
aim is to develop a document useful for the various audiences
that translate nutrition research, including journalists, clini-
cians, and policymakers. The intent is to promote accurate,
transparent, verifiable evidence-based communication about
nutrition science. This will facilitate reasoned interpreta-
tion and application of emerging findings and, thereby,
improve understanding and trust in nutrition science and
appropriate characterization, development, and adoption
of recommendations. This action is part of a longer-term
strategic planning vision for ASN’s centennial, ASN 2028, to
be more outward facing as well as more relevant to the field
of nutrition research and policy.

In 2016, ASN commissioned the report “Best practices
in nutrition science to earn and keep the public’s trust”
(3). A blue-ribbon panel reviewed the literature and other
publicly available information related to 1) conflict of interest
and objectivity, 2) public benefit, 3) standards of scientific
rigor and reproducibility, 4) transparency, 5) equity, 6)
information dissemination (education, communication, and
marketing), and 7) accountability. Recommendations from
that report are being implemented within the Society to
create resources for nutrition scientists (4). These include
a model conflict-of-interest disclosure form and guiding
principles for managing and conducting nutrition research
funded by entities at interest. The present white paper builds
on this effort by focusing more on nutrition science itself;
emphasizing how the varied methods used by nutrition
scientists combine to build the strongest evidence base to
support the advancement of basic science, clinical practice,
and the development of health and nutrition policies and
programs.
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Approach
Richard Mattes and Sylvia Rowe were identified as co-chairs
of the Nutrition Research Task Force to draft the white paper,
with Sarah Ohlhorst as the primary ASN support staff. To
constitute the task force, ASN initiated a call for applications
and nominations through its various communication chan-
nels. The goal was to assemble a task force with expertise
that represented the scope of nutrition research including,
but not limited to, areas such as ’omics approaches, cell
culture, animal models, biomarkers, clinical/human trials,
population studies, food and nutrition policy, statistics,
big data, mechanisms, translation, community/public health
interventions, implementation research, behavior, education,
dietary assessment, precision nutrition, and life stages. It
was also important that the diverse spectrum of ASN
membership be represented, including early-career profes-
sionals and established researchers with experience serving
in many different roles, including clinical practice, academia,
government, and industry. To ensure these requirements
were met, additional members were invited directly. Task
force members were not selected to be an advocate for a
specific area of nutrition research, rather with the goal of
having task force members focus on the complementarities
and synergies between methods and approaches to advance
nutrition science. The task force was established in July 2020
with 15 members in addition to the 2 co-chairs.

The task force began work in August 2020 with a series
of virtual meetings. To generate the scope of topics to
be included in the report, task force members were first
asked to consider the various nutrition research interfaces
they encounter in their work and to identify related areas.
Next, each member identified 3 to 5 key challenges the
field of nutrition would likely encounter in the near future.
To stimulate thinking, members were asked to consider
several approaches that have, on occasion, generated friction
within the field of nutrition science. These included obser-
vational studies versus clinical trials, basic versus applied
research, animal models versus human testing, acute versus
chronic trials, qualitative versus quantitative methods, and
surrogate endpoints (biomarkers) versus established clinical
endpoints.

Next, the task force considered the organizational struc-
ture of the report. An initial concept was to present findings
according to a hierarchical research pyramid. However, it
was decided that this approach might emphasize differences
between methods and rank orders of importance instead
of providing the view that each contributes in its own way
to a whole. A matrix format was also considered, whereby
nutrition issues would be juxtaposed with the methods that
may be used to address them. However, this resulted in
concern about redundancy. Finally, a consensus emerged to
organize the report around methods applicable to precision
nutrition.

Precision nutrition was identified as an important emerg-
ing nutrition topic by the preponderance of task force
members, and the relevance of the topic was reinforced
by the recent NIH precision nutrition research initiative

“Nutrition for Precision Health, powered by the All of Us
Research Program” and the related Common Fund Request,
“Data Science Challenges and Opportunities in the Field of
Precision Nutrition.” According to the NIH, an underlying
assumption of precision nutrition is that everyone responds
to diet and nutrition interventions differently. Therefore, for
the purposes of this report, precision nutrition is defined
as the development of nutrition recommendations relevant
to both individuals and population subgroups using a
framework that considers multiple, synergistic influencers
including dietary habits, genetic background, health sta-
tus, microbiome, metabolism, food environment, physical
activity, socioeconomics, psychosocial characteristics, and
environmental exposures (5).

This theme was adopted for the report because it lent
itself to integration of many approaches in nutrition science.
However, it was recognized that there are topics of equal
importance (e.g., issues related to population health) that
would require some methods and approaches that differ from
those applicable to addressing questions related to precision
nutrition. It is also important to recognize that precision
nutrition is a complex concept. A person’s nutritional needs
must reflect issues such as diverse backgrounds, health status,
and access to resources. Thus, it must be clearly noted that
this report is meant to emphasize the value of integrating
the many methods required and used by nutrition scientists.
Precision nutrition is used only as a way to organize nutrition
research methods rather than the topic of this report.

The task force was divided into 7 writing groups, each
with a different scope of methods to consider. Each group
prepared an outline of the topics they proposed to cover,
which were reviewed and revised by the full task force to
minimize redundancies and gaps. The resulting content in
each area is as follows:

� Health disparities

It has long been recognized that contextual factors, such
as economic, social, cultural, behavioral, and environmental
factors, have profound impacts on the extent to which
evidence-based health and nutrition interventions improve
outcomes in diverse populations. These core factors drive
inequities in access to nutritious and safe food and to
health and other services, resulting in pervasive health
disparities. Precision nutrition approaches and successful
program design and adaptation through implementation
science research facilitates an understanding of the nutrition
issues in varying populations, and the contextual factors that
impact dietary behaviors and choices. In this section, we
highlight several research methodologies that have been used
to 1) describe and understand health disparities and their
determinants, 2) translate that knowledge for better program
design, and 3) measure program progress and impact. These
include community-based participatory research, focused
ethnographic studies, and impact pathway analysis. For
each methodology, we discuss examples of application and
explore strengths and limitations. We also include a review
of measures of socioeconomic status (SES) and the food
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environment, 2 measures that are particularly important
in health disparities research. This overview is intended to
be illustrative, not comprehensive, and concludes with a
discussion of several remaining opportunities and challenges
to improve research design, rigor, and potential for uptake to
enhance precision nutrition approaches and address health
disparities.

� Cognitive performance and behaviors

The methodologies in this section fall into 5 areas: 1)
the initiation and cessation of eating, 2) appetite, 3) sensory
attributes of foods, 4) effects on cognitive performance, and
5) brain imaging and diagnostic questionnaires. Although a
number of the methodologies are based on both objective
and subjective measures, others utilize one or the other.
Concern about the interpretation of results is a primary
issue for each methodology area. For example, questionnaires
developed to reflect decision processes, such as the decision
to begin or cease eating, must be reliable and predictive of
an outcome. Other questionnaires provide ranges of scores
to reflect the impact of different conditions or a change in
condition. Objective measures, such as brain imaging, nec-
essarily entail methods of transformation and/or reporting
of magnitude or quality, often by software associated with
the technology. For results to be interpretable, there is a
need for values to be standardized and relatable to selected
outcomes. This section seeks to provide a general description
of major methodologies in these 5 areas, as well as their key
strengths and limitations. The methodologies in this section
are considered useful for research purposes but are not yet
able to provide diagnostic information to allow an individual
to adjust their food-related behaviors or strategies in relation
to precision nutrition recommendations at this time.

� Dietary assessment

Assessment of individual dietary intake is essential for
precision nutrition. The most common methods include 24-
h recall (24HR) and food-frequency questionnaires (FFQs).
Strengths of the 24HR include open-ended questions, al-
lowing for diverse dietary patterns. Limitations include
underreporting of intake due to forgotten foods and por-
tion underestimation, and the need for multiple days to
reflect usual intake. Strengths of the FFQ include efficient
estimation of usual long-term intake. Limitations include
reliance on a food list and assumptions tailored for specific
populations, with biased estimation for subgroups. Although
self-administered questionnaires offer cost-savings, dietary
assessment is best administered by trained interviewers,
and this is essential for low-literate people. Biomarkers are
useful adjunct measures to validate self-reporting and/or
to combine with self-reporting to better estimate exposure.
Statistical techniques have been explored for biomarker
calibration of intake in study subsets or with feeding studies,
but generalizability to populations outside of those used
for the calibration remains a concern. New technologies
include using photographs to document portion size and
smart devices to measure swallowing or arm movements, but

these remain limited and require participant cooperation and
investigator review. As precision nutrition moves forward,
investment in improving dietary assessment is critically
needed. This includes updating nutrient databases and
enhancing and/or developing more efficient and inclusive
tools.

� Genetics and epigenetics

Metabolic heterogeneity—the variation in processing
nutrients via metabolic pathways—arises, in part, from
genetic and epigenetic variations between people that can
alter metabolic and signaling pathways. Furthermore, the
effects of genetic or epigenetic variations may only become
apparent when metabolism is challenged by disease or
nutrient deficiency or excess. Thanks to recent advances, it
is now possible to completely sequence a person’s genome,
revealing deletions, mutations, and even single nucleotide
polymorphisms (SNPs) that may underlie differences in
nutrient needs. These differences are at the core of precision
nutrition.

Beyond the genome, epigenetic variations derived from
inheritance and differences in life exposures, experiences,
and diets can change the expression of genes in a way
that can, in turn, alter nutritional metabolic and signaling
pathways. The challenge for precision nutrition will be
to expand the evaluation of individual gene, epigenetic,
and transcript variations to study patterns of variations
that predict metabolic heterogeneity and differences in
outcome/responses to dietary interventions. To accomplish
this approach, the field will need to develop appropriate data
and better computational models and tools.

� Microbiome

The human microbiome shows high interindividual vari-
ability and is influenced by numerous factors including
age, sex, diet, environment, and circadian rhythms. From a
precision nutrition perspective, recent studies suggest that
specific microbiome patterns are associated with higher
health risks and differential responses to certain foods
and nutrients. In this section, the following experimental
methods for investigating the microbiome in the context
of precision nutrition are briefly reviewed: dynamic in
vitro multicomponent fermentation systems, animal models,
human clinical interventions, and cohort studies. Overall,
due to the complexity of the diet and the considerable
interindividual variability and complexity of the microbiota,
combining different experimental designs is necessary to
understand the relationships between diet–microbiome and
health. Further, the increasing number of diet–microbiome
studies and various approaches to study design warrant
consideration of key factors, such as standardization of
sample collection and analysis workflows, host–microbiome
interactions, influences of other biological and environ-
mental factors, and integration with ’omics data to ensure
that data collected are robust and reporting is sufficiently
complete to enhance replicability. While the field is extremely
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promising, we must be cautious about overinterpreting
findings from diet–microbiome studies.

� Nutritional status

Determining the nutritional status of an individual is an
important part of nutrition research because understanding
how diet and dietary patterns influence nutrient absorption
and metabolism is fundamental to supporting sound policies
on nutrition and health. Among the many methods used
to assess nutritional status, the use of dietary surveys
to measure dietary intake is the primary approach for
monitoring the diet of people and populations. There are
limitations to these methods at the individual level, but
at the population level, dietary intake methods are useful
for accurately assessing dietary trends and patterns. Also,
measuring energy expenditure and body composition of
individuals provides data that can be used at both individual
and population levels to understand how energy balance may
promote health or prevent disease. While current Dietary
Reference Intakes are largely estimated from nutrient levels
in limited studies in adults, additional research is needed
to identify homeostatically regulated nutrient biomarkers,
and to apply these measures in studies across all ages and
genders, including assessment of genetic variation. This
section discusses the application of these methods using
precision nutrition as a model for exploring strengths and
weaknesses when applied to individual or population studies.

� Cross-cutting considerations

The sections described so far discuss different domains
that are important in establishing an evidence base for
precision nutrition guidance. Yet, the task force emphasizes
that the science of nutrition is not a disjointed collection
of disciplinary silos. Thus, this section describes cross-
cutting methods, themes, and issues that acknowledge the
overlap among the sections and lays the groundwork for
the future of nutrition research. Methodological consider-
ations have arisen at the interface of multiple domains of
nutrition science, such as ’omics, big data, data mining, and
artificial intelligence (AI)/machine learning; challenges in
capturing the relevant nutritional measurement of interest;
and application of statistical approaches to enable the use
of observational data to address questions of causality and
improvement in study designs that will answer pragmatic
questions and enhance the ability to provide precision
nutrition guidance. The section concludes by focusing on
cross-cutting principles to advance the science of nutrition:
1) training in interdisciplinarity as a skill; 2) selecting designs,
measurements, and communication approaches with an
explicit focus on fit for purpose; and 3) creating a field-wide
dedication to rigorous, reproducible, and transparent science
through open science practices.

The format adopted for preparing each section was as
follows:

� Writing Section Topic Introduction (∼1 page): (for
example, genetics/epigenetics):

◦ Method 1
◦ Method 2
◦ Method 3

� Strengths of Each Method (using Precision Nutrition
topical theme) (2–5 pages)

� Limitations of Each Method (using Precision Nutrition
topical theme) (2–5 pages)

� Key Considerations in Interpretation of Data Gener-
ated by These Methods (2–5 pages):
◦ What conclusions can and cannot be drawn from

these types of methods?
◦ How do findings from these methods interface with

other methods?
� In Closing (∼1 page)

Each section has undergone an internal review process
in which each group critically reviewed at least 1 other
writing group’s section. Comments were provided to the
primary authors and revisions were made. The compiled
report was then edited by a science writer and shared with
the full task force for an additional review. The present report
incorporates the latest editorial and content suggestions of
the task force and is presented to the ASN Board of Directors
for consideration.

Health Disparities
Introduction
Precision nutrition is usually understood to focus on the
genetic and other biological relationships between diet and
health, with the aim to optimize health outcomes through
interventions adapted to unique individual needs. Achieving
this aim, however, requires taking into consideration the psy-
chosocial, social, and economic circumstances that directly
and indirectly influence health outcomes, behaviors, ability
and willingness to adhere to treatments, and responses to
health and nutrition interventions (6). The latter set of social
factors, often referred to as social determinants of health
(SDOH) (7), may be defined at the individual (e.g., gender,
education, nutrition literacy), societal (e.g., economic, social
stability, educational attainment), or environmental (e.g.,
food production, proximity and nature of food environment
and markets, access to clean air and water, physical safety)
levels. Social determinants are core drivers of inequities in
access to nutritious and safe food and to health care and
other services. They result in profound health disparities.
“Health disparities” are defined as differences in health
outcomes and their determinants between segments of the
population, as defined by social, demographic, environmen-
tal, and geographic attributes. Disparities are closely linked
to economic, social, and/or environmental disadvantage. By
contrast, “health inequities” are defined as systematic, avoid-
able differences in health outcomes and their determinants
between segments of the population based on race/ethnicity,
gender and other demographics, SES, and geography (8).

This section will highlight critical advances in precision
nutrition and its potential to understand diet and health
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relationships, to ultimately enhance the potential of nutrition
and health interventions to improve outcomes of individuals.
Globally, most health and nutrition interventions, and the
research that informs them, are designed and implemented
at the population level. The “one size does not fit all”
principle central to precision nutrition must be applied to
research that informs nutrition and health interventions
at the population level. We frame research of this nature
under the umbrella of implementation research, or research
that has the explicit purpose of informing decision-making
needs for population health and nutrition programs (9). This
approach is particularly important to addressing disparities
in health outcomes in the United States and globally.
Figure 1 shows an overview of the types of decisions that
need to be made during nutrition intervention program
design, delivery, improvement, and scaling-up. Rigorous
research should inform decisions to ensure that priority
nutrition-related issues are identified, potential evidence-
based programs can be adequately adapted to the unique
context to address those needs, and to inform a continual
cycle of improvement to design and delivery that can
ensure that potential to improve nutrition and related health
outcomes can be reached.

In this section, we review research methodologies used to
inform program decision making in nutrition, highlighting
several examples from Figure 1. It is important to note
that research methodology does not define implementa-
tion research, as many methodological approaches may be
considered. The defining difference is the selection and
utilization of a methodology to answer a question required
for program decision making and, as a result, the need to
engage with the eventual users of that evidence in ways
that would rarely occur in scientific discovery research.
Analogous to precision nutrition’s intent to enhance the
quality of evidence related to individual nutrition risk
and the potential of interventions to mitigate such risks,
implementation research allows unique features of context
to be brought to bear to improve the potential for nutrition
programs at the population level. With this context, this
section has 2 objectives: 1) to present examples of several
research methodologies in implementation research for
nutrition, and examples of their application, and 2) to explore
some particularly challenging constructs to measure that are
critically important to ensure that nutrition programs are
adequately adapted to context. Because of their salience for
health disparities, we focus on measures of economic well-
being and measures of the food environment.

Research methodologies used in implementation
research
Community-based participatory research.
Because of historical disenfranchisement within certain
groups, the issue of power must be considered in health dis-
parities research. Community-based participatory research
(CBPR) is a promising approach to deconstruct hierarchies

and balance power dynamics by engaging community mem-
bers in the design of tailored dietary interventions for com-
munities experiencing health disparities. Through authentic
engagement with community members, community input is
integrated throughout all stages of the research process from
design and implementation to evaluation.

CBPR is a health disparities research method that can be
used to identify options for action in the form of policy and
programs (10). For nutrition, the CBPR approach has been
used in studies to promote healthy diet and nutrition and
weight management in historically disenfranchised commu-
nities (11–13). For example, in recent decades, a growing
body of research has used CBPR approaches to promote
healthy eating and weight control in African–American com-
munities, which experience high rates of overweight, obesity,
and other diet-related health outcomes (11). A variety of
factors account for these differences, including attitudes and
preferences related to food, socioeconomic factors, targeted
advertising of unhealthy foods and beverages to African
Americans, and environmental factors that create barriers
to limiting intake of foods high in fat and sugar (14).
Neighborhood deprivation and residential racial segregation
also play a role (15). Recognizing these contextual factors
and the historical distrust among African Americans rooted
in the lingering legacy of the Tuskegee experiment, the
CBPR approach has been used to initiate grass-roots efforts
and coalitions of community-based organizations to address
health behaviors. Given the complexity of factors that
influence dietary behaviors within and among populations,
multicomponent CBPR studies are particularly beneficial
when interventions are aimed at multiple levels of the
socioecological model.

The collaborative approach of CBPR involves partner-
ships among academics, community organizations, and
community members to increase the perceived value and
importance of the research product for all partners. CBPR is
participant centered and includes the goal of acknowledging
and implementing participants’ needs, behaviors, and beliefs
concerning their well-being (16, 17). To this end, CBPR
involves the participation of those whose life or work is the
subject of the research and includes involvement at all stages
of the research process, including formulating the research
question and goal, developing a research design, selecting
appropriate methods for data collection and analysis, imple-
menting the research, interpreting results, and disseminating
findings. Such engaged participation is the core defining
principle of CBPR, distinguishing this approach from others
in the health field.

A key strength of this research method is its ability to
address unequal power dynamics that may exist between
academia and disenfranchised communities. Given the
historical disenfranchisement of communities that experi-
ence diet-related health inequities and pervasive distrust in
societal systems, the equitable involvement of all partners
in the research process aims to address these historically
unequal power dynamics (18). Community and stakeholder
involvement can inform the development of socially and
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FIGURE 1 Overview of the types of program relevant questions that are asked to adapt nutrition interventions to context, and
implementation research methodologies to address them. (9).

culturally appropriate nutrition interventions that are tai-
lored for context. Additionally, unlike other frameworks
used within health disparities research, this approach steers
away from a deficit perspective. Instead of focusing on
problems and deficits, particularly of marginalized commu-
nities, the method focuses on strengths and assets, collective
knowledge, and insights that community partners bring to
framing health problems and developing solutions (19). This
approach can, therefore, be empowering for communities
experiencing disparities.

A limitation of these methods is the time and resources
needed. CBPR calls for equitable partnerships that require
long-term commitments from researchers and communi-
ties. Given the intentionality required to build authentic,
longstanding relationships with community stakeholders, the
CBPR approach requires unique skillsets that may not be a
part of the traditional research training. Poorly implemented
CBPR could lead to tokenistic engagement instead of
authentic, mutually beneficial relationships between com-
munity and academia. Consequently, the researchers must
begin building these partnerships well before grant funding
is received.

Focused ethnographic studies.
Nutrition interventions, regardless of whether they aim to
address malnutrition directly (e.g., distribution of nutritional
supplements), change food choice and dietary habits, or
influence the determinants of these (e.g., by shifting access to
food), require in-depth knowledge about the populations and

communities in which interventions will be implemented.
The importance of individual factors that may determine
biological potential to respond to an intervention (e.g., base-
line nutritional status) and implementation-related factors
(e.g., health or food delivery systems) is well documented
(20). Focused ethnographic studies (FESs) seek to bring
such quantifiable information together with an emic, or
insider perspective (21), from individuals or communities
in which interventions are planned (22). As is common in
ethnographic research, FESs are a mixed-methods approach.
A well-designed FES will start with a theoretical frame-
work and review of relevant existing literature. Additional
data collection may include common quantitative or semi-
quantitative measures relevant for the research purpose
(e.g., socioeconomic, dietary) and approaches to understand
society, culture, behaviors, values, perceptions, and other
aspects of context. The latter methods can include cognitive
mapping, key informant and in-depth interviews, and focus
groups. The idea of focus in FESs refers to the application
of the studies to a specific research topic. In this regard,
FESs differ from classic ethnography, which sought to be
comprehensive in studying peoples and cultures (22). To
further illustrate, we draw on recent publications of FESs in
research on infant and young child feeding (IYCF) in several
low- and middle-income countries.

Undernutrition, characterized by stunting, wasting, ane-
mia, and micronutrient deficiency, is still highly prevalent
in many low- and middle-income countries (23). While
malnutrition is multi-causal, inadequate feeding in the
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first 2 y of life is a common cause of most forms of
childhood malnutrition (24). Ample research has focused on
developing nutritional supplements for distribution within
programs, and many interventions have been designed to
shift breast and complementary feeding practices towards
global recommendations (25). Designing programs that are
actionable within communities requires information not
only about what children eat but why and the values, per-
ceptions, cultural, economic, and other factors that influence
caregivers’ decisions. FESs have been used in several country
settings to gain emic understanding of child feeding practices
and what drives them as well as to explore barriers and
opportunities for change. Results illustrate that in many low-
and middle-income countries, economic barriers to purchas-
ing foods often recommended as part of behavior change
campaigns are a critical challenge, even when knowledge and
willingness exist. That said, social conditions and cultural
values and beliefs also guide IYCF behaviors, and other
factors such as women’s time can be a constraint to change
(26, 27).

With their mixed-methods approach, FESs are flexible
and can include the set of data-collection tools that most
appropriately fit the research question and context. The
primary disadvantage of this approach is the relative resource
intensity, although this can be mitigated given the flexibility.
By design, FESs are intended to explore a specific health or
nutrition issue in a specific context, so findings cannot be
extrapolated beyond that context. However, using a common
approach across contexts can reveal important insights into
the commonality of barriers and opportunities for change,
as was illustrated through the application of FESs to ICYF
practices (28).

Impact pathway analysis.
Impact evaluation is critical for measuring program results,
which, in turn, provides accountability to donors and govern-
ments. With this purpose in mind, several published evalu-
ations focus solely on the primary intended outcome from
the program (29). To serve the program decision-making
requirements, illustrated in Figure 1, and to inform course
correction if needed, evaluations must go beyond a sole focus
on primary outcomes. They must also provide information
on why (or why not) programs work in specific contexts
and whether benefits are accrued equitably among subgroups
within the targeted population (30). These considerations are
critical to assess whether programs have been appropriately
adapted to contexts, whether they have potential to address
health inequities, and, ultimately, to guide decisions related
to continuity, expansion, or modification of the program.
Evaluations must also assess social determinants to permit
the equity analyses and measure program processes, fidelity
and quality of delivery and explore factors that may facilitate
or impede quality, coverage, and utilization of program
products and services.

Many evaluation designs can be used, depending on
resources and context. As with all research, the types of
causal inferences that can be made depend on the design

selected (30). Regardless of the design used, program
evaluation should begin with mapping an impact pathway.
The impact pathway provides a visual depiction of program
activities, what they intend to achieve, and the process by
which they will achieve results, and is accompanied by
a list of assumptions that underpin these activities (31).
Data-collection tools and processes can then be developed to
ensure a comprehensive evaluation of program components
as well as intended and unintended intermediate and
ultimate outcomes. The appropriate analytical approach for
primary outcomes will depend on the evaluation design (e.g.,
randomized effectiveness trial, nonrandomized matched
control groups, theory-based evaluation) and should always
follow scientific standards [e.g., CONSORT (Consolidated
Standards of Reporting Trials) guidelines if a randomized
controlled trial (RCT)]. Beyond primary outcomes, the
impact pathway analysis explores intended and, if needed,
unintended intermediate outcomes and the processes
through which any changes may have occurred. In this
manner impact pathway analysis follows the principles of
theory-based evaluation (32).

In recent years, an increasing number of nutrition
program evaluations have adopted the impact pathway
approach. As examples, it was used in Vietnam (33)
and Bangladesh (34) to evaluate interventions intended to
improve IYCF practices. For each program, mapping was
performed for intended interventions (e.g., health worker
training, development and distribution of behavior change
materials), service delivery approach (e.g., utilization of
health clinics at specific child ages), the mechanism through
which these interventions would modify IYCF practices
(e.g., beliefs about IYCF, self-efficacy related to IYCF), the
intended intermediate (breast and complementary feeding
practices), and long-term impacts (reduced stunting). The
impact pathway analysis in Vietnam, for example, found
that health care providers exhibited increased capacity
because of the program, resulting in higher-quality IYFC
counseling and better breastfeeding knowledge and practice
in intervention than comparison communities. However, the
authors also found that program utilization, particularly the
number of clinic visits per mother/child was likely to be a
barrier to further impact. The close relationship developed
between evaluation and program teams, while developing
the impact pathway, facilitated the discussion of these results
and their translation into specific recommendations to adapt
and strengthen the program (33). The impact pathway
was used in a similar fashion to measure progress and
propose modifications to conditional cash transfer programs
to improve their impact on nutrition outcomes in several
countries (35–37).

Impact pathway analysis approaches to evaluation have
several limitations. First, robust data are needed across many
aspects of program implementation, data that are sometimes
overlooked in impact evaluations. Second, impact pathway
analysis itself does not allow direct causal attribution between
individual actions and results across the pathway. These
limitations, however, also highlight the strengths of the
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approach. Impact pathway analysis can be applied regardless
of the evaluation design. It starts from a clear theoretical
framework of the program, which obligates the evaluator to
work closely with program implementers to gain a profound
understanding of the intended programmatic approach and
processes. Through mapping and studying the pathway and
the assumptions that underlie it, the approach reveals what
is inside the black box of program implementation and
permits insights as to whether programs work, while also
being useful for generating and testing hypotheses related to
why or why not a program works. This type of evaluation is
fundamental for determining whether a program was ade-
quately adapted to context or whether additional adaptations
are required to realize impact. Discussing these evaluation
findings with program implementers can produce concrete
and feasible solutions to improve potential for impact
(38).

Measuring constructs for adapting nutrition
interventions to context
Well-designed implementation research can generate the
evidence needed to adapt program design to context.
Insufficient attention to disparities is an integral part of im-
plementation research; however, it may lead to interventions
that, at minimum, do not address them or, at worst, may
perpetuate them. The methodologies described above are
well suited to identify and understand health disparities.
Researchers, however, must also pay close attention to the
measures they use, and the extent to which they are able
to capture contextual differences and nuances that may
stem from issues with adequate adaptation and translation
(if needed) of research tools, questionnaires, and resulting
indices. Because of their salience for health disparities, we
focus on measures of SES and the food environment.

Measures of SES.
The influence of SES inequities on health is a major public
health concern and an important driver of disparities (39,
40). SES is particularly important for nutrition and health
disparities research because it often dictates access to services
as well as access and control of material and social resources
in a society. In the case of nutrition, SES influences income
(and time) available to purchase and prepare healthy food.
SES has been conceptualized in several ways, which typically
seek to estimate income, wealth (income plus assets), or
as a broader construct of resources that usually includes a
combination of measures, both economic and social (e.g.,
housing materials, physical belongings, education, marital
status, family size and arrangement, among others), or a
single construct reflective of these (e.g., education) (41–43).
Simple proxy measures may also be used, such as education
alone (44), or US Census-tracked SES based on zip code
(45). Measures are often converted into indices to provide
an absolute measure of wealth or poverty in comparison
to an absolute value (e.g., proportion of the population
living on less than 1 dollar a day), or national benchmark
[e.g., the poverty-income ratio (46)]. Other measures provide

a relative ranking of individuals or households within a
population (e.g., SES indices used by the Demographic and
Health Surveys).

There is no single correct way to measure SES, and the
choice of measures and resulting indices should be informed
by the relevance to the population and the research question
for which the information will be used. Unfortunately, insuf-
ficient attention has been paid to these issues in nutrition.
As a result, research studies have found conflicting results
because of the indices used (47), inconsistent associations
between SES and health disparities in the United States (43),
and between specific SES measures and health outcomes
among varying ethnic groups (48, 49). Measurement issues
are further complicated when comparing multiple country
contexts, although several recent efforts have attempted to
address this challenge (44).

In addition to these general challenges, implementa-
tion or health disparities research requires that particular
attention be paid to adapting measurement to context.
The choice of measure and indices must be informed by
the study’s objective while taking into account additional
contextual considerations. For example, reporting accuracy
will be influenced by the measure for the range of SES
likely in the population, the social and cultural meaning
given to various constructs (e.g., individual vs. extended
family income/wealth), and the population’s acceptance of
responding to questions. In the United States, common
measures include poverty-income ratio, annual household
income (46), Census-tract–level SES based on zip code (45),
and several poverty indices. These measures may not account
for informal income, safety net resources, and assets and
wealth that could potentially buffer socioeconomic stressors
linked to poor health outcomes.

Measures of food environment.
Given the recognition that the spaces in which people
acquire food (through production, gathering, purchasing)
influence dietary choices and ultimately nutritional status,
research is critical to understanding the influence of the
food environment on dietary behaviors and how inequities
in food environments may influence and perpetuate health
disparities. From existing evidence, we know that food
environments vary vastly among and within countries. There
are multiple definitions of the food environment, and little
consistency and clarity on the constructs to measure it
(50). In simplest terms, the food environment represents
the interface between food systems and diets (51). Turner
et al. (50) propose a detailed framework and associated set
of potential data sources to measure the food environment.
The authors make a distinction between the external food
environment (food availability, price, vender and market
properties, marketing, and regulation) and the personal
food environment (accessibility, affordability, desirability,
and convenience). Applying such a framework to measuring
the food environment is critical to understanding pathways
by which food environments may influence diets, identifying
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appropriate points of interventions, and developing interven-
tions through the precision nutrition lens that account for
these unique social and community circumstances.

