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ABSTRACT

Calorie restriction (CR) is a common approach to inducing negative energy balance. Recently, time-restricted feeding (TRF), which involves
consuming food within specific time windows during a 24-h day, has become popular owing to its relative ease of practice and potential to aid in
achieving and maintaining a negative energy balance. TRF can be implemented intentionally with CR, or TRF might induce CR simply because of
the time restriction. This review focuses on summarizing our current knowledge on how TRF and continuous CR affect gut peptides that influence
satiety. Based on peer-reviewed studies, in response to CR there is an increase in the orexigenic hormone ghrelin and a reduction in fasting leptin and
insulin. There is likely a reduction in glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK), albeit the evidence for this is weak.
After TRF, unlike CR, fasting ghrelin decreased in some TRF studies, whereas it showed no change in several others. Further, a reduction in fasting
leptin, insulin, and GLP-1 has been observed. In conclusion, when other determinants of food intake are held equal, the peripheral satiety systems
appear to be somewhat similarly affected by CR and TRF with regard to leptin, insulin, and GLP-1. But unlike CR, TRF did not appear to robustly
increase ghrelin, suggesting different influences on appetite with a potential decrease of hunger after TRF when compared with CR. However, there
are several established and novel gut peptides that have not been measured within the context of CR and TRF, and studies that have evaluated effects
of TRF are often short-term, with nonuniform study designs and highly varying temporal eating patterns. More evidence and studies addressing
these aspects are needed to draw definitive conclusions. Adv Nutr 2022;13:792–820.

Statement of Significance: An in-depth review of current literature on the effects of time-restricted feeding and calorie restriction on
the endocrine system involved in satiety. Along with the companion article, our reviews weave together information on both central and
peripheral systems of satiety, which tend to be examined separately, in hopes to guide future research in this area.

Keywords: calorie restriction, time-restricted feeding, hunger, satiety, ghrelin, energy balance

Introduction
Obesity rates have been increasing since the 1980s, and
between 2000 and 2018 the prevalence of obesity increased
from 30.5% of the US population to 42.4% (1). Weight
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loss and maintenance have become critical aspects of health
care owing to the increased risk of disease associated with
obesity as well as economic costs and poor quality of life.
Weight gain or weight loss occurs when energy intake and
energy expenditure become unbalanced. On the energy
intake side, the behavior surrounding eating is complex and
numerous factors affect how appetite is perceived and acted
on. Rooted in biology, circulating hormones (2–6), neural
components (6–12), and cellular/molecular pathways (13)
may play important roles in determining satiation or satiety.
On the environmental side, demographics, the food envi-
ronment, social/economic, and psychological circumstances
also are factors. Although the current article focuses on
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the biological aspects of appetite regulation in the context
of energy intake regulation, it is important to understand
social/demographic/economic/cultural determinants as well
and all are active areas of investigation.

Individuals may choose a variety of dietary approaches
involving calorie restriction (CR) to achieve the goal of
inducing weight loss. A constant daily level of CR has
traditionally been used to elicit an energy deficit, causing
related changes to hunger and satiety signaling as the
body responds to a change in energy balance. However,
recent insights into the importance of circadian signaling
have demonstrated that the daily window in which one
consumes calories may have an impact on the metabolic
factors related to food regulation (14–16). As a result, time-
restricted feeding (TRF), when one limits the hours of the
day during which one consumes one’s meals and extends
the time spent fasting, has become a popular dietary pattern
used to achieve weight loss. These alterations to biochemical
signaling and neural networks may elicit slight changes in
appetite and satiety, but to our knowledge, the differences
between TRF and constant daily CR in this area have not
been investigated. Further, the change in appetite and satiety
within the circadian cycle in TRF or CR compared with ad
libitum eating has not been examined.

Several hormones are linked to orexigenic and anorex-
igenic aspects of eating behavior (17) such as ghrelin,
glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK),
peptide YY (PYY3-36), glucose-dependent insulinotropic
polypeptide (GIP), pancreatic polypeptide (PP), insulin,
amylin, and leptin (18). Numerous other peptides have
been hypothesized to affect appetite (19–22). The current
article focuses on those that have been studied within the
context of CR and TRF in humans. Appetite describes the
overall drive to eat food that manifests in searching/foraging
behaviors, as well as choosing what foods to eat (23), whereas
satiety reduces appetite and affects the frequency of meals
throughout the day. The magnitude of food consumed in
each meal influences satiation—the feeling of “fullness" that
increases during food consumption and which may bring
about the end of a single meal, although factors other than
fullness can result in the termination of a meal (24, 25).

Hunger and satiety mechanisms that are associated with
food intake behavior also play a critical role in both weight
loss and weight maintenance. The focus of this review is to
present evidence about how hormonal hunger and satiety
signals are affected by TRF and CR paradigms, to glean
insight into what that might mean for adherence to these
regimes. A companion review will address the evidence with
regard to the central neuroendocrine systems affected by TRF
and CR.

