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ABSTRACT

This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central
neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the
brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin
system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols,
as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to
improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and
TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock
gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the
elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by
food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian
clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the
long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use
standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary
to verify these preliminary observations. Adv Nutr 2022;13:758–791.

Statement of Significance: This is an in-depth review of current literature on the effects of time-restricted feeding and calorie restriction
on central neuroendocrine systems involved in satiety. Our reviews weave together information on both central and peripheral systems of
satiety, which tend to be examined separately, in hopes of guiding future research in this area.

Keywords: circadian rhythms, light-entrainable oscillator, peripheral oscillators, hypothalamus, satiety, calorie restriction, time-restricted feeding

Introduction
In the current obesity epidemic, calorie restriction (CR)
is often prescribed to reduce calorie intake and induce
weight loss. More recently, time-restricted feeding (TRF)
has become a popular modality to achieve a caloric deficit
to reduce body weight. Given that energy intake is a
key determinant of body weight, studying the regulation
of energy intake remains of high interest. Energy intake
regulation is complex, and satiety factors regulating energy
intake are under active investigation. Peripheral signals
from the body (e.g., hormones, glucose, etc.) determine

satiety, along with several other physiological parameters.
The central nervous system integrates these signals (1),
ultimately leading to sensations of satiety or hunger, and
decisions to consume food or terminate a feeding episode.
Central regulation of satiety and hunger involves several
regions of the brain, including the hypothalamus, ventral
tegmental area (VTA), parabrachial nucleus (PBN), nucleus
accumbens (NAc), prefrontal cortex (PfC), central nuclei of
the amygdala, dorsal vagal complex (DVC), and bed nuclei
of stria terminalis (BNST), among several others (1–8). To
date, no report exists that evaluates TRF or CR on satiety,
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summarizing their effects on central neural/neuroendocrine
systems. To address this knowledge gap, here we discuss the
current status of knowledge with regard to the effect of CR
and TRF on central mechanisms involved in the regulation of
satiety. In a companion article, we discuss the current status
of knowledge with regard to changes in peripheral satiety
hormones in response to CR and TRF (9).

Neural oscillators are common control processes that are
involved in the regulation of various physiological systems.
Recent evidence suggests that oscillators could involve
transcription of genes or are neurons/groups of neurons with
intrinsic rhythmic patterns of neural activity (10). There
are several clocks or oscillators at the cellular, tissue, and
systemic levels that use biological networks to generate 24-h
(circadian; Latin: “circa” = about, “diem” = a day) and other
rhythmic processes (11). The primary circadian rhythm of
the body is set by the photic-oscillator (responds to visual
light input) often called light-entrained oscillator (LEO),
which is located in the suprachiasmatic nucleus (SCN) in the
hypothalamus, and throughout this article we will refer to
this as the “SCN-clock.” There are also peripheral oscillators
that are cell-autonomous and maintained as a negative
feedback network to track metabolism. The mechanisms
for the 2 appear to work independently, but are also
interdependent (12). The circadian rhythm genes [Clock,
Brain and Muscle ARNT-Like 1 (Bmal1), Cryptochrome 1/2
(Cry1/2), Period Circadian Regulator 1/2 (Per 1/2), Nuclear
Receptor Subfamily 1 Group D Member 1 (Rev-erbα)] are
involved in this network responsible for molecular peripheral
oscillators, and have been found in several organs (liver,
pancreas, skeletal muscle, stomach) and cell types in humans
(13). Hence, multiple oscillators direct the biological clock
in humans. In humans and most mammals, the central
LEO controls broad-stroke mechanisms of several metabolic
processes (14), and the peripheral oscillators are responsible
for 3–10% of all transcribed mRNA, suggesting a tissue-
specific, temporal effect (12).