Several measures of food environments have been devel-
oped and used to assess the external food environment and
personal food environment. Some were developed specifi-
cally to capture the context of low-resourced communities
in the United States (52), such as the Nutrition Environment
Measures Survey. This survey is based on established criteria
assessing the relative healthfulness of food and beverages
offered (e.g., <800 kcal,<30% fat, <10% kcal from saturated
fat for restaurant meals) and has been used to assess the
food environment in grocery and convenience stores (53),
restaurants (54), and vending machines (55). There is also
growing recognition of the need for food environment
measures that capture the broad diversity of ways and
places food is procured across diverse contexts globally.
For example, Down et al. (56) provide a framework and
suggestions for measurements that recognize the importance
of natural food environments (e.g., lakes, rivers, forests) that
are still an important source of food for many people. Recent
publications also suggest measures for capturing formal and
informal market food environments (56, 57). A plethora
of research has described food environments and analyzed
associations of the food environment with diet and health
outcomes, as well as some research measuring impact of
interventions to modify those environments. Much work is
still needed to develop and validate indicators that reflect the
various constructs of the food environment by adapting to
the unique context of food environments while maintaining
common constructs that can be compared across contexts.

Methods that apply geographic information system (GIS)
technology for accessing exposure are also used to character-
ize the external food environment and food types available
within communities, including urban, rural, and suburban
settings (58). In the United States, GIS approaches are
commonly used to determine store density or proximity to
nearest food store types (e.g., supermarkets, convenience
stores, fast-food outlets, and other types of stores) to
operationalize food access (59). Aligned with the “health
is determined by your zip code” concept, measuring food
availability and access to food at the neighborhood level
in health disparities research is useful because of pervasive
neighborhood-level racial/ethnic segregation, and can help
inform policy development at local and regional levels (60).
Limitations include the assumption that food store proximity
is a proxy for an individual’s food environment and dietary
intake, and the inability to account for an individual’s mo-
bility throughout the day (61). With expanding smartphone
usage, even in many low- and middle-income countries, GIS
technology holds promise for mapping food environment ex-
posure of individuals over the course of a day. Although still
in its infancy, this approach may foster a better understanding
of food environment exposures and, ultimately, inform more
optimally tailored dietary interventions (62).

Key considerations in data interpretation
We describe several research methodologies and measures
important for health disparities research, through the frame
of implementation science. The examples described are
illustrative only; implementation research is defined by its
purpose to generate actionable evidence for decision making
related to policies and programs in context, and many
different research methodologies may be appropriate. The
choice of research methodology must be defined by best fit-
to-purpose feasible methodology. There are, however, several
considerations in research design and interpretation of data
generated, as follows:

� Approaches that use mixed methods are particularly
salient for research related to health inequities and dis-
parities, complementing common nutrition measures
with information that can be collected in ways that are
sensitive to social and cultural contexts. Quantitative
and qualitative data obtained from FESs, for example,
including quantitative and semi-quantitative surveys,
key informant interviews, and focus groups, are critical
to obtaining the insider perspective from individuals
or communities where interventions are to be imple-
mented.

� To ensure that disparities are not inadvertently perpet-
uated in research, proactive consideration of disparities
is critical for all forms of research. For example, social
and cultural dynamics should be considered in the re-
cruitment strategy for clinical nutrition trials to ensure
diversity in study populations, thereby improving the
study’s external validity.

� In research designed to understand context (e.g.,
CBPR, FES), there will always be tensions in balancing
external and internal validity. Using common method-
ological approaches adapted to varying contexts but
measuring similar constructs can be useful to provide
insights into trends and patterns in different settings
and communities.

� Regardless of the context, research tools and measures
require some level of adaptation, validation, and
possibly, translation. It is critical to test whether the
fundamental constructs that the research seeks to
measure are not lost in that process.

� The time intensity of the proposed approaches should
also be noted. When working to better understand
communities that experience health disparities, time
is necessary to conduct the formative research needed
to adequately identify community needs and adapt
interventions accordingly. This can create tensions
with programmatic needs for rapid generation of
evidence. Working closely with program implementers
from the outset of implementation research is critical
to navigate these tensions so that scientific rigor is
maintained while ensuring programmatic relevance.
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In closing
Population-based programs to improve nutrition outcomes
and address health disparities must account for the social,
cultural, economic, and other factors that influence health,
diet, and the willingness and ability to make behavioral
changes. We describe several methodologies and measures
that can be used to generate such evidence, using the framing
of implementation research. This approach is important
regardless of research context, whether addressing disparities
in health outcomes in the United States or in any context
globally. Similarly, precision nutrition research must explore
not only the biological and genetic underpinnings of health
but the same set of disparate social, cultural, economic,
and other factors that directly and indirectly influence
health outcomes, behaviors, ability to adhere to treatments,
and responses to health and nutrition interventions (6).
Social and community circumstances, including the food
environment and SES, are core drivers of the inequities in
access to nutritious and safe food and to health and other
services that contribute to health disparities (8), yet there is
much room for improvement in their assessment. Generating
high-quality evidence and using fit-for-purpose research
methodologies are critical steps to understanding the need
for designing and improving interventions to address health
disparities and advance health equity in all contexts in the
United States and globally.

Cognitive Performance and Behaviors
Introduction
This section encompasses methodologies for the study of
eating behaviors, the effect of nutrients on cognitive per-
formance, and effects on regions of the brain that influence
behavior, mood, and performance. The applications of these
lines of study to precision nutrition are almost implicit. As
the areas of study and methods are described, the reader will,
no doubt, be reminded of the great variety of behaviors and
responses toward foods observed during social occasions,
family, or solo mealtimes, and in dining establishments.

What accounts for the tremendous variability observed
between individuals, groups, cultures, and other manners
of grouping individuals? Clearly, there is a role for the
entrainment of habits, desires, favorite characteristics, and
any number of other ways of interacting with foods. Is
this due to characteristics of the food? If so, then food
characteristics can be manipulated in the hope of providing
an optimal nutrition experience. But how much of the
variability we observe has its origin in the individual? This
is a central question of precision nutrition.

It is important to realize that a dichotomy exists for all,
or nearly all, areas covered. Many aspects of eating behavior
are entrained and are, at least theoretically, available to re-
training to some extent. At the same time, gene expression—
which accounts for differences in height, hair color, bone
characteristics, and other observable variations—has many
counterparts in systems related to the intake, digestion,
absorption, and metabolic use of nutrients.

Folate is a well-documented example of the variation
that exists in systems related to nutrition and behavior. Like
many nutrients, folate plays multiple roles, including an
important role in the generation and repair of DNA. The
methylenetetrahydrofolate reductase (MTHFR) gene codes
for a protein of the same name that is critical to an individual’s
ability to process folate in ways necessary for its functions.
Some variations in MTHFR alter a person’s ability to utilize
dietary folate, but typically are not a threat to health. Other,
rare, variations in MTHFR cause profound alterations in
the utilization of folate, which during pregnancy, can result
in neural tube defects. Supplementation with folic acid to
achieve an intake of 400 μg/d during pregnancy reduces the
incidence of neural tube defects overall. Folate availability
for metabolism is not the sole cause of neural tube defects,
but this provides a clear, although rare, example of how
individual gene variation can affect nutrient utilization in a
person who may otherwise appear healthy.

It is important to keep in mind that variation between
individuals is one of the primary considerations when
selecting a research method. If all individuals were the
same or similar, relatively few studies would be required to
determine relationships, and necessary interventions would
be well defined.

Measuring eating behavior
The very broad field of assessing eating behavior encom-
passes a variety of methods including basic neurobiology,
behavioral observation, task development, questionnaire
construction, and self-report.

Sensory characteristics of food.
The sensory, perceptual, and physical attributes of foods
influence their ingestion. In fact, a food’s sensory qualities
are among the most important determinants of food choice
and consumption. Sensory systems transduce an array of
food-derived stimuli (e.g., light, pressure waves, chemicals)
into electrical signals that are conveyed via neurons to
specialized centers of the brain to be decoded and acted upon.
There is marked individual variability in sensitivity and
responsiveness to sensory stimulation. High responsiveness
to 1 stimulus or of 1 sensory system is not predictive of
high sensitivity to other stimuli or sensory systems. Thus,
individuals can perceive the physical world quite differently.
Each sensory system is activated by a distinct set of stimuli
and receptive processes and the internal signal is conveyed by
dedicated, unique nerves to different brain centers. Thus, at
the anatomical and physiological level, each sensory system
is independent, although the input they provide is integrated
at higher brain levels.

People differ in their sensory response to food in many
ways. One classic difference is the perception of bitter
taste related to phenylthiocarbamide or propylthiouracil.
Research suggests that approximately 25% of the population
are non-tasters for this bitter taste while 50% are medium
tasters and 25% supertasters. Researchers have used these
differences in taste to explore consumption of a wide variety
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of foods, including sweet foods, alcoholic beverages, and
vegetables, as well as nonfood consumption that involves
sensory mechanisms such as cigarette smoking. Likewise,
there has been extensive work on sensory thresholds for
sweetness and fattiness, which has led to hypotheses that
individual differences in perception may relate to obesity.
For example, people with obesity may be less sensitive to
sweetness or fattiness, which could result in consumption of
more sugar- or fat-containing foods to get the same degree
of pleasure. Sugar and fat may also have combined effects, so
that some people prefer foods with a specific mixture of sugar
and fat in a given food matrix to achieve maximal pleasure.
There have also been hypotheses for other qualities and
health disorders, such as salt taste and risk for hypertension,
sweet taste and diabetes, bitter taste and thyroid disease, or
sour taste and renal disorders. However, in no case has a
strong predictive relation been documented. Whether this
is related to measurement issues or the large array of other
determinants of health disorders is uncertain.

There are also wide individual differences in olfactory
function, although this area has not been as widely explored
in relation to consumption of different types of foods.
Visual cues play another key, nonsensory role in estimating
portion size, and modifying behavior based on variations
in the way food is served. For example, people will serve
themselves more food and, thus, consume more if it is served
in larger bowls and will consume more if served larger
portions. However, it is important to recognize that smell and
taste combine with all other sensory properties (appearance,
somatosensation, and sound) of a food or beverage to yield
the perception of “flavor.”

Sensory measurement methods.
Threshold sensitivity measures subjective responses to an ar-
ray of stimulus concentrations in a given medium (e.g., water,
food). In addition to being highly subject to experimental
conditions, such as familiarity of the judge with testing
procedures, extraneous distractions, and fatigue, thresholds
are relatively demanding of a judge’s time and attention.
In general, thresholds hold limited predictive power for
food choice, except where the sensation is disagreeable with
respect to hedonic impression or perceived health threat.
That is, people are more inclined to reject an unpalatable food
than ingest one that is palatable.

Scaling or intensity judgments can be measured to
suprathreshold concentrations of stimuli. Selecting concen-
trations that reflect those encountered in the food supply
should yield more behaviorally relevant responses. The
relevance of intensity reports will also be determined by the
vehicle used to deliver the stimuli (e.g., in model systems
or complex foods). Multiple methods are commonly used
to assign numeric scores to sensation (not a familiar task to
most individuals), with varying demands on an individual’s
facility. Ranking stimuli eliminates the need for numeric
responses but yields only ordinal-level data. Assessment
methods are generally more rapid than threshold testing
but are still subject to sensory fatigue, especially if it is

difficult to clear stimuli from receptors between successive
presentations. Intensity ratings can yield insights about
the functionality of the sensory system but hold limited
predictive power for food choice. The desired intensity level
of a stimulus (e.g., saltiness, viscosity) is highly context
specific and a response in 1 food system is not necessarily
generalizable to a total diet.

Quality ratings may be easily obtained with threshold
or scaling procedures or independently. They are heavily
influenced by memory and experience. Depending on the
goal of the assessment, it is possible to obtain a label for
an isolated quality or the proportional contributions to
the totality of the stimulus. Findings from assessments can
provide insights on basic sensory function, but the impact of
responses on food choice will depend on the valence of how
the quality is perceived, which reflects individual experience,
health concerns, and other nonsensory inputs.

Understanding the sensory capabilities of an individual
and their hedonic impressions will complement the utility
of nutrition interventions aimed at optimizing health based
on a person’s physiological status and lifestyle. Dietary
recommendations are more likely to be followed if the
foods and beverages that are encouraged are palatable. The
degree to which palatability creates health risk is not as well
established.

Measuring appetite.
Appetitive sensations guide food choice as well as patterns
and bouts of eating. Appetitive sensations that drive eating
can be influenced by the food presented in a meal and
food environment, including food availability, food stimuli,
ready-to-eat foods versus prepared foods, cooking smells,
and observing other people eating. Addressing appetitive
sensations is critical for long-term adherence to and therefore
success of any dietary recommendation. While there is no
universally agreed-upon set of appetitive sensations, several
may be important for initiation of eating, including hunger,
craving or the desire to eat, and thirst. Hunger motivates the
initiation of an eating event and can, but not always, be driven
by acute shifts in energy metabolism (63, 64). It is a primary
determinant of eating frequency. Perhaps the most important
situation that can influence hunger is food deprivation, or the
amount of time since the last eating bout. Hunger can vary
by time of day, pattern of eating, and types of foods or bev-
erages consumed. Missing meals may increase hunger and
stimulate overeating at the next meal, as can occur in binge
eating.

The sensations of craving and the desire to eat may also
prompt an ingestive event but are based more on cognitive
and sensory drivers (65–67). It is common to have a desire
to eat in the absence of hunger. Although thirst theoretically
reflects hydration needs, temporal properties of the complex
systems regulating hydration status make the relation with
the sensation of thirst less than straightforward (63, 68).
The fact that many beverages now contribute energy to
the diet further confounds the role of thirst in ingestive
behavior.
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It is important to consider individual differences in
appetitive cues when developing precision nutrition guid-
ance/recommendations, because there is so much variability
in response to subjective experiences like hunger. Dietary
recommendations that consider an individual’s biology and
lifestyle should include an assessment of impact on appetite.

Appetitive sensations are subjective and typically rated on
visual analog or category scales (69). At any point in time,
individuals can be asked to introspect on their appetitive state
and provide a rapid response. No invasive procedures are
required. However, these sensations are in continual flux, so
the timing of ratings is critical for their interpretation. Rat-
ings are highly sensitive to expectation effects (large changes
over an eating event and reciprocity between sensations
like hunger and fullness). Rarely are individuals trained in
the lexicon used by researchers, resulting in a high risk
of confounding reports across sensations, but training and
acknowledging individual differences in use of rating scales
can improve the quality of these ratings (70). Appetitive and
food diaries can be used to assess hunger and time since last
eating. Although hunger may vary with food deprivation,
it is a subjective experience and should be measured using
visual analog scales (63, 64). The Three-Factor Eating
Questionnaire provides a measure of susceptibility to hunger
cues—rather than naturally occurring hunger—that occur
after different periods of food deprivation (71).

Given the challenges in interpreting appetitive ratings, it is
possible to supplement self-report with measured biological
changes that occur prior to eating. The most commonly
measured of these are cephalic phase responses that prepare
the body for food ingestion, including salivation, gastric
secretion and motility, or conditioned insulin responses (72,
73). Cephalic phase responses can be conditioned to nonfood
stimuli, such as time of the day, or cues associated with
a common place to eat (74, 75), and can only be used to
relate to appetitive cues to eat with careful control of the
environment, time of day, and time since last meal. Salivation
has also been used as a biological measure of craving (76,
77), and liking can be measured using observational indices
of facial affect or by electromyographically assessed facial
muscle activity consistent with positive affect (78, 79). These
measures are still considered experimental, require special
equipment, and are presently not likely to be commonplace
in precision nutrition.

With regard to environmental variables that may influence
eating, availability of food in the home can be assessed using a
Home Food Inventory—pictures of foods stored in cabinets,
refrigerators, and on counters, etc., and rated by observers
or receipts for foods brought into the home (80). People can
report how often they eat alone or who they eat with as part
of an eating habit diary. Measuring the influence of many
environmental cues such as food aromas and the sight of food
in the natural environment is very challenging.

Classical or associative conditioning.
Classical or associative conditioning can have important
sensory influences on ingestive behavior (81–83). Sensory

cues such as taste, smell, or visual characteristics, paired
with positive ingestive experiences, become conditioned cues
for eating those foods. Thus, presentation of these cues can
initiate food consumption even in the absence of hunger
(84). Likewise, if a person has a negative experience after
consuming a specific food, they may develop an aversion to
that food (85). Positive or negative experiences that occur
during ingestion play an important role in food selection.
Hedonic, reinforcing, or the reward value of food (discussed
in the next section) also play important roles in eating, and
these combine with associative conditioning to influence
food selection and motivation or drive to eat.

Conditioned cues can stimulate eating or cessation of
eating. Environmental cues, including time of day, context
of eating, smell of food, and visual cues of food, can
stimulate eating, even if a person is not hungry. Flavor can
serve as a conditioned stimulus in flavor–flavor conditioning
or variants of flavor conditioning such as flavor–color
conditioning (86, 87). Nutrient properties of food can also
lead to conditioned responses and pairing a flavor with
differences in energy density can differentially influence rate
of eating and the satiety cues associated with cessation of
eating and thus the amount of food consumed (88, 89).

The role of conditioned cues in stimulating eating can
only be determined using a behavioral task that assesses
behavioral or physiological responses to individual cues. For
example, presenting a visual, olfactory, or taste cue can lead
to eating even in someone who reports not being hungry,
and these cues can stimulate cephalic phase physiological
responses such as increased salivation or conditioned glucose
response that prepare the body for food ingestion. Associa-
tive conditioning methods provide an unusual window into
factors that may drive eating but require access to eating
laboratories and may take considerable time to implement.
While there is some evidence that classically conditioned
physiological responses are important aspects of weight and
metabolic control (74, 90), these methods are not likely to
become commonly used in precision nutrition.

Reinforcing value, reward value, and liking, or hedonics,
of food.
Food reinforcement is one of the most important behavioral
constructs that influences eating. Reinforcing value refers
to how hard someone is willing to work for food, or in
other words, how motivated they are to obtain food (91).
This is typically assessed using an operant laboratory task
in which a participant is given the opportunity to make
responses to specific foods, and the harder they work, the
more reinforcing the food becomes. People who find food
more reinforcing eat more food than those who are less
motivated to eat, and they are more likely to have obesity
(92). Foods differ in their reinforcing value, with animal and
human research focusing on sugar content or the glycemic
index of foods (93–96). Foods with high sugar content
or glycemic index reliably increase concentrations of brain
dopamine—an important neurotransmitter related to food
reinforcement—and activate brain reward centers (95).
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There are several questionnaire measures that tap into the
motivation to eat. For example, the food choice question-
naire, which takes only minutes to complete, is designed to
assess the reinforcing value of food by asking people how
many responses they would make for a portion of food
(97). Likewise, the reinforcing efficacy questionnaire uses
behavioral economic theory to assess the demand for food
(98). This asks people how much money they would spend
for a serving of food, and by varying the costs, a demand
curve can be created.

Based on Robinson and Berridge’s (99–101) important
theoretical work on wanting and liking of reinforcers,
questionnaires have been developed to assess wanting versus
liking of food (102). Wanting is related to the motivation to
eat while liking is related to the hedonic response to food.
Finally, there is the Power of Food Scale, which provides
a measure of the appetitive drive for food, or hedonic
hunger in the absence of a homeostatic need to eat (103).
As noted above, appetitive characteristics of food represent
an important set of cues that drive eating behavior. Several
studies have shown that the reinforcing value of food is a
better predictor of food consumption than liking of food
(104).

There is wide interest, and controversy, about generalizing
the concept of addiction to food (95, 105, 106). Both the
reinforcing value of food and food reward can motivate
people to eat, and there is a Food Addiction Scale (107) that
directly taps into the construct of food addiction. The Reward
Based Eating Drive Scale is another way to assess how much
eating is controlled by reward value of the food (108). The
Power of Food Scale assesses how much food availability,
food stimuli, and the taste of food can drive eating and lead
to the feeling that food is controlling you (103).

Using food as a reward can also modify the value of food
(109). This is generally considered in relationship to child
feeding/eating practices and can be measured using the Child
Feeding Questionnaire (110, 111). However, adults can also
use food as a reward, which can motivate people to eat. This
may be assessed by the Reward Based Eating Drive Scale
(108).

While the operant reinforcing value of food task is the gold
standard for assessing food reinforcement, it is quite lengthy,
sometimes taking 45 min or longer to complete. The act of
eating is often considered to be related to the homeostatic
versus hedonic aspects of eating. Homeostatic eating refers
to eating in response to the biological need to eat or drink
rather than the pleasure derived from eating, which is driven
by hedonic attributes.

For this reason, many reinforcing value studies feed
participants before engaging them in the reinforcing value
task to remove homeostatic reasons to eat and isolate eating
driven by the motivational characteristics of food (91). The
questionnaire approaches to reinforcing value or reward are
quite easy to complete. They tap into a similar construct
as the laboratory tasks and can assess a wide variety of
foods in a short period of time. The separate but related

constructs of reinforcing value and behavioral demand are
independently predictive of body weight. Each construct
can be assessed for the absolute or relative reinforcing
value or demand for food, as research has shown that
alternatives to food can be an important determinant of
eating (98). Having access to alternative nonfood rein-
forcers can reduce eating (112). This research is consistent
with that on environmental enrichment, which has shown
that providing access to nondrug alternatives for animal
and human studies can reduce drug self-administration
(113–115).

Wanting, liking, and appetitive drive to eat can be assessed
by validated questionnaires discussed above (95, 103, 107,
108), and liking can be assessed by Likert-type scales. It is
important to differentiate liking (how palatable a stimulus
is in an absolute sense), preference (which stimulus is
preferred over another), and free choice, in which the person
selects food to be consumed. Individual differences in food
addiction can be assessed, but it is important to consider
that the concept of food addiction is controversial (95, 105,
106), as someone can find something to be reinforcing
without being addicted to that commodity. Many of these
questionnaires appear to assess similar constructs, so care is
needed in the choice of the questionnaire. The use of food as
a reward by parents is typically assessed by parental report,
as measurement of this behavior in the natural environment
would be challenging and costly, but concerns about parental
report are realistic.

In all these laboratory or questionnaire measures, the
conditions of the task must be controlled, including the
participant’s degree of hunger, or time since last eating,
and dietary restraint, which can influence a person’s desire
or willingness to work for food, indicate liking, or their
motivation to eat. It is critical to control the presence of
food in the testing environment and the lingering smell of
food from previous assessments unless reactivity to food
cues is being assessed. It may be important to consider the
eating environment and whether the study is implemented
individually or in groups, as the presence of other people
influences food intake in variable ways. It may be challenging
to assess these variables at baseline before a person starts
an intervention as the participant may have a positive
response bias to show their willingness to change. Overall,
the likelihood a food will be avoided or rejected is high if
it is regarded as unpalatable, whereas the likelihood of its
ingestion because it is palatable is modest because of the
many nonsensory factors that determine food choice and
the wide array of acceptable food options available to most
people.

The reward value of food can be assessed using fMRI
(discussed later in this section), which assesses how the sight,
smell, or taste of food influences activation of brain reward
centers. fMRI studies can assess individual brain sites or
patterns of brain activation. In addition, hedonic value of the
smell, taste, or even appearance of food can be assessed using
subjective rating scales.
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Psychological factors.
A wide variety of psychological factors can moderate eating
and should be considered to assess individual differences
in eating when designing a precision nutrition program.
Failure to consider these factors may lead to poor adherence
and the decision that the diet did not work when, in
fact, it was not adhered to. A very popular questionnaire
is the Three-Factor Eating Questionnaire, which assesses
dietary restraint, disinhibition, and hunger (71). Each of
these can independently or interactively influence eating.
Dietary restraint relates to voluntary attempts to restrict
food intake. This is important to know for any studies in
which eating behavior is assessed and for questionnaire
approaches assessing reasons for eating. Disinhibition is
related to food reinforcement (92) and may be related to other
measures of food reward as well as choice of unhealthy foods,
poor success in weight-control programs, and weight regain
after weight loss (116). Finally, the Hunger scale assesses
individual differences in susceptibility to hunger cues, not
current hunger.

Another important psychological moderator of eating
is emotional, or affective, state. Emotions can reliably
influence eating in many people, and the Emotional Eating
Scale is a valid and reliable way to measure who may be
more likely to eat under emotional situations (117). The
effect of emotions on eating is variable, and emotions can
increase food consumption in some people and reduce it in
others. Emotions can redirect attention from cues normally
responsible for initiation or cessation of eating and lead to
attentional bias that over- or undervalues food. Depression
is well known to influence eating, but with wide variability
(118). Depression reduces eating in some people yet increases
it in others. Stress can also influence eating. A consistent
body of research has shown that stress increases eating, and
that stress can make food more reinforcing, consistent with
the idea of stress and comfort food consumption (119, 120).
Depression can be measured using the Beck Depression
Inventory (121). Psychological factors may also cause eating
disorders, which can influence the amount and types of food
consumed. Eating disorders—including bulimia, anorexia,
and binge eating disorder—are best screened for using the
Eating Disorders Examination (122) or the Eating Disorders
Examination Questionnaire (123).

Each construct for measuring psychological factors uses
well-validated questionnaires. Some constructs are related to
an increased motivation to eat, such as stress, while others
come with a reduced motivation to eat, such as dietary
restraint. Some constructs have effects that vary across peo-
ple. Questionnaires may be very useful to better understand
factors that influence eating and are easy to administer
and score. It is important to note that measures related to
psychiatric diagnoses, such as the Beck Depression Inventory
(121) or the Eating Disorders Examination Questionnaire
(123), are not designed to diagnose a disease but to alert the
investigator to potential problems that should be followed
up on with structured diagnostic interviews by a trained
professional. In general, people do not overreport these

psychological issues, but may sometimes underreport to
appear psychologically healthier than they are. Cortisol can
be used as a biological measure of stress to validate self-report
measures of stress or as the measure of stress, bypassing any
self-report bias. As cortisol has reliable rhythms, these need
to be considered in its measurement.

Delay of gratification and delay discounting for food.
When people are strongly motivated to eat, they want food as
quickly as possible. This can be heightened by food depriva-
tion (124, 125), but there are also individual differences in the
degree to which people can delay gratification associated with
eating. Many are aware of the famous “one marshmallow now,
two marshmallows later” study that provided young children
the choice of 1 marshmallow now or 2 later. The investigators
studied how these individual differences were related to
cross-sectional and prospective outcomes (126, 127). Not
surprisingly, further research has shown that children who
have trouble delaying gratification are more likely to become
obese than those better at delaying gratification (128). There
are a number of age-appropriate approaches to test delay of
gratification in children.

A distinct, but related, construct is delay discounting,
which assesses the preference for a smaller immediate
reward over a larger, delayed reward (129). This task is
derived from behavioral economic research, as opposed
to the marshmallow task, which is derived from child
development literature. Extensive research has shown that
delay discounting is related to obesity, weight gain (130–
132), and increases in glycated hemoglobin (HbA1c) (130),
as well as drug abuse, activity levels (133), and a wide variety
of preventive health behaviors (133). As delay discounting
is related to so many disorders and health behaviors, it is
considered a trans-disease process (134). In addition, delay
discounting moderates the effect of reinforcing value (135,
136). In other words, a person who finds something very
reinforcing and who discounts the future is at greater risk
for obesity than someone who only shares one of these
characteristics. The combination of reinforcing value and
delay discounting is labeled as reinforcement pathology and
is relevant to understanding eating and obesity (131, 137,
138).

Delay of gratification tasks assess whether a child can
engage in self-control and delay receipt of a reward, generally
with the option of a larger reward later if they do not take
the initial smaller reward. These tasks are obviously sensitive
to recent eating and what the reward is. An additional
consideration is whether the child trusts the tester, because if
they do not it does not make sense to wait for a larger reward
that may never come (139). Research has shown the original
delay of gratification task is sensitive to family background
and SES (140).

Delay discounting tasks are a series of hypothetical
questions in which people are asked whether they would
prefer a small amount of a reward now or a larger amount
later, with the amounts and the temporal distance between
choices manipulated. There is a questionnaire version, but
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the usual method involves changing the reward amounts, a
task that takes about 5 min (141). There is also a 5-question
adjusting delay task that correlates very highly with the
longer task. The common approach to delay discounting is to
use various amounts of money as the reward, and is related to
obesity, prediabetes, and diabetes. Researchers have adapted
the construct for food-specific delay discounting tasks (142).
These tasks can be implemented in the person’s natural
environment by using smartphones to assess usual decision
making (143). Delay discounting may be particularly relevant
to assessing motivation to prevent a disease, as prevention, by
definition, requires engaging in a healthy behavior now for
later benefits. People who strongly discount the future will
have challenges engaging in healthy behaviors to prevent a
disease.

Sensations of fullness, satiety, and satiation.
Just as appetitive cues signal initiation of eating, fullness can
signal cessation of a meal or termination of eating. Because
fullness relates to cessation, not initiation, of a meal, it most
strongly influences portion size, not eating frequency (144).
Satiation refers to changes in appetite during a meal that are
associated with the end of a meal. Satiety is the sensation that
most closely associates with the intermeal interval (i.e., time
between eating events) (145).

The nutrient composition of foods consumed can influ-
ence how full people feel during and after eating. Research
suggests that protein is the most satiating nutrient, followed
by fiber and complex carbohydrates (146, 147). Studies also
suggest that solid foods are more satiating than liquids
(148). In addition, cessation of eating is more strongly
related to volume of food consumed rather than energy
content of the food (149, 150). The general thought is that
people stop eating when they are full or are in a state
of biological homeostasis—a point when they don’t need
any more kilocalories or nutrients. However, this idea is
too simplistic, as many people continue to eat after their
biological needs for food have been met.

A simple approach to assess fullness is to ask how
full someone is, which can be accomplished by a visual
analog scale. Bartoshuk and colleagues (70, 151) have shown
that taste perceptions are generally unreliable, and have
provided insights into how to improve subjective assessment
of sensory ratings. Cardello and colleagues (152) developed
a perceived satiety scale using the principle of magnitude
scaling. Fullness can also be rated based on how full the
stomach is, which is primarily used with young children
(153). Degree of fullness can be rated during a meal or after
consuming a specific amount of food. Fullness ratings are also
sensitive to expectations and are often incorrectly considered
the opposite of hunger.

The most objective measure of satiation is the amount
of food consumed in a meal, whether that is kilocalories,
nutrients, or volume of food. However, as noted above,
satiation can be influenced by the sensory aspects of food,
so that someone may stop eating after eating 1 type of food,
and then start when a new food is provided. This is the basis

for consuming desserts after you cannot eat another bite of
your entrée (154, 155). Satiety is assessed by the duration
of time from the last meal to the next bout of eating. This
can be observed in controlled settings. Unfortunately, it is
hard to extract satiety from electronic food diaries because
the recording times are not precisely related to the end of the
previous meal and the initiation of the next meal.