CR
CR involves a consistent reduction in daily caloric intake, but
without malnourishment or underconsumption of essential
vitamins, minerals, and trace elements (26), and is often
touted as the best antiaging intervention (27). By design,
CR places an individual in a negative energy balance when

the energy consumed is less than what is expended, making
it integral to losing weight in overweight/obese individuals
(28). CR can be achieved by several approaches including
diet, exercise, and appetite-altering pharmacological and
surgical interventions. Of particular note, leptin, ghrelin (29),
insulin (30), PYY3-36, and CCK-8 (31) have been evaluated
under fasting and CR paradigms. The current report will
focus on CR of 15%–75% restriction whether it was intended
for weight loss or not, and its effect on pathways of peripheral
and central regulation of satiety.

TRF
Fasting is defined by brief periods of ceasing caloric intake
and differs from starvation, which is a degenerative condition
of prolonged malnutrition. Intermittent fasting (IF) is a
broader term used to describe a range of extended fasting
periods. This may include alternate-day fasting (ADF), where
one fasts every other day or undertakes a 1- to 2-d fast
each week with the remaining days following an ad libitum
feeding pattern. Another subset of temporal dietary patterns
under the umbrella of IF is referred to as TRF. A TRF dietary
pattern calls for daily periods of fasting, traditionally defined
by avoiding energy intake while allowing for water intake
during a certain time frame (32). There are variations in TRF
allowing individuals to follow a 12- to 21-h fasting period,
with an ad libitum feeding cycle lasting from 3 to 12 h (33).
A common TRF pattern calls for fasting 16 h of the day and
eating freely for the remaining 8 h (16:8 diet), and it may
have gained popularity because it is a reasonable approach
in comparison with some of the more restrictive feeding
windows (34).

Traditional CR diets typically do not restrict feeding times
but focus on decreasing caloric intake by 15%–40% (35). TRF
does not necessarily result in CR because it can be adhered
to with normative caloric intake (36). However, decreased
feeding windows may cause an individual to consume less
energy (14). Also eating meals closer together in time, as
happens during a 16:8 diet, can reduce the time available to
empty gastric contents between meals, potentially reducing
the capacity for caloric intake (37). Fasting catalyzes a shift
to using endogenous substrate stores, causing a spectrum of
metabolic reactions dependent on the time spent in an energy
deficit. This can affect the orchestration of hormonal hunger
and satiety signals by the hypothalamus, a key regulator of
neuroendocrine signaling in response to energy status (38).
Few studies have directly assessed the effects of TRF on
appetite, typically including a few select hormones as part of
a study with aims centered on metabolic effects (14, 36).

Current Status of Knowledge: Hormonal Control
of Food Intake
Studies were identified by searching the PubMed and Google
Scholar electronic databases for peer-reviewed, English-
language publications. The search terms included “leptin,"
“insulin," “ghrelin," “GLP-1/glucagon-like peptide-1/GLP,"
“PYY/PYY3-36/peptide YY," “amylin/IAPP/islet/insulinoma
amyloid polypeptide/DAP/diabetes-associated peptide,"
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“GIP/gastric inhibitory peptide/glucose-dependent
insulinotropic polypeptide," “PP/pancreatic polypeptide,"
“CCK/cholecystokinin," and “orexin" with “calorie/caloric
restriction" and “time-restricted feeding/TRF" and “weight
loss." Only reports with human participants were included,
with the exception of orexin and while addressing the
background of each hormone. Acute feeding challenges
that involved single-meal or single-day protocols were
excluded. Tables 1 and 2 are summaries of outcomes from
studies that have looked at either CR or TRF, respectively, and
their effect on satiety hormones. Figure 1 presents a graphical
summary of satiety hormones, and their interplay at the level
of the gastrointestinal tract, along with highlighting the
overarching changes seen in CR and TRF conditions in the
fasted state.

Long-term regulators
Leptin.
Leptin, a 146-amino-acid peptide hormone, is released from
white adipose tissue, mammary epithelial cells, and bone
marrow (39), and readily crosses the blood–brain barrier
(40). Secretion and production of leptin are dependent on
triglyceride stores (41), making it a unique hormone that
can influence food intake through both acute and long-
term signals of energy status (42). Originally, leptin was
thought to induce satiety, decrease food intake, and increase
energy expenditure and weight loss (39), and recent evidence
suggests that sensitization/desensitization and resistance to
leptin affect how leptin functions (43). Fasting leads to
decreases in both stored and circulating triglyceride levels,
thus decreasing the magnitude of leptin secretion.

CR and weight loss are known influencers of leptin. CR
results in a reduction in leptin (44–46), independent of
weight loss (47, 48), and disrupts its chrono-rhythmicity.
This reduction in leptin has been associated with reduction
in both subjective appetite and compensatory food intake;
however, there is a lack of clarity about whether decreases
in leptin are proportional to the level of caloric compen-
sation (44). CR reduces dopamine receptor availability and
increases motivation and sensitivity to reward (49), which
have been linked to the reduction in leptin in circulation (50).