The interaction between peripheral clocks and SCN-
clock under different diet conditions has been examined
using gene expression studies (circadian rhythm genes) in
animals and humans. When food availability is manipulated
to produce vastly different cycles than the light-dark cycle,
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such as switching rodents to be diurnal from nocturnal, or
in nightshift workers, there is a decoupling of central and
peripheral clocks (15). Recent evidence suggests that TRF
leads to modulation of SCN-clock and circadian rhythms
through alterations in clock gene expression (16, 17). In TRF,
hepatic circadian gene expression (Per1/2, Bmal1, Cry1/2,
Clock1) increases and is time-locked (i.e., entrained by the
timing of food) (18). Following CR there is a resetting of the
circadian rhythm by the SCN-clock as seen by the increase
in the amplitude of clock gene expression in peripheral
tissues; however, the phasic pattern remained the same,
unlike following TRF (19). Due to the complex interplay
between metabolic factors and satiety, these hepatic time-
locked genes may influence the circadian rhythm of the
satiety hormones.

The concept of a central food or feeding entrainable
oscillator (FEO) has been suggested but is highly debated
since its location remains unclear (20). One proposed theory
is that the FEO is an autonomous circadian oscillator, po-
tentially a network of neurons in the hypothalamic and non-
hypothalamic regions (21, 22). The consideration of the FEO
as a central oscillator suggests that it may play a pertinent
role in food-intake behavior. Predating the concept of the
FEO is the food anticipatory activity (FAA), which in recent
decades has been shown to be the output of FEO (20). FAA is
a set of behaviors—including increased locomotion/activity
for foraging and eating—which occur at specific times during
the day, culminating in food consumption (23). The FAA
is likely mediated both by FEO and LEO (21), both of
which, in turn, communicate with peripheral oscillators (24).
The circadian rhythm genes can influence the FEO, but it
can and often does act independently of genetic circadian
input. The LEO is influenced by CR, and LEO and FEO
also interact and influence each other; however, the form
and extent of this interaction remain unclear (25). Leptin
and ghrelin have been suspected to be primary influences
on the LEO, and more recent evidence also includes insulin
(25). However, since the FEO is a more disparate network
across the hypothalamic and non-hypothalamic regions of
the brain, a greater number of signals [peptide YY (PYY),
cholecystokinin (CCK), amylin, glucagon-like peptide 1
(GLP-1), etc.] could influence and entrain this.

It has been suggested that the FEO is recruited in TRF
(with or without CR) but not in CR alone; however, this is de-
bated (20, 26). Studies investigating TRF in both animals and
humans do not use consistent protocols, and sometimes in-
clude CR, while other times it is an inadvertent outcome (27),
making it challenging to compare and understand the role
of LEO versus FEO on FAA, albeit, recent evidence suggests
that TRF combined with CR sustains the metabolic and be-
havioral peripheral oscillator entrainment (28), leading to the
possibility that the FEO learns and sustains activity with TRF
and makes downstream adherence to CR more feasible (29).

Temporal patterns of feeding have been shown to affect
the circadian rhythm. TRF (with and without CR) is an
interesting model in this regard because it offers the potential
to affect and synchronize peripheral clocks and even FEO,
but without involving LEO (25, 30). Furthermore, there
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is a strong influence of TRF on peripheral clocks and
modulation of LEO in the SCN. If there is an increase in the
strength of coupling between the SCN-clock with the food-
modulated clock (peripheral and potentially FEO), this could
modulate satiety hormones and boost adherence to TRF, and
potentially within it, CR.

Current Status of Knowledge
Central control of food intake
Studies were identified by searching PubMed and
Google Scholar electronic databases for peer-reviewed,
English-language publications. Search terms included
the following: “hypothalamus,” “ARC/arcuate nucleus,”
“DMH/dorsomedial hypothalamus/hypothalamic nucleus,”
“VMH/ventromedial hypothalamus/hypothalamic
nucleus,” “PVN/paraventricular nucleus,” “LHA/lateral
hypothalamus/hypothalamic area,” “SCN/suprachiasmatic
nucleus,” “mesolimbic system,” “NAc/nucleus accumbens,”
“VTA/ventral tegmental area,” “Pfc/Prefrontal cortex,”
“Amg/Amygdala,” “DVC/dorsal vagal complex,”
“NTS/nucleus tractus solitarius,” “AP/area postrema,”
and “DMNV/dorsal motor nucleus of the vagus nerve”
with “calorie/caloric restriction” and “time-restricted
feeding/TRF” and “weight loss.” Tables 1 and 2 present
summaries of studies that have looked at either CR or TRF,
respectively, and their effect on these brain regions. The
central nervous systems regulating food intake are presented
in Figure 1, along with peripheral signal interactions. It
is important to keep in mind that some of the peripheral
signals are synthesized and released both in the periphery
and the brain (CCK, PYY, GLP-1, amylin), while others
are exclusively produced in the periphery and cross the
blood–brain barrier [ghrelin, leptin, insulin, gastrointestinal
peptide (GIP), pancreatic polypeptide (PP)]. There is some
debate about insulin and ghrelin being produced in the brain,
adding controversy (31, 32). Since the central integration of
satiety signals is an area that is under active study and review
(33–37), this current article will present a brief overview
of links between the gut hormone and central nervous
system areas of regulation. We will also summarize current
knowledge on the effect of CR and TRF (with or without
CR) on brain regions, and circuits within and between
the hypothalamic and non-hypothalamic regions in the
brain.