Attempts have been made to identify biomarkers to more
objectively classify factors influencing the end of a meal. The
most common indices are gut peptides (156, 157). While
they tend to change in concert with appetitive sensations
(e.g., reported satiation hormones like cholecystokinin and
glucagon-like peptide 1 increase during an eating event as do
fullness ratings in study participants), the preponderance of
evidence does not support a reliable predictive association
within individuals. Stronger evidence is derived by non-
physiological administration of peptides to evoke changes
of sensation (158, 159). Commonly, an array of sensations
is concurrently rated along with measurement of multiple
gut peptides and any noted associations are reported without
control for multiple tests or a clear hypothesis. For example,
an association between changes in a peptide reported to
hold satiation properties (determinant of portion size) with
hunger or a desire to eat, which may drive eating frequency,
is of questionable meaning.

Habituation and sensory-specific satiety.
Research on habituation and sensory-specific satiety has
produced some of the clearest evidence that meal cessation
is not completely due to reduction in energy needs, stomach
distention, or other biologically plausible reasons to stop
eating. Habituation is a general learning process that in-
fluences reduction in behavioral and physiological response
after repeated presentations of a stimulus, as would occur for
food stimuli when eating a meal (160). While reduction in
response alone is not evidence for habituation, the fact that
a person can recover responding to the same stimulus after
a novel stimulus is presented provides strong evidence that
the decrease is related to habituation. This is called dishabit-
uation (160). The rate of habituation can also be influenced
by presenting a variety of foods rather than 1 food (161).
Food stimuli can be gustatory, olfactory, visual cues, or a
combination of these (160). The rate of habituation is related
to the amount of food consumed in a meal (162, 163), with
slow habituators consuming more food and being more likely
to have obesity (164, 165) than faster habituators. In primate
studies, single-cell recordings in brain areas related to eating
have shown reduced response to repeated presentations of
a food, while the same neuron recovers responses when a
new food is presented. Interestingly, activation of the taste
cortex continues throughout the presentations, but responses
in the hypothalamus demonstrate habituation (166–169).
Long-term habituation has been shown. For example, effects
of consuming the same food can last over meals or days
(164, 170). Research on habituation and reinforcing value
has shown that each predicts about 30% of variance in kilo-
calories consumed in an ad libitum meal (171). Given that
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habituation rate is related to obesity and the amount of food
consumed, an important area of research is in discovering
characteristics of foods that slow or speed up habituation.

Sensory-specific satiety is a similar phenomenon, in
which people reduce their liking of a food repeatedly
presented, while liking of foods not consumed is not reduced
(155, 172, 173). As with habituation, presenting a variety
of foods reduces the trajectory of liking compared with
circumstances where only 1 food is presented. Sensory-
specific satiety can arise from even small differences in food
characteristics, such as shape. Long-term sensory specific
satiety has also been shown.

Given that a bout of eating begins with cues that
initiate eating and ends with cues that terminate eating,
overeating can result from an excess motivation to eat or the
failure to stop eating. Understanding how habituation and
sensory-specific satiety are related to satiety and satiation is
important because some people overeat because of individual
differences in these factors, not only the drive to eat. Others
may overeat due to an excessive drive to eat, and some
have problems with excessive drive to eat and the failure
to develop satiation (174). As with the motivation to eat,
basic behavioral and neurobiological research is making great
advances in understanding the role of hormones and brain
reactivity in why people start and stop eating.

Both habituation and sensory-specific satiety involve
repeated presentation of food stimuli to assess individual
differences in these variables. To be confident that a decrease
in response is due to habituation, it is important to present
novel stimuli and to observe dishabituation, or to present
a variety of food stimuli and slow down the rate of
habituation. Sensory-specific satiety is defined by changes in
the hedonic response to food after repeated presentations.
For habituation and sensory-specific satiety, it is important
to control previous eating, the types of foods studied, and
the food environment. In habituation studies it is also very
important to control extraneous presentation of nonfood
stimuli, as any sensory stimulus can result in dishabituation
to food. This is, in part, why people can eat so much while
watching television or movies (175).

Measuring patterns of eating.
Wide individual differences in eating are relevant to the
amount of food and energy intake consumed in a meal. For
example, people may eat at faster or slower rates (175), take
smaller or bigger bites (176), or change their eating rate
during a meal by eating faster as the meal starts and slower
as the duration of the eating bout is lengthened. They may
eat and then drink, drink first and then eat, eat all of 1 food
before starting a second and then third food, or they may eat
foods in different orders. They may also combine flavors or
eat each food separately.

There can also be different patterns of eating throughout
a day. Some people eat 3 meals a day and a snack while
others regularly miss breakfast and eat 2 meals. New dietary
approaches include time-limited feeding in which people

attempt to eat only within a limited number of hours (177).
There is also intermittent fasting, where people either do not
eat or eat a limited amount of energy for 1 or more days a
week.

Physical activity can influence eating patterns in many
ways. Because physical activity expends energy, any as-
sessment of overall energy balance needs to account for
it. Physical activity can affect appetite and the reinforcing
value of food (178). Different types, durations, and tem-
poral relations of physical activity can increase or reduce
appetite. Additionally, the pattern of physical activity may be
important. Given that exercise alters energy expenditure and
activates brain reward processes (179, 180), specific eating
and exercise patterns may be important. Exercise before
eating may stimulate appetite, particularly in someone who
is in energy balance. Exercise after eating can influence the
process of satiation, which can shorten or lengthen the time
until the next meal. These relations have not been well
documented.

The most straightforward way to measure patterns of
eating is by direct observation, usually accomplished by
videotaping or observing eating directly, and then having
coders rate characteristics of interest. More technologically
creative ways to measure eating may be less intrusive than
knowing someone is watching you eat. For example, plates
attached to pressure transducers can quantify how much food
is removed from the plate in real time. While this does not
measure eating behavior directly, it can provide an index of
the rate of eating and the amount of food consumed at each
bite. More biologically oriented measures include caps that
are placed on the teeth to register bites, audio recordings that
can be used to interpret bites, or neck electromyography for
assessing swallowing. These can be used to assess eating in
the natural environment rather than in the laboratory. Dis-
advantages include the burden of direct observation, which is
time consuming and costly, and lack of access to standardized
and well-validated biologically oriented measures of eating
patterns.

Patterns can also be measured using electronic food
diaries that provide a time stamp to ensure the responses are
recorded at expected times. There is extensive research on
challenges with having people record their own eating, with
underreporting based on their body weight (181, 182). An
advancement in recording may be to use biological variables
that change during eating, such as continuous glucose
monitors, which can provide time-stamped notification of
blood glucose, which changes, in part, due to eating. A
continuous glucose monitor can also provide a general idea
of the composition of foods but, given wide individual
differences in how people respond to the same foods, cannot
be used to validate food records. Extreme caution is needed
when using continuous glucose monitors to validate eating
patterns, as changes in activity or acute stress can also
influence blood glucose. Another invasive approach is the
use of electromyography to measure chewing and eating
(183).
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The relation between exercise and eating patterns can be
assessed using accelerometers, which provide valid measures
of time-stamped activity and can be reliably related to eating
pattern if used with a time-stamped electronic food diary.
Accelerometers are easy to use, with little burden on the
participant. Combining accelerometers with food diaries to
estimate total energy intake and energy balance can help
detect underreporting and, in combination with weight loss,
can provide an index of reporting accuracy (184).

Measuring cognitive function
Cognitive function (CF) refers to “multiple mental abilities,
including learning, thinking, reasoning, remembering, prob-
lem solving, decision making, and attention” (185). Objective
tasks or tests, as well as subjective methods, can be used to
measure CF. Objective methods typically have the person
complete a task or test and measure various attributes of
the test (e.g., competition time, speed, accuracy, recall, etc.).
Subjective methods collect self-reported data and can be
used to measure mood, mental energy, memory, etc. These
methods can be used in various study designs: 1) acute [e.g.,
participant eats food and CF is measured during or shortly
after (186, 187)], 2) long-term diet change [e.g., pre- and
post-diet assessments (188–190)], or 3) via cross-sectional
longitudinal studies (191–193).

Interest in the effects of nutrition on CF has been
growing. It has become clear that at least some nutrients
(and nonnutrients), alone or in combination, can affect
acute measures of cognitive performance, such as short-
term memory, reaction time, or vigilance. Within studies
that demonstrated improvements in CF lie data that describe
people who did not respond as well, and those who
responded positively. Some studies have assessed declines in
CF relative to their previous norms. Both situations represent
the target of precision nutrition to determine how to identify
individuals who might benefit and the nutrient regimes that
appear most effective for them.

Objective CF methods.
Common CF measurements include immediate- and long-
term (60-min delay) recall tests, which are used to mea-
sure short-term and long-term memory, respectively. For
example, study participants are read a list of words and
then repeat back as many words as they can remember
(194, 195). Similarly, participants can be shown a drawing
and asked to recall and re-draw the image at a later time
[e.g., Rey-Kim Memory Test–Complex Figure Test (196)].
In addition, the ability to complete tasks can be measured
with the Trail Making Test, which consists of tests in which
a person draws lines sequentially to connect various points
[e.g., 23 numbers distributed on a piece of paper or alternative
numbers and letters (197) and the total time and number of
errors are recorded to determine CF]. A verbal fluency test
gives participants 1 min to produce as many unique words
as possible within a given category or that start with a given
letter (198–200). The Stroop Color-word Reading Test is used
to measure CF and involves color names written in text that

is colored a different color (e.g., the word “red” is written
in green text) and counting correctly identified words and
colors (196).

More complex tasks, such as logical reasoning and
semantic processing, are also used. In logical reasoning,
participants are shown statements about the ordering of
letters (e.g., A follows B; BA) that range from simple active
to passive negative (e.g., A is not followed by B) and are
asked to read statements and determine if the statement
meets the given requirements (194). In Sematic Processing,
participants retrieve information from general knowledge;
they decide if sentences are true or false [e.g., “Canaries have
wings” or “Dogs have wings” (196)]. Additional objective
tasks include the choice-reaction time task, visual-search
task, egocentric mental-rotation task, the attention-switching
task (201), and the n-back test (202).

Subjective CF methods.
Subjective methods are essential to measuring CF. Mood can
be measured by report on how the participant is feeling,
typically with a scaled response (e.g., 0–100). The Bond-
Lader Visual Analog Scales uses adjective pairs (e.g., happy-
sad, sociable-withdrawn, and calm-excited) to report sub-
jective states, and a three-dimensional score (alert, content,
and calm) is calculated based on responses (203). Similarly,
the Profile of Mood State Questionnaire inventories mood
and arousal states by having participants rate a series of
adjectives with a 5-point scale, which can be factored into
6 mood subscales (tension, depression, anger, vigor, fatigue,
and confusion) as well as overall total mood disturbance
(204). The State-Trait Anxiety Inventory measures anxiety
via a 4-point scale in response to statements (e.g., “I am
calm”) (205). In addition, self-reported scale data can be
collected before and after completing a task to determine
reported level of difficulty, effort, and tiring (201). Nutrition-
specific subjective measurements have been created, such as
the Caffeine Research Visual Analog Scales, which measure
CF attributes related to caffeine (e.g., relaxed, alert, jittery,
tired, tense, headache, and overall mood) on a scale of 0–
100 (206). Self-reported data via subjective scales can be
collected in relation to eating behaviors, such as the Barratt
Impulsiveness Scale, Dutch Eating Behavior Questionnaire-
Restraints, and the Food Cravings Test (207). Subjective tests
play an essential role in measuring the effect of nutrition on
CF.

Strengths and limitations.
A major strength of CF research is the wide breadth of
methods used. A combination of subjective and objective
tests allows different types of data collection. As CF is
complex, the use of numerous tests enables a wide range of
ways to capture an effect for a given intervention. Methods
can be tailored to specific interventions (e.g., mood instead
of overall CF). Many of the CF methods described above
have been validated (208, 209), appear to have consensus
acceptance based upon wide use in published studies, and
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have been used to observe diminished, normal, and improved
cognitive performance.

Numerous limitations exist for measuring CF. The CF
methods described above typically are at a discrete time
(i.e., before and after an intervention) and more research
on short-term (e.g., hour-to-hour, day-to-day) variation
is needed. Moreover, what constitutes variation within a
normal range is unknown for many of these methods. As the
reliability of these methods is largely unknown, it is unclear
whether the same result/score can be produced with repeated
administration.

Studies on nutrition and cognitive performance have been
uneven in discussing the implications of a battery of tests
that provided mixed results. It is currently unknown whether
there is an optimal combination or number of tests needed
to reveal CF changes. Many studies have been affected by
design issues or failure to repeat or confirm observed results
(210). With these limitations in mind, future research should
include refining how results for nutrition effects on CF are
studied and reported.

Key consideration in data interpretation.
CF methods and studies described in this section represent
a frontier in terms of applying findings. Many studies have
reported improvements in 1 or more aspects of CF in
response to interventions with nutrients and nonnutrients.
In many cases, the improvements were statistically significant
but numerically small. It is not clear how much of an
improvement would represent a consistent improvement in
CF. The link between improvement measured in a study
and improvement in everyday life remains to be clearly
detailed. Some areas of CF can be assessed by multiple
methods. It is important to remember that many of the
methods described were developed to measure cognitive
performance and link the results to some aspect of function
observed in daily living. The choice of methods is left to
the researcher. While there is often agreement as to which
methods measure which functions, including some standard-
ized collections of tests, there is no consensus around which
methods can or should be used consistently to reveal these
relations.

Methods to assess cognitive performance in response
to nutrition interventions represent an area with potential.
To achieve this, there needs to be consensus regarding
whether, and how, results can be translated to the nutrition
of individuals and groups.

Brain imaging and responses related to food addiction
fMRI.
Researchers have used fMRI to assess changes in brain activ-
ity in response to foods, particularly the sensory properties of
foods and cues related to foods or eating. Images generated
by fMRI provide detailed, recognizable images of brain cross-
sections with clear distinctions between brain regions. The
size, hue, and intensity of color in specific regions of the
images represent activity changes to viewers.

fMRI has the advantages of being noninvasive and not
exposing the patient to radiation. The images provide clear
representations of changes over time. Once a laboratory has
been set up for fMRI, the technique is relatively easy for a
researcher to use. However, there are significant challenges
and caveats associated with fMRI in nutrition research.
These relate to the technology or analysis methods used,
issues surrounding food intake, and the intersection of the
technology and the intake of foods.

Issues related to technology and analysis.
Recent examples can help illustrate technology and analysis
issues with fMRI studies. Eklund et al. (211) used resting-
state fMRI data from 499 healthy controls to conduct 3
million task-group analyses. They assumed that baseline
values within the sample were normally distributed and that
no consistent shifts in blood oxygenation level–dependent
(BOLD) activity would be found, as participants were in
the resting state. Under these conditions, they expected
a false-positive rate of approximately 5%. Instead, using
the 3 most common software packages for fMRI analysis
employed at the time, they found rates of false positives
as high as 70%. Factors involved in the erroneous results
were related to how the software handled the incoming data
and whether parametric or nonparametric methods were
used.

In earlier work, Sacchet and Knutsen (212) found
that using a different value set for the spatial smoothing
function conducted by fMRI software—each of which had
been used in relevant published studies—could return
different results for the localization of reward-based brain
activity.

The reliability and reproducibility of fMRI results has
been of concern. Bennett and Miller (213) covered a wide
range of factors that could potentially affect the reliability
of interpretations found in published studies. They provide
a summary of their findings: “There is little agreement
regarding the true reliability of fMRI results.” Chen et al.
(214) also addressed reliability/reproducibility issues. They
analyzed 4 independent datasets to assess 1) the test–
retest reliability and replicability of resting state fMRI data,
2) how multiple comparison correction strategies impact
reliability and reproducibility, and 3) how sample size might
influence reliability as well as power and positive predictive
value.

Brain imaging methods provide an intriguing counterpart
to methods used for assessing cognitive performance. The
former seek to identify the functioning areas and pathways
of the brain, with exploration of associations with behaviors
or cognitive performance. The latter seek to determine the
outcomes of these functioning areas and pathways, and in
some cases, seek associations between the 2. Research in
these areas remains largely exploratory and the methods
described have not been validated for creating a nutrition
plan in the clinical or guidelines setting. Therefore, applying
these methods and their findings to precision nutrition
remains aspirational. However, findings have confirmed
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variation in responses between people and provide an
important foundation for precision nutrition. It is common
for studies to illustrate that some people either fail to respond
to an intervention or respond to a much greater extent than
people between these extremes, who most often form the
majority of study participants. This suggests that a clinical
approach that uses several potential interventions (or doses)
in sequence could help determine which intervention would
be useful.

In closing
NIH Director Dr. Francis Collins characterized precision
nutrition as “…more targeted and effective diet interventions
based on an individual’s personal characteristics” (215). This
will require specific knowledge of an individual’s needs, based
upon reliable and repeatable clinical tests or assessments. The
methodologies reviewed here are considered to accurately
identify factors that influence food and eating choices (i.e.,
eating behaviors) and aspects of cognitive performance, such
as memory, attention, and the ability to maintain attention.
These methods, along with newer ones, will continue to
contribute to our knowledge. In view of current consumer
and professional methods to detect changes in mood or
metabolic parameters (e.g., rings with indicators and apps
connected to smart watches), a similar push to develop
real-time methods to detect one’s eating behaviors and
cognitive performance can be anticipated. Methodologies
with the required accuracy, reliability, and repeatability will
be developed in time.

Dietary Assessment
Introduction
As we move into a future focused on precision nutrition,
measuring individual dietary behavior will continue to be
necessary. At the same time, dietary intake is becoming
increasingly complex, with new products entering the mar-
ketplace at unprecedented levels. Recent advances in biomed-
ical techniques such as genomewide association studies,
metabolomics, and proteomics, along with new analytic
approaches using AI and machine learning, are providing
potential new ways to examine complex processes simul-
taneously and will help scientists understand differences in
response to dietary intake across groups and individuals. At
the extreme level, precision nutrition offers the promise of
prescribing individualized diets based on specific genetic and
metabolic signatures and identified risk of disease outcomes.
To get to that point will require precise data on dietary intake,
not only of patterns, but of specific nutrients.

In recent years, there has been some investment in
improving dietary assessment methods, but this has not
matched the development of new biomedical measures.
There are now new biomarkers that can be used to val-
idate or enhance dietary intake reports, photographs can
better capture portion size, and advances in computing
are helping reduce the burden of data collection. Although
many advances using cameras have been made, they remain
burdensome and cannot provide the ingredients of the item

and, therefore, must be coupled with self-report. At the
present time, the most-used tools remain the 24HR (or
less so, the diet record) and the FFQ. Recent advances in
computing and the ability to complete reports online and
to include skip patterns to reduce respondent burden, have
all contributed to improved precision in these measures but
much remains to be done.

Dietary assessment continues to be important in public
health nutrition, and, from that angle, the validity and
precision of assessment methods for group-level estimates
of population distributions are also important and may
often be obtained with fewer assessments. For example,
NHANES uses 2 nonconsecutive 24HRs from which statis-
tical adjustment can be made to describe population intakes.
In general, the validity of the resulting nutrient intakes
for reflecting habitual intake depends on the type of data
collection (interview, record, or questionnaire/apps), time
frame of assessment (current vs. retrospective), portion-
size estimation (weighed, models, standard, or none), and
the food-composition database. The resulting measurement
error can be systematic, which in monitoring studies leads to
over- or underestimation of mean intake and the proportion
of below or above a certain cutoff (such as the Estimated
Average Requirement or relative non-centrality index), or
random, generally caused by day-to-day variation in intake.
Random variation leads to misclassification around the mean
rather than affecting the mean intake and hence also affects
the proportion below or above a cutoff. Importantly, in
epidemiologic studies, it also increases the likelihood of
underestimating associations with health outcomes. Random
error can be reduced by increasing the number of daily
intakes measured. Here, we briefly describe the main dietary
assessment methods and their strengths and limitations, with
a focus on precision nutrition. New developments in portion-
size estimation and food recognition will also be discussed.

Dietary assessment approaches
Diet records.
For many years, the weighed dietary record was considered
the gold standard for obtaining accurate dietary data (216).
This method relies on compliant participants using a weigh-
ing scale to record everything they eat or drink throughout a
day or, more often, an entire week. For homemade recipes,
they are asked to measure the ingredients, if possible, the
total volume, and proportion consumed. For all items, they
are asked to measure the portion served and to subtract
any leftover portion. When extreme precision is required,
an observer may stay with the individual throughout the
day to assist in the weighing and measuring (217). This
observer method has been used frequently in low- and
middle-income countries and with low-literate individuals
(218). The record approach avoids concerns about memory
during recall, as the foods are recorded in real time, providing
accurate assessment of total energy and other nutrients
consumed, when carefully completed. Three- or seven-
day self-recorded diet records have been used in several
large studies, including the Baltimore Longitudinal Study on
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Aging and the multisite European Prospective Investigation
into Cancer and Nutrition study (219, 220).

Despite their ability to provide valid quantified detail on
dietary intake, diet records have lost favor due to numerous
limitations. First, as with dietary recalls, data are obtained
for a specific day or set of days, which comes with the
potential for misclassification of usual (current) intake. The
strict compliance required has often led studies using dietary
intake to be restricted to highly educated and motivated
participants to maximize internal validity (216). Over time,
it has also been recognized that participants are less likely to
be compliant with this demanding method, leading to poor
completion rates, reduced study power, and compromises to
external validity (221, 222). Additionally, diet records tend
to show lower energy intake relative to the 24HR, due to
reductions in food intake and a tendency to avoid poor eating
habits during this conscious observation (223). For these
reasons, weighed diet records are now used less frequently
than other methods.

Nonweighed diet records are currently in use by several
commercial apps promoted for weight loss or health/fitness
such as MyFitnessPal (developed by MyFitnessPal, Inc.)
(224). However, the quality and completeness of the under-
lying food composition database are often not the same as
established food tables (225) and the USDA database (226).

24HRs.
A commonly used method of gathering nutritional intake
data is the 24HR, wherein a participant or caregiver is
prompted to report all food and beverage consumption from
the prior 24-h period. Typically, this information is gathered
by an interviewer in a structured setting; however, several
self-administered versions of the 24HR now exist. Informa-
tion from recalls is used to estimate nutrient intake, quantify
intake adequacy, describe dietary patterns, and to determine
adherence to or deviation from diet recommendations or
requirements. Data gathered are entered into a nutrient
analysis software program (e.g., the University of Minnesota
Nutrient Data System for Research, ESHA Research Food
Genesis, MyFitnessPal, Inc. etc.), with varying levels of
accuracy. Estimates using other quantification methods—
such as the diabetes exchange system—may be used as well.

Advances in accuracy of the 24HR have been accom-
plished with the USDA’s Automated Multiple-Pass Method
(AMPM), which is used in the NHANES (227), with similar
methodologies used in other dietary software, including
the University of Minnesota Nutrient Data System for
Research (228). The interviewer begins the 24HR assessment
by initiating a first-round open-ended dialogue asking the
participant to list all food and beverages consumed the prior
day, recounting as many specific details as possible. After this
free-form discussion, the interviewer returns to specific items
and asks for more granular detail (e.g., condiments, brand,
serving-size estimation, timing of consumption, preparation
method, etc.) as well as any potentially missed items (e.g.,
water, added salt or sugars, supplements, small bites of

foods consumed, etc.). The interviewer also uses reflect-
ing/repetition to confirm accuracy of information received
from the respondent. Other contextual information may be
gathered, such as the time of day when a certain food item
was consumed or who prepared each meal. In clinical and
community settings, particularly in low- and middle-income
countries, the 24HR is most commonly conducted using an
interviewer.

Alternatively, participants can self-complete the 24HR
with an automated program, such as the National Cancer
Institute’s (NCI’s) Automated Self-Administered 24-Hour
(ASA24) Dietary Assessment Tool (229). Like the USDA
AMPM, the ASA24 involves an iterative 7-step process,
wherein respondents are redirected to previous steps if
they indicate having missed an item during reporting. The
respondent reports the following: 1) a list of items typically
consumed within normal meals (i.e., breakfast, lunch, snacks,
and dinner), 2) a review of any gaps left in meals, 3)
more granular details of items reported in steps 1 and
2, 4) a final review for accuracy, 5) a list of forgotten
foods or situations where food may been unreported, 6)
a last chance to review and submit additional items, and
7) a question regarding whether the reported 24HR is
similar to the respondent’s usual intake. Studies have shown
relatively good completion of the ASA24 relative to the
interviewer-administered AMPM among literate, compliant
individuals (230), although validity was somewhat lower
than for the AMPM (231). Importantly, validity of self-
report versus interviewer-administered 24HR depends on
participant education, literacy, and commitment to accurate
completion.

In the context of an interviewer-led 24HR, the nature
of the 24HR’s flexible, free-form response format makes it
appropriate and applicable for a variety of dietary patterns
and cultural contexts. Because respondents are not limited
to a preset list of foods, culturally relevant foods are less
likely to be unreported. This is critical when the study
population includes subgroups not considered in the food
list for common FFQs and for more detailed consideration
of health disparities. The 24HR has been validated and is
regarded as an excellent measure of mean intakes of groups.
It is not adequate, however, for estimating the usual intakes
needed for precision nutrition as multiple recalls must be
conducted for this purpose.

Although the 24HR provides the most complete infor-
mation without bias in diverse groups, it also has several
limitations in various research settings. The validity of data
from a 24HR relies on several factors working in harmony:
the interviewer technique, software adequacy (complete
database, use of multiple-pass system, etc.), absence of
respondent reactivity, accuracy of respondent recall, and
appropriate use of gathered data for a given research
objective, among others.

Significant training is critical for an interviewer-
conducted 24HR to both minimize error and maximize
completeness and detail. Both interviewer and respondent
biases are possible. Respondents may be prone to reactivity
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bias (especially in the case of an anticipated 24HR) as well
as recall bias. A major source of error in data gathered
from 24HRs comes from inaccurate estimation of quantities
consumed. The use of food models or pictures of food
portions may assist in minimizing this bias, which is
usually in the direction of underestimation (232). New
technology, including photographs of meals, may also assist
in minimizing this bias, as noted below. Further limitations
are likely in the case of a caregiver or parent respondent, a
respondent with a disability, or one who is not fluent in the
language in which the interview is conducted.

The major limitation of the 24HR is that a single day does
not capture usual intake, as any person may, on any single day,
have an intake much lower or higher than their own average.
The level of intra- or inter-individual variation differs by
cultural food pattern. Foods consumed in regular patterns,
such as milk, coffee, or alcohol, have lower intra- or interper-
sonal variation than those rarely consumed, such as organ
meats. These then reflect differences in nutrients, where
nutrients associated with consistently consumed foods, such
as calcium, may require fewer days than nutrients associated
with diverse rarely consumed foods, such as vitamin A
(222). This leads to serious misclassification of individuals
for intake of most nutrients (233, 234), generally leading to
attenuation of associations with health outcomes—which is
important for precision nutrition.

Statistical techniques have been developed to “deatten-
uate” correlations and regression coefficients by correcting
for intraindividual to interindividual variation when at
least 2 nonconsecutive 24HRs are available for a subset of
the population (235). However, misclassification remains
problematic unless numerous recalls are conducted over
several seasons and averaged.

A new development in the field of recalls is to limit the
recall period to less than 24 h—for example, to 2 or 4 h, but
then to include more days, so that overall data on a full day are
being collected. This is now feasible using smartphone push
notifications (236). This may limit recall bias, and possibly
enhance compliance of the participants. Validation of this
approach is currently under way.

FFQs.
Most longitudinal cohort studies focus on long-term usual
dietary exposure as the primary measure of risk associated
with disease endpoints. Because of the 24HR’s limitations
in assessing usual intake, FFQs are generally used in large
epidemiologic studies. FFQs are attractive because, in a
single administration, they can provide estimated intakes
for the past year. The earliest and most well-known FFQs
in the United States are the Willett FFQ, developed and
validated for the large Nurses’ Health Study (237), and the
Block FFQ, developed at the NCI using national-level data
(238). These questionnaires were originally developed with
responses that could be optically scanned and then analyzed
with algorithms that translate the food intake to nutrients.
Since then, numerous additional FFQs have been developed
for specific studies with cultural tailoring, including the

Hawaii-California Multi-Ethnic Cohort Study (MECS) (239)
and FFQs for other specific populations (240, 241).

There are notable differences in the development and
presentation of various FFQs. The Willett FFQ was developed
to rank people according to selected nutrient intakes with
expert input from research dietitians. During testing, the
decision was made to provide frequency measures with
an assumed standard portion size noted because, in this
population of US nurses, the addition of portion size did not
add to the ranking of nutrient intakes enough to merit the
extra burden, particularly after adjustment for total energy
intake (242). The Block FFQ was developed using NHANES
national data from 24HRs. Major food sources of nutrients
were ranked to ensure that the most important foods were
included on the food list. The questionnaire included small,
medium, and large portion sizes to obtain more precise
estimates of quantities consumed. The MECS was developed
using 3-d diet records from people in each of 5 targeted
ethnic groups to ensure that foods for each group were
equally represented. Recognizing the importance of portion
size due to important differences in eating behavior across the
5 ethnic groups, MECS takes quantification a step further by
providing photographs of different portion sizes (243–245).

Most recently, the NCI and others have moved their FFQs
online. This has allowed skip patterns to be introduced to
reduce participant burden when certain foods or categories
of foods are not reported. The newest version of the NCI
FFQ, called the Diet History Questionnaire (DHQ) III (246),
is freely available for use with adults aged 19 y or older.
This version, consisting of 135 food and 26 supplement
items, is based on 24HR data from the NHANES 2007–2014
and is available with and without portion size. The DHQ
III can be used to request intake data for the past year or
month. The DHQ, unlike other FFQs, is based on cognitive
interviewing with the grid format abandoned in favor of
individual questions for each item (247).

The FFQ has the advantage of requiring only a single
administration to obtain usual intake patterns, making it the
method of choice for most longitudinal studies. Repeated
measures over time can increase the precision of long-
term exposure. If used appropriately for the population for
whom it has been designed, FFQs have been shown to
rank usual intake of nutrients well and are, therefore, useful
in identifying intakes for use in precision nutrition and
prevention of disease outcomes (142).