Several studies have shown that both chronic (contin-
uous) and intermittent CR, as a set reduction of dietary
energy (∼500 kcal/d), a percentage of the total required
intake (15%–75% of total required energy intake), or very-
low-calorie diets (VLCDs) (430–800 kcal/d), for 3–24 wk,
reduce serum leptin (45, 51–59) when compared with
no CR. However, no significant change in fasting leptin
concentrations was reported after 8 wk of a 500-kcal/d deficit
CR diet (60), and after 20 wk with an intake of 1000–
1200 kcal/d (47). The decrease in leptin was seen both
with and without significant weight loss, suggesting that the
change in leptin is likely due to the acute negative energy
balance. In the CALERIE (Comprehensive Assessment of
Long-Term Effects of Reducing Intake of Energy) study, a 6-
mo CR with intake 25% below required energy needs, not
just fasting but 24-h diurnal leptin was dampened (61). An

∼11-kg drop in body weight among individuals who were
overweight was associated with a 44% reduction in 24-h
mean circulating leptin. With weight loss and CR, there is a
resultant metabolic adaptation, in the form of reduced 24-
h and sleeping energy expenditure (62). In the CALERIE
study, the metabolic adaptation resulted in a ∼125-kcal/d
reduction on average, and the decrease in leptin was an
independent determinant of this metabolic adaptation (61).
This association has been shown in other CR intervention
trials as well (47, 63) and attributed largely to movement
economy (63). However, the change in leptin does not explain
the entirety of this metabolic adaptation (64). In summary,
fasting leptin is reduced after CR; however, whether this
is sustained through diurnal and meal-induced changes
remains unknown.

Similarly to CR, in some studies, TRF (6 h, 8 h, or 12
h or Ramadan feeding regimens), without intentional CR
or weight loss, has been shown to reduce fasting leptin
concentrations (36, 65–69). In contrast, in studies where
TRF was practiced without CR, with or without weight
loss, leptin concentrations were not affected (70, 71). After
CR, when energy intake returns to prerestricted conditions,
leptin concentrations also rise to match prerestriction values
(46). In free-living conditions, the rise in caloric intake is
proposed to be due to the decrease in satiety, partly due to the
lesser anorexigenic effect resulting from the reduced leptin in
circulation. The evidence suggests that CR, with or without
TRF, lowers circulating leptin. Although this would increase
caloric intake to compensate acutely (weeks to months), the
effect this has on appetite and food intake in the long run
(years) remains contested, and a unifying theory of its effects
is yet to be established.

Insulin.
Insulin is a peptide hormone, comprised of a 21-amino-acid
A chain and a 30-amino-acid B chain. It is released from
pancreatic β-cells in the islets of Langerhans (72) primarily
in response to the absorption of glucose, although other
signals (73) and nutrients (74) can influence its secretion,
and elicits a corresponding increase in intracellular calcium
concentrations (73). Insulin has a central effect on the brain,
orchestrating alterations to energy balance, metabolism,
appetite, and neural activity (76). Insulin that is released into
the systemic circulation, in the postprandial state, crosses the
blood–brain barrier (77), binds to insulin receptors located
across the brain, elicits an anorexigenic effect, and diminishes
orexigenic signals. Owing to insulin’s sensitivity to long-
term energy balance as well as acute energy fluctuations, it
may function as a contributor to both long- and short-term
regulation of hunger and satiety signals.

CR to 20%–75% of total required energy intake; ketogenic,
very-low-energy diets (430–660 kcal/d); and 500- to 750-
kcal restriction of the total daily energy intake required for
maintenance for durations of 3 wk–6 mo have been shown
to reduce fasting insulin (34, 44, 46, 53–55, 58, 59, 78–
81), postprandial/all-day insulin (56, 58, 82), insulin-like
signaling, and insulin sensitivity (83). In contrast, very few
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studies reported no significant change in fasting insulin after
8- to 18-wk interventions in normal-weight or obese adults
on caloric deficits ranging from VLCDs (430 kcal/d) to 500-
to 600-kcal/d deficits (56, 60, 84). However, other metabolic
benefits, such as reduction in circulating cholesterol (LDL,
VLDL), triglycerides, and insulin resistance, are concurrent
(82), and CR is often recommended in managing and
preventing type 2 diabetes (85). Based on the studies
reviewed here, a majority of the evidence suggests a reduction
in insulin after CR.