Hypothalamic regions
Arcuate nucleus of the hypothalamus.
The arcuate nucleus of the hypothalamus (ARC) is a major
site for food intake and metabolic regulation (38). The ARC
is located above the hypophyseal system and near the median
eminence, an organ that is abundant in fenestrate capillaries
and is ideally situated to be a “command center” between
periphery and brain (39). The ARC receives information
from other hypothalamic nuclei and extrahypothalamic re-
gions to secrete various neuropeptides into the hypophyseal
portal system to then modulate hormones released from the

pituitary out to the periphery (40). Additionally, nutrient and
hormonal input from the periphery can reach ARC neurons
through the median eminence, which then relays this infor-
mation to other areas of the brain (41). Receptors for ghrelin,
leptin, amylin, insulin, CCK, PYY, GIP, GLP-1, and PP can
be found in neurons throughout this hypothalamic nucleus
(42). Two types of neurons found in the ARC with well-
documented effects on food intake are the agouti-related pep-
tide (AgRP) and neuropeptide Y (NPY)-expressing neurons
and proopiomelanocortin (POMC)-expressing neurons (43).
In addition to these peptide transmitters, both populations
of neurons co-express glutamate and γ -aminobutyric acid
(GABA) (44).

Stimulation of AgRP/NPY leads to hyperphagia and
weight gain, but deletion of the genes encoding these neurons
does not result in starvation or a lean phenotype in mice,
possibly due to other pathways within the brain developing
to ensure food consumption (45). AgRP/NPY project from
the ARC to the paraventricular nucleus (PVN), lateral hy-
pothalamus (LHA), and dorsal medial hypothalamus (DMH)
within the hypothalamus, as well as other extrahypothalamic
regions such as the PBN, paraventricular thalamus (PVT),
and BNST. The release of NPY and GABA from these neu-
rons induce a rapid feeding response by sending inhibitory
signals to POMC neurons within the ARC, glutamatergic
neurons in the PVN, and the PBN (46–48). The release of
AgRP also stimulates food intake only after 4 h of stimulation
by antagonizing melanocortin-4 (MCR4) receptors. The net
effect of AgRP/NPY stimulation and release from the ARC is
the inhibition of the PVN (46), ventral medial hypothalamus
(VMH) (49), and DMH (50) and activation of the PVT (51),
thus inducing food intake and feeding behaviors. In contrast,
stimulated POMC neurons lead to satiety and reduction in
food-seeking behaviors (52). POMC can be cleaved into α-
melanocortin–stimulating hormone (α-MSH), adrenocorti-
cotropic hormone (ACTH), and β-endorphin. Temporally,
the influence of α-MSH on food intake via agonism of
MCR4 receptors occurs after both NPY and AgRP, as 1 study
demonstrated no change in food intake after 2 h of POMC
activation (53). The binding of α-MSH to its receptors in
the PVN and VMH stimulates second-order neurons within
these nuclei to decrease food intake (47, 49, 54). Additionally,
α-MSH influences postsynaptic glutamate transmission from
glutamatergic, non–POMC-releasing neurons from ARC to
PVN neurons that have been implicated in short-term satiety
(47).