Limitations of FFQs include the fact that they are
population and time specific. Hence, new FFQs may need
to be developed with differing populations and over time,
as food patterns change. The primary limitation is that
reporting is dependent on the food list. For this reason,
many studies develop their own FFQs to suit the targeted
population, making cross-study comparisons difficult. It
is critical that FFQs include the major food sources of
nutrients for all important cultural subgroups in studies to
accurately assess the role of nutrition in health disparities.
For compliant completion, the length of the questionnaire
must be limited. This means that groups of related foods
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are reported together, which limits the ability to obtain true
variation in some nutrients. For certain frequently consumed
foods, follow-up questions can help in specifying more detail,
such as type of milk, type of oils used in cooking, and
so on, but these again must be limited to allow compliant
completion. The most recent online questionnaires have
the potential for improvement in this area with the use of
strategic skip patterns to gather more detail on the foods
commonly consumed by each individual, but much more
work is needed in this area (248). Limitations of these
online questionnaires include the likelihood of differential
responses among those with limited education or English-
language use, or with food patterns not represented by the
food list. In the Netherlands, an automated system has been
developed for this purpose, with an FFQ and corresponding
script for calculating nutrient intakes. Input is based on the
national food-consumption survey, and foods included are
selected based on their contribution to absolute nutrient
intakes and their contribution to the variation in intake
in the target population (237). Importantly, FFQs must be
used only for the population for which they were developed,
and participants with differing dietary patterns are likely to
be seriously misclassified without specific consideration for
their inclusion (234).

With an increasingly diverse population, existing FFQs
are generally study specific. The use of a general question-
naire with diverse subgroups not explicitly considered in its
design will lead to bias and underestimation of intake in these
subgroups, not only due to lack of commonly consumed
foods but also, in some cases, due to large differences in
standard portion sizes and in food preparation (240). It is also
important to note that the food supply and dietary patterns
change over time, so a fixed food list may miss these changes
in a longitudinal study. Further, most large-cohort studies ask
participants to complete the FFQ themselves, usually online.
However, to ensure inclusion of low-literate populations less
familiar with this type of form, it is often necessary for
an interviewer to administer the questionnaire. If this is
not done, noncompletion bias will be likely differential by
subgroup.

Another limitation of the FFQ is that, given the ap-
proximate nature of the foods listed and, particularly,
the lack of detail on recipes and portion sizes, the data
are considered semi-quantitative. This means that total
energy intake is usually not well measured. For this
reason, FFQs are not recommended for energy intake
assessment. Rather, adjusting for energy will tend to im-
prove the ranking of the other nutrients, as shown in
validation studies against multiple records or biomarkers
(237, 249–251).

In some cases, such as when total dietary intake is
not considered necessary, dietary screeners are used. These
screeners, which are basically short FFQs, can be focused
on dietary quality (252), specific foods such as the NCI fruit
and vegetable screener (253, 254), sugar-sweetened beverages
(255), or specific nutrients such as calcium (256). These
screeners help meet specific study needs but are limited in

their inability to control for total energy or other nutrient
intakes.

Further improvements are needed to better quantify
details of individual intake, which is necessary to truly link
exposures to outcomes, given other specific characteristics.
As indicated earlier, statistical methods to adjust for mea-
surement error have been developed (257). In the case of
FFQs, validation studies on a subsample using multiple-day
food records or 24HRs are often used, although these are not
optimal because of correlation of measurement errors; the
use of biomarkers is preferred (233).

With more investment into improving technology that can
increase the details collected and improve validation studies,
the FFQ will likely be useful for precision nutrition because it
is currently the only cost-effective method of capturing long-
term usual intake.

Biomarkers of intake, status, and metabolomics.
Probably the most useful adjunct to dietary reporting is the
concomitant use of biomarkers. The topic of biomarkers
is discussed in greater detail in the section on Nutritional
Status, but the main issues are briefly summarized here. The
potential for biomarkers of intake for whole foods and dietary
patterns and relevant new developments in metabolomics are
also discussed.

In the field of nutrition, a biomarker is generally
referred to as “a biochemical indicator of dietary in-
take/nutritional status (recent or long term), an index of
nutrition metabolism, or a marker of the biological conse-
quences of dietary intake” (258, 259). In dietary assessment
specifically, biomarkers are further classified based on their
association with intake (258): 1) recovery biomarkers [based
on the recovery of certain food compounds directly related
to intake and not subject to substantial interindividual
differences; i.e., doubly labeled water (DLW) and urinary
nitrogen, potassium, and sodium]; 2) predictive biomarkers
(are sensitive, time dependent, and show a dose–response
relation with intake, but their overall recovery is lower
than recovery biomarkers, such as urinary sucrose and
fructose); 3) concentration biomarkers [concentration cor-
relates with intake of corresponding foods or nutrients but
the correlation is often lower (<0.6) than that expected
for recovery biomarkers (>0.8), such as serum vitamin
or serum lipids]; and 4) replacement biomarkers (closely
related to concentration biomarkers, but referring specifically
to compounds for which information in food-composition
databases is unsatisfactory or unavailable), such as urinary
aflatoxin and epicatechin, or serum phytoestrogen.

Although well established for only a limited number of
nutrients, recovery biomarkers and concentration biomark-
ers can be used to validate dietary methods and may
be used to calibrate intake estimates. It may be possible
to collect concentration biomarkers on a subset of study
participants and extrapolate to a larger study, at least partially
circumventing the issue of correlated errors in validation
studies using self-reports (260).
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Recovery biomarkers have been important in understand-
ing the validity of dietary assessment for certain nutrients
(232). Urinary nitrogen and potassium biomarkers are
frequently used to investigate the validity of a self-report
measurement such as an FFQ, and results show that intake
of protein and potassium, as assessed by FFQ, is generally
valid after adjustment for total energy intake, although
underestimation of total protein intake amounted to 10–29%
and of potassium to 5–6% (261, 262).

Assessment of sodium intake is complicated, as intake is
not only determined by sodium in foods, as listed in the food-
composition tables, but also by use in cooking, at the table,
and hidden in processed foods. Urinary sodium, therefore,
appears to be a good marker and is preferred over assessment
using self-reported intake, but multiple 24-h urine collections
are needed to average day-to-day variability (263).

DLW has been especially helpful as a recovery biomarker
method. It is more elaborately described in the section on
Nutritional Status. It has been used to validate total energy
intake as assessed by 24HRs or FFQs in various studies
(264–266). Findings show that self-reported intake generally
underestimates energy intake, and that this effect is more
pronounced in those with higher BMI (267).

Recently, an updated classification for exposure (intake)
biomarkers has been proposed, which is based on intended
use: food compound biomarkers [nutrition intake biomark-
ers, nonnutrient intake biomarkers, food or food component
intake biomarkers, and dietary pattern biomarkers (258)].
This aligns with the development of food-based dietary
guidelines. Relevant nutrients for thorough assessment of the
validity of nutrition intake biomarkers are the 6 micronu-
trients studied and reported by the Biomarkers of Nutrition
for Development (BOND) initiative—iron (268), zinc (269),
iodine (270), vitamin A (271), folate (272), and vitamin B-12
(273)—which are all important from a global public health
perspective (274).

For iron status, serum ferritin is the usual choice for
assessment, but measurements of plasma soluble transferrin
receptor and hepcidin are also used. In general, iron
status biomarkers are preferred over iron-intake assessment
because of large differences in bioavailability across food
sources. Algorithms to weigh heme versus nonheme iron
from diet are available (275, 276). The BOND Zinc Expert
Panel recommends 3 measurements for estimating zinc
status: 1) dietary zinc intake together with intake of phytate,
to assess the amount of zinc available for absorption; 2)
plasma zinc concentration; and 3) height-for-age of growing
infants and children (269). Urinary iodine concentration is
a reliable biomarker of recent iodine intake in populations
for all amounts of iodine intake. For individuals, diurnal
and day-to-day variation needs to be considered; to capture
intraindividual variation requires at least 10 repeated 24-
h urine collections. Intake assessments based on 24HRs or
FFQs can be reliable if iodized salt is included but, like
sodium, the use of discretionary salt is difficult to quantify.

For vitamin D, dietary intake accounts for only part of
the body nutrient stores because sunlight can be the more

important source, depending on the geographic location
(conversion is more efficient near the equator), skin tone
(darker skin converts less vitamin D to its active form than
lighter skin) (277), season (278, 279), and age (conversion to
active vitamin D declines with age) (280). Hence, serum con-
centration of 25-hydroxyvitamin D is used for monitoring
individuals and populations rather than intake assessment
alone (281, 282).

When using food or food component intake biomarkers
instead of nutrients, it is important to note that only serum
carotenoids for fruit and vegetables (283) and n–3 fatty
acids for oily fish (284) have been well validated. However,
developments in this field are rapid. Using metabolomic
techniques, it is now possible to measure thousands of
metabolites at once, with platforms such as NMR spec-
troscopy, LC-MS, and GC-MS (285, 286). Samples can
be derived from various tissues and biofluids such as
plasma, serum erythrocytes and leucocytes, urine, saliva,
feces, cerebrospinal fluid, and hair (287, 288). The food
metabolome is defined as the part of the human metabolome
directly derived from the digestion and biotransformation
of foods and their constituents (289). Metabolomics not
only allows identification of numerous biomarkers at once
but also provides the opportunity to create combinations
of biomarkers to assess past food intake. Combinations of
markers have been explored to assess fruit and vegetable
intake, for example (290). In a recent example, a panel of
3 biomarkers—proline betaine, hippurate, and xylose—was
identified in a fruit intervention study using NMR to analyze
urinary samples and validated as combined biomarkers in an
observational study (291).

Similarly, several studies have examined the association
between biomarkers and dietary patterns (292–294). For
example, in the Jackson Heart Study (294), 327 metabolites
were analyzed in fasting plasma, of which 14 were signif-
icantly (false discovery rate <0.05) associated with a meat
and fast-food dietary pattern in the discovery sample. Nine
of the 14 metabolites were associated with the meat and
fast-food dietary pattern in a replication sample: indole-3-
propanoic acid, C24:0 LPC, N-methyl proline, and proline
betaine were inversely associated with the meat and fast-
food dietary pattern; C34:2 phosphatidylethanolamine (PE)
plasmalogen, C36:5 PE plasmalogen, C38:5 PE plasmalogen,
cotinine, and hydroxyproline were positively associated with
the meat and fast-food dietary pattern. When validated
further, these could be useful as biomarkers of a Southern US
dietary pattern.

With appropriate sampling and consideration of day-to-
day variation, food metabolomics holds promise for use
in validation and calibration studies and can be expected
to support and enhance dietary assessment. However,
metabolomics remains new, and often reveals patterns of
association that are difficult to interpret. The extent to
which these panels of food metabolome markers can be
used for dietary assessment needs more clarification. To aim
for a full library of metabolites covering all food intakes is
probably unrealistic, given the cost, time, and effort needed
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for biomarker discovery and validation. In addition, it should
be noted that many components and metabolites have not
yet been identified. On the other hand, technology is rapidly
developing, and cheaper methods based on target markers
could be developed.

New technologies
The main goal of new approaches is to assess intake in a
more objective way and to reduce reliance on self-report.
Several new technologies are currently being explored with
the potential to improve accuracy of dietary assessment.
For diet records, 24HRs, and FFQs, key issues are food
identification (what food or drink exactly did you use
or are you habitually using?) and portion-size estimation
(how much of this food or beverage are you generally
using?). New statistical techniques are being explored for
combining data from multiple methods to improve estima-
tion. For example, the NHANES briefly used a propensity
questionnaire (a list of infrequently used foods, such as
liver) to supplement 24HR data (295). Combining various
methods has potential, as differing approaches may balance
the weaknesses and strengths of others and, from this
perspective, the inclusion of biomarkers is also useful. Ideally,
new or improved methods will be less time-consuming,
less prone to socially desirable answers, rely less on mem-
ory, minimize misreporting, and maximize retention and
completeness.

Photographic images.
Using images may enhance the accuracy of self-reported
dietary intake, particularly for assisting in portion-size
estimation. In a review published in 2018 (296), 42 new
tools were identified, of which 33% used digital images to
help identify foods. Two approaches can be discerned, the
image-assisted and the image-based approach (297). Image-
assisted approaches can be useful as part of a retrospective
method (i.e., 24HR or FFQ). The participant captures all food
and drinks consumed through pictures, which subsequently
assists the reporting of intake and associated portion sizes
(297).

Image-based approaches can also be used as part of
prospective methods such as food records. The participant
records intake by taking pictures before and after all food
and drink consumption. AI methods can then be used
to automatically identify foods and estimate portion size
(298). The use of images may increase accuracy of current
food and nutrient intake estimates, although self-report
remains essential to determine the content of the food
photographed. Currently, the burden on both participants
and researchers remains relatively high when images are
used. Still, this method is promising for study populations
such as children, who have limited skills in literacy, writing,
and food recognition (299).

Conversational agents.
Some automated systems are now using a conversational
agent, or chatbot, to help collect information. Rather than

a live interviewer, the chatbot can ask the user questions
to complete missing data or assist with food recognition.
This approach may be particularly useful for individuals with
functional impairment (e.g., visual or motor impairment) or
with limited health literacy (300, 301).

Sensors.
Detecting food intake using sensor-based technology holds
promise for assisting in objective measurements (299). So
far, sensor use varies in technique and concept. Acoustic
sensors can be used to detect food intake via sounds of
chewing and swallowing (302), inertial sensors recognize
wrist/arm motions (inertial) (303), physiological sensors
use skeletal muscle activity or skull vibrations (304), and
piezoelectric sensors can detect changes in electric charge in
response to chewing and swallowing (305). When Amft and
colleagues (306) tested sound-based recognition for apple,
potato chips, and lettuce, they found a 94% average accuracy
of food classification based on chewing sequences, with the
mean weight prediction error lowest for apples (19.4%) and
largest for lettuce (31%). Sensing methods have not yet been
integrated into dietary assessment; however, they do hold
promise for future use.

Mobile applications.
Mobile applications offer new opportunities for improving
dietary assessment (307). More than 80% of the US popula-
tion currently uses a smartphone (308) and use is increasing
globally. Several programs have been developed for personal
use, such as the Fitbit diet app (309), but do not yet include
sufficient detail and quality for research application. Access
to this technology does remain limited in low-literate, low-
income, and remote communities.

Pictures and conversational agents, such as chatbots, and
other mobile applications have the potential to assist in
improving the precision of food identification. Another new
technique is using the smartphone’s camera as a barcode
scanner to identify foods used by the interviewee (310).
Scanning the Universal Product Code (UPC) printed on food
packages can be used as input in digital dietary records/food
diaries to derive information about nutrient and energy
contents of foods consumed (311, 312). This method holds
promise for enhancing detail in variation of quality within
food groups, particularly if used to identify staple, frequently
used foods (e.g., type of breakfast cereal, type of cooking oil,
bread, etc.). Due to its efficiency, barcode scanning could
reduce the burden of food recording and coding (5, 6).
Participants have evaluated the barcode scanner method as
comprehensive, easy to use, and nonintrusive (7).

Another handheld methodology is based on near-infrared
spectroscopy, an analytical tool that measures how light
is emitted, absorbed, or scattered by a sample. These
spectrometers, such as the handheld SCiO Near Infrared
Micro Spectrometer by Consumer Physics, can be used to
detect certain compounds in a food (313) and are currently
used for inspecting food quality and safety. The role of
the food matrix, the measurements range, and validity are
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currently being investigated (287). Another new tool for food
identification is the hyperspectral camera, which collects
and processes information from across the electromagnetic
spectrum (313, 314). To date, however, these cameras have
not been adequately validated for research application and
use with mobile phones.

Despite considerable work toward integrating new tech-
nologies into dietary assessment, limitations continue to
exceed their benefits (315). The use of images, for example,
has become more accurate for estimating portion size but
remains, and will continue to remain, unable to clearly
identify specific foods and ingredients without concomitant
self-report. Most imaging methods still rely on investigator
screening and time-consuming integration with self-report,
making it infeasible for large studies (316). Compliance is a
major issue and, in addition to forgetting to always use the
camera appropriately, changes in intake are similar to what
is seen with a diet record (305). Sensing arm movements and
chewing actions has been shown to correlate with energy and
types of food intakes but not at a level that improves on self-
report (315). Although much progress has been made, more
research and development are needed to make most of these
new technologies useful and cost-effective.

Key considerations in data interpretation
For precision nutrition, which requires estimation of usual
intake for individuals or at least key subgroups of the
population, the FFQ, multiple 24HR, or some combination
remain the best methods to assess dietary intake of a wide
list of foods and nutrients. The addition of biomarkers of
intake greatly enhances interpretation of these methods for
some nutrients, but not others, and is likely to continue to
advance our ability to quantify dietary intake in the future.
All existing approaches currently have limitations, and it is
important that more support and effort go into improving
these and new approaches to better estimate usual dietary
intake at the individual level.

Although FFQs are the most cost-effective and direct
approach to assessing usual intake, existing forms are
designed for specific populations and are often misused when
diverse ethnicities are included in studies, leading to the
potential for substantial bias (317). As research attempts to
be increasingly inclusive, more effort is needed to design
FFQs that are more generalizable. This may be possible with
continuing advancements in computing and AI. At the same
time, there is an important need to update nutrient databases
(318) to include precise nutrient data for a greater variety of
foods, as diet continues to change. Efforts to improve food
databases globally include the International Network of Food
Data Systems (319). Additionally, future work on the FFQ
should allow better assessment of dietary quality within food
groups. Whenever a new population is assessed, it is best to
begin with a 24HR for inclusion of detail on foods, recipes,
portion sizes, and dietary patterns that may differ from prior
assumptions. Multiple 24HRs, when acceptable, continue to
offer the most detail, including the ability to examine eating
occasions and time of day.

Although statistical advances, including calibration equa-
tions, continue to be helpful, they are generally pop-
ulation specific with the potential for differential error
and do not replace efforts to improve direct individual
assessment.

In closing
In summary, much work is needed to advance our ability
to capture individual usual dietary intake. It will always
remain a moving target, as the food supply is constantly
changing, demographics and cultural backgrounds within
populations evolve, and individual behavior changes over
time and throughout the life course. New computational
approaches that combine data show exciting promise. To
truly assess dietary intake with validity and precision requires
dedication and commitment to allocate the resources to
do it well. Improvements will require combinations of self-
report, biomarkers, and computational advances. It is worth
the effort as there is no doubt that dietary behavior is
of central importance in the future of precision nutrition
and health.

Genetics and Epigenetics
Introduction
People are metabolically heterogeneous, meaning they differ
in the efficiency in which metabolic pathways process
nutrients. This heterogeneity is, in part, due to genetic and
epigenetic variation between people. People have millions of
variations in their genetic code, with any one person having
about 50,000 SNPs with functional consequences (320, 321).
They also have gene copy number variations (322, 323) and
tandem repeat (stretches of DNA that are highly variable
in length) variations (324). Varying epigenetic marks on
genes and chromosomes further modify gene expression and
function (325). Because genetic code variations are inherited
from ancient ancestors, they differ among people depending
on their heritage (320, 321). Epigenetic variations are derived
not only from inheritance but also from differences in life ex-
posures and experiences, including dietary differences (325).
Genetic and epigenetic variants can change the expression
and function of enzymes, transporters, or receptors and
their ligands (discussed later in the “Transcript methods”
section), thereby altering nutritional metabolic and signaling
pathways. Nutrition and energy metabolism are critical for
survival and are—therefore, potent drivers of evolution and
genetic modification (326). Some epigenetic mechanisms
may have evolved so that humans could more rapidly
sense and respond to changes in nutrient availability as
diets change (e.g., shift from hunter to agricultural lifestyle)
(327–329).

Examples of genetic and epigenetic variations that re-
sult in metabolic and nutritional heterogeneity abound.
For example, the concentration of the vitamin D precur-
sor 7-deoxycholesterol is increased in the skin of people
with a low function variant of delta-7-sterol reductase
(DHCR7 rs7944926), which enhances vitamin D synthesis
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(330). A common SNP in phosphatidylethanolamine-N-
methyltransferase (PEMT), rs12325817-C, the estrogen-
responsive gene that enables de novo biosynthesis of phos-
phatidylcholine, reduces PEMT’s inducibility by estrogen.
Women with this SNP have an increased dietary choline
requirement and are 25 times more likely to develop liver or
muscle damage when eating a low-choline diet (331, 332).
Increasing EPA in the diet has a different effect on HDL
cholesterol depending on whether people have a specific SNP
in the gene that encodes for a cholesterol efflux transporter
[ATP-binding cassette subfamily A member 1 (ABCA1)
rs2246293-CC]. The expression of ABCA1 is decreased by
DNA methylation at the site of ABCA1 rs2246293. In people
with the ABCA1 rs2246293-GG genotype, EPA can increase
DNA methylation of this site, which suppresses expression
of ABCA1 and, thereby, lowers HDL concentration. People
with the ABCA1 rs2246293-CC genotype have decreased
methylation of the gene and higher plasma HDL cholesterol
than people with the GG genotype (333). Although such
individual SNP effects are known, we do not yet understand
fully how to integrate the effects of multiple gene variants that
interact across many pathways in metabolism.

Epigenetic differences as a source of metabolic heterogene-
ity.
Although all our tissues have the same genetic code, they
differ in phenotype and function because gene expression is
regulated by epigenetic mechanisms mediated by noncoding
RNAs and epigenetic marks on genes or histone tails. Diet-
and environmentally induced epigenetic changes are now
proposed to be responsible for a significant portion of normal
and disease-related phenotypic differences that cannot be
explained by differences in DNA sequence (325). Nutrients
interact with epigenetic regulatory enzymes and induce or
repress their activity (325).

One of the best understood epigenetic marks is DNA
methylation, where 5-methylcytosine forms primarily at
CG dinucleotides (334). DNA methylation usually sup-
presses gene expression, but exceptions do occur. S-
adenosylmethionine, the methyl-donor for DNA methyl-
transferases, is formed by pathways that metabolize a
number of nutrients [methionine, 5-methyltetrahydrofolate,
betaine (from choline), vitamin B-12, and vitamin B-6].
For this reason, DNA methylation is influenced by diet
(325, 335–340). Diets high in methyl-group donors increase
DNA methylation of specific genes (341) and can result
in a permanent change in phenotype [e.g., coat color in
the Agouti mouse (342) or twisted tails in Axin fused
mice (336, 343)]. DNA methylation can be oxidized to
5-hydroxymethylcytosine and further oxidized derivatives.
These DNA modifications are stable but less understood
(344).

Histone proteins H2A, H2B, H3, and H4 make up the
nucleosome around which DNA is coiled (345), creating the
chromatin structure (open/active vs. closed/inactive). These
structural changes are modified by post-translational histone
marks added to the amino-terminal tails of these proteins.

Many of these histone modifications are sensitive to dietary
intake (325). For example, histone methylation is modulated
by intake of dietary methyl-donors (339, 346, 347), and
histone demethylases are dependent on α-ketoglutarate and
iron derived from diet and from nutrient metabolism (348–
350). Microbial metabolism of the diet (such as the process
that forms butyrate, which inhibits histone deacetylases) can
also be important (351).

Diet can also modulate expression of noncoding RNAs
that regulate gene expression and/or post-transcriptional
activity (352, 353). MicroRNAs bind to messenger RNA
(mRNA) that contains a targeting sequence for the mi-
croRNA and mark them for cleavage, degradation, or transla-
tional repression, depending on the gene target (354). There
are specific microRNAs that regulate almost all gene products
involved in metabolism. The genes for approximately 70% of
microRNAs are, in turn, regulated by DNA methylation or
histone modifications (325).

Genetics methods
An obvious component of putting precision nutrition into
practice will be genetic testing. The genetic testing field
is currently transitioning from gene-sequencing technology
to chip-based analysis. Gene chips, or microarrays, use
short sequences of complementary DNA (oligos) as hooks
that bind to sequences of interest. Millions of oligos can
be attached to a chip, which can be custom designed.
Today, many commercially available chips detect known
common polymorphisms that derive from a diverse group
of ancestries and can detect many, but not all, vari-
ants relevant to nutritional heterogeneity. However, many
chip makers offer custom versions that add additional
oligos.

Gene expression microarray analysis.
Gene chips are designed to profile expression levels of
thousands of genes simultaneously. These chips typically
immobilize 25-bp pair oligonucleotides positionally in arrays
in sets of probes that either perfectly match a target
gene sequence or with 1-bp mismatches to account for
nonspecific binding. Thus, these arrays are dependent on
the set of sequenced and annotated genes in a genome.
The targeted genes and specific probe design, which vary
between manufacturers and in different products, typically
has as many as 20 different probes for different regions of 1
target gene. The frame size per probe on the microarray has
been reduced to 5 μm or fewer squares so that as many as
30,000 genes can be targeted (355, 356). There are technical
considerations when using gene chips, and algorithms are
used to correct for nonspecific binding and to determine
average expression across the multiple probes used for each
targeted gene. Chip genotyping has been slow to respond to
the latest discoveries in genetics because of the cost and time
required to update microarray chips with newly discovered
genetic targets. It is difficult to select all the important
microarray candidate gene variants with functional effects
on nutritional metabolism because they are not known. In
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addition, not all selected variants will work in a microarray
assay, as there are limitations associated with the hybridiza-
tion efficiency of the array. Chip genotyping is not the best
for discovery because the genetic targets on a microarray are
preselected.

Whole-genome sequencing.
While gene chips need to be constructed based on publicly
available data on functional gene variants, whole-genome
sequencing is not limited by this, allowing for high discovery
potential. Because gene sequencing provides information
about the entire genome, it can be used to not only
identify known gene variants but also to discover previously
unknown gene variants. Overall, this method has much
greater flexibility than microarrays, as the hardware does
not need to be redesigned to study each new gene variant.
Today, gene sequencing is 2 to 3 times more expensive
than using chip technology but, as prices fall, it likely will
make chip technology obsolete. Chip technology is currently
used in almost all genetic testing that is available directly to
consumers.

Transcript methods.
Downstream of gene expression, or transcription, RNA is
formed. Measuring RNA can be helpful for identifying
functional effects of genetic and epigenetic variation. An
important limitation of measuring RNA is that it is much less
stable than DNA. RNases—enzymes that degrade RNA—are
ubiquitous and, thus, the laboratory equipment and reagents
for RNA isolation and analysis are typically separate from
those used for other analyses. Samples are homogenized in
buffer that quickly denatures RNase, and then total RNA
is rapidly separated from DNA and proteins. Commercial
buffers (e.g., TRIzol reagent made by Thermo Fisher Scien-
tific) allow rapid isolation, including obtaining total RNA,
protein, and DNA fractions from the same small sample.

Northern/slot/dot blotting.
Specific RNA sequences are detected by blotting and
hybridization analysis using techniques very similar to
those originally developed for DNA. The original DNA
blotting procedure was named Southern blotting after its
developer, Edwin Southern. The RNA blotting procedure
was analogously named Northern blotting, in part because
RNA is osmotically drawn upward to bind a membrane
(357). The following methods are used to study mRNA
and noncoding RNAs, including microRNAs and small
interfering RNAs. The core steps in the 5 major methods
in Figure 2 can be applied for RNA analysis by in situ
hybridization or in single cells or subcellular organelles,
by measurement of mRNAs being actively translated on
polysomes, or by analysis of nascent (newly formed) mRNAs
(356). Techniques are also available to study RNA structure or
RNA–protein interactions (356), such as in RNA interference
or RNA silencing, in which small interfering RNAs target
specific mRNAs for degradation (358).

FIGURE 2 Transcriptomics methods. Shown are schematic
comparisons of the steps used in 5 methods starting with total
RNA isolated from a sample. Shown in red are the steps where
sequence-specific probes or primers are added to target individual
transcripts. In each scheme, the final box and graphic indicate the
method of detection. Subsequent computational analysis is
needed to determine differential expression.

For Northern analysis, RNA is separated by size using
gel electrophoresis. This must take place under denaturing
conditions to prevent single-stranded RNA from forming
secondary structures that do not separate reliably (Figure 2).
After counting, the bound labeled probe can be stripped
from the membrane, and the membrane re-analyzed with a
second probe specific for a control RNA, or for an additional
target RNA. This allows the level of the target mRNA to be
expressed as a ratio with the level of a control mRNA (357).

Ribonuclease protection/gel retardation/electromobility
shift analysis.
Ribonuclease protection uses labeled single-stranded anti-
sense RNA probes that hybridize to the target mRNA to
form RNA duplexes, which are then treated with RNases
that degrade only single-stranded RNA. The resulting labeled
double-stranded RNA are subsequently separated by elec-
trophoresis, and then detected just as for Northern blotting
(Figure 2). Simultaneous analysis with multiple labeled
probes of different lengths upon electrophoresis and blotting
allows detection and quantification of multiple transcripts
and control RNA in the same blot.
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RT-PCR.
The innovation utilized for RT-PCR is thermal cycling of
the polymerase reaction to generate a million (20 cycles)
to a million-million (40 cycles) copies, allowing quantitative
detection of small initial samples. For RT-PCR, total RNA
from a sample is reverse-transcribed by RNA-dependent
DNA polymerase, generating a complementary DNA library
containing a single copy of each mRNA in the original sample
(Figure 2). Pairs of ∼20-base-long DNA primers are designed
for ∼150–200 base-long sequences of the target mRNA. As
practiced today, individual reactions are conducted in 96-
to 384-well plates in thermocycler spectrophotometers that
continuously monitor the number of copies at each cycle.
Today’s thermocyclers can complete analysis of a plate in 2
h, allowing analysis of over 100 samples in triplicate for an
individual gene or over 100 genes in the same sample, or a
mixture of the 2 (359).

RNA sequencing.
RNA sequencing advanced transcriptomics because it can
sequence the full mRNA population in a sample, unlike
earlier methods that required sequence information about
the targeted genes. RNA sequencing is typically rapid and can
handle multiple samples at a time; hence, it is often referred to
as high-throughput sequencing. This technique depends on a
second sophisticated refinement, where each individual small
nucleotide from the sample is copied (so-called bridge PCR)
to obtain sufficient fragments in a micro-cluster that can then
be sequenced by PCR. The trade-off is that RNA sequencing
requires sophisticated kits and equipment that are typically
high cost (356).

Isolation of mRNA and preparation of double-stranded
complementary DNA for RNA sequencing are the same
as outlined for the earlier methods (Figure 2). Today,
RNA sequencing typically yields expression values for close
to 20,000 mammalian transcripts in an individual sam-
ple. Involved normalization of expression data for each
sample and correction for false discovery rate (FDR) are
needed to determine whether there are significant expres-
sion differences between diets, exposures, or treatments
(356).

Epigenetic methods.
A major consideration when measuring epigenetic modifi-
cations in people is the timing of the measurement relative
to many exposures (336). Some epigenetic modifications
are responsive to changes in diet and environment. Certain
epigenetic marks remain modifiable throughout the lifespan,
while others are modifiable only during specific windows of
development. In people, infants born at different times of
the year may be epigenetically different because they were
exposed to different nutrients before birth. For example,
seasonal variation in methyl-group content of mothers’ diets
is associated with different patterns of DNA methylation
(340). Although changes in some epigenetic marks and
expression of noncoding RNAs can occur at any time during
life, many are most susceptible during sensitive windows

in time during early development and are usually then
maintained by mechanisms that ensure faithful copying of
DNA during cell replication.