TRF, along with CR, has been deemed safe and effective
in managing body weight in individuals with type 2 diabetes
(80). TREAT (Time-Restricted Eating on Weight Loss Trial)
identified that CR, both with and without TRF (16:8),
resulted in no change in insulin, suggesting no unique
impact from TRF (86). Several TRF regimens lasting from
5 d to 12 wk, studying varying feeding-fasting temporal
patterns (14–20 h fasting, 4- to 10-h eating windows), with
or without concurrent CR or weight loss, showed no effect
of TRF on fasting or postprandial insulin (14, 36, 69, 71,
87–90). In contrast, TRF (5 wk–12 wk) reduced fasting
and postprandial insulin in men with prediabetes, without
weight loss (70); men and women with type 2 diabetes,
accompanied by weight loss (91); women with polycystic
ovarian syndrome, accompanied by weight loss (92); and
normal healthy individuals, accompanied by weight loss (93).
It is important to note here that other IF regimens like ADF
or 2-d/wk fasting protocols have shown consistent success in
reducing fasting insulin (94), but data from within-day TRF
appear less consistent. In summary, there is weak evidence to
suggest insulin is reduced after TRF, but often studies that fall
under the general umbrella of IF protocols fail to differentiate
between ADF, TRF, or other fasting regimens (95).

Acute-phase regulators
Ghrelin.
Ghrelin is a 28-amino-acid peptide hormone that is primarily
produced and secreted from the X/A cells in the stomach,
specifically the gastric fundus region (96). Ghrelin is secreted
preprandially and circulating concentrations peak immedi-
ately before meal initiation, then fall within 1 h of meal
consumption (97). This gives rise to ghrelin’s classification as
the “hunger hormone," even though it is unclear if it causes
or reflects hunger (98). Ghrelin has been shown to stimulate
growth hormone release from the anterior pituitary, as well as
influence homeostatic controls of food intake and appetite,
taste sensations, and reward behaviors (99). Ghrelin stimu-
lates gastric motility and gastric acid secretion in anticipation
of food intake (100). A review by Briggs and Andrews
(101) suggests the prevailing theory is that ghrelin influences
appetite and hunger by stimulating neuropeptide Y/Agouti-
related peptide (NPY/AgRP) neurons in the arcuate nucleus
of the hypothalamus and the paraventricular nucleus (PVN).

Circulating ghrelin concentrations follow a diurnal pat-
tern in humans and rodents that occurs owing to the
suppression of ghrelin by sleep, and which is independent of
meals (102). Ghrelin also increases during fasting, whereas
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FIGURE 1 Effect of CR and TRF on circulating satiety hormones. Left: CR; right: time restriction. An overview of the relation of circulating
satiety hormones and a comparison of the change in fasting satiety hormones in response to CR or TRF. Several satiety hormones
decrease in both CR and TRF (leptin, insulin, and PYY); however, the orexigenic hormones ghrelin and orexin differ. Although orexin
decreases in CR, there is also an increase in circulating ghrelin, suggesting either an increase or no change in hunger and a decrease in
satiety during the fasting state. Ghrelin decreases and orexin remains unchanged in TRF, suggesting a decrease in both hunger and satiety
signals in the fasting state. Created with Biorender.com. CCK, cholecystokinin; CR, calorie restriction; GIP, glucose-dependent insulinotropic
polypeptide; GLP-1, glucagon-like peptide-1; PP, pancreatic polypeptide; PYY, peptide YY; TRF, time-restricted feeding.

refeeding leads to a reduction of plasma concentrations (103,
104). There is inconsistency in the form of ghrelin reported
across studies, with some reporting the active (acylated) form
and others reporting total ghrelin. Despite this, CR led to sig-
nificant increases in fasting (46, 54, 58, 59, 82) and postpran-
dial concentrations (58, 59, 81, 82) of plasma ghrelin, with
some exceptions (50, 55, 105). In addition, following a VLCD
(800 kcal/d) over 8 wk led to higher ghrelin concentrations,
which remained higher beyond 1 y of weight maintenance,
after the initial loss (81). This sustained elevation has
been associated with the continuous “grazing" pattern of
food intake (106), which could consequently contribute to
increased energy intake and a higher probability of regaining
weight in the long term. Overall, it is likely that fasting and
postprandial ghrelin concentrations increase following a CR
regimen.

The ability of a TRF dietary pattern to modulate ghrelin
concentrations remains unclear. Studies have shown no
significant differences in fasting ghrelin concentration fol-
lowing an isocaloric TRF regimen (4–8 wk) when compared
with controls (66, 68–70), regardless of whether it was

accompanied by weight loss. In contrast, some studies have
shown significant decreases in fasting ghrelin concentrations
with TRF regimens lasting between 4 d and 30 d when
compared with baseline measures (65, 67), also regardless
of whether the TRF was accompanied by weight loss. One
study that reported on soccer players that observed Ramadan
fasting noted significantly higher concentrations of ghrelin
post-Ramadan than preintervention values, which was ac-
companied by significant weight loss (107). However, the
fact that they are athletes and physically active suggests the
involvement of exercise-induced appetitive changes, setting
it apart from the other studies discussed in this section.
Major concerns while interpreting from the collection of TRF
studies are the lack of standardized TRF regimens, duration
of the interventions, and lack of postprandial measurements.
Case in point, Hutchison et al. (87) tested the differences
between early morning TRF (eating window between 08:00
and 17:00) and afternoon TRF (eating window between
12:00 and 21:00) in free-living adults with overweight or
obesity. After 7 d on the assigned TRF regimen, fasting
ghrelin concentrations were significantly lower in the early
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morning TRF group, but postprandial ghrelin incremental
area under the curve (iAUC) was lower in the afternoon TRF
group, suggesting that timing of the eating window can play
a role in the diurnal modulation of ghrelin concentrations
by TRF (87). In summary, TRF, with or without CR or
weight loss, does not increase fasting ghrelin (unlike CR) and
may even reduce it. Future research, factoring in the time
of day for restriction and conducted for longer durations
(>5 wk), is necessary for clarifying the effect of TRF on
ghrelin.