Chronic CR has been shown to increase NPY and AgRP
mRNA expression and decrease POMC mRNA expression in
mice (55–60). However, in Satoh et al., CR did not lead to
c-Fos activation of the ARC or change in sirtuin 1 (SIRT-
1) protein [NAD+ histone deacetylases and activation is
associated with metabolic health (61)] after short-term (14
d) or long-term (104 d) CR compared with control (62).
A 2-wk CR, providing approximately 30% of ad libitum
food intake (to reduce weight by 20%), led to decreases in
gene expression of glutamate decarboxylase 1 (Gad1; Gad1
is an enzyme needed to produce GABA) in POMC neurons.
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FIGURE 1 An integrated overview of the brain regions and peripheral hormones involved in hunger and satiety. Right box panels depict
the interaction of peripheral gut hormones with specific brain regions. Several hunger (ghrelin and orexin) and satiety (leptin, insulin,
GLP-1, amylin, PYY, CCK, GIP) peptide hormones cross the blood–brain barrier and elicit responses in the regions alluded via unique
receptor activation. Left panel: Black arrows in the non-hypothalamic region indicate neural projection connections in the
mesocorticolimbic system (which includes the VTA/SNPC, Amg, NAc, PVT, and prefrontal cortex), dark-red arrows depict the DVC, made
up of DMNC and NTS, in the hypothalamus: the blue dotted line indicates connections between the LHA and extrahypothalamic areas,
the blue dashed line indicates the connections from the PVN to extrahypothalamic areas; black lines indicate intrahypothalamic
connections between nuclei; bidirectional arrows suggest neural projections going both directions. Created with Biorender.com, Toronto,
Ontario. Amg, amygdala; ARC, arcuate nucleus; BNST, bed nuclei of stria terminalis; CCK, cholecystokinin; DaMH, dorsal medial
hypothalamus; DMNV, dorsal motor nucleus of the vagus; DVC, dorsal vagal complex; GIP, gastrointestinal peptide; GLP-1,
glucagon-like-peptide 1; LHA, lateral hypothalamus; NAc, nucleus accumbens; NTS, nucleus tractus solitarius; PBN, parabrachial nucleus;
PP, pancreatic polypeptide; PVN, paraventricular nucleus; PVT, paraventricular thalamus; PYY, peptide YY; SCN, suprachiasmatic nucleus;
VMH, ventral medial hypothalamus; VTA/SNPC, ventral tegmental area/substantia nigra pars compacta.
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However, overall expression of glutamate decarboxylase in
ARC was not significantly different between CR and control-
fed mice, suggesting that CR selectively decreased GABAer-
gic signaling in POMC neurons only (63). In a previous
study by Jarvie et al. (64), an acute 17-h fast increased
Gad1 expression in NPY/AgRP neurons and subsequent
GABA release from NPY/AgRP neurons to POMC neurons.
These studies indicate that CR differentially regulates GABA
release in NPY/AgRP and POMC neurons that might be
missed in the global assessment of GABA regulation from
the ARC. Increases in NPY expression are not limited
to the ARC as chronic CR in male rats resulted in in-
creased NPY concentrations and expression in DMH as well
(58).

After 7–40 d of TRF (with 1–2-h feeding windows/d)
in rats, gene expression of ARC NPY mRNA and NPY
protein was higher than in the nonrestricted controls (50,
65, 66). Additionally, POMC mRNA concentrations were
high in the time-restricted group as well (65, 66), but no
change was seen in 1 study (67). Restricting availability
of a high-fat diet to the dark cycle for 12 h resulted in
decreased caloric intake and weight loss compared with their
ad libitum–fed littermates after 15 d (67). TRF resulted in
higher circulating ghrelin concentrations, and greater ghrelin
receptor gene expression in the ARC, but no increase in
food intake. Increased signaling efficiency of leptin in the
ARC was also reported, as seen by the increased weight
loss following intracerebral injections of leptin in restricted
animals compared with controls. In the ARC, these suggest
that the higher sensitivity to leptin, along with the increases
in ghrelin concentration and signaling strength, can improve
energy balance signaling. The differences seen in TRF
compared with ad libitum–fed controls in leptin and ghrelin
signaling in the absence of change in NPY, AgRP, and POMC
could likely be through differential GABAergic mechanisms,
which have not been investigated in TRF. Hypothalamic
gene expression was measured using qPCR and showed
significantly higher AgRP expression in the intervention
group when compared with the control group in the first
hour of the feeding window; however, POMC was unaffected.
When clock gene expression was measured in the ARC,
an increase in Per1 and Nr1d1 was seen following 2- to 3-
wk TRF protocols (1- to 12-h feeding windows) compared
with controls; however, no changes were reported in Bmal1,
Cry1, or Cry2 (67, 68). Similar to CR, a 3-d TRF protocol
did not lead to changes in c-Fos activation of the ARC
(69). Nevertheless, the melanocortin system still seems to
play an important role in the beneficial effects of TRF on
weight and food intake as knockout of MCR4 in obese mice
led to no reduction in caloric intake (70). Based on the
studies reported here, both CR and TRF increase NPY and
decrease POMC in the ARC, suggesting amplified hunger
and reduced satiety signaling. However, TRF appears to
improve energy balance signals by strengthening the effect
of leptin and ghrelin in the ARC, resulting in decreased
food intake/hyperphagia, which has not been reported in
CR.