Dietary exposures can induce epigenetic changes (335–
340), and perhaps, sensitive windows provide the opportu-
nity to retune metabolism if the infant is born into a dietary
environment markedly different from that expected based
on the environment in utero (325). The epigenome appears
more susceptible to environmental factors during periods of
extensive epigenetic reprogramming in early life, particularly
during the prenatal, neonatal, and pubertal periods.

Other dietary components also can modify DNA methy-
lation, including fat (13), protein restriction (25), and some
bioactives (epigallocatechin-3-gallate, genistein, polyphe-
nols, etc.). Therefore, information on diet composition is
needed to interpret epigenetic data.

Methods for assessing epigenetic changes are relatively
mature (342, 344); however, epigenetic marks and noncoding
RNAs are usually tissue specific, and investigators do not al-
ways have access to the tissue of interest. Epigenetic analyses
of DNA from lymphocytes are unlikely to show the same
marks as DNA from the liver, muscle, brain, etc. Perhaps soon
it will be possible to use circulating cell-free DNA released
from such tissues into the bloodstream to assess epigenetic
marks from hard-to-access tissues (360). Investigators are
trying to determine whether epigenetic marks in blood-
based or blood cell–based DNA have usable associations with
epigenetic changes in less accessible tissues (361, 362). The
development of chromatin immunoprecipitation methods,
in 1984 (363), made it possible to identify histone proteins
bound to DNA and enabled characterization of their role in
epigenetic regulation of the genome.

Key considerations
Applying methods and interpreting data.
Methods used for measuring genetic variations or epigenetic
modifications are limited by the fact that the algorithms de-
veloped for interpreting relations between genetic variations
or epigenetic modifications and health outcomes are no bet-
ter than the data upon which they were developed. To date,
datasets have been small, because they are often derived from
people willing to volunteer for research studies (likely not
reflective of diversity in the general population). Although
dietary intake data are needed to provide context for the
genetic and epigenetic data when developing an algorithm,
this information is often missing or of questionable quality.
These limitations likely cause greater errors than are inherent
to the methods themselves.

The accuracy of genetic methods relies on the fidelity
of base-pairing in hybridization. Northern blotting, RNase
protection, RT-PCR, and microarray analysis depend on the
sequence accuracy of the probe, and thus are limited to
analysis of annotated genes. RNA sequencing, in contrast,
determines sequences using the mRNA in the sample. A
real weakness of all genetic and transcript methods, and
specifically microarray and RNA sequencing, is that these
methods depend on the accuracy and completeness of the
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annotated and sequenced genes in the genome (364). RNA
sequencing assembles, or maps, the short sequences to the
annotated genome. Mis-annotated genes are likely to be
missed or reported as 2 or more transcripts; other detected
transcripts may match to unannotated, uncharacterized
unknown genes, limiting the further characterization of
their biochemical functions. A recent comparison of RNA
sequencing with microarrays found that RNA sequencing
identified more differentially expressed protein-coding genes
and provided a wider quantitative range of expression-level
changes (365). In this study, approximately 78% of differential
expression transcripts identified by microarrays overlapped
with RNA sequencing differential expression transcripts.
RNA sequencing, however, also identified differential expres-
sion of noncoding RNA.

Diet challenges.
Sometimes the effects of genetic or epigenetic variations only
become apparent when metabolism is challenged. For ex-
ample, premenopausal women with the PEMT rs12325817-
C variant described earlier have impaired endogenous
synthesis of choline but can overcome this problem by eating
more choline. Their metabolic perturbation is only obvious
when they eat a low-choline diet. Alternatively, metabolic
inefficiencies caused by genetic or epigenetic variations are
revealed only when people eat too much of a nutrient. For
example, when people consume a diet low in saturated fat,
the APOA2 rs5082-CC SNP has no effect, but when a diet
high in saturated fat is consumed, the people with the CC
genotype have a higher BMI while the TT and TC genotypes
do not (366). Thus, measuring genotype is not sufficient to
identify people who will experience an adverse outcome; it
is important to consider dietary intake when interpreting
the functional effects of genetic and epigenetic variation.
Genomewide association studies have identified remarkably
few gene variants associated with metabolic heterogeneity
because most of these studies are based on datasets that do
not include diet intake.

Today, transcriptomics studies most commonly involve
comparisons between 1 treatment and 1 control, resulting
in a huge number of differential expression transcripts with
P < 0.05 and often still with a large number of q < 0.05
differential expression transcripts. Care should be exercised
to adjust for FDR when reporting differential expression in
bioinformatics-driven research.

Experimental design.
Careful assessment of overall health is critical for ensuring
that reported differences are directly associated with the
treatment variable, rather than downstream effects due to
poor growth, disease, or other conditions. Subsequent func-
tional analysis may otherwise report numerous significantly
affected pathways and functions that are not directly caused
by the treatment.

The 2-treatment design, however, may not accurately
describe the overall biology; this limitation is especially im-
portant for interpreting nutritional transcriptomics studies.

For instance, comparing effects of nutrient excess with a
nutrient deficiency may identify a large set of differential
expression transcripts changed due to a deficiency versus
an adequate status, but these may not be present when
comparing excess nutrient with an adequate status. Thus,
selection of the control treatment is very important.

Care should be exercised when results from 2-treatment
designs in nutrition research are extrapolated and general-
ized. Completely different results in a separate study may
indicate that other variables have far more influence than
changes in the study nutrient. Use of multiple-graded levels
of nutrients in a single study should yield cohesive results
and are best used before ascribing the differences to general
effects of the nutrient (367). The subsequent pathway and
biological function analyses are also limited to examining
only known processes—the streetlight effect—and do not
evaluate yet-to-be-identified gene sets.

Data analysis and availability.
The raw reads obtained from RNA sequencing can offer
additional opportunities, as the resulting small sequence
fragments for both coding RNA and noncoding RNA can
be assembled de novo into transcript abundance data (e.g.,
CuffLinks software) without dependence on the annotated
genome (356). This de novo assembly can be especially useful
for species with genomes that are less thoroughly annotated
or are distinct from human and rodent genomes.

Available computer programs can correct raw sequence
expression data for background and normalize each sample
to generate expression data (368). Often, transcripts found
in low abundance in all samples are removed from further
analysis.

Statistical analysis using open-source statistics software
(e.g., edgeR) can identify differentially expressed transcripts,
with P values adjusted for multiple testing to adjust for FDR
(often identified as a q-value) because 1 in 20 (P = 0.05) is not
appropriate when analyzing datasets with thousands of data
points (369). Usually, expression of individual transcripts
isrelative to expression in a control treatment, which is
known as the differential expression value (355, 356). The
result is a list of individual transcripts that are differentially
expressed relative to the control. Stark and colleagues (356)
provide a summary of common software programs used for
computational data analysis.

Additional functional analysis is often used to further
identify pathways and biological functions that are collec-
tively enriched (up or down) in a dataset, as compared with
a control dataset (341). Two such approaches are ingenuity
pathway analysis (370) or gene ontology analysis to identify
pathways, biological processes, and molecular functions
(371). Again, an FDR of q < 0.05 is considered significant
in gene ontology. Gene set enrichment analysis is another
approach that iteratively evaluates transcript expression data
at the level of gene sets to detect changes in pathways
and biological processes that are coordinated at a more
subtle level than found by differential expression analysis of
individual genes (372).
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Most journals and NIH-funded studies require that
microarray and RNA sequencing data be made available
upon publication in a repository such as the Gene Expression
Omnibus (373) or the National Center for Biotechnology In-
formation’s Sequence Read Archive (374). These repositories
allow researchers to take advantage of previously conducted
studies in their area.

In closing
Below is a list of current needs for genetics and epigenetic
methods as related to personalized nutrition.

� Catalog of individual gene variants and epigenetic
modifications that result in functional differences
in metabolism, nutrient requirements, and effects of
diet on health outcomes. This requires collecting
appropriate data from diverse populations, improved
methods for collecting diet intake data, and better
accuracy and completeness of annotated and se-
quenced genes. This will help provide insights into
how functional effects are influenced by diet and other
exposures.

� Algorithms that integrate the combined functional
effects of multiple genetic and epigenetic variations
across the many pathways of metabolism.

� Better methods for cross-correlating and validating
genetic, transcriptomic, and epigenetic data with other
omics data (like metabolomic, microbiomic). This
will help reveal whether functional changes in genes
correlate with perturbations in metabolites measured.

� Better study designs and statistical and bioinformatics
approaches for conducting studies in people that vali-
date the use of information on genetic and epigenetic
variation for the development of diet interventions and
recommendations.

� Better regulatory oversight to ensure that use of
genetic and epigenetic variation data is not lim-
ited to the wealthy, that such data have appro-
priate privacy protections, and that health claims
made for such testing are adequately supported by
evidence.

� Consideration as to what level of data and study
design is needed to use knowledge of a group’s
common genetic and epigenetic variants to develop
policy recommendations for that subgroup of the
population. Will it be possible to eventually reduce
the size of such subgroups to achieve almost-personal
recommendations?

� To deliver personalized nutrition, accelerated efforts
should be made to integrate patient data on nutrient
status into existing and future databanks, such as
the Human Genome Project (375), Human Variome
Project (376), 1000 Genomes Project (377), and
100,000 Genomes Project (378, 379).

Microbiome
Introduction
It is now recognized that the human microbiome influences
interindividual variability in response to diet and the envi-
ronment (380, 381). The microbiome is made of the genetic
material of microbes (e.g., bacteria, and lesser components,
such as fungi, parasites, etc.) found on the skin and in the
urogenital system and gastrointestinal tract. The microbiome
for just 1 person can contain more than 33 million genes,
exceeding the number of genes in the human genome by
more than 100-fold (382, 383). The microbiota composition
across different parts of the body shows intraindividual
variability (380), and most research has focused on the gut
microbiome. This section will focus on the gut microbiome,
given that the gastrointestinal tract is the major site for diet–
microbiome interactions. However, other body sites can also
be influenced by diet, and many of the considerations for gut
microbiome research can be applied to studies of other sites.

The gut microbiome has been associated with numerous
diseases, such as cardiometabolic conditions, inflammatory
bowel disease, certain cancers, asthma, and some neuro-
logical disorders. Associations with markers of systemic
inflammation such as lipopolysaccharides, cytokines, and C-
reactive protein have also been reported (382, 384, 385). The
gut microbiome also plays an important role in gut endocrine
function and intestinal mucosal integrity (385). From a
precision nutrition perspective, recent studies have indicated
that the interindividual variability of the gut microbiome may
show patterns across the population (386). Studies suggest
that only 2% of this variability is related to genetics (387),
and other influencing factors include age and life stage, sex,
and health status (382, 384). Moreover, emerging animal
studies have suggested a circadian rhythmicity of the gut
microbiome (388). Dietary factors, such as macronutrient
composition (e.g., protein vs. carbohydrate) and customary
dietary patterns (389–391), are coming to the forefront as
having major impacts on the composition and diversity of
the gut microbiome. Recent studies have also suggested that
the gut microbiome’s makeup could be predictive of the
effect of dietary influences on health outcomes in individuals,
allowing personalization of advice (382). The dynamic nature
of the microbiome, including effects from environmental
cues and emerging evidence of circadian cycles, suggests that
the optimum diet for an individual will likely change over
the lifetime, and may even fluctuate throughout the day or
week. For example, the 2020–2030 NIH Strategic Plan for
Nutrition Research noted the role of diet in the microbiome–
health relationship as a key objective for understanding and
applying precision nutrition (392).

A full review of microbiome and health is beyond the
scope of this section. However, due to the complexity of the
microbiota, the many factors affecting it, and its multifaceted
relationship with health outcomes, a variety of approaches are
necessary to understand the interplay among diet, nutrition,
and the microbiome. The field is in its infancy and methods
are still developing. Much effort is being made to harmonize
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methods and establish standard approaches, and several
recent reports have been published. Notably, many authors
indicated that past studies lacked or included insufficient
information on dietary descriptions for participants, limiting
the knowledge base on diet, microbiome, and health (381,
393). Approaches for studying the microbiome include in
vitro laboratory analyses/in silico models, animal models,
and various types of human studies such as RCTs and
observational studies. These approaches will be discussed in
terms of relevance to microbiome and precision nutrition.

Strengths and limitations of approaches
Approaches that range from dynamic in vitro multicom-
ponent fermentation systems and animal models to human
clinical interventions and cohort studies have been utilized
for addressing questions on the microbiome, diet, and
health. In vitro model systems can be helpful in assessing
microbial-generated metabolites from different macronutri-
ents, micronutrients, and nondigestible substances, but are
limited in addressing precision nutrition concepts. The most
common approaches used to understand microbiome–health
relationships have involved animal models, primarily gno-
biotic rodents (models in which all microbes are controlled
or not present) with human fecal transplants and human
intervention (e.g., RCTs or prospective cohort studies).
Animal models allow more genetic, diet, and environmental
control and contribute to mechanistic understanding but
are limited in translation to humans, whereas human
microbiome intervention studies may be directly applicable
to humans but are generally small and challenged by the
high interindividual responses seen with diet. Prospective
cohorts can provide data from a broader population, but
due to the number of confounding factors that influence the
microbiome, are not definitive with respect to cause-and-
effect relationships. In addition, the complexity of the human
gut microbiome and individual differences in responses
to the same interventions make it challenging to design
studies that can be translated to clinical and public health
applications.

A recent review of in vitro, animal, and human findings
of how oat consumption influences the microbiome and
health provides an example of using differing approaches
and the types of information that can be gathered from each
approach (394). These authors reported that in vitro studies
contributed insights into the types of metabolites produced
by microbiota from oat ingredients, which include SCFAs.
In particular, the in vitro data provide an understanding
of how the rate and production of SCFAs are influenced
by the oat’s physiochemical properties, such as form (e.g.,
bran or a dehulled whole-grain flake), particle size, and
molecular weight. This type of data can be helpful in
defining targets to assess in human studies and for identifying
possible effects of processing and food-source changes. Data
from human studies provided important evidence that oats
preferentially enriched certain beneficial bacteria, decreased
fecal pH, and in some studies, increased SCFA production.
Overall, the authors noted that factors such as the wide

variety of ingredients studied, differences in amounts of
ingredient tested, duration of interventions, and, in human
studies, participant health and background diets made direct
comparisons and definitive conclusions difficult. They called
for investigators performing future studies to develop best
practices and provide more details, especially on the products
studied, to provide more insight into the relevance of the
findings for diet and health.

No specific experimental technique has received consen-
sus as the optimal approach to address a question; rather,
challenges such as the complexity of the microbiome–diet
relationship and limitations on sampling have led to a
combination of different approaches being necessary to shed
light on specific diet–microbiome–health relationships (395–
397). In a commentary on the role and use of different
experimental systems for microbiome research, Douglas
(398) summed up the situation, stating, “Microbiome science
benefits from the coordinated use of multiple systems, which
is facilitated by networks of researchers with expertise in
different experimental systems.”

Methods that can contribute to the overall understanding
of the microbiome, diet, and health relationship are discussed
in more detail below. The most recent publications on best
practices are included where available.

In vitro laboratory models.
Early studies on microbiota used static methods to simulate
digestion and fermentation and have provided important
details on the biochemical aspects of digestion and fermen-
tation of many carbohydrates. These systems were designed
to mimic physiological conditions with respect to temper-
ature, agitation, pH, enzyme, and chemical composition
but lacked other aspects of digestion such as shearing,
mixing, hydration, and peristalsis (399). In addition, these
systems were challenged by the ability to culture bacteria,
and generally only represented the aerobic bacteria of the
distal colon. The 1990s and 2000s saw the development of
several dynamic in vitro systems that simulated digestion
through the stomach to proximal and distal fermentation,
including anerobic compartments that attempted to include
fermentation of the small intestine and proximal large intes-
tine. These models include compartments for the stomach,
small intestinal tract, and large intestinal tract, and mimic
digestion with acid and agitation, digestive enzymes, and
the addition of other constituents such as bile salts and
pancreatin, with small and large intestine compartments
that are inoculated with batch human fecal matter to
mimic fermentation. Major models used today include
the Simulator of the Human Intestinal Microbial Ecosys-
tem, TNO Gastrointestinal Models (TIM and TIM-2), and
the computer-controlled SIMulator Gastro-Intestinal model
(400–403).

In vitro fermentation systems can provide helpful in-
formation on microbiome–diet connections, particularly
metabolites and preferential substrates for specific bacteria
(394). For example, these models can reveal differential
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and rapid effects of high-protein compared with high-
carbohydrate diets on microbial composition and the re-
sulting differences in metabolite generation (404). This
allows valuable information to be obtained when comparing
different substrates. However, the inoculum used varies
across studies with these models, and the ability to address
precision nutrition questions has not been shown. Although
these models currently use batch microbial mixtures or well-
defined microbe blends, it is possible that, as more knowledge
on the different patterns of microbial populations is gained,
precision nutrition questions could be addressed with in vitro
fermentation systems.

In vitro systems allow examination of controlled interac-
tions between defined gut microbe mixtures and substrates
such as nondigestible carbohydrates and polyphenolics that
are known to escape digestion, while also providing valuable
information on metabolites formed from these components.
A recent review comparing the primary in vitro simulator
approaches for studying prebiotics highlights another major
challenge with these models: the absence of small intestinal
hydrolytic conditions (405). The limitation of not emulating
the mucosal environment, which includes the brush border,
is an important consideration in assessing use of these models
given that most carbohydrates are hydrolyzed in the small
intestine.

A physiological model of the gastrointestinal tract re-
quires numerous cell types, including absorptive and se-
cretive epithelial cells, Paneth cells, and goblet cells. In
the last decade, multicellular organoid (e.g., gut-on-a-chip)
technologies have been developed that include multiple
cell types. Given the important role of the gastrointestinal
tract in immune function—more than 70% of immune cells
line the intestinal tract—these organoid systems can play
an important role in increasing the understanding of the
effects of diet components and factors such as food form
on metabolism, nutrient transport, and barrier function.
Methods for including gut microbiota in these organoid
systems are being explored, including microbes cultured
under anaerobic conditions (406, 407) or cultured from
individual human intestinal biopsies, which supports use in
precision nutrition (408). However, these technologies are in
early-stage development and standardization for replicability
and robustness of data is needed (407).

Animal models.
Animal, or preclinical, models have provided important
mechanistic insights into the microbiome’s involvement
in, and treatments for, conditions such as inflammatory
bowel disease, Clostridia difficile infection, allergic diseases,
metabolic syndrome, and diabetes (409–411). Benefits of
different animal models and challenges in extrapolating
the findings to humans have been reviewed extensively
(393, 396, 396, 410, 412). A variety of animal models have
been used, including zebrafish, Drosophila, Caenorhabditis
elegans, pigs, and dogs (393, 398). However, most studies
on diet–microbiome–health use rodent models, primarily

mice. Mouse models include genetic sister strains, knock-
out disease models, and surgical interventions in which a
specific disease is targeted. Specific to the microbiome is
the gnobiotic mouse model, in which human microbiota are
transplanted into germ-free animals or mice pretreated with
antibiotics to remove native mouse microbiome.

Animal studies offer flexibility, easy sample collection,
and the ability to use procedures not available in humans.
Many environmental, developmental, and biological (e.g.,
genetic, epigenetic) factors can be controlled, or at least
semi-controlled, in animal studies, which allows for the
study of mechanistic and metabolic relationships in disease
development and progression from changes in microbiota
profiles. For example, gnobiotic mouse models have led
to significant insights into conditions such as pregnancy-
induced increases in adiposity and asthma (413). Animal
studies are lower cost and can be conducted over a shorter
time, and some findings have been reproduced in humans.
Another advantage is that the diets, which represent ∼60%
of the variation in the gut microbiome of mice, can be
specifically defined and tightly controlled (393). Light–dark
cycles can also be controlled.

As with other areas of science, extrapolation of findings
from animal models must be conducted cautiously as there
are many biological differences between these models and
humans. Many findings in animals have not been replicated
in humans. For example, an estimated 80% of therapeutics
shown to be safe and effective in animals fail in humans
(411). Some reasons for this include that the mouse’s
gastrointestinal tract is anatomically different than that of
humans (409, 410). Additionally, in contrast to mice, diet
has been proposed to explain only around 10% of the
interindividual variation in people (393). Genetically altering
animals comes with metabolic changes that may impact
outcomes as well. In particular, germ-free animals have
altered immune systems that can complicate extrapolation of
findings (384, 396). In many animal studies, it is not known
whether human microbiota were successfully transplanted
or whether the disruption or dysbiosis patterns observed in
humans have been replicated (413). In addition, most human
studies use fecal samples, whereas mouse studies usually
involve cecal sampling (410).

Although mouse models of human diseases have been
invaluable for mechanistic studies, thanks to the ability to
control numerous factors, animal handling and conditions
can vary greatly across laboratories. The use of inbred rodent
strains, standardized environments, and semi-purified diets
has helped reduce experimental variability and allowed
investigations from different laboratories to be compared
and has improved replication. However, the diets used
for animals are not comparable to those of humans with
respect to the range of foods and components, such as
fiber (393, 411). Emerging science suggests that certain
volatile compounds present in bedding can influence the
microbial output, for example, and therefore, environments
in which rodents are kept may represent a confounding factor
(414).
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Harmonization of design and reporting is necessary for
improving replicability and translation to humans. Several
recent reviews identified important factors for designing
and reporting animal studies (396, 411–413). In addition,
identifying optimal diets for comparison to human studies
is still an emerging area. A summary of animal model
considerations published in recent key reviews on studying
the effects of diet on the microbiome is provided in Table 1,
and attention to these factors in design and reporting should
be considered to improve replicability of animal models.

Human studies.
Human studies such as intervention studies (e.g., RCTs),
observational cross-sectional studies, case-control studies,
and prospective cohort studies are important sources of
evidence for efficacy and effectiveness of interventions.
RCTs, in particular, can provide semi-mechanistic or cause-
and-effect data. Cross-sectional and case-control studies
allow identification of dietary composition and metabolic
or clinical profile associations with microbiome composition
and diversity patterns. For example, ethnography studies
have shown the effect of culture and food patterns on
microbiome composition and diversity, and differences have
been noted between vegans and omnivores as well (386,
416, 417). While not cause-and-effect, these studies have
identified factors that should be reported and/or controlled
for in RCTs. For example, associations have been reported
between microbiota patterns and demographic factors such
as age, BMI, sex, disease/health status, ethnicity and cultural
identification, geographic location, living structure, and
socioeconomic environment from cross-sectional studies
(397, 418, 419). These studies can help form hypotheses for
further research.

RCT intervention studies are the gold standard for
efficacy and cause-and-effect relationships. Clinical trial
standards have been developed for designing pharmaceutical
interventions for disease. However, human nutrition RCTs
come with unique considerations, in part, due to the
challenges in defining what constitutes a healthy population
and the small changes (i.e., low signal-to-noise) in nondisease
outcomes. Controlling diets and addressing confounders is
more challenging in nutrition studies because test foods
and dietary components must be studied in the context of
background diets and due to the fact that dietary practices
are influenced by socioeconomic and cultural factors as
well as religious experiences and beliefs. To improve rigor,
consistency, and reliability of nutrition intervention data, a
series of publications on the design, conduct, documenta-
tion, clinical data management, analysis, and reporting of
nutrition RCTs were recently published under the auspices
of the Tufts and Indiana Clinical and Translational Science
Institutes (420–422). In addition, guidance for conducting
RCTs that investigate relationships between the microbiome
and specific health outcomes has also been published (396).

Longitudinal prospective cohorts provide assessment of
larger populations over longer times. Given the complexity
of our diet, which includes an estimated 26,000 unique

food chemicals and more than 9,000 unique foods, cohorts
allow representation of the real-world variability in dietary
intake (395, 423). However, dietary intake data collection
that can identify this range of foods is necessary and can
be difficult in a cohort study. In addition, detail on food
preparation, food form, and composition is important to
obtain. Given the challenges in controlling interindividual
variation, it has been recommended to obtain multiple
consecutive microbiome samples per study time point or
phase (395). Considerations for gut microbiome assessment
in epidemiological studies have also been published (424).
Community-based clinical or longitudinal clinical studies are
designed to help with this challenge by obtaining data in
real-world settings, while controlling some confounders such
as diet. However, these approaches can be expensive and
tracking diet in detail is still challenging.

Several recent publications have addressed study de-
sign, diet collection, and other considerations specific to
microbiome–diet studies for precision nutrition (395, 425,
426). However, most human studies do not sufficiently collect
or report dietary intake data. When designing new studies,
it is important to keep in mind that food components and
dietary composition can affect the microbiota profile and the
metabolites produced from the microbiome; therefore, both
effects should be considered. Microbiota can respond rapidly
to dietary changes, sometimes in as little as 24 h. Also, due to
the transit time of the gastrointestinal tract, the diet from 2–
3 d prior to sample collection can impact microbiome data;
therefore, data should be collected for a minimum of 48 h
prior to starting fecal collection.

A major challenge in human studies is addressing in-
terindividual variability in the microbiome and controlling
for numerous confounders. Some interindividual differences
relate to documentable participant characteristics such as
age, sex, history, medication use (particularly antibiotics),
and presence of diseases or conditions such as infections
or immune dysfunction. Confounders such as physical
activity, lifestyle factors, and circadian effects also need to
be documented and controlled or monitored. Other factors,
such as history of being breastfed and early solid-food
feeding, may also affect microbiome patterns but it is difficult
to obtain detailed information retrospectively. A specific
challenge with longitudinal cohorts is that environmental
changes and events that occur over the life course—
including varied exposures to microorganisms, occurrence
of disease, and hormonal and age-related changes—affect
the gut microbiota (384). It can be as difficult to discern
causation from association in RCTs. These studies tend
to be shorter and smaller, making it difficult to capture
seasonal variations in a person’s microbiome and to address
interindividual variability. For human studies, only limited
collection strategies are available. These strategies include
stool sampling, mucosal tissue sampling of the distal gas-
trointestinal tract, and lavage and swab sampling. Recent
reviews that include considerations for human studies inves-
tigating the effects of diet on the microbiome are provided in
Table 2.

Diversifying research methods advances nutrition 1357



TABLE 1 Compiled considerations for animal model studies on diet–microbiome interactions

Parameter

Study design, randomization � Use age-matched animals (396)
� Consider and report type of randomization used and document whether littermates were randomized across

groups (396)
Sample size � For humanized mice, the experimental unit is the human donor; the number of mice are only replicates (413)
Acclimation period � Document and report how long after animals were received, experiments were started (396)

� Document and report how long after microbiome transplant, experiments were started (396)
Background strain � Strains differ in their microbiota composition or metabolic patterns; report background strain (415)
Cohort � Report number of cohorts that replicated experiment findings and suppliers and animal house materials

used (396)
� Keep a record of litters (396)

Controls � Conventional mice should be used as a control in gnotobiotic diet-microbiome studies (413)
� Report details for controls (e.g., genetic models, surgical sham, vehicle controls (396); with genetic models, it

is recommended to use ≥2 distinct strains/models since separated breeding between strains over time can
result in microbiota differences (396)

Diet/food intake � Describe energy density and nutrient composition of diets (396)
� Confirm/define whether diet is consistent across animal facilities (396)
� Control-chow versus defined-control diet; chow is not standardized (396)
� If diets are changed, report changes in food consumption (396)
� Consider coprophagia in design and reporting (409)
� Length of diet-acclimation period should be considered and reported (396)
� Add human diet components to increase translatability (411)
� Semi-purified diets usually only have cellulose as fiber source (411), and defined rodent diets have casein as

primary protein source (393)
� If using chow, use open formula because it does not vary in ingredient composition (393)
� AIN-93 does not have fermentable substrate, which leads to reduced microbial diversity over generations

(393)
� Purified diet requires some fermentable substrate (393)
� Acidified water decreases infections but changes the microbiome (393)

Housing � Phenotypes can disappear after a mouse house renovation (415)
� Clean facilities limit microbes, and each mouse house harbors distinct microbes pool (410)
� Report cohousing versus individual housing (avoid eating feces, energy expended to keep warm, cage

effects) (396)
Germ-free mice � Confirm gnotobiotic status with 16s rRNA sequencing (396)

� Avoid antibiotics in water (396)
� Consider that factors such as diet, lifestyle, phenotype, genotype that impact the microbiome in human

donors may be absent or express differently in the recipient mice (413)
� Prevalent microbial taxa of the human gut may not successfully colonize the mouse gut (413)
� Conventional mice may be a better model for human–diet–microbiome interactions, as humans also have an

adapted microbiome (413)
� Consider the differences in immune function in different mouse strains (412)

Microbiome transplant � In humanized mice, microbiota should be sequenced to determine if microbiota patterns are replicated (413)
Fecal sample � Report pellets versus cecum material (396)

� Clearly document and report form (oral vs. other routes), frequency, and duration of dosing with respect to
fecal sampling (396)

Circadian rhythm,
environmental

� Unlike humans, mice eat mostly at night, exposing their gut to different microbes throughout the day, which
can affect their circadian rhythm (415).

� Microbiota from wildlingmice show seasonal shifts in gut microbiome possibly related to diet transition from
insect- to seed-based diets; captive mice are not subject to these shifts due to consuming a similar diet over
time (415)

� Results can be impacted by location, including factors like temperature, humidity, and altitude (412)

Key considerations in data interpretation
The increasing number of diet–microbiome studies being
conducted highlights the need for consideration of key
factors such as experimental design, standardization of
sample collection and analysis workflows, host–microbiome
interactions, influences of other biological and environ-
mental factors, and integration with ’omics data to ensure

that data collected are robust for addressing interindividual
variability.

Strengthening experimental design.
The best practices in experimental design targeted for diet–
microbiome studies have not been extensively reviewed.
However, Knight et al. (429) present typical issues related
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TABLE 2 Compiled considerations for human studies on diet–microbiome interactions1

Parameter Considerations and recommendations

Study design � Double-blind, placebo-controlled RCTs, whether parallel or crossover designs, are the most rigorous and suitable
for human studies. Crossover studies allow each participant to act as their own control, mitigating some
interindividual effects and enabling investigation of responder vs. non-responder status. Parallel studies require less
commitment from study participants and less complex data analysis (427)

� Crossover studies with a washout period between treatments is an ideal study design (428)
� Controlled-feeding studies are best for measuring biological effects of diets. However, these studies are expensive

and not applicable for real-world conditions (393).
� Include lead-in periods before the study start and during the end of the washout period to stabilize lifestyle factors

(428)
� The washout period in crossovers should be at least a couple weeks, but the optimal time is not known (393)
� Report study length and washout periods (396)

Sample size � Case-control and cross-sectional studies should include large sample sizes (e.g., 400–500) based on detecting 5–9%
of differences in major taxon abundances (395). However it may not be possible to calculate sample size when the
effect of a particular dietary intervention on specific bacterial taxa is unknown for the target population (427)

� Current EFSA guidance does not specify effect sizes for biological relevance. An increase of around 0.5 units of
Shannon diversity index may be biologically relevant based on data from obese and lean people (427)

� Crossover studies have smaller sample sizes than parallel studies due to using participants as their own control. This
helps with the issue of interindividual variation in the microbiome (427)

Participant microbiome
and bowel habit
considerations

� Epidemiological studies have reported that 20% to >80% of study participants return stool samples. Consider
participant response rate and representability prior to initiating a population-based microbiome study and include
timing flexibility of shipping samples after stool collection (424).