GLP-1.
GLP-1, an incretin, is a 30-amino-acid peptide hormone
(108) secreted from the L cells in the small intestine in
response to nutrients in the luminal intestinal space. GLP-
1 is known to influence glucose homeostasis, by inducing
insulin secretion and reducing glucagon secretion and gastric
motility (109). The significant effects of GLP-1 in modulating
circulating blood glucose have led to the development and
use of pharmaceutical agonists to lower blood glucose and
manage body weight (110).

Iepsen et al. (81) reported no change in fasting but an
increase in postprandial GLP-1 after following a VLCD
(800 kcal/d) for 8 wk, which was sustained at 52 wk.
Another VLCD (550–660 kcal/d), conducted by Nymo et
al. (82), resulted in an increase in postprandial GLP-1
AUC at <1–3 wk. In contrast, Adam et al. (84) reported
a reduction in postprandial GLP-1 after a 6-wk VLCD
(∼600 kcal/d), which returned to baseline after 3 mo
of sustained weight maintenance. A VLCD (10 wk, 500–
550 kcal/d) also resulted in a small but significant reduction
in GLP-1, not immediately after CR, but at the 62-wk follow-
up test (58). A less severe restriction of calories (intake
reduced by 500 kcal/d or 20%) did not affect fasting or
postprandial GLP-1 concentrations (54, 55). In summary,
CR has reduced fasting GLP-1 concentrations, although not
consistently. The lack of similarity in these interventions is
important to note, with large variability in the sample type,
extent of CR, duration of the study, and follow-up testing
times. The inconsistencies between studies make it difficult
to reach conclusions about the physiological effect of CR on
GLP-1.

In the context of TRF, no change in fasting, postprandial,
or all-day GLP-1 was reported following a 16:8 TRF regimen
after 5 d (71) and after 5 wk (70). On the other hand, a
Ramadan-type feeding regimen was evaluated by Zouhal et
al. (66) and reported a reduction in fasting GLP-1. This
reduction in fasting GLP-1 was also seen after a 18:6 TRF
intervention for 4 d (65) and a 15:9 TRF intervention for
7 d (87); however, no differences in postprandial GLP-1 were
reported. In summary, TRF appears to reduce fasting GLP-
1; however, the evidence for this stems from very short-term
studies (spanning days), and longer-term studies are needed
to corroborate this possibility.

Amylin.
Amylin, or islet/insulinoma amyloid polypeptide
(IAPP)/diabetes-associated peptide (DAP), is a 37-amino-
acid peptide hormone (111, 112). Amylin is colocalized,
copacked, and cosecreted with insulin (molar ratio 1:15,
respectively) from the pancreatic β cells within the islets
of Langerhans, in response to a stimulus in the form of
nutrient intake. Amylin acts by reducing food intake and
promotes negative energy balance (113). We have learned
from rat model studies that exogenous amylin injected
intraperitoneally has been shown to reduce meal size, in a
dose-dependent manner (114), and irrespective of whether
the amylin is administered peripherally or centrally, its
effects appear to be mediated via central mechanisms (115).

Sumithran et al. (58) reported that after 10 wk of CR
(500–550 kcal/d) in 50 obese men and women, there was a
decrease in fasting and 30-min postprandial amylin. A 500-
kcal/d reduction in energy intake for 12 wk did not affect
fasting or postprandial amylin, in a group of obese men
and women (54). Further, in 74 adolescent participants (10–
17 y old), compared with a control group with no dietary
restriction, a 20% CR as part of either a low-carbohydrate
(35% carbohydrate; 30% protein; 35% fat) or low-fat diet
(55% carbohydrate; 30% protein; 25% fat) for 12 wk (55)
resulted in no significant differences in fasting amylin. The
contrasting findings may relate to the extent and/or duration
of CR, and future research is needed to definitively determine
the effects of CR on amylin. One study assessed the effects
of 15:9 TRF on amylin; no effect on fasting or postprandial
amylin was reported (87). Overall, amylin may be reduced
after CR in response to a VLCD, but it is unclear if this
would be the case if the CR was more moderate. The evidence
evaluating the effect of TRF on amylin is insufficient to draw
conclusions.

PP.
PP is a 36-amino-acid peptide, primarily produced in the
F cells of the pancreatic islets of Langerhans, but is also
secreted in smaller quantities from the large intestine (116).
PP diminishes gastric emptying, motility, and contraction
of the gallbladder as well as preventing exocrine secretions
from the pancreas through vagal signaling, contributing to
satiation from the current meal episode. PP binds to Y4
receptors from the family of G-coupled protein receptors,
which are found in the hypothalamus, stomach, pancreas,
duodenum, ileum, and colon (116, 117). PP rises with caloric
intake with peaks typically being observed 15 min into the
postprandial state, yet values have remained high 6 h after an
830-calorie meal (116, 118).