Dorsomedial hypothalamic nucleus.
The DMH is a cluster of neurons surrounding the poles of
the VMH, although it is a poorly defined area in the human
brain (71). DMH contains a high number of GABAergic
neurons (72) and NPY-expressing neurons (58). Stimulated
GABAergic neurons, which also express leptin receptors in
ventral DMH, inhibit AgRP neurons in ARC and contribute
to satiety and suppression of food intake (48). Interestingly,
inhibition of total GABA release from the DMH resulted
in a reduction in inhibitory tone on ARC POMC neurons,
suggesting that the DMH may play a significant inhibitory
role for POMC neurons through secretion of GABA (73).
Previous research has shown in lean rats that overexpressing
NPY in DMH leads to hyperphagia and weight gain, and
a knockdown of NPY decreased food intake and weight
gain (74). Additionally, knockdown of DMH NPY also led
to a reduction in NPY signaling to DVC, reducing meal
size and increasing satiety-inducing response to peripheral
CCK administration. Unlike ARC, NPY-expressing neurons
in this hypothalamic nucleus are not influenced by leptin
signaling but are responsive to CR (58). Ghrelin can affect
DMH in 2 ways: directly through ghrelin receptors and
indirectly through activation of NPY/AgRP neurons in ARC,
which project to DMH (75). The distribution of growth
hormone secretagogue receptor 1a (GHSR1a; ghrelin recep-
tor) through various neurons is not yet known; however, it
has been shown that direct infusion of ghrelin into DMH
increases food intake and weight gain in adult male mice. In
addition to leptin and ghrelin, receptors for PYY and NPY
are found in this hypothalamic area (76).

Chronic CR (given 70% of normal food intake) for 2–
4 wk led to increased NPY expression in the DMH (58),
which also persisted when weight was partially and fully
restored to that of control rats (59). This suggests that CR has
similar effects on NPY neurons in both the ARC and DMH.
Interestingly, Satoh et al. (62) demonstrated that a 40% CR
(60% caloric intake of controls) for 2 wk increased SIRT-1
concentration at 14 d and 104 d, which then increased orexin
receptor type 2 gene expression in DMH and promoted
physical activity/locomotion, which was not seen in the ARC.
Additionally, male mice that overexpress SIRT-1 (BRASTO)
had marginal increases in FAA versus SIRT-1–deficient mice
when given 60% of their daily caloric intake for 14 d and
for 104 d, suggesting that SIRT-1 may mediate the effects
of CR on hypothalamic nuclei; however, additional studies
are needed to confirm this. Taken together, the limited
studies on the effects of CR on the DMH indicate increased
hunger signaling through increased NPY expression and
orexin sensitivity. However, longer-term and human studies
are needed to verify this effect.

With regard to appetite or food intake, TRF (1-h feeding
window) with CR for 40 d increased NPY concentrations in
the DMH as well as the ARC and LHA of lean male rats
(50). However, whether the increased NPY concentrations
in DMH were due to increased NPY transport from ARC
or increased synthesis within DMH was not established.
Verhagen et al. (69) reported a decrease in c-FOS+ cells in