� Consider baseline microbiome profile as possible stratification or exclusion requirement where a 1–2-wk
turn-around from collection to sequence is possible, particularly for parallel studies and longitudinal studies, or use
an interspersed treatment design that includes baseline microbiome (427, 428)

� Stool consistency, transit time, and timing of fecal sampling can influence the microbiome and should be
considered in managing background noise in data from intervention studies (427)

Participant
demographics

� Collect and report age and sex, and whether participants were randomized based on these factors (396, 428)
� Collect and report ethnicity, birth location, immigration history, and cultural identification. These factors may be

relevant to background diet and lifestyle (396, 428)
� Discrete age ranges should be considered because infants, adults, and the elderly exhibit differences in microbiota

composition, but there is no agreement on when the microbiota becomes adult (427).
� Gender differences in gut microbial composition and in microbial response to dietary components may exist (427)

Participant
socioeconomic and
environmental
characteristics

� Collect and report geographic location (i.e., city/town, country), living structure (e.g., parents with children, single,
shared housing, multigenerational) as well as socioeconomic and rural/urban environment factors (396)

� The variation across people’s microbiome arises in infancy, and a person’s microbiome responses may be due to
variation in GI bio-geography, complex community interactions, and random events (428)

� Approximately 20% of the overall microbiota variation is due to diet, anthropometry, and medication (427)
� Record environmental factors including social-environmental conditions such as crowding, family composition,

and family size for interpretation of results (427)
� Household pets are rich source of microbes for children (427)
� Hygiene and antimicrobial product usage practices can influence microbial exposure (427)

Participant
health/physical
characteristics

� Report BMI and whether there was a difference between treatment groups before and after intervention (396)
� Report or exclude comorbidities that may serve as confounding variables (396)
� Consider excluding participants with history of ileostomy or colectomy; who are on dialysis; or have undergone

recent chemotherapy treatment, radiation therapy, endoscopy procedures, or recent irrigation/cleansing of the
large intestine (424)

� Record health status and medication use for interpretation of results (427). Consider excluding participants on
corticosteroid hormones, prescription weight-loss drugs, insulin, or thyroid medications (<6 mo) (424)

� Inclusion and exclusion criteria should consider recent infection and vaccinations, including flu shot (<1 mo) (424,
428)

� Inclusion and exclusion should consider alcohol consumption (428)
� Factors such as stress, smoking, and coffee consumption can affect microbiota (393)
� Metabolic factors, exercise level, and hydration status can be significant covariates and should be recorded.

Participants planning on modifying lifestyle habits including exercise should be excluded (427, 428)
� Pregnant and lactating participants are typically excluded, but in some cases may be included (428)
� Bowel habits should be tracked at baseline and throughout the study (428)
� Energy intake restriction can change the microbiota; hence, consider excluding people on weight loss programs

and those with substantial weight change (e.g., >20 pounds in past 6 mo) (424, 427)
� Special diets such as vegan or diets with limited food groups (e.g., Paleo diet, gluten-free) have been reported to

change the microbiota (427)
� Microbiome variation across study participants may not be avoidable despite strict eligibility criteria (427)

(Continued)
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TABLE 2 (Continued)

Parameter Considerations and recommendations

Temporal factors and
considerations

� In prospective cohort studies, single time-point sample collection may not adequately characterize a person’s
microbiome, and multiple measures may be needed (424)

� Variation in metabolite phenotype can be seen in the adult gut microbiome. However, microbial DNA is expected
to be representative within a person in comparison to other people over time (424)

� Report temporal factors such as season or time of the day/week of sample collection as these factors can impact
the microbiome (396)

� Sleep cycles and menstrual cycles should be considered as covariates in longitudinal studies (428)
� Circadian rhythms cannot be typically controlled in free-living human studies. Hence, fecal collection time can be

used as a covariate for elucidating interactions with meal timing and fed/fasting intervals (428)
� Long duration travel and jet lag can lead to diurnal fluctuations in the microbiome (427)

Test intervention and
control

� In intervention studies, report whether food is supplied, when it is supplied, and the amount consumed (396)
� Dietary interventions should use placebos and blinding when possible (428)
� Dietary products evaluated must be well characterized. In addition to macronutrients, consider components that

can act as microbial modulators including fibers, specific micronutrients, polyphenols, or probiotics (427)
� A suitable control product should also be selected based on its minimal effect on the microbiome. Maltodextrin is

commonly used as a control, but it can alter microbiota composition. Microcrystalline cellulose has minimal energy
and in comparison to alternative control fibers is less fermented by the gut microbiome (427)

Compliance and
blinding

� It is recommended to report compliance assessment and blinding procedures for study staff, participants, and
diets/food components (396)

� In addition to other considerations, fecal sampling burden (collection and storage) may affect compliance (427)
Background diet and

control

� Dietary intake should be stabilized, rather than standardized, to control variation and guarantee consistency of
individual diet during intervention studies. This can be done by asking participants to maintain their habitual diets
or designing a diet based on the participants’ recent dietary intake data (428)

� Habitual diets, especially fiber intake, should be considered and documented. Evidence suggests that baseline
dietary fiber can influence responsiveness to interventions (427)

Diet information
collection

� If stool transit time is known, dietary intake collection can be optimized relative to stool collection time; when
transit time is unknown, then dietary intake can be collected 3 d prior to stool sample collection (428)

� Report baseline diet of subjects, dietary intake assessments, length of time, recording time, and nutrients that are
relevant to the study objectives, health outcome, and gut microbiota (396)

� In additional to recording dietary macronutrient intake, food choices should be recorded to capture the complexity
and diversity of diet (393, 428)

� Consider including multiple 24-h dietary recalls or 3-d diet records, in addition to FFQ (428).
� Ideally, numerous axes of dietary intake should be controlled, including meal timing, length or duration, and

location—these all affect the food environment. Consider recording appetite dimensions when relevant (428)
� Assessing food intake is a major challenge, but is key, and the main research question will guide the dietary

methods for the study. All self-reporting methods are prone to error, such as random day-to-day variability and
systematic error, and knowing the basis of the error can aid in interpretation of results (427)

Antibiotic use � Antibiotic use, due to its specific impact on microbes, should be considered independently from other medications
and supplements. It is important to specifically address antibiotic use in human studies, given the effect of
antibiotics on microbiota

� Consider excluding participants with recent (<6 mo) antibiotics in oral or IV form (424, 429).
• Recent antibiotic exposure should be considered as part of the inclusion and exclusion criteria (428)

Medication and
supplements

� Medication use should be recorded (428)
� Participants consuming prebiotics, probiotics, or supplements may be excluded or may need to maintain

consistent use throughout the study period (428)
Fecal sample frequency � Describe repeated fecal sampling protocol, if any (396)

� Consider day-to-day variation by taking multiple consecutive microbiome samples per study time point or phase
(e.g., for 3 consecutive days). Ideally, collect more fecal samples (e.g., for up to 7 consecutive days) per time point or
use daily sampling (428)

� Multiple measurements within the same person may be required for accuracy; however, this is not always practical
(393, 427)

Fecal sample collection � Important to use the same methodology throughout the study (427)
� The collection process dictates temperature and transport parameters. Methodologic variation typically is less than

interindividual variation (428)
� Participant self-collection of a few grams of feces can provide enough sample for sequencing or metabolomics

without excessive burden. However, this can over- or underrepresent specific taxa (428)
� If samples are immediately frozen after home collection, then temperature must be maintained during transport as

freeze–thaw cycles can alter microbial composition (426)
� Fecal samples may show uneven distribution of microbes due to variation in the gut environment [e.g., differing pH

levels from the proximal to distal colon, higher concentrations of oxygen near the mucosa relative to other areas;

(Continued)
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TABLE 2 (Continued)

Parameter Considerations and recommendations

homogenization of whole stool may provide a more uniform sample; collection of an entire bowel movement fecal
sample, however, may not be feasible for many studies] (424, 428)

• Considerations for gut biopsies, if available, include that the gut mucosal and luminal microbiomes are not similar, and
microbial populations differ across biopsies collected at different locations of the GI tract (424)

• Sample transport or storage temperature can affect microbial community structure, but temperature-induced variation
has been found to be less than that which arises from interindividual differences. However, sample storage (without
preservative) at room temperature for more than 24 h can impact the microbiome (424)

• Use of a nucleic acid storage solution [e.g., 95% ethanol, RNAlater® (Ambion)] aids in preservation; however, some
studies have found reduced yield and purity of bacterial DNA and possible alterations in bacterial phyla compared
with frozen samples (424, 428)

1EFSA, European Food Safety Authority; FFQ, food-frequency questionnaire; GI, gastrointestinal; RCT, randomized controlled trial.

to experimental design of microbiome studies that are
applicable to diet–microbiome studies. They note that the
study design should be appropriate for addressing the
question under consideration. For example, data from cross-
sectional studies are typically fraught with confounders;
hence, results should be stratified by potential confounding
factors such as age, sex, lifestyle, and environmental factors.
Longitudinal studies are important for assessing changes in
microbial communities over time. In animal studies, the
influence of coprophagy and co-housing must be considered
while evaluating effects of diet on the microbiome. In
addition, numerous dietary factors affect the microbiota,
including nondigestible carbohydrates, polyphenolics such
as tannins, unabsorbed vitamins and minerals (e.g., iron),
and undigested fat and protein (∼5% and 8% of ingested,
respectively) (393). Controlled-feeding trials provide the best
opportunity to define dietary intake; however, given the
challenges and cost of controlled dietary clinical studies,
Johnson et al. (395) promote that diets should be stabilized
rather than standardized. In addition, any dietary changes
will impact the customary microbiome in an individual, so to
gain insight into precision nutrition and specific subgroups
of people based on similar microbiome patterns, using the
individual’s customary diet and lifestyle patterns with each
person as their own control may be the optimal approach.

Fecal sampling is the most established method used in
human studies as it is readily available, noninvasive, and can
be conducted by participants in their own homes. It most
commonly involves either taking a single swab or scoop of
a stool or collecting a full stool sample that is homogenized
and aliquoted later. These samples represent the densely
populated microbes of the luminal intestinal gut microbiota,
and because they are static samples, do not differentiate
permanent from transient strains (393). Fecal samples are
considered high in biomass (i.e., high microbial density);
hence, small quantities are required for sufficient DNA
extraction. Low-biomass samples from other body sites and
tissues necessitate greater consideration of sample quantity
and appropriate controls. Sample preservation depends on
the analysis to be conducted. For example, for assessing mi-
crobial community composition, samples should be stored at
ultra-low temperatures, ideally immediately after collection,

to avoid outgrowth of microbes. For meta-transcriptomics
analyses, the use of RNase inhibitors is required. Overall,
standardizing sample processing is important to control for
variation introduced by collection methods, kits, and storage
conditions.

Standardizing analysis pipelines.
Microbiome data are generated from marker genes, metage-
nomic, or metatranscriptomic sequencing. The pros and cons
of each method have been reviewed (430).

For marker gene analysis, diet–microbiome studies typ-
ically use 16S rRNA sequencing, which amplifies the 16S
rRNA gene for bacteria and archaea. This approach is
preferred because of the relatively lower cost of analysis. In
addition, large public datasets for marker-gene sequencing
are readily available for comparison. For most data, species-
and strain-level resolution is not available. The choice of
several primers and variable regions to target in the 16S
gene can increase bias. Moreover, the functions in which the
microbes are involved cannot be accurately inferred from
marker gene analysis.

As opposed to marker gene sequencing, metagenome
analysis can be used to sequence the whole microbial
genome, and hence utilizes higher sequencing depths and is
more expensive. It is also subject to host DNA contamination.
However, this analysis offers higher resolution (i.e., up to the
strain level) and is more accurate for inferring the relative
abundance of functional genes.

Meta-transcriptomic analysis is used to study microbial
gene expression. In contrast to the above 2 methods,
this approach can distinguish between live, dead, and
actively transcribing microbes and provides better insight
into functional microbial activity. However, it is the most
expensive and complex method and is subject to host
RNA contamination. An ideal diet–microbiome study would
combine marker gene or metagenomic analysis with meta-
transcriptomic analysis to profile the microbial abundance as
well as functional activity of those microbes.

After 16S sequencing, data are resolved into operational
taxonomic units (OTUs) or amplicon sequence variants
(ASVs). The feature abundance data generated are typically
used for differential abundance analyses, which profile
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changes in microbe taxonomy by study groups. For metage-
nomic and meta-transcriptomic analyses, after host contam-
inants are removed the sequencing data can be analyzed
using read-based profiling or assembly-based analyses. For
all methods, alpha and beta diversity can be conducted to
find overall patterns in microbiome variation. Given the
variability in analysis pipelines, analytical methods, and
statistical techniques used, meaningful comparisons among
diet–microbiome studies are limited unless pipelines are
standardized.

Host–microbiome interactions and environmental influ-
ences.
The human microbiota transforms ingested dietary com-
ponents into products that can influence metabolism and
biological functions. The byproducts of microbial diges-
tion that have nutritive value include SCFAs generated
from fermentation of nondigestible carbohydrates, synthesis
of certain vitamins (e.g., vitamin K), and generation of
metabolites from other nondigestible dietary components
including polyphenols and nondigested proteins and fats
(381, 382, 384, 393, 431). Gut bacteria are also in-
volved in converting primary bile acids to secondary bile
acids and in the generation of trimethylamine (TMA)
from dietary choline, carnitine, and betaine found in
red meat, fish, and other animal sources. TMA can be
converted into trimethylamine N-oxide (TMAO), a com-
pound that has been linked to cardiovascular disease risk
(382, 384).

There are also circadian and seasonal influences on the
diet–microbiome association. Host circadian rhythms are
synchronized by a central clock in the hypothalamus, which
receives environmental cues and transmits it to peripheral
tissues. Circadian rhythms are key to maintaining numerous
physiological processes. The diurnal variations in the gut
microbiota can affect host circadian rhythms (432), and
their interaction can influence host metabolism, including
nutrient digestion, micronutrient synthesis in the gut, and
immune health. Moreover, the timing of food intake can
influence microbiome rhythm and, hence, host metabolism
(433). Seasonal impacts on the diet–microbiome relationship
have been minimally explored in humans, although free-
ranging animal models have depicted changes in micro-
bial community composition and function (434). These
variations in microbiome rhythms necessitate consideration
of seasonal, diurnal, and nocturnal controls in precision
nutrition studies. Considering the high interindividual and
circadian variations of the gut microbiome, diet–microbiome
longitudinal studies would benefit from collecting time-
sequence samples.

Integrating microbiome data with ’omics data.
Assessment of microbial community functions is an active
and challenging area of research. ’Omics analyses can provide
insight into metabolite signatures and protein expression
associated with a microbial community (435). Comparing
metabolomics data from cultured isolates with data obtained

from clinical studies can help confirm microbially produced
metabolites (427, 430). Advanced statistical techniques are
important computation tools and include co-occurrence
networks that associate microbe genes with metabolites and
machine learning models that can classify subject states based
on microbiome data. Overall, collective consideration of data
from in vitro, in vivo, animal, cross-sectional, longitudinal,
and clinical trials will aid in the mechanistic interpretation of
dietary effects on the microbiome and microbially produced
metabolites. A detailed summary of analytical considerations
published in recent key reviews is provided in Table 3.

In closing
We provide a summary of the overall methods with respect
to selected research interests in Table 4. Below, we provide
comments on some needs in the diet–microbiome field that
can be addressed now (395) and a few that can only be
addressed with advancements in ’omics sciences and dietary
assessment tools.

Many reviews noted that, for cross-sectional studies, large
sample sizes are warranted, and for longitudinal studies,
crossover designs are most suitable to assess interindividual
variability in response to dietary interventions because study
participants can serve as their own controls. Obtaining
multiple samples at each time point will minimize variability
introduced by sample collection. Given the high variability in
microbiota among different body sites (e.g., oral, skin, colon,
fecal, and urogenital), diet–microbiome studies need to move
beyond fecal samples and assess changes in other body sites
that are associated with health outcomes. In tandem with
strengthening designs for microbiome-related outcomes and
minimizing laboratory-to-laboratory variability, stronger di-
etary assessment methodologies for capturing variations in
food intake are needed.

Because microbial responses to dietary interventions
may reveal responder versus nonresponder phenotypes for
specific outcomes, stratifying participants by baseline mi-
crobiome composition or responder type in human studies
may be warranted. The gut microbiome itself could prove
to be a promising biomarker for predicting responsiveness
to a specific diet (436). Dietary intake assessment could be
strengthened further by measuring established biomarkers
for intake (e.g., metabolomics markers in tissues), although
to date, few biomarkers exist (426). Finally, from a regulatory
perspective, classification of microbiome-directed foods (i.e.,
foods that specifically alter the gut microbiota) as distinct
from or similar to conventional foods, dietary supplements,
or medical foods needs to be discussed (437).

Overall, while the field is extremely promising, we must
be cautious about overinterpreting findings from current
diet–microbiome studies for precision nutrition purposes,
particularly when it comes to prescribing diets based on
the microbiome. While this theory has been popularized in
the media, it does not have sufficient supporting evidence
for clinical applications. New ways of monitoring diet–host–
microbiome interactions and funding priorities, such as
the NIH’s call for the development of tools for sampling
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TABLE 3 Overall analytical considerations for diet–microbiome studies1

Parameter

Storage for any type of
sample from which
DNA/RNA can be
extracted

Temperature
� Samples collected without preservatives need to be temperature-controlled until storage at −20◦C or −80◦C (428)
� Samples stored at room temperature for more than 24 h need preservative (424, 428)
� Long-term storage should be at −80◦C (428)

Storage solution
� For epidemiological studies, use of a nucleic acid storage solution would be most feasible (424)
� For meta-transcriptomics RNase inhibitor should be used (429)
� For metabolomics, sample preservation should not interfere with metabolite extraction (429)

DNA and RNA extraction Amount
� For high-biomass samples, a swab is sufficient while low-biomass samples may require larger amounts (429)
� Improve DNA/RNA yields with mechanical disruption and/or chemical/enzymatic lysis (424)
� Removal of nonmicrobial contaminants (429)
� Controlling technical variability (429)
� Use same reagent kits for all samples in a study (429)
� Take multiple baseline samples for longitudinal studies (429)
� Use blanks during sampling and DNA extraction (429)
� Use reference samples with known composition for standardizing analyses (429)
� Add internal standards (424)

Library preparation and
sequencing

Marker gene amplification and sequencing
� Use 16S rRNA for bacteria and archaea and ITS for fungi (429)
� Use well-tested and cost-effective methods (429)
� Low-resolution view of microbial community (429)

◦ Most taxa cannot be reliably defined at the species level (427, 429)

� Choice of region can influence findings
◦ V6-V9 region of 16S rRNA gene has higher error rate compared to V1-V3 and V3-V5 regions (424)

� Not susceptible to host DNA contamination (429)
Whole-genome shotgun metagenomics

� Sequences all microbial genomes (429)
� Provides more detailed genomic information than marker gene sequencing (429)
� Taxonomic resolution to species or strain level is possible (429)
� Host DNA contamination should be addressed (429)
� Can be expensive (429)
� Analysis is complicated and computationally intensive (424)
� Not widely used in diet studies yet (427)

Shallow shotgun sequencing
� Cheaper than deep sequencing (428)
� Can provide resolution up to species (428)

Other quantification methods (427)
� FISH analysis

◦ Direct histological localization of microbes
◦ Samples must be prepared while fresh

� qPCR
◦ Rapid and sensitive DNA-based method
◦ Quantification at different levels of taxonomic resolution

� Microarrays (DNA arrays)
◦ Comprehensive and sensitive method
◦ Simultaneous detection and quantification of complex microbial community in a sample using molecular

probes
◦ Incomplete coverage of microbial ecosystem

Meta-transcriptome analysis
� Gene expression and active functional information (429)
� Biased towards microbes with higher rates of transcription (429)
� Host RNA contamination should be addressed (429)

Data processing and
bioinformatics

Quality filtering and low-abundance filtering (424)
Choosing appropriate normalization of sequence counts

� Total sum scaling (i.e., relative abundance), cumulative sum-scaling, rarifiying, etc. (429)
� Tools such as Bioconductor DESeq2 and Edge R

16S rRNA sequencing
� Deblur or DADA2 to resolve sequence data into sOTUs (429)

(Continued)
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TABLE 3 (Continued)

Parameter

Metagenomics and meta-transcriptomics
� Preprocessing to remove host DNA/RNA (429)
� Analysis using read-based profiling tools such as Kraken, Metagenome Analyzer (MEGAN) or HMP Unified Metabolic

Analysis Network (HUMAnN), or assembly-based tools such as metaSPAdes and MEGAHIT (429)
Statistical analysis

� Individual taxon level
◦ Univariate models to test group differences in taxon abundance (424)
◦ Univariate associations with outcomes (424)

� Higher-level analyses for overall patterns in microbiome variation
◦ Alpha and beta diversity (429)
◦ Insight on relationships between microbial community structure and outcomes: PCoA and NMDS, but these

do not quantify potential associations (424)
◦ Quantifying associations: multivariate tests such as nonparametric MANOVA, or the kernel-based regression

association test of MiRKAT (424)
◦ Identifying taxa associated with outcomes: penalized regression with high-dimensional predictors, such as

ridge regression, LASSO (424), and SPARCC

Advancements of reference databases are essential (427)
Address challenges with statistical power and effect size for microbiome studies (429).

Metadata Record all details of collection process to account for potential variability (429)
Animal studies

� Record stratification of experimental groups into multiple cages (429)
� Record mouse of origin in the metadata (429)

Record environmental and physiological conditions for human data (429)
Reproducibility/data

repositories
The Genome Standards Consortium standards enable comparisons across datasets (429)

� MIxS for MIMARKS and MIMS
Bioinformatics tracking (429)

� Commands and software should be tracked
◦ Jupyter Notebooks or R Markdown and storing in GitHub
◦ QIIME 2 and Galaxy, automatically track via data provenance tracking system

� Use meta-analysis and data archiving tools such as Qiita and EBI
Data should be deposited in public repositories (429).

1FISH, fluorescent in situ hybridization; HUMAnN, HMP Unified Metabolic Analysis Network; ITS, internal transcribed spacer; LASSO, least absolute shrinkage and selection
operator; MIMARKS, marker genes; MIMS, metagenomes; MIxS, minimum information standards; NMDS, non-metric multidimensional scaling; PCoA, principal coordinates
analysis; sOTU, suboperational taxonomic unit; SPARCC, sparse correlations for compositional data.

of the gastrointestinal tract, will provide opportunities for
understanding the full nature of the human gut microbiome
(430). Due to the direct interaction of food components with
the gut microbiome and the potential of managing chronic
disease risk and life-long health through the microbiome,
diet–microbiome studies are promising for helping inform
targeted precision nutrition approaches that could improve
individual and public health.

Nutritional Status
Introduction
Assessing nutritional status is important for monitoring
of growth in infants and children, for example, and often
includes relative measures of body size or specific measures
of body composition and energy expenditure as markers of
health or disease risk. The application of specific techniques
to assess nutritional status and energy balance varies by
the primary objective, such as yearly health assessments,
planning for nutrition interventions, or research at the
clinical or epidemiological level. Each technique has specific

purposes and associated strengths and limitations and pro-
vides valuable data that can support policy recommendations
and the concepts of precision nutrition in terms of health
promotion and disease prevention.

Energy intake and energy expenditure.
A variety of methods are available for measuring dietary
intake, and these are discussed in greater detail in the “Di-
etary Assessment” section. Briefly, at the individual/clinical
level, dietary records and 24HR interviews are the most
accurate because they include detailed data on specific
foods consumed and the intake of energy, macronutrients,
and micronutrients. These methods also have relatively few
limitations related to age, gender, and race/ethnicity, and
all foods consumed are recorded and used in the final
calculations. At the population level, FFQs are the most
common because they involve a simple questionnaire, for
which the answers are used to calculate usual intake. Finally,
stable isotopes can be used to assess total energy expenditure
in free-living individuals, which can be used as a proxy to
estimate daily energy intake.
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TABLE 4 Summary of methods in the context of specific research interests1

Topic areas of interest Methods well suited Strengths Other factors to consider

Identifying microbial generated metabolites
� In vitro � Directly measure metabolites

� Easily manipulate cells
� Controlled interaction between

substrates and microbes

� Isolated from host influence
� Not all microbes are easily cultured
� Does not recapitulate mucosal

environment

� Animal � Can use invasive procedures
� Culture microbes of interest in

gnotobiotic mice

� Gnotobiotic mice have altered immune
systems

� Animal findings are not always replicated
in humans

� RCTs
(metabolomics of
human samples)

� Integrates host influence � Restricted time points and accessibility of
tissues

� Colon versus cecum samples

Impact of microbiome–diet-relationship on
health/disease outcomes � Animal � Well-established, disease-specific

models
� Lower complexity diet

confounders can be controlled
� Shorter lifespan to study

long-term diet/healthy aging

� Genetically altering animals may change
metabolism

� Test diets do not reflect human diet

� RCT � May establish causality in humans � Stabilized diet
� Time duration for assessing changes in

microbial communities
� Cost

� Computational and
prediction models

� Able to integrate data from
diverse study types

� Requires sophisticated skills in
multivariate data analysis

Influence of host genetic diversity on microbiome
mediated response to foods � Animal � Genetically diverse animal models

provide high diversity with lower
sample sizes

—

Effects of dietary patterns/foods/nutrients on
microbiome changes � Epidemiology/

observational

� Correlation/hypothesis-
generating

� Can study effects of population
genetic diversity

� Small changes can be difficult to identify
in healthy populations

� Difficult to control confounders

� RCT/
crossover studies

� Show causal relationship

—

Impact of food properties on microbiome metabolites
� In vitro
� Animal
� RCT/crossover

studies

� Can test many variations of
specific foods (e.g., particle size,
form, amount of fiber)

—

Effect of culture, food patterns, socioeconomic
considerations, background, and other potential
cofounders on diet–microbiome interaction

� Epidemiological/
observational

� Easily identify many factors and
associations to generate
hypotheses

—

(Continued)
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TABLE 4 (Continued)

Topic areas of interest Methods well suited Strengths Other factors to consider

Circadian and seasonal influences on the microbiome
� Animal � Controlled

� More accurate collection of
time-sequence samples

� Ease of invasive procedures

� Restrictions on multiple time point
collection

� Crossover/RCTs
(longitudinal)

� More realistic

—

Identify responder/nonresponder phenotype to
microbial responses to diet � Crossover/RCTs

(longitudinal)

� Intraindividual differences can be
captured

—

1RCT, randomized controlled trial.

Total daily energy expenditure.
A well-validated technique (438, 439) known as the DLW
method is used to measure total daily energy expenditure
in the free-living state over 7 to 14 d, using isotopically
labeled water (2H2

18O). DLW can objectively measure
energy intake, as energy intake is the sum of total daily
energy expenditure and change in body energy during the
measurement period, which can be estimated from change in
body weight or body composition. DLW is almost completely
objective (i.e., independent of participant-introduced bias)
and offers substantial advantages over other methods for
assessing energy intake including self-reported diet, which
is influenced by participant reporting (440), and the intake-
balance method on a metabolic ward, which necessar-
ily imposes lifestyle conditions very different from usual
life.

Experimentally, the DLW method is relatively low burden
for participants. At baseline, 2 urine samples are collected
before the participant drinks a dose of 2H2

18O. Then,
post-dose urine samples are collected in the fasting or
nonfasting state (441) on the day of dosing and at intervals
of up to 14 d. Samples are shipped to the isotope labo-
ratory for analysis. Outpatient collection and shipping of
samples by participants is a routine procedure (442). The
calculated isotope elimination rates reflect the participant’s
CO2 production and are converted to total daily energy
expenditure based on an energy equivalent of 1 L of CO2
to be 3.815/respiratory quotient (RQ) + 1.2321, where RQ
is based on dietary composition reported by the participant
(443). This self-reported information has only a small effect
on calculated energy expenditure [e.g., an RQ of 0.9 vs.
0.88 introduces a 2% error (444)]. This is because RQ is
calculated from the balance of nutrients, which is more
accurately reported than energy intake, thus allowing the
method to be largely, if not entirely, free from participant
bias.

DLW can also be used as an indirect estimate of total
energy intake. Thus, for precision nutrition, this approach
can detect changes in total energy intake over a period of

weeks or months, especially when accompanied by measures
of body weight to record any weight gain or loss. The
DLW technique is also suitable for small or large studies,
although the fiscal expense does make it prohibitive for large-
population studies. It is important to note that, while DLW
is much more accurate than activity monitors for capturing
daily energy expenditure, it does not discriminate activity
and reflects an average total energy expenditure over 7 to 14
d, regardless of sedentary or activity patterns.

Tri-axial activity monitors are a relatively low-cost alter-
native to DLW. These monitors use physical characteristics
(sex, height, weight, and age) combined with continuous
body movements to estimate resting metabolism and activity,
which are then used to estimate total energy expenditure.
These monitors have been validated in several studies (445–
447) and are relatively comparable to DLW, depending on the
model. These activity monitors can capture almost minute-
to-minute activity of an individual, and such measures are
highly responsive to minor and acute changes in physical
activity.

Activity monitors are not a perfect replacement for DLW
because the data are based on proprietary algorithms that
cannot be modified to suit specific study needs or questions.
While most of the algorithms are generally accurate, there
are issues when used with people with low or high fat mass.
Because the algorithms use only body weight to estimate
resting energy expenditure, resting energy expenditure may
be underestimated for a person with low body fat or
overestimated for those with excess body fat mass. Thus,
average samples will produce the most valid results.

Body size and composition.
Techniques are available for studying how body size and
composition influence health and disease in both individuals
and populations. The easiest, but least precise, techniques
include anthropometric measures of height, weight, and
skinfold thicknesses, as well as body circumferences. More
precision is offered by secondary methods that rely on
assumptions regarding body mass and hydration such as
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bioelectrical impedance analysis (BIA) and plethysmogra-
phy. Imaging techniques, such as DXA, MRI, and computed
tomography (CT) can provide accurate assessments of body
composition overall or in various compartments as well as
organ size. Stable isotopes used to assess total body water
can be extrapolated to estimate body composition with less
than minimal risk. Finally, emerging techniques using 3D
scanning are being developed to estimate body composition
from detailed scans of key anthropometric landmarks and
are promising for predicting fat and lean mass with relative
accuracy (448–451).