After a VLCD (10 wk, 500–550 kcal/d, adults), mean
(fasting and postprandial combined) PP concentration was
higher than at baseline after initial weight loss and remained
elevated at the 62-wk weight maintenance follow-up period
(58). The study did not report significant changes in fasting
PP. However, postprandial PP AUC was higher at week 10
and week 62 than at baseline. Contradictory to this, in a study
comparing a 20% CR with no CR in adolescents (for 12 wk),
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there were no changes in PP at fasting, and postprandial time
points were not measured (55). So, it appears that severe CR
or significant weight loss can induce changes in postprandial
PP, whereas fasting values do not change with moderate or
severe CR. Future studies need to confirm this observation.
To our knowledge, PP has not been evaluated in any TRF
study to date. Hence, although CR could increase PP over the
long term, further studies need to measure PP in both CR and
TRF regimens to better understand their effects.

GIP.
GIP is a 42-amino-acid polypeptide functioning as an
incretin much like GLP-1. GIP is secreted from/by the K cells
of the duodenum and jejunum in response to carbohydrates
and lipids in the small intestine (108). GIP activity increases
insulin secretion from pancreatic β-cells in hyperglycemic
conditions and increases glucagon secretion from α-cells in
euglycemic conditions. Additional downstream actions of
GIP include upregulation of lipoprotein lipase and increasing
lipogenesis (108). GIP and GLP-1 work additively to increase
insulin secretion but do not appear to have the additive effect
on reducing food intake seen in animal models (119). As
insulin concentrations rise after a meal, GIP secretion falls,
creating a negative feedback loop (120).

Whereas fasting concentrations of GIP remained un-
affected by CR (54, 55, 58, 81), postprandial GIP iAUC
was elevated after weight loss (58, 81), but this was not
observed in all the studies (54, 55). After a severe CR
(800 kcal/d), 1 study found postprandial GIP concentrations
increased, only to return to baseline concentrations after
1 y of weight maintenance (81), whereas another study
showed GIP increased with CR and remained higher than
baseline concentrations after 62 wk of weight maintenance
(58). Two studies have looked at the effect of TRF on GIP.
One study in obese adults following a 16:8 TRF regimen
compared with a 9:15 regimen reported that total GIP AUC
was not significantly different between the groups (71). Early
morning or afternoon feeding times in TRF did not affect
fasting or postprandial concentrations of GIP in a different
study (87). In summary, although CR may result in higher
postprandial GIP, there was no effect observed at fasting,
and in the very short term (5–7 d) TRF does not appear
to affect GIP. Longer-duration interventions, with replicated
study designs, are needed to draw more accurate conclusions
about the effect of both CR and TRF on GIP.

PYY.
PYY is a peptide hormone secreted from L cells primarily
in the ileum and large intestine in response to food intake,
especially protein ingestion, and postprandial concentrations
are thought to be proportional to the number of calories
ingested (121). PYY circulates as PYY1-36 and PYY3-36 and
the latter is thought to be primarily involved in regulating
food intake (122). In the current report, owing to a lack of
studies that only focused on PYY3-36, we have summarized
studies that reported on both PYY and PYY3-36.

Peripheral infusion of PYY3-36 in humans leads to
decreased food intake and increased feelings of fullness
during a standard meal, although higher infusions lead to
increased feelings of nausea, and these higher infusions
were considered to be pharmacological (as opposed to
physiological) doses (123). A 90-min infusion of PYY3-36,
reported to be in the physiological concentration range
by Batterham et al. (124), reduced total calorie intake by
33% in humans. Moreover, 12 h after the 90-min infusion,
no reported differences in fullness were reported. Taken
together this indicates that PYY3-36 plays a bigger role in
acute satiety and satiation. In addition, PYY3-36 (along with
GLP-1) inhibits gastric acid secretion, gastric emptying, and
gastrointestinal motility, known as the “ileal brake" (125).

Weight loss trials utilizing VLCDs (∼500–810 kcal/d)
demonstrated decreases in fasting PYY in most (46, 58, 81),
but not all, studies (82). However, the effects of VLCDs
on postprandial PYY are inconsistent, possibly due to the
differing study designs and PYY forms that were measured in
each study. Essah et al. (60) found a decrease in fasting and
postprandial total PYY after 8 wk of a moderate CR (500-
kcal deficit/d). In contrast, another study also using a 500-
kcal deficit/d CR regimen reported no significant changes in
fasting or postprandial PYY3-36 concentrations after a 12-wk
controlled-feeding weight-loss trial in obese men and women
(54). Similarly, Jensen et al. (55) reported no effect of a 20%
CR on fasting PYY3-36 in 74 adolescents. McNeil et al. (64)
reported no significant changes in total PYY after 6 mo of
a 600- to 800-kcal/d restriction; however, they did report
negative associations between fasting PYY concentrations
and weight change and fat-free mass change. In summary,
extreme CR may likely reduce PYY, but mild to moderate CR
has inconsistent effects on PYY.