Satiety in caloric restriction vs. temporal feeding 779



DMH after a 3-d TRF (1-h feeding window), but this did
not affect total food intake significantly. The DMH has direct
connections to the SCN and plays a critical role in circadian
rhythms. It was hypothesized to be the controller of the
elusive FEO and previous research by Gooley and colleagues
(77) showed that mice were unable to anticipate meal timing
after lesioning of the DMH, suggesting that the DMH plays
an important role in FEO and FAA. However, more recent
studies have shown ablation of the DMH can influence food
anticipatory behavior but does not completely abolish food-
entrained rhythms or FAA, suggesting that the DMH is not
the central regulator for FAA or FEO (69, 78, 79). A 2-h
daily TRF regimen for 3 wk in adult Wistar rats demonstrated
no difference in DMH activity via c-FOS immunoreactivity;
however, non-TRF animals (controls) that were exposed to a
22-h feed deprivation showed entrainment in the DMH that
was similar to the 3-wk TRF animals (80). Additionally, a
similar TRF regimen reported an increase in Per1, a decrease
in Per2, and no change in Bmal1 gene expression within the
DMH (68). Further, research on the role of TRF and CR on
DMH activity and clock gene expression is needed to improve
our understanding of its role in food intake and satiety.

Ventromedial hypothalamic nucleus.
The VMH is a pear-shaped nucleus located adjacent to the
ARC (71). The VMH contains highly heterogeneous cells
and thus is generally further divided into subnuclear regions:
the ventrolateral VMH contains a large portion of estrogen
receptors, somatostatin cells, and oxytocin receptors; the
smaller dorsomedial and central VMH contains GHSR1a,
leptin receptors, GABA receptors, steroidogenic factor 1
(SF-1), and brain-derived neurotrophic factor (BDNF) (81).
Various studies have also shown that the VMH can influence
energy balance and is sensitive to leptin, insulin, ghrelin,
CCK, GLP-1, PYY, and orexin (82, 83). The VMH receives in-
put from the ARC (49), DMH, and SCN, and sends signals to
various brain regions including the ARC, DMH, SCN, PVN,
BNST, NAc, amygdala, and brainstem (81). Interestingly,
glutamatergic neurons lacking MCR4 receptors in the VHM
stimulate POMC neurons in the ARC, and the activity of
VMH glutamatergic neurons is reduced during fasting (54),
suggesting a redundant pathway to communicate energy
status to the ARC. Additionally, glutamatergic neurons from
the VMH are thought to project to the LHA as well, which
increase during fasting, possibly promoting food-seeking
activity (82).

To our knowledge, only 1 study looking at the effects
of CR on VMH has been reported. Unlike the DMH, 40%
CR for 14 d did not lead to changes in SIRT-1, orexin
receptor gene expression, or neuron activity (measured via
c-FOS expression) in the VMH (62). BDNF has anorexigenic
properties and its expression is influenced by starvation
and the melanocortin system from the ARC (49). In mice,
removing food on alternating days led to an overall decrease
in caloric intake by 30–40% and increased overall BDNF
expression (84). Similarly in humans, 25% CR for 3 mo in
overweight and obese adults led to a 7% weight reduction

and significantly increased serum BDNF concentrations (85).
It should be noted that other brain regions (notably the
hippocampus) express BDNF as well (86). However, selective
deletion of the Bdnf gene in the VMH and DMH leads
to hyperphagia and obesity in mice (87). Recent research
suggests that BDNF plays an important role within the VMH
to regulate inhibitory signaling to neurons expressing SF-1,
a transcriptional factor that is exclusively found in the VMH
(88). Evidence from mouse studies reports that VMH SF-1
is important for leptin-mediated reductions in meal size and
increases energy expenditure (89). However, the mechanism
by which dietary restriction leads to increased BDNF has not
been elucidated, although it is hypothesized that it is a type
of stress response to fasting and CR (90). Therefore, more
targeted research on the effects of CR on satiety and food
intake in VMH, focusing on hypothalamic BDNF or other
VMH-specific factors, is needed.