Strengths
Methods used for measuring energy balance and body
composition each have inherent strengths that make each
more or less appropriate for different types of investigations,
such as clinical interventions or large population studies. In
terms of precision nutrition, it is possible to examine the
responsiveness of any particular outcome relative to an inter-
vention or program. This section will present the strengths
of each method in this light, focusing on the applications of
each method and their potential for measuring outcomes at
the personal or population level.

Energy and nutrient intake and expenditure.
Dietary intake is influenced by various physiological, be-
havioral, social, or environmental factors. For example,
psychiatric disorders such as anorexia or bulimia nervosa can
manifest in eating behaviors that are distinctly out of line with
healthy eating (452, 453). At the same time, eating in isolation
or with a large group both influence dietary intake in ways
that can decrease or increase normal intake. Environmental
factors such as odors or temperature may also change
dietary habits. Measuring these various influences on dietary
intake in clinical or free-living conditions is challenging
and using the best-suited approaches can improve one’s
ability to understand dietary patterns and food consumption
that promote or degrade health. Most of these methods
are discussed in greater detail in the section on “Dietary
Assessment” methodologies, but as they are relevant to
measures of energy expenditure and body composition, it
is important to present them within the context of energy
balance.

For individual or clinical assessments, 24HR interviews
can provide a fairly reliable and generally accurate assessment
of the total energy a person consumes and an adequate
profile of their diet’s macronutrient composition. The 24HR
is logistically intensive because a trained interviewer must
thoroughly discuss details of a study participant’s record
including types of foods consumed, approximate portion
sizes, and the composition of mixed dishes. At the same
time, the 24HR is flexible enough to obtain data of the same
quality from many diverse individuals, regardless of factors
such as race/ethnicity, religious practices, and SES. Thus, in
terms of precision nutrition, the 24HR is highly responsive
to major changes in a person’s dietary habits and can
detect changes easily, provided the interviewer is adequately

trained. Although the 24HR is not as prone to database
limitations as the FFQ, there are wide disparities in accuracy
that can be attributed to variations in interviewer expertise,
education, motivation and memory of the participant, and
the database used to calculate energy and macronutrient
intake. Most important, there is considerable day-to-day
variation in dietary intake and a single day, or even several
days, may misclassify individuals relative to their usual
intake. The relative accuracy of the 24HR is generally low
and has been criticized for simply being inadequate to
generate data that can be used to make population-level
generalizations or to form sound nutrition policies (454,
455).

For large epidemiologic/population studies, the primary
alternative to the 24HR is the FFQ, which provides generally
accurate estimates of usual macronutrient and micronutrient
intakes. The FFQ is less labor intensive and logistically
challenging than the 24HR and can be used remotely
or through mailings, allowing hundreds or thousands of
participants to participate. The FFQ’s ease of use is a major
strength for estimating the usual intake of a population with
far less expense than multiple 24HRs. The database used to
provide nutrient estimation is updated on a regular basis so
that trends in dietary patterns of populations can be assessed.
The FFQ’s repeatability is similar to the 24HR when assessing
micronutrient intake, but it is less accurate in capturing total
energy intake, explained in more detail below. Although
there is great value in using the FFQ because key changes
in food patterns are detectable, it is important to recognize
that the list of “common” foods in this approach may not
be appropriate for some minority populations or immigrant
groups.

Body size and composition.
To assess nutritional status using body size and body
composition, different methods are necessary to support per-
sonal and population approaches. The strengths of different
methods and approaches vary but remain consistent in their
ability to assess body fat mass as a primary predictor of
disease risk. However, as with any research approach, caveats
exist for different techniques.

The primary strength of anthropometric indices such as
height, weight, and body site circumferences is the relative
ease and low cost of measurement. Regardless of the setting,
anthropometrics provides a fundamental assessment of body
size and growth. Skinfold measures and waist circumference
measurements performed by a skilled investigator provide
valuable data on body size and composition with minimal
cost. The response of anthropometric measures to acute
changes in energy balance is limited, but chronic changes
can be assessed and tracked. These strengths extend to the
use of anthropometric methods in population studies and
are accessible for investigators working in low- and middle-
income countries.

Improving the accuracy of anthropometry involves an
increase in expense, but the use of BIA is only a moderate
step in this direction. A number of instruments are available

Diversifying research methods advances nutrition 1367



and the features of each must be established prior to deciding
on a particular instrument. For example, some electronic
scales are equipped with BIA and handheld devices, but these
instruments only measure regional body fatness and rely on
proprietary algorithms that are not adaptable outside of the
sample used to create the algorithm (456–458). However, for
personal use, and to detect changes in body composition,
use of the same instrument for serial measures limits some
of these problems. Other instruments accurately assess total
and regional body composition and are acceptable for both
personal and population assessments (459–461).

Air displacement plethysmography is an accurate method
for determining body composition in adults and children,
with models available for infants (457, 462–464). The Bod
Pod has been shown to be accurate and reproducible and
is typically only used for clinical studies as the unit is not
portable and may be cost-prohibitive. Still, between the adult
and pediatric PeaPod version, this method can be used across
the lifespan with minimal risk. However, unlike BIA or DXA,
the Bod Pod only measures fat mass and lean body mass
with no estimate of body fat distribution, limiting the knowl-
edge that can be gained from prospective or intervention
studies.

Stable isotopes are a safe and flexible method to assess
total body water and body composition across the lifespan
and among those with acute or chronic diseases (465–
467). Perhaps most importantly, stable isotopes can be used
in clinical or remote settings, making the method useful
for research work in wealthy regions as well as low- and
middle-income countries. Briefly, a dose of deuterium (2H)
or oxygen-18 (18O) is provided to an individual and a urine
or saliva sample is taken 4 to 6 h later to estimate the isotope
enrichment in the body pool. This provides an accurate
estimate of total body water that is used to calculate fat
mass.

Finally, advanced imaging, such as DXA, MRI, and CT,
provides accurate assessments of body composition overall or
in various compartments as well as organ size. Given the high
accuracy and precision of these techniques, even discrete
changes in body composition or body fat distribution can be
assessed, making such methods excellent for clinical studies
and even population studies, such as NHANES. The primary
strength for imaging methods is the precision of measuring
body compartments that can be only indirectly measured
using anthropometrics or are not assessed in methods like
air displacement plethysmography.

Limitations
The application of any of these techniques to human
nutrition research has inherent limitations, but more so
when considering the aims of studying precision nutrition.
While some of these potential limitations can be addressed
in the research design stage, some cannot be minimized,
and another method may be more suitable. The limitations
of methods for assessing nutritional status tend to fall into
1 of 2 categories, either the technical expertise required
to use the method effectively or the logistics/expense of a

particular method. We will briefly address these limitations
and provide alternative approaches within the context of
precision nutrition.

Energy intake and expenditure.
The best methods for assessing energy intake and expendi-
ture depend on whether a study requires a more expensive
and technical method or a simpler but less accurate method.
The use of a 24HR is logistically and technically difficult in
that each day of intake takes between 30 and 45 min to be
completed well and a trained enumerator is essential to ask
probing questions to clarify general responses so that detailed
information can be gleaned from the participant’s responses.
Dietary records may be less technically involved, but the
data quality tends to suffer unless the trained enumerator
clarifies questionable or unclear responses. The FFQ may
minimize some of these limitations but is not ideal for
identifying specific ethnic or cultural differences in diet
as it was developed using commonly consumed foods for
a select population. Essentially, the limitations of any of
these techniques will be determined by the study design.
For example, the FFQ can be more easily used in large
populations and is thus the obvious choice for large-cohort
studies. On the other hand, if the research question is related
to specific food patterns and needs to allow for various ethnic
foods, using a smaller sample size allows multiple 24HRs to
be used without negatively affecting data.

Ultimately, the most important question surrounding
estimates of energy intake is how accurate they are compared
with the most accurate approaches, such as DLW. There
is a well-established trend of underreporting energy intake
in dietary recalls (468, 469). Differences in energy intake
revealed through DLW comparison were found for low-
income women (470) and countries (471) as well as for both
Black and non-Hispanic White adults (472). Overall, energy
intake determined through dietary assessment methods (e.g.,
automated self-administered 24HR, 4/7-d food records, FFQ,
semiquantitative FFQ) all underestimated energy intake
compared with DLW energy expenditure (473, 474). While
inaccurate for determining intake compared with DLW
methods, dietary intake data provide essential information
for nutrition research. Future work should aim to improve
dietary assessment methods with the goal of matching DLW-
determined intake as closely as possible without introducing
bias into the protocol.

As discussed earlier, there are many advantages of using
an activity monitor in healthy individuals, such as lower cost,
logistical and technical ease, and the fact that proprietary
algorithms estimate total energy expenditure using minimal
physical characteristics. However, the validity of such mon-
itors decreases as body composition of individuals is farther
from what the algorithm considers normal. Thus, while
these monitors may be advantageous for larger studies where
the cost of DLW becomes prohibitive, or in lower-income
countries where cost is a limiting factor, the fact that the
monitors are less reliable for underfat or overfat persons is a
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major limitation that cannot be overcome without modifying
the algorithm or adjusting raw values for body composition.

Body size and composition.
Similar methodological challenges are found when consid-
ering which technique to use for measuring body com-
position. Technically, the quality of the data improves as
methods progress from anthropometrics to plethysmography
to stable isotopes and imaging. The major weaknesses of
anthropometric measures include relatively poor precision,
high need for technical expertise, and time required to
collect data. For example, skinfold measurements have a
bias that underestimated body fat percentage compared with
deuterium oxide dilution (475, 476), 18O dilution (477, 478),
and DXA (479) methods.

While BIA is an improvement in assessing body com-
position over anthropometry, it is not without limitations.
BIA often requires proprietary algorithms that estimate
total body water using age, sex, height, weight, and the
raw impedance and resistance values. Without knowing
the specifics of the sample from which these algorithms
were developed, it is unclear if they can be applied to a
broader population. For example, the algorithm may have
been developed in a sample with significantly different
body proportions, which would limit its ability to accurately
estimate total body water in people with different torso-to-leg
ratios or significantly different lean tissue hydration or leg or
arm length. While most BIA equipment is generally accurate,
there are differences among racial or ethnic groups. In some
settings, these limitations have been overcome by developing
population-specific prediction equations to apply to the raw
BIA data (480, 481). In conclusion, BIA is a validated method;
however, more research is needed to confirm BIA calculation
for various ethnicities and age groups.

More precise methods to assess body composition are
limited by available funding or technical experience. For
imaging, the initial cost of equipment is significant, yet the
quality and breadth of data collected with these methods are
much greater than with less expensive methods. Although
imaging collects a greater amount of data that are also
more accurate, compared with other body-composition
techniques, these advantages are often offset by the expense
and lack of portability of the equipment, which presents
challenges to using these techniques in low- and middle-
income countries. There is also a minimal exposure to
radiation using either DXA or CT scans, which raises
questions about their use on certain populations, such as
infants, children, older adults, and the ill.

Key considerations in data interpretation
The methods reviewed in this section include approaches
that range from simple measures of nutritional status (weight,
fat mass, etc.) to more refined measures of total body water
to specific concentrations of nutrients in the body. Given
the myriad of options available to assess nutritional status,
conclusions may or may not be made from studies using
any single method or combination of methods. As with any

research method, the choice of method or technology to use
is constrained by the overall objective of the study along
with available funding and logistical issues. To address these
issues, we will describe the range of options based on the
primary outcome assessed.

Energy intake and expenditure.
One of the most pressing nutrition issues facing the field of
nutritional science is energy balance, given the continued
high prevalence of undernutrition, the high prevalence of
overweight and obesity, and the emerging challenge of the
double burden of malnutrition. To best understand these
problems and advance interventions or policies to reverse
these imbalances, it is important to appreciate the nuances of
methods for assessing energy balance and nutritional status.
The section on Dietary Assessment methods covers the pros
and cons of 24HRs and FFQs for estimating individual
nutrient intake for clinical and epidemiological studies.
While these methods are not as accurate as many would
prefer, they do play an important role in understanding
temporal changes in diet as well as changes in dietary
patterns. The need for more accurate techniques is great,
and many innovative technologies such as digital photos
of food (482–484), internet-based applications, and food
records (296, 485) are emerging as potentially useful.

Many methods used to assess energy intake and ex-
penditure do not accurately respond to personal changes
in diet and health, factors that are hallmarks of precision
nutrition. For dietary intake, most methods do not have the
accuracy of laboratory studies of diet, direct calorimetry, or
DLW. Thus, one would not expect the outcomes of these
methods—energy intake and macro- and micronutrient
composition—to change significantly with minor changes
in actual diet. Although, major changes, such as adopting
a low-carbohydrate diet, may elicit detectable shifts of the
outcome indices assessed by these methods, such changes
may be lost due to the lack of accuracy and never be detected
at the individual level. New and more accurate methods that
are more objective, such as the Veggie Meter (486), may
provide some allowance for precision nutrition, but these are
generally acceptable for studying only 1 nutrient or class of
nutrients.

On the other hand, using DLW to assess energy intake
is objective and influenced primarily by a person’s diet and
activity. Overall, having an accurate estimate of total energy
expenditure provides a solid foundation for assessing energy
balance and dietary intake. As DLW relies on respiratory
exchange rates of oxygen and carbon dioxide, any physiolog-
ical response that increases CO2 production will be reflected
in the total energy expenditure, making DLW extremely
responsive to individual changes. However, DLW does not
discriminate between the types of energy expenditure, such
as basal metabolic rate or energy expenditure for physical
activity.

The greatest value comes from combining methods. Using
an FFQ with DLW and an activity monitor, while increasing
the logistical complexity of a study by a rather modest,
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but significant degree, greatly increases the amount and
value of data collected. For example, use of an FFQ with
DLW provides a level of validation that can be incorporated
into statistical analyses for the dietary data. Using DLW
with an activity monitor not only validates the monitor’s
algorithm but also provides valuable activity data that can be
analyzed in conjunction with total energy expenditure. The
complementary features of each method do not strengthen
weaker methods but, until more accurate dietary intake
methods are available, allow internal validations and cross-
comparisons with other studies that may prove beneficial for
making policy decisions from dietary studies.

Body composition.
Methods to measure body composition range from simple
anthropometrics to more technical methods. The simple
methods, such as BMI and skinfold measures, are adequate
for assessing large groups of people to determine the
prevalence of overweight or underweight. Although there
has been considerable discussion about BMI’s effectiveness
as a proxy for adiposity, BMI has consistently been shown to
have a high correlation with body fat mass in large samples.
Given that, BMI is not best used as an assessment tool for
individuals because it does not measure any component of
body mass other than weight and height and is not a direct
measure of body fatness. However, when used in a sample of
average adults, BMI can discriminate between a high- or low-
fat mass relative to height and is useful for tracking changes
in populations to determine changes in nutritional status,
especially given the very low cost of measuring height and
weight.

More precise measures of body composition, from BIA
to advanced imaging, better inform investigators regarding
body fat mass as a key outcome related to obesity-related
comorbidities. Perhaps more important is that these mea-
sures can assess regional adiposity, providing key data on
body fat distribution as a marker for pathogenic adipose
tissue, such as visceral fat mass. Options for investigators
remain broad as relatively inexpensive BIA equipment has
been validated for estimating total and regional fat mass
(487). Such methods are acceptable and available for high-
and low-income settings. Advanced imaging from methods
like DXA and CT provides the most precise estimates of body
composition, but costs and infrastructure generally limit
such equipment to large clinical settings. Finally, deuterium
dilution is a relatively easy method to use in any setting, be
it clinical or field; however, stable isotopes are limited to a 2-
compartment model of fat mass and lean tissue. This method
does, however, allow total body water to be assessed, which
is a useful parameter for some diseases states.

The body-composition measures discussed have limited
interface with other methods due to the technical differences
and specific outcomes of each method. However, combining
less accurate methods with more precise methods, such
skinfold measures with total body fat mass assessed with
deuterium dilution, can expand the data collected with
minimal changes to protocols. Perhaps the most challenging

aspect of body-composition measures is the expense and
logistics of imaging in low-income settings. For these
settings, it may be necessary to tolerate less accurate methods,
such as BIA or skinfold thickness, and to sacrifice precision
to gain compliance or improve logistics. The use of stable
isotopes is a flexible approach to collect several pieces of data
(i.e., energy expenditure, total body water, body composition,
and tissue hydration) from 1 protocol. The additive impact
of using BIA will then allow for body fat distribution as an
additional outcome that is superior to anthropometrics.

As the objective of precision nutrition is to provide sound
and accurate nutrition guidance that can be assessed using
precise and responsive outcomes, it is of interest to consider
how the techniques described to assess body composition
fit with this approach. Broadly, the main outcomes of body-
composition measures, such as fat mass and lean body mass,
do not change with considerable dietary or activity changes
that persist for only a few days. Therefore, depending on the
rate of responsiveness, these methods are not appropriate for
precision nutrition if acute changes are of interest. However,
with sufficient time, such as 2 wk or more, dietary and activity
changes can begin to be detected as body weight changes
and such methods, including BMI and anthropometrics, are
highly suitable for precision nutrition. More importantly,
the use of stable isotopes and imaging allow very precise
detection of changes in adipose tissue mass and adipose tissue
distribution.

In closing
There is great interest in and need for highly accurate
methods to assess dietary intake, energy expenditure, and
body composition. The continued high global prevalence of
obesity as well as the double burden of disease are among the
high-priority areas of research that warrant accurate research
methods. In addition, the development of national and global
nutrition policy based on the best research available demands
that methods be accurate, reproducible, and usable by
investigators throughout the world, independent of wealth.
Indeed, the coronavirus disease 2019 (COVID-19) pandemic
has revealed stark disparities between countries in terms
of responding to the pandemic as well as acquiring and
distributing vaccines. The spillover effect of the pandemic on
food security and nutritional status is problematic, and the
ability of any 1 country to investigate these effects should not
be limited to the wealthiest.

Although the methods available to date do fulfill these
larger needs, the nutrition community has relied on dietary
intake methods that are not highly accurate. The ability to
measure total daily energy expenditure and physical activity
remains in the hands of those with the technical expertise
and financial ability to use DLW or activity monitors.
National surveys continue to use BMI as a primary marker
of nutritional status despite the fact that it is a proxy for
body composition and cannot be used for more detailed
research on body composition. On the other hand, the cost of
using imaging or stable isotope methods may hamper cross-
country comparisons.
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Despite these challenges, there is a history of cooperation
and collaboration between rich and poor countries, and
this history clearly shows that important research questions
can be addressed regardless of national income. What
has not been solved is how to improve the accuracy of
dietary methods to the level of methods used in energy
expenditure and body composition. Developing new, more
accurate dietary intake methods remains a goal for many
nutrition scientists across the globe. At the same time, current
methods are reliable for studying temporal changes within
communities and can be used with some accuracy to study
the influence of shifts of foods, diets, or dietary patterns
on health. What remains for the future is to find the best
ways to combine existing technology, such as phone apps,
with highly accurate methods like DLW to develop methods
that are inexpensive, accurate, and transferable. This will
allow nutrition policies to be based on sound evidence with
minimal bias.

Cross-cutting Considerations
Introduction
The sections thus far have outlined some of the many
methodological domains that nutrition research encom-
passes. Yet, despite many aspects being shared in separate
sections, there are several overlapping, cross-cutting consid-
erations that apply to the advancement of nutrition science
over the next few decades. In this section, we highlight
some cross-cutting methods and principles to emphasize that
nutrition science is not, and cannot, be a siloed discipline if it
is to advance our understanding of the causes and correlates
of nutrition and health.

Cross-cutting methodological considerations
Precision nutrition is, at its root, a causal proposition: if a
person consumes a particular food or diet, will it result in
better health, help avoid disease development, and/or lead
to a reduction in morbidity and mortality from diet-related
diseases? Will it do so within one’s geopolitical, economic,
or social context? These causal questions are implicit at the
heart of much research on nutrition and health but are not
always stated clearly. The methods used often look at average
causal effects and associations, rather than the expectation of
what would happen to a given person because of a specific
intervention. Indeed, the expectations (in both the statistical
and colloquial sense) hinge on the exchangeability principle
that the expected effect of an intervention is identical across
people, with random noise explaining any differences among
them. Yet, in many studies, there are individuals who appear
to respond to a treatment or diet while others do not respond
(or are adversely affected). Rather than try to measure
average effect, attention should be paid to the differences in
responses between individuals and in identifying outcome
patterns that could provide insight into this variability. Early
advances in precision nutrition recommendations have built
on repeated refinements of this exchangeability by whittling
down subgroups: perhaps men respond differently than

women or older people respond differently than younger
adults or children.

At the extreme of precision nutrition is the idea that
everyone is idiosyncratic, such that exact predictions are de-
pendent entirely on an individual’s circumstances. Although
this is likely to be technically true, we can most likely find
some degree of exchangeability for which the idiosyncrasies
result in minor deviations from a broader prediction of
individualized effect. For instance, dietary intervention A
may work slightly less well for person 1’s diabetes than for
person 2, but that difference is a degree of magnitude less
variable than the effect of dietary intervention A versus B.
These factors require moving beyond average causal effects,
which are the common endpoints to many randomized
trials and observational studies, and instead investigating
whether deviations around the average really are random
noise or whether the differences have informative, actionable
causes. Individual data points previously disregarded as
outliers are as valuable as those that approach a mean
effect.

Below is a discussion of several cross-cutting methodolog-
ical considerations that may help identify, predict, and test
factors that can lead to a more personalized understanding
of the effects of nutrition on health.

’Omics, big data, data mining, machine learning, and AI.
Throughout several of the above sections, ’omics and other
large, multidimensional data are referenced. The coherent
use of multimodal data, in which data of different forms and
origins are synthesized, is of increasing interest. Utilizing so-
called “big data” involves a series of considerations, quite a
few of which start with V, including volume (the amount
of data), velocity (how much data are generated per unit
time), variety (harmonization and structure of data, or lack
thereof), and veracity (quality of data), among others. The
challenges facing nutrition science from big data, machine
learning, and AI-based inference are multifold.

The quality of dietary data, or its veracity, has been
discussed thoroughly over the decades as well as within
this document and will not be rehashed here other than
to say that many approaches rely on weak proxies (e.g.,
self-report, food disappearance data, as-of-yet unvalidated
biomarkers) that may, in turn, be cross-tabulated with
incomplete nutrient databases. Similarly, measurements of
other factors of potential interest to precision nutrition (e.g.,
older methods of DNA sequencing, unstandardized phys-
iological and biochemical analyses, evolving microbiome
technology, and varied sociodemographic evaluations) may
have important limitations. Any predictions built on data,
regardless of the amount and size of the dataset, inherit those
limitations.

Consistency and generalizability are other important
considerations. The consistency of data within a cohort
may be sufficient to show similar associations, but if using
different dietary assessment methodologies (for instance,
FFQ vs. 24HR), the time horizon, diet captured, and other
model inputs will vary. Thus, a beautiful prediction model
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could be constructed within a dietary methodology, but that
model may be fragile in response to changes in definitions
of dietary or characterization variables. A model built on
one dataset is unlikely to meaningfully and quantitatively
be reproduced with another dataset if the variables are built
on heterogeneous definitions. Regardless, models should be
appropriately validated, and yet many examples exist in
the literature without appropriate model validation (488).
This may become more challenging in cases of “black box”
approaches sometimes common to AI or machine learning,
where the starting conditions of the model may influence the
fit, with the end user—and sometimes the developers—not
fully understanding the inner workings of how the computer
reached its conclusion.

Establishing causation is also a challenge. Once a robust
model is defined, there is still the challenge of unpacking
whether the model is causally related to the outcome of
interest. Blood cholesterol is a longstanding example of
this. For decades, blood cholesterol has been known to
be associated with, or to predict, a higher likelihood of
cardiovascular disease, yet arguments ensued as to whether
it was causally related to cardiovascular disease. With much
research, the advent of statins, and advanced observational
analysis techniques like Mendelian randomization, the causal
evidence has continued to mount and be refined (e.g.,
moving from total cholesterol to implicating particular
lipoprotein subclasses). Note that this effort was all aimed
at investigating a single biomarker. To establish the causal
relationship of composites of machine-selected biomarkers
will be more challenging still. Nonetheless, if prediction
is what is first sought (e.g., who will have a coronary
event or develop cancer) rather than how to intervene,
then these models will likely be more powerful than the
past approach of single-variable selection and dimension-
reduction techniques. However, prediction then needs to be
communicated as such, rather than implying causation (see
“Fit for purpose” section).

Measurement
Nutrition science should work to lead the implementation
of advanced methods to improve prediction and causation
in a discipline where many of the pressing questions
involve understanding a complex exposure with long-term
(sometimes lifetime or intergenerational) outcomes. The
dichotomy between observational and randomized trials fails
to capture the complexities of nutrition science and the tools
at our disposal (489). There are improvements and advances
in experimental and observational designs and analyses
that can better answer pressing questions. Moving beyond
ordinary association tests or single-paradigm parallel-arm
trials will allow stronger inference that is more appropriate
to the question at hand (490) (see also the “Fit for purpose”
section). It is important to keep in mind that exposure to food
spans a lifespan and that people need to eat; it is not a choice
as it might be for other exposures such as drugs or smoking.
This adds to the complexity of studying food intake or dietary
patterns and their impact on health.

Observational studies.
Observational studies continue to be an integral part of nutri-
tion research, especially as cohorts of individuals expand in
number and are observed over longer periods of time. Results
from these studies are valuable for laying the groundwork for
developing hypotheses that can be tested in cells, animals,
or humans, and for providing general information about
populations that may help with targeting interventions
or changing policies. Concerns arise when information
obtained from observational studies is uncritically used
to imply causality—especially when the sample size is so
large that a relationship is deemed statistically significant—
without taking into consideration confounding, variability,
and potential clinical relevance. Rather than always seeking
bigger samples, targeting specific subpopulations or applying
greater focus on representative samples may be appropriate.

Experimental design.
Improvements in experimental design depend on the nature
of the proposed intervention and the outcome. When
outcomes have chronic symptoms (e.g., pain in arthritis), are
characterized by a manipulable measurement (e.g., weight
change for obesity), or when there are potentially strong
biomarkers of disease progression (e.g., lipoprotein profiles
for cardiovascular disease, HbA1c for diabetes control), it
is possible to attempt multiple interventions for the same
person. Conversely, for chronic binary outcomes (e.g., some
cancers), such manipulation of conditions is less feasible.
In a sense, this repeated assignment occurs in practice
in the clinical setting, with physicians taking people on
and off medications to see how symptoms progress. It is
important to recognize that, in clinical practice, the health
care provider is focused on an n-of-1, the patient, and applies
a treatment based on the body of evidence available at that
time. Therefore, rigorous clinical research is important to
contribute to a sound body of evidence and recommenda-
tions for implementation in the clinical care setting. The
order people are taken on and off medications, the way
dietitians recommend diet changes, or the way any other
repeated intervention is applied are rarely conducted in a way
in which the effects can be reliably determined. However, this
is not necessarily the responsibility of a practitioner unless a
study is being conducted. A clinician uses science, intuition,
and experience to provide the best treatment possible but
may never know what actually worked. That is, changing
a medication may co-occur with spontaneous remediation
of symptoms or with another lifestyle change that actually
explains the resolution of symptoms.

Better understanding of the differences between providing
health care and generating data to inform decisions is needed.
Newer experimental designs can cut through this noise, both
for precision nutrition and for determining what orders of
interventions to try.

Single-case designs.
Precision nutrition acknowledges that how people respond
to different foods exhibits wide individual differences that

1372 Mattes et al.



can vary based on genetic makeup, biology, lifestyle, envi-
ronment, and exposures. This variability in response to an
exposure such as diet is known as heterogeneity of treatment
effect (the; also called treatment response heterogeneity).
RCTs provide an unbiased estimate of the average effect
of a diet on outcomes. However, these average effects have
error terms because of random noise as well as the potential
for HTE (491). Unfortunately, random noise and HTE are
conflated in a typical RCT. That is, it is unclear whether
someone with an extreme change responded differently (i.e.,
HTE), or if their change in outcome was different by random
chance. To determine whether, and to what extent, people
respond differently to interventions, different designs need
to be used. Research on HTEs has not only shown outcome
variability in RCTs but has revealed that, in some studies,
there may be very few people who actually gain the desired
treatment effect (492). Research can assess moderators of
treatment response to better isolate individual differences
that may predict differential response to a diet. However,
even this approach may not limit response variability or
reduce variability for subgroups in comparison to the whole
group. Although not realistically obtainable, it would be ideal
to identify unique patient groups that respond to unique
interventions with very limited variability between people in
each group.

Specific experimental methods are needed to determine
how to optimize the diet for an individual (493–495). These
designs can be borrowed from personalized n-of-1 designs
used in medicine and behavioral sciences to identify an
optimal treatment regimen for an individual and then testing
whether outcome changes are, in fact, due to the dietary
approach being studied (494). These designs belong to the
family of single-case experimental design (SCDs), which
have been used for decades in behavioral sciences and
medicine (496, 497). They are also considered the pinnacle of
evidence for individual cases (498), even more so than RCTs,
due to the challenge of HTE. However, they are seldom,
if ever, used in nutrition research (495). We will briefly
discuss the theory of these designs and their strengths and
weaknesses for nutritional science.

SCDs are randomized, multiphase experimental designs
in which a great deal of data are collected on 1 person
under a variety of experimental conditions. While many
types of SCDs can be used in nutrition research, we focus
on reversal designs and multiple baseline designs. These
2 designs focus on demonstrating experimental control
of the diet in relationship to outcomes but differ in the
number of participants needed to show treatment effects.
They both require repeated measurements until a stable
outcome estimate is observed or the outcome begins moving
away from the desired results. Reversal and multiple baseline
designs both replicate the intervention to ensure confidence
that the dietary intervention was the cause for the change
(497, 499). These designs can also require clinically relevant,
as opposed to statistically relevant, changes (500). In SCDs,
the desired clinical effect can be prespecified and considered
when interpreting the effect’s relevance for clinical practice.

Rather than focusing on 1 outcome, SCDs enable simulta-
neous measurements of multiple dependent outcomes and
assessment of the dietary effects of these outcomes (500).
SCDs can be used to test whether a variable mediates
the change in the dependent outcome variables (501, 502).
Finally, statistical approaches can be applied to ensure that
changes observed between experimental phases are unlikely
to result from random variation or to aggregate data across
many n-of-1 trials to assess generalizability across a broader
population sample (497, 503–506).

Reversal SCDs.
A reversal design collects outcome data (e.g., biological, gene
expression, microbiome, affect, taste) in at least 2 phases:
a baseline, or usual, diet phase (A) and the experimental
phase (B) when the experimental diet is administered. At
least 3 replications of effect are needed to demonstrate
experimental control. The experimental design A1B1A2B2
constitutes 3 replications (A1 vs. B1, B1 vs. A2, A2 vs.
B2). Each phase is carried out until a prespecified endpoint
was met (e.g., absence of trends in the outcome in the
direction of the desired effect; a particular clinically relevant
outcome; a prespecified amount of time). This design can be
extended by comparing multiple diets. The diet order should
be randomized, especially if the goal is to combine n-of-1
experiments across participants.