The effects of TRF on PYY or PYY3-36 are varied. Ravussin
et al. (65) observed an increase after a 6-h evening fast in
PYY3-36 after a 4-d trial of early morning TRF in obese
adults. In contrast, in a 5-d feeding study, a 16:8 TRF regimen
(no CR) did not lead to a difference in PYY 21-h AUC in
overweight and obese men (n = 11) (71). In agreement with
these findings, Hutchison et al. (87) found no change in
fasting or 3-h postprandial PYY in men at risk of type 2
diabetes (n = 15) after 7 d following a 15:9 TRF regimen
(no forced CR). On the contrary, another study in overweight
men with prediabetes (n = 8) following an 18:6 TRF regimen
for 5 wk (weight stable and no CR) reported a decrease
in fasting PYY (70). Ramadan fasting reduced fasting PYY
concentrations in obese men after 30 d (66). These studies
suggest that the reduction of fasting PYY in response to TRF
may require a >7-d intervention duration. More research is
needed to verify this and to explore the long-term effects of
TRF on postprandial PYY or PYY3-36 concentrations.

CCK.
CCK was one of the first gut-related hormones discovered
to have effects on food intake and satiety (126, 127). CCK is
synthesized in I cells found throughout the gastrointestinal
tract, but primarily concentrated in the duodenum and
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jejunum (128). The presence of dietary lipids and proteins
in the gut triggers CCK secretion from these cells and
stimulates the release of bile acids and pancreatic juices into
the duodenum, increasing intestinal motility, and decreases
gastric emptying rate (129). The preprohormone is a peptide
residue containing 115 amino acids and can be cleaved into
varying lengths (CCK-5, CCK-33, CCK58, and CCK-83) by
different enzymes (130, 131), although CCK-8 is frequently
investigated and therefore better understood (132). Using
a meal challenge protocol, infusion of exogenous CCK in
humans led to a significant decrease in food intake and
feelings of satiety immediately after the infusion (133).
Hyperphagia and morbid obesity have resulted from loss of
function mutations of CCK receptor A in humans (127).
Several rodent studies reported that total food intake did
not decrease long term, thus showing that CCK infusion
failed to have longer-lasting effects on overall food intake and
satiety (134); however, recent evidence using a CCK analog
targeting the CCK-1 receptor in domestic pigs has reported
decreased food intake after 13 wk (135). Thus, whether CCK
has long-term effects on food consumption is still under
active investigation.

Although most studies report total CCK, some studies
report CCK-8. Hence, in the current article we present data
on both, which adds to inconsistencies making it challenging
to understand the effect of CR or TRF on this hormone.
Moderate reduction of daily total caloric intake by 500 kcal
showed no significant changes in CCK after 12 wk at the
fasting or postprandial state (54). On the other hand, a VLCD
(430–660 kcal/d) along with weight loss led to decreases
in postprandial CCK/CCK-8 AUC after 8 wk, but there
were no changes in fasting CCK/CCK-8 concentrations (56,
58, 82, 105). In summary, VLCDs may reduce postprandial
CCK/CCK-8, but moderate or less extreme forms of CR do
not seem to affect fasting CCK/CCK-8 significantly.

Regarding TRF, Zouhal et al. (66) determined that fasting
CCK concentrations in obese men dropped after 30 d of
Ramadan fasting; however, concentrations increased back to
baseline concentrations 21 d after the end of Ramadan. Aside
from this, no other studies have looked at CCK or CCK-8
under TRF conditions, warranting further study.

Orexin.
Orexins or hypocretins are hypothalamic neuropeptides
(136). Orexin A (hypocretin 1) is a 33-amino-acid neu-
ropeptide; orexin B (hypocretin 2) is a 28-amino-acid neu-
ropeptide. These are produced by ∼70,000 orexin-producing
neurons in the dorsolateral hypothalamus (with projections
to dorsal raphe nuclei, amygdala, basal forebrain, suprachi-
asmatic nucleus, locus coeruleus, and the spinal cord) and
the perifornical area of the brain (137–139). Orexins act via
the activation of G-protein coupled receptors—orexin-1 and
-2 receptors (OX1R/OX2R), and both are present in different
regions of the brain (136). OX1R has also been detected
in testes, kidneys, adrenal glands, and throughout the
gastrointestinal tract (stomach, ileum, colon, and colorectal
epithelial cells) in humans (140, 141), suggesting they have

roles to play in peripheral tissues. Orexin A is more potent
than orexin B, and OX1R has a 100-fold higher affinity
for orexin A than for orexin B (142). Although orexins
are abundant in circulating cerebrospinal fluid, they are
also present in the plasma (143) and are capable of rapidly
crossing the blood–brain barrier by simple diffusion (137).
They are implicated in sleep/arousal, spontaneous physical
activity, reward-seeking, drug addiction, and food intake
regulation (144). Orexins increase food intake and gastric
motility: both intraperitoneal and intranasal administration
result in increased food intake for ≤4 h after exposure (144,
145). Orexin precursors become more abundant (elevated
mRNA expressions) during the fasted state because they are
responsible for the fasting-induced increase in wakefulness
that helps in food foraging behaviors (146). A rise in blood
glucose inhibits orexin-secreting neurons, and excitatory
activity ensues with reductions in glucose (147).