As mentioned previously, the VMH influences FAA, and
previous research has demonstrated that ablation of the
VMH and silencing ghrelin receptors in the VMH attenuates
FAA in male mice (82). Mice that were shifted to mid-light-
cycle feeding had higher VMH activity following the meal
shift than mice that were kept in the dark-cycle feeding (91).
Projections from the VMH to the preoptic area (POA) in the
hypothalamus could be how the VMH influences locomotor
activity related to FAA (81, 82). A few studies have looked
at activity and gene expression in the VMH using a TRF
paradigm. Restricting feeding times to 2 h/d for 3 wk did not
change c-FOS–measured neuronal activity or Bmal1 or Per1
clock gene expression, but a reduction in Per2 was reported
(68, 80). NPY concentrations in VMH were not affected by
40 d of TRF (23 h feed deprivation:1 h feeding) in male rats,
despite having lower body mass than ad libitum–fed controls
(50). In a study by Kurumiya and Kawamura (92), adult mice
with lesions in the SCN developed a food-entrained daily
rhythm in VMH when placed in a 2-h feeding regimen for
10 d, which persisted 4 d after the TRF regimen had stopped.
The available literature on the effects of CR and TRF on VMH
is sparse, making it difficult to draw definitive conclusions.
Due to its close ties to peripheral signals of appetite and
energy expenditure, more research on the VMH is needed.

Paraventricular nucleus of the hypothalamus.
The PVN is another cluster of neurons known to be impor-
tant in energy balance and feeding behaviors. In addition to
signals from within the hypothalamus from the ARC, LHA,
and SCN, the PVN’s activity is also influenced by circulating
ghrelin, orexin, PYY (76), CCK, insulin, leptin, GLP-1, PP,
and amylin (42, 93). The PVN has a higher concentration
of MCR4 receptors than other areas of the brain (94) and
electrical lesioning of this area leads to hyperphagia and
obesity in rodents (95). α-MSH from the POMC neurons in
the ARC binds to these MCR4 receptors, stimulating neurons
in the PVN to synthesize and release several neuropeptides
including corticotrophin-releasing hormone and oxytocin
and potentiate signals to the PBN to induce satiety (38, 46).
BDNF-expressing neurons also in the PVN have been shown
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to influence energy balance and can inhibit feeding (96).
A subset of PVN neurons expressing thyrotropin-releasing
hormone (TRH) and pituitary adenylate cyclase-activating
peptide (PACAP) has been shown to stimulate AgRP neurons
in the ARC, leading to increased hunger signaling, suggesting
that the PVN can signal for both orexigenic and anorexigenic
behaviors, but in differing neuronal pathways (97).

CR and food deprivation reduce core body temperature,
which may contribute to beneficial effects of CR on aging
and longevity. The ARC, PVN, and LHA contain high
concentrations of neurons that express thermoregulatory
neuropeptides [such as TRH, melanin-concentrating hor-
mone (MCH), NPY, etc.] (98). CR led to increased insulin-
like growth factor I (IGF-I) sensitivity in PVN, which is
hypothesized to decline with aging (99). Interconnectivity of
PVN to ARC and LHA suggests that changes related to CR in
ARC and LHA activity will also affect PVN secondarily, but
no studies have focused on satiety as the primary outcome.
Radler et al. (60) demonstrated that 50% CR for 4 wk led
to significant changes in NPY activity in the ARC, but
not the PVN. Whether this relates to changes in other
neuropeptides, appetite, or satiety was not the focus of this
study, so further research is needed. A 25% CR for 3 wk
increased basal glucocorticoid concentrations but did not
significantly increase PVN activity and the mice displayed
reduced anxiety-related behaviors (such as grooming) and
normal stress response (100). In agreement with this, mice
placed on 40% CR for 14 d had no differences in SIRT-1
and c-FOS immunoreactivity compared with ad libitum–fed
controls (62). Taken together, this suggests that modest CR is
not significantly stress-inducing or that other hormones that
increase in response to CR (e.g., ghrelin) may help attenuate
the stress response to CR. Gastrointestinal hormones were
not measured in this study, so additional studies are needed
to confirm this hypothesis.