While most dietary experiments using food cannot be
adequately blinded, experiments testing supplements can be
implemented in a double-blind fashion, as occurs in placebo-
controlled SCDs in medicine. Even if the experimenter and
participant are not blinded to the dietary component being
manipulated, it is good practice to blind the person collecting
the data to the manipulations and expected hypotheses.
Using improved objective continuous measures such as
continuous glucose monitors or actigraphy can make it easy
to blind the data collector to sources of bias.

One advantage of the SCD reversal design is its ability to
experimentally show that a particular diet was functionally
related to a particular change in an outcome variable for
an individual person. This represents the core principle of
precision nutrition: identifying an optimal diet for a person.
These designs work well for studying effects on individual
people and for studying the effect of nutritional interventions
on rare diseases (494), for which it is difficult to collect
enough participants with similar characteristics for an RCT.
A final strength is the opportunity for the nutritional scientist
or clinical nutritionist delivering clinical care to translate
basic science findings or new findings from RCTs into
beneficial treatments for their patients (494).

However, there are limitations. First and foremost, the
SCD reversal design does not immediately contribute gener-
alizable knowledge when used on a single individual unless
processes are standardized and harmonized across replicate
individuals. In addition, a critical aspect of a reversal design
is the fact that, when the dietary intervention is removed,
the outcome returns to baseline levels. If the effect is not
quickly reversible, then these designs are not relevant. If the
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half-life of the effect on the outcome is known, a washout
period can be used to provide time for the reversal between
the phases. Another limitation is that the dietary intervention
must have a relatively immediate effect on the outcome. If
it takes many weeks to months for the dietary change to
show effects, the reversal design may not be optimal unless
the investigator can plan a very long study. As this study
design depends on comparing stable data over conditions, it
is not appropriate if stability cannot be achieved, which can
occur due to a variety of biological or environmental issues.
Finally, for a clinical situation in which a nutrition scientist
is attempting to identify whether a particular diet works for
a very ill patient, a reversal design is not optimal given the
need to return to placebo or baseline conditions.

Multiple baseline SCDs.
An alternative to a reversal design is the multiple baseline de-
sign, which involves testing a new intervention, or comparing
interventions, across people. In the basic case, conditions are
not reversed but, rather, baselines last for different amounts
of time. If an outcome does not change until an intervention
is presented, and this is replicated over several people,
the change is likely due to the experimental condition. In
some ways, this is analogous to a stepped wedge design, in
which the crossover is only in 1 direction: no-intervention
in period A to intervention in period B. For example, 4
participants could be studied over different baseline lengths.
The baseline length must be long enough to show stability
with no trend towards improving until the intervention
was implemented. For generalizable estimates of causation,
assigning participants to different length baselines should be
randomized. If all baselines are stable before the intervention
is introduced and each person changes outcome(s) after the
intervention across the 4 different staggered baselines, it
is reasonable to conclude the intervention was the reason
for the change. The number of people (replicates) needed
to make conclusions of diet effects depends on the effect
size. For multiple baseline designs, replications are across,
rather than within, participants. Multiple baseline designs
can incorporate reversals, which combine the strengths
of reversal and multiple baseline designs (500). Multiple
baseline designs can also compare effectiveness of more
than 1 diet and assess the incremental effects of adding
additional dietary changes or nondietary changes such as
exercise programs. For studying more than 1 diet, it would
be ideal to randomize which diet comes first (497). Data
from multiple baseline designs can also be aggregated across
participants and studies to examine generalizability.

Multiple baseline and reversal designs can be useful
for adapting basic science findings to clinical interventions
and for early-phase translational research (often called pilot
studies) as a step towards a fully powered RCT. These
approaches may have advantages over typical small-sample
pilot RCTs in providing specificity and inherently addressing
HTEs.

Of course, there are limitations to multiple baseline
designs. First, they may keep people in baseline or control

conditions for extended periods. This is not unique to
baseline designs because many RCTs keep people in these
conditions for the entire study. When implementing multiple
baseline designs, it is possible to begin the intervention with
the first person or group of people who show stability of
baseline data and then implement the diet sequentially as
more people show baseline stability. This creates an inherent
bias, which can be reduced if the order of implementation
across the different staggered baselines are randomized.

There are limitations common to both reversal and multi-
ple baseline designs. For example, some dependent measures
may change with repeated testing, or are reactive to repeated
testing, independent of implementing an intervention. If a
measure changes with repeated testing without intervention
it is not useful for an SCD. Given that the effects of diets
are evaluated over time, systematic environmental changes
or maturation could influence the relationship between diet
and outcome, obscuring the effect of the dietary intervention.
As SCDs rely on repeated measures and a detailed study of
the relationship between treatment and outcome, studies that
use dependent measures that cannot be sampled frequently
are not candidates for SCDs. Likewise, failure to identify a
temporal relationship between treatment introduction and
initiation of change in the outcome can make it challenging
to attribute change to the diet. There is always the possibility
that a confounding variable is associated with introduction or
removal of the diet, which may cause inappropriate decision
about the effects of the diet. Dropout or uncontrolled events
that occur to individuals can also introduce confounding
variables. These problems are not unique to SCDs and can
occur with RCTs.

While SCDs have been used for decades to identify
effective interventions across disciplines, they have not yet
found a home in nutritional sciences (495). Research suggests
that it can take more than 15 y for new developments in
medicine to trickle down to practicing physicians, and it is
likely that many important developments in nutrition are not
implemented rapidly enough, resulting in fad diets taking the
place of science (501). The ability to test new developments
in science or even fad diets using scientific principles could
speed up translation of many important developments into
practice. SCDs offer a unique experimental approach to
identify optimal dietary approaches for individual cases
because they can be accumulated in meta-analytic fashion
to generalize effects across people (505, 507) and represent a
flexible approach to early phase (pilot) translational research
(500). The use of SCDs may speed up discovery of dietary
approaches for specific outcomes to improve public health,
leading to the next generation of dietary interventions with
maximal effects for individual cases, as well as to early-phase
translational research by gleaning generalizable principles
that apply to population subgroups.

Adaptive designs.
One challenge to traditional, parallel-arm, randomized con-
trolled designs is that people are kept on assigned treatments
even with no evidence of improvement in a condition. For
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instance, in a weight-loss trial, individuals may not lose
weight or may even gain weight on a particular intervention,
and thus participants, clinicians, and researchers may be
uncomfortable keeping the participants on the intervention.
This discomfort stems from an individual being considered a
nonresponder (that is, the intervention had no causal effect).
As outlined above, it can be impossible to determine in a
standard RCT if someone’s unfavorable outcome after an in-
tervention is because of random noise or HTE. Nonetheless,
theory around causal inference is no solace for people who
are expecting success, whether in the clinic or in a trial.

This desire to address an unfavorable outcome can be
addressed with Sequential Multiple Assignment Randomized
Trial (SMART) (508) designs. A SMART design often
begins like a typical RCT in which a group of people are
randomized to competing conditions (e.g., diet A vs. diet
B). The individuals are followed long enough to classify
them as responders or nonresponders (despite these terms
being misnomers if you consider that a nonresponder may
have been even worse had they not received a treatment).
When the a priori classification point is reached, the
subsequent intervention allocation is conditional on the first-
phase results. For example, responders could be assigned
to continue their assigned diet from the first phase or be
randomized to competing diets or other therapies, whereas
nonresponders could be randomized to alternative therapies.

SMART can be valuable for determining both gener-
alizable knowledge of effects and for establishing clinical
decision flows. For example, in the 2-stage design outlined
above, the head-to-head average treatment effects of diet
A versus diet B would be tested in the first phase, similar
to a parallel-arm RCT. If most (or all) people on diet B
were nonresponders, this diet may have low clinical utility
and may not be recommended. Because the second phase
depends on the responder or nonresponder status from the
first phase, this design takes personalized information into
consideration when making decisions for the next phase.
This makes subsequent decisions more personalized.

Formally testing predictive algorithms.
Predictive algorithms provide some information a priori in
terms of which nutritional intervention may be beneficial
for a given individual. However, predicting that someone
with a given set of characteristics is likely to benefit from
a particular diet is not the same as the demonstration that
someone given a particular diet actually improves. Causality,
rather than prediction, is preferable for guiding policy and
dietary recommendations (509). In a simplistic example,
Chiolero (509) laid out the relationship between changing
obesity and changing disease: people may be able to decrease
obesity through changes in diet or physical activity, but
those same interventions may also directly affect disease,
raising the question if changing obesity was necessary. The
counterfactual is also essential: increased smoking will de-
crease obesity but is also known to increase multiple diseases.
Thus (in this example), changing obesity is not necessary
to change disease. This might apply to any of the many

predictive elements related to nutrition. Food insecurity
predicts some outcomes, yet an intervention providing food
or resources in Mexico resulted in greater weight gain (510).
Certain microbiota profiles predict outcomes but altering
the microbiota in preferred ways can sometimes be difficult,
and the question remains whether the effect is due to the
microbiota or the means used to change the microbiota.

Understanding causal pathways is important, but ulti-
mately what is needed is a formal test of any recommen-
dation. These predictive algorithms can be formally tested,
potentially through adaptation of standard RCT designs.
Consider a predictive algorithm that suggests people with
characteristic type A may fair better on a high-carbohydrate
diet, while characteristic type B fair better on a high-fat diet.
In such a case, what individuals are randomized to would
depend on the question at hand. If the question is whether
an algorithm is superior to standard dietary advice, then 1
group of people can be randomized to the algorithm, and
the other to standard dietary advice. Even though people in
the algorithm group may be receiving different interventions,
the question is about the utility of using the algorithm for
superior outcomes. If the question is whether the algorithm
classification scheme predicts better outcomes within people,
then individuals could first be stratified by the algorithmic
decision (that is, people are first divided into types A and B),
and then randomized to either match or mismatch with the
predicted diet. Indeed, this is related to the prediction tested
by the Diet Intervention Examining The Factors Interacting
with Treatment Success (DIETFITS) trial by comparing the
effects of low-fat and low-carbohydrate diets in people with
genotypic or insulin-secretion profiles predicted to respond
differently to the diets (511).

Although we covered only a few examples of atypical,
randomized designs, it is clear that large, parallel RCTs
are not the only means of determining causation and that
causal effects of dietary factors can be probed at levels
more specific than population-wide average effects. Whether
through stratification by important factors (e.g., genetics,
ethnicity, sex, age), sequential intervention steps based on
individual-level responses, predictive subgrouping through
algorithms, or even repeated individual experimentation
through n-of-1 studies, increasing personalization can be
obtained with stronger causal interventional evidence. These
approaches can even be combined. An algorithm could be
built based on short-term n-of-1 results, with the first phase
of recommendations being dependent on algorithm results
followed by adaptation if the individual does not respond
favorably to the predicted diet. Unfortunately, much like
other evidence of average causal effects, the longer it takes
for an outcome to develop or change, the more difficult it is
to establish evidence for personalized effects.

Cross-cutting principles
All the nutrition science methods and domains of inquiry
presented thus far will be more impactful if requisite experts
are incorporated in an interdisciplinary endeavor; science
is conducted rigorously and openly; and research questions
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are conducted and communicated appropriately for the
purpose. We present these as 3 cross-cutting principles:
Interdisciplinarity as a Skill; Rigorous, Reproducible, and
Open Nutrition Science; and Fit for Purpose.

Interdisciplinarity as a skill.
A common refrain when a limitation in science is identified is
to suggest more training: more statistics, more biochemistry,
more food science, more psychology, more sociology, more
study design, and others. However, more training is not
always an efficient solution because programs are already
overloaded and training someone to work in isolation does
not advance interdisciplinary science.

The science, technology, engineering, arts, and math
(STEAM) approach to education works to integrate knowl-
edge across domains within and beyond science, technology,
engineering, and math (STEM). That is, rather than expect-
ing every domain to be a silo (or even STEM siloed from non-
STEM), knowledge and ways of thinking can be integrated.
Instead of having people learn more in each domain, “better
preparing students to operate in a truly interdisciplinary team
may alleviate the need for deep knowledge of everything”
(512).

In the spirit of STEAM, embracing team science is
important and may require a significant culture shift in
education, promotion and tenure, proprietary agreements,
and ranges of disciplines engaged. As former US President
Harry Truman is credited with saying, “It is amazing what
you can accomplish if you do not care who gets the credit.”
Yet, credit is needed—at a minimum as a motivator and for
determining responsibility. In publication, acknowledgment
of contribution allows individuals to be recognized for what
they did to make a publication a reality, giving credit where
credit is due (513). This contrasts starkly with the oft-used
standards in biomedical disciplines where authorship (often
first, last, and corresponding) is used as a proxy for academic
credit, leaving contributions to be inferred or uncritically
counted based on author order. Complex work may be
conducted by a team of dozens, leaving authors who are
not listed as first, last, or corresponding to explain their
contributions through other means.

Another key will be harmonizing datasets and storage so
that data scientists can easily work across studies, particularly
when a discipline has matured to the point that common
variables are well established. The Accumulating Data to
Optimally Predict Obesity Treatment (ADOPT) standards
in obesity research, for instance, are a set of variables that
many studies could collect to allow cross-study synthesis
(514). The need for interdisciplinary teams will be essential
to meet the rising expectations of quality, sharing, and speci-
ficity in nutrition science. Complying with FAIR (Findable,
Accessible, Interoperable, and Reusable) principles to make
nutrition science open will require data science knowledge,
design and analysis of appropriately conducted and analyzed
personalized designs will require statistical expertise, appro-
priately defining nutritional interventions or definitions will
require nutrition and food science experience, adequately

operationalizing outcome variables will require expertise in
the outcomes of interest, and so forth. It is important to
have team members with cross-cutting expertise to serve
as interlocutors across domains and experts with deeper
domain-specific expertise on each key part of a study.

Rigorous, reproducible, and open nutrition science.
Considerations for rigor, reproducibility, and open science
are advancing across many domains. In a 2018 report, the
National Academies stated, “Open science aims to ensure the
free availability and usability of scholarly publications, the
data that result from scholarly research, and the methodolo-
gies, including code or algorithms, that were used to generate
those data” (515). Efforts to make data and science open
have occurred across sectors. The USDA FoodData Central
is evolving to provide more transparent data on components,
including nutrients, in foods so people understand that
a single value does not necessarily represent what is in
a consumed food. NIH has explicitly made efforts and
expressed interest in enhancing rigor, reproducibility, and
transparency. The NIH National Heart, Lung, and Blood
Institute’s (NHLBI’s) Biologic Specimen and Data Repository
Information Coordinating Center includes data from mul-
tiple cohorts. The Transparency and Openness Promotion
guidelines have worked to create common standards across
journal publications (516). These efforts will help science in
general but are also increasingly important as larger data,
more complex algorithms, and more refined questions are
necessary to answer the many personalization questions
tackled by the nutrition science community.

Transparent use of definitions is also key. Ludwig et al.
(517) recommend to “Define diets more precisely when
feasible (e.g., with quantitative nutrient targets and other
parameters, rather than qualitative descriptors such as
Mediterranean) to allow rigorous and reproducible com-
parisons.” Disagreements around definitions in nutrition
research occur for all but chemically defined nutrients down
to the weight of isotopes (consider C3 and C4 plants for
12C and 13C carbon isotope ratios, or hypotheses that heavy
water influences metabolism). Thus, terms like breakfast,
processed foods, Mediterranean diet, time-restricted feeding,
and components of these must be adequately and trans-
parently described. Distinctions among definitions can be
substantial. For instance, distinguishing among purported
effects of lipids in the diet (e.g., low-fat vs. high-fat diets) are
further broken down to discussions over fatty acid saturation,
poly- versus mono-unsaturated, and further still to positional
and geometric isomerization of fatty acids. Just as key
is operationalization of outcomes, including meaningful
definitions of success for obesity, diabetes, cardiovascular
disease, nutrient sufficiency, and other endpoints.

The need for transparency in nutrition data and the sci-
ence behind dietary recommendations is increasingly valued.
Although important limitations exist with respect to how
data are made available (e.g., participant confidentiality),
sharing algorithms, even when data cannot be shared, would
improve a reader’s understanding of how conclusions were
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made. This includes explaining how dietary variables were
constructed or transformed, how statistical analyses were
conducted, and other information. The default should move
toward open data and code, with careful consideration of how
to evaluate past research built on closed methods or data and
thoughtful investment in moving open research forward.

Fit for purpose.
The methods and tools outlined in prior sections can be
illuminating for the field, or they could lead us astray.
Each one depends on whether the method—and subsequent
communication—is fit for purpose.

As described in the interventions section above, for in-
stance, individual changes are frequently miscommunicated
as effects. Yet, examples abound of parallel-arm results being
miscommunicated as showing treatment response hetero-
geneity. Similarly, wonderful algorithms can predict out-
comes for a person but without evidence of counterfactuals—
evidence of a person with 1 set of characteristics changing
their diet to something else—causation, and thus strength
of recommendations, is difficult to establish. Part of the
philosophy of fit for purpose is to consider appropriate and
responsible scientific communication.

Study designs used to establish more personalized nutri-
tional recommendations must be carefully chosen, and com-
munication around the results of personal- and population-
focused research must also be appropriate for the study
design. Headlines touting certain diets or foods abound and
are based on average causal (or associative) research. That is,
the studies are relevant to what a population may expect to
happen, on average, under a particular nutritional paradigm,
but an individual’s response may vary. The converse also
has issues: if an individualized algorithm is developed (or
even studies of demographic substrata), communication
about what the population should do is also likely an
inappropriate extrapolation. Engagement with thoughtful
scientific communicators is essential to navigate the nu-
ances among these designs and the implications of their
results.

In closing
Nutrition research is at a crossroads, needing to blend
traditional approaches with new technologies, incorporate
a rapid proliferation of available data, and synthesize in-
formation across multiple disciplines to impact precision
nutrition. Inherent in our steps forward include method-
ological innovation, adaptation, and adoption; data security,
integrity, and validation; valuing interdisciplinarity as a
skill; and a commitment to open, rigorous science. The
evolution of nutrition science will continue the values
and norms of science more broadly: an open, consensus
endeavor dedicated to self-correction and growth as new
data and approaches become available. Nutrition science can
build from the advances made within our own scientific
community and borrow from other discipline’s advances to
enable investigators to make precision nutrition discoveries.
In this way, our science can enable those who rely on scientific

data for health recommendations or for developing policy
identify points where precision nutrition will—and, just as
importantly, will not—advance health.

Summary
The primary aims of this report were to highlight the
multiple approaches used in nutrition research, the strengths
and limitations of each, and the value of complementarity
of approaches to derive the strongest evidence to address
nutrition issues. The matrix of approaches may vary for given
issues, but in all cases, multiple inputs will be required as
solutions will have to consider the social, behavioral, and
biological dimensions that contribute to the etiology of a
given problem, its manifestations, and clinical and policy
management approaches. To support this view, the task force
identified 7 broad categories of nutrition science research
methods and summarized how each provides important,
unique information. However, it also identified limitations
in the methods and the conclusions that can be drawn
from different research approaches. These limitations do not
negate the value of the information they provide; instead,
they underscore the fact that no one approach is sufficient to
comprehensively address any question in nutrition science as
well as where the type and nature of complementary data are
most needed.

This was enumerated throughout the text. For example,
in the Health Disparities section, it was argued that the food
environment—that is, the spaces where people acquire food
(through production, gathering, purchasing)—influences
dietary choices, nutritional status health, and disparities.

In the Cognitive Performance and Behaviors section, it
is noted that variation between individuals is one of the
primary considerations when selecting a research method.
If all individuals were the same or similar, relatively few
studies would be required to determine relationships, and
necessary interventions would be well defined. The section
emphasizes that there are numerous social, behavioral, and
biological determinants of food choice, eating patterns, as
well as behavioral and physiological responses to foods.
Thus, it will be necessary to draw knowledge from all
of the areas identified in this report as well as many
traditionally viewed as outside the scope of nutrition science
such as food science, psychology, sensory science, and neu-
roscience to address meaningfully any questions related to
feeding.

In the Dietary Assessment section, it is noted that recent
advances in biomedical techniques such as genomewide
association studies, metabolomics, and proteomics, along
with new analytic approaches using AI and machine learning,
are providing potential new ways to examine complex
processes simultaneously and will help scientists understand
differences in response to dietary intake across groups
and individuals. Moreover, there are now new biomarkers
that can be used to validate or enhance dietary intake
reports, photographs that can better capture portion size, and
advances in computing that are helping reduce the burden
of data collection. Further, with appropriate sampling and
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consideration of day-to-day variation, food metabolomics
holds promise for use in validation and calibration studies
and can be expected to support and enhance dietary
assessment.

In the Genetics and Epigenetics section, it is noted
that dietary components can modify DNA methylation,
including fat, protein restriction, and some bioactives
(epigallocatechin-3-gallate, genistein, polyphenols, etc.).
Therefore, detailed information on diet composition is
needed to interpret epigenetic data. Further, dietary intake
data are needed to provide context for the genetic and
epigenetic data when developing an algorithm. Additionally,
measuring genotype is not sufficient to identify people
who will experience an adverse outcome; it is important to
consider dietary intake when interpreting the functional
effects of genetic and epigenetic variation.

In the Microbiome section, it was noted that dietary
factors, such as macronutrient composition and customary
dietary patterns, are coming to the forefront as having
major impacts on the composition and diversity of the
gut microbiome. In addition, animal models allow more
genetic, diet, and environmental control and contribute to
mechanistic understandings but are limited in translation to
humans, whereas human microbiome intervention studies
may be directly applicable to humans but are generally
small and challenged by the high interindividual responses
seen with diet. Moreover, confounders such as physical
activity, lifestyle factors, and circadian effects also need to
be documented and controlled or monitored to interpret
changes in the microbiome. Further, it is argued that an
ideal diet–microbiome study would combine marker gene or
metagenomic analysis with meta-transcriptomic analysis to
profile the microbial abundance as well as functional activity
of those microbes.

In the Nutritional Status section, it is noted that the
greatest value comes from combining methods. Using an
FFQ with DLW and an activity monitor increases the value
of data collected and provides a level of validation that can
be incorporated into statistical analyses.

Finally, in the Cross-cutting Considerations section, it is
noted that new computational methods are needed to better
examine the interdependence of different contributors to
nutritional health.

To enhance the clarity of this report’s perspective, the
decision was made to undertake this review through the
lens of precision nutrition, as this has been identified as
a high-priority future research direction. A more public
health, population science orientation could have been used
just as well, as the goal was to emphasize overarching
concepts of the essentiality of data harmonization rather than
speaking to a specific issue. However, to demonstrate the
applicability of the task force’s perspectives, the following
summary highlights how the research methods in each of the
categories could play a role in addressing weight management
in individuals. Again, weight management is used only as
an example, not the singular application of concepts in this

review. Publications exploring and employing these concepts
are now appearing in the literature (518–524).

Health disparities
The economic constraints of social disadvantage influence
the ability not only to afford healthy foods promoted for
obesity prevention and weight loss but also the valuable
resource of time to devote to food preparation by in-
dividuals. Psychosocial stressors and coping behaviors to
deal with these stressors are also important influencers
of dietary intake and of many other lifestyle behaviors
(e.g., exercise, smoking etc.). Consideration of these factors
is critical in understanding the determinants of obesity
risk for individuals and in generating evidence to inform
actions to address it. Measuring factors such as SES and
neighborhood food environment can highlight mediating
factors that influence the potential effectiveness of precision
nutrition interventions. Broader sociopolitical circumstances
must also be considered in the context of food systems
and the increasing abundance of high-energy-dense and
low-nutrient-dense foods. Developing an effective obesity-
prevention or weight-loss intervention must account for
these barriers and constraints and take advantage of the
unique contextual factors that may enhance them. Utilizing
methodologies such as CBPR, FESs, and impact pathway
analysis is, therefore, critical for 1) gaining in-depth knowl-
edge about the target individual and the population and
community from which they are drawn, 2) understanding
community resources and individual’s motivations, and last,
3) examining and measuring intervention results and the
potential variability of success based on social constraints.
The root causes of disparities in obesity are complex and,
consequently, nutrition research should adequately account
for these influences to inform the design of interventions and
measure their impact.

Cognitive performance and behaviors
The utility of behavioral and cognitive performance mea-
sures to develop precision nutrition approaches for the
treatment of obesity or prevention of weight gain can be
conceptualized either as a problem for big data or individ-
ualized personalized n-of-1 designs. A big-data approach
would use these measures to predict weight loss or to prevent
weight gain using data contributed by many people, and
then test prediction models on individuals to see if it is
possible to predict whether factors that influence eating
can be used to individualize treatment approaches. The
alternative is to use personalized n-of-1 trials, which can use
big data to identify ideas about factors to manipulate to test
how different behavioral or cognitive practices can improve
weight loss or prevent weight gain for that person. There is
considerable interest in macronutrient characteristics of the
diets, patterns of eating, and how characteristics of foods
drive the motivation to eat, and all of these factors may
have important impacts on weight loss or change that need
to be individualized to achieve best results. While these

1378 Mattes et al.



approaches remain untested, it is likely that there are large
individual differences in factors that influence eating, types
of foods people eat, and patterns of eating that are important
in developing personalized nutrition programs.

Dietary assessment
As we move into a future focused on precision nutrition,
measuring individual dietary behavior will continue to
be necessary. Precision nutrition offers the promise of
prescribing individualized diets based on specific genetic
and metabolic signatures and identified risk of disease
outcomes. Prevention of weight gain will differ across
individuals, based on their unique genome, metabolism, and
sociocultural circumstances. Dietary assessment is the first
step in understanding baseline dietary patterns and may be
accomplished with multiple dietary recalls or with FFQs,
perhaps supplemented with new technology as it becomes
available. Continued monitoring during the change process
is also important to better understand what does and does
not work as individualized plans are implemented.

Genetics and epigenetics
Putting precision nutrition for weight management into
practice will require a more complete understanding of
the interaction of metabolism with an individual’s genetics
and epigenetics, as well as their current and past diet and
environmental exposures. Continuing advancements in the
ability to integrate an individual’s genome sequence and
epigenetic markers with expression of both coding and
noncoding transcripts will provide nutritional scientists the
opportunity to combine this information with metabolite
expression patterns to begin to explain some aspects of
metabolic heterogeneity. Such studies are likely to identify
improved biomarkers for both adequate and inadequate
nutritional status. Both well-designed human studies and the
collection of these datasets into population-wide databanks
will be necessary. A key role for nutritional scientists will
be to provide dietary information for individuals in projects
that are compiling human genomic and epigenomic data and
health records.

Microbiome
The human microbiome is complex and plays an impor-
tant role in many health outcomes, including maintenance
of healthy weight. Studies have shown that different gut
microbiome patterns are associated with overweight and
obesity, compared with healthy weight. Further, microbiome
changes are seen in individuals on weight-loss programs.
These effects are attributed, in part, to the role of the
microbiome in digestive and gastrointestinal function, as well
as fermentation of nondigestible substrates, such as fibers,
to energy-yielding metabolites. Other fermentation products
may also play a role in weight management through effects
on metabolic pathways. One of the most challenging, and
intriguing aspects of the microbiome is the high interindivid-
ual variability. This is a key focus in understanding precision
nutrition, including why people respond differently to a

given weight-management regimen. However, microbiome
research is still in the early stages, particularly with respect
to diet, and it is critical to develop harmonized methods
and standardized approaches for replication of findings.
Sufficient descriptions of diet and nutrient interventions
are essential to further the field. In addition, due to the
complexity of the microbiome and interactions with the host,
utilization of different experimental systems and approaches
is needed. The microbiome field is exploding in new findings
and shows great promise in advancing understanding of
precision nutrition, but much more understanding is needed
for definitive conclusions that can be translated to effective
clinical and public health recommendations.

Nutritional status
The research methods described in the section on energy
balance and body composition can be applied in several
different types of studies and complement many of the tech-
niques described in other sections. For population surveys
that require simple methods for a large sample, the use of
anthropometrics or BIA can augment and address objectives
that may not be fully met by dietary assessment. At the
same time, more technical and clinical measures, including
stable isotopes or imaging, are excellent methods that offer
accuracy and precision that can extend methods to assess
nutritional status and clinical studies of food intake. From the
perspective of precision nutrition, weight-loss methods vary
in flexibility of use, depending on the objective of the study.
Clearly, weight loss can be measured accurately with a simple
scale and acute changes are detectable with such simple
approaches. However, for body-composition compartments
associated with health risk—in particular, visceral adipose
tissue or total fat mass—more precise methods, such as MRI,
DXA, or BIA, may be better utilized. These methods clearly
augment dietary and epigenetic studies associated with a
metabolic outcome that is both measurable and part of a
causal pathway. Thus, fitting the specific methodology to the
study objective is necessary, and such examples of coupling
a more precise approach to study energy expenditure and
nutritional status with other broader approaches to diet or
gut health are possible with a focus on precision nutrition.

Cross-cutting considerations
Personalized approaches to weight maintenance can be
initiated by anyone being their own scientist through self-
directed n-of-1 studies, under the care of a clinician, if
the individual has underlying health concerns. Whereas
chronic diseases or mortality may be binary in nature, weight
maintenance is amenable to individuals repeatedly trying
different approaches. These attempts could be tailored by
using metabolomic profiling, genetic analysis, microbiolog-
ical assessment, behavior and cognitive typing, social and life
circumstance characterization, and nutritional physiology,
independently or in conjunction, to identify people more
or less likely to succeed using a particular set of weight-
management approaches. Indeed, these approaches could
help identify individuals who may or may not have a concern
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about weight gain to begin with. Any approach borne from
these measurements to predict weight-management success
needs to be subjected to subsequent testing, rather than
relying only on prediction to guide clinical and public health
practice.

Studies undertaken to elucidate these patterns should be
done transparently, pre-registered where possible, with open
algorithms, and sharing data where appropriate according to
shared standards such as ADOPT. Such approaches need to
be clearly communicated commensurate with the strength
of evidence. Scientists owe it to the public to present the
personalized evidence for weight management with honesty.

The genesis of this report was growing concern about
the tone of discourse among nutrition professionals and
the implications of acrimony on the productive study of
nutrition science and its translation to clinical practice and
policy. Too often honest differences of opinion were cast
as conflicts [e.g., epidemiology vs. clinical trials; basic vs.
applied research; animal models vs. human testing; acute
vs. chronic trials; research results vs. policy; qualitative vs.
quantitative methods; food intake vs. surrogate endpoint
(biomarkers) vs. established clinical endpoint; and in vitro
vs. in vivo models] instead of areas of needed collaboration.
Hopefully, recognition of the value (and limitations) of
contributions from well-executed nutrition science derived
from the various approaches used in the discipline, as well
as appreciation of how their layering will yield the strongest
evidence base, will provide a basis for greater productivity
and impact.
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