The effects of CR (50% for 6 d, rat model), without
a change in feeding time, did not lead to changes in
hypothalamic preproorexin mRNA levels (148) but the
authors failed to measure protein concentrations in the brain
or circulation. A ketogenic VLCD in adults (10 men and
10 women, 700–900 kcal/d) for 8 wk led to an increase
in fasting plasma orexin-A concentrations (149). Because
orexin stimulates food anticipatory activity (FAA) and leads
to food intake, this likely would result in increased feelings of
hunger and energy intake.

In regard to TRF, orexin is suspected to play an im-
portant role in changes of FAA (increased movement and
wakefulness time) when feeding time is restricted in mice
(150); however, evidence to support or negate this suspicion
is both sparse and weak. In healthy men (n = 8) following
a Ramadan fasting regimen, plasma orexin-A increased at
the fasting time point, and the diurnal rhythm was flipped
(inverted, based on 5 measurements in 24 h) in comparison
with the nonfasting group (151). In rats, when food intake
was restricted to 2 h/d for 3 wk, the activity of orexin-
containing neurons increased in the lateral hypothalamus,
which led to a downregulation of the orexin receptor gene in
the PVN (152), effectively balancing the secretion of orexin
with its activity via the OX2R receptor. More studies looking
at the effect of orexin on TRF, for longer durations (>4 wk)
as well as maintaining consistent hours of restriction, are
necessary. At present the evidence suggesting an effect of TRF
on orexin is inconclusive.

Conclusions
CR, either from VLCDs or from modest caloric restriction,
with or without weight loss, increases fasting ghrelin and
decreases fasting leptin and insulin. Reductions in orexin,
amylin, and CCK after CR have been reported; however,
the evidence for these is weak owing to very few studies
evaluating these outcomes, nonuniform study designs, lack
of consistency in the form reported (CCK compared with
CCK8, total PYY compared with PYY3-36), and varying
measurement assays. Potentially, these changes suggest a
homeostatic response to counter the reduction in caloric
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intake, prompting an increase in energy consumption by
reduced satiety.

TRF also reduces fasting concentrations of satiety signals:
leptin, GLP-1 (with stronger evidence than CR), and PYY.
The expected reduction in fasting insulin which is seen
after CR is inconsistently observed after TRF. Also, based
on the limited evidence available, after TRF, fasting ghrelin
decreases or remains unchanged. Evidence with regard
to changes in amylin, CCK, GIP, and PP after TRF is
ambiguous or inadequate, warranting further study. Overall,
in consideration of the circulating peripheral hormones,
the hunger–satiety balance after CR likely tips toward
hunger, which appears less likely following a TRF regimen.
However, with the evidence available at this time, drawing
firm conclusions about differences between CR and TRF
is not possible owing to the variable study design aspects
such as participants’ size and type, duration of intervention,
lack of control group, and inconsistent TRF regimens. In
addition, differing methodological parameters such as type of
hormone measured (active compared with total forms), types
of assays (ELISA, RIA, MS), and prepreparation of biological
samples (addition of protease inhibitors, acidification) add
to the challenge of comparing results across studies. Gut
peptides/hormones are one of several factors affecting eating
behavior, including cultural and socioeconomic determi-
nants that are not included in this review, but play significant
roles. Longer-term studies are needed to elucidate the
response of these hormones to TRF (both with and without
CR).

It is important to note the hormonal processes discussed
here are integrated by the central mechanisms with other
signals in the brain. These then manifest as satiation or
feelings of satiety and ultimately influence energy intake
regulation. In a companion review, the central mechanisms
involved in the regulation of satiety after CR and TRF are
presented.

Limitations and directions for future research
There are both overlapping as well as potentially distinct
peripheral hormonal features affecting satiety in TRF and
CR. Among several determinants, the balance of the hunger
and satiety systems influences eating behavior and energy
balance, and restricted eating times may potentially sway this
balance. Whereas satiety systems are suppressed as a function
of CR and TRF (with or without CR), the effect of TRF on
hunger systems may set the 2 apart. However, more human
studies are needed that compare CR alone, CR with TRF, and
TRF alone, so that the actual mechanisms underlying hunger
and satiety can be better understood. The number of studies
that have looked at TRF in humans is small, and the variety of
types of TRF tested are inadequate for empirical conclusions.
This information is critical to our understanding of how
these different approaches to eating are sustained and
whether body weight changes are maintained in the long
term.
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