Deletion of the clock gene Bmal1 in the PVN led to
increased body weight and reduced feeding rhythmicity;
however, overall daily food intake was not different than that
of controls (101). Weight gain in these rats was primarily
attributed to reduced energy expenditure, suggesting that
disruptions in PVN rhythms affect metabolism but have
less effect on feeding behaviors. Additionally, 3 wk of TRF
(2-h feeding window) in male Wistar rats did not affect
clock gene expression in the PVN, as no changes in Bmal1,
Per1, or Per2 gene expression were reported (68). Two
studies have reported no increases in PVN activation (via
c-FOS immunoreactivity) following TRF with a 1- to 2-h
feeding window in Wistar rats (69, 102) and 40 d of a 1-h
TRF regimen in male rats reported no differences in NPY
concentrations compared with ad libitum controls (50). In
contrast, Brady et al. (66) demonstrated that TRF (23 h
fasting:1 h feeding) for 14 d increased NPY and decreased
POMC expression in the PVN of Sprague-Dawley rats. A
restricted feeding period of 2 h for 3 wk led to reduced orexin
receptor type 2 gene expression in the PVN in rodents (103).
The evidence for the effect of TRF on PVN is mixed and
additional research is necessary to fill this knowledge gap.

Lateral hypothalamic area.
The LHA includes orexin, MCH, GABA, and glutamate
neurons that innervate several areas in the brain including
the VMH, PVN, ARC, BNST, NAc, and VTA (54, 104). The
prevailing thought is that the LHA combines the information
of body energy and fluid status, “reward-related learning”
(hedonic), and cognition to then influence the motivated
behaviors in the mesolimbic system (105). Increased activity
in the LHA is indicative of hunger and satiety states in
humans (106). Electrical lesioning of LHA in mice led to
decreased adipose tissue in both obese and lean mice, but
food intake remained adequate for growth (107) suggesting
that LHA influences energy balance. Other pathways to
drive hunger and food intake exist. Orexin neurons in
LHA secrete orexin, leading to increased food intake among
other intake behavior including locomotor activity and water
intake. FAA is reduced when orexin neurons are ablated or
in orexin-knockout models in LHA; however, FAA is not
completely abolished. Locomotor activity is also increased
during electrical stimulation of LHA (82). MCH, another
orexigenic neuropeptide, is also produced and secreted from
LHA. Stimulation of GABAergic neurons in LHA increases
appetitive and consummatory behaviors in mice, whereas
inhibition leads to attenuated weight gain and decreased food
intake (108). These GABAergic neurons from LHA project
to VTA to inhibit both PVN (109) and VTA neurons (110).
Excitatory glutamatergic neurons from LHA also project to
VTA to stimulate activity (110) and receive inhibitory signals
from the BNST (111). Some of these glutamatergic neurons
that express the leptin receptor also affect orexin neurons
within LHA to reduce food intake (112). Ghrelin activates
orexin neurons; however, prolonged and repeated activation
of the orexin neurons may downregulate preproorexin
mRNA expression in LHA, impairing the compensation
capacity of orexin neurons (111). Although MCR4 is present
in several LHA neurons, recent evidence suggests that AgRP
antagonism in this region is not necessary to stimulate
feeding behavior (113). Other peripheral hormones that
influence LHA activity include insulin, GLP-1, GIP, amylin,
and CCK (112).

CR led to a decrease in plasma orexin-A concentration
in obese adults following a very-low-calorie ketogenic diet
(114), suggesting sensitivity of orexin neurons in the LHA
and PVN to energy status. Orexin and MCH gene expression
in the LHA were higher after 3 wk in mice that were refed
a high-fat diet following a 25% CR compared with mice that
were refed a normal feed pellet diet or mice fed a high-fat diet
ad libitum (115). Additionally, SIRT-1 expression increased
in LHA after 14 d of CR (60% daily caloric intake of controls),
leading to higher orexin receptor type 2 gene expression and
locomotor activity in male mice (62). These data suggest
that LHA is sensitive to CR and increases in LHA activity
could directly affect other areas in the brain, including extra-
hypothalamic regions such as the mesocorticolimbic system
via connections to the VTA.

The role of the LHA in FAA/FEO is unclear, although a
few TRF studies did investigate this. Wistar rats that were
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subjected to 1- to 2-h feeding windows for 3–21 d had higher
LHA activation compared with ad libitum–fed controls (102,
103). In an earlier study by Kurumiya and Kawamura, adult
mice with lesions in the SCN developed a food-entrained
daily rhythm in LHA when placed in a 2-h feeding regimen
for 10 d, which persisted days after the TRF regimen had
stopped (92). A more recent study that used a 4-h TRF
feeding window for 9 d in orexin knockout mice observed
entrainment of locomotor activity and body temperature, but
not in food intake compared with wild-type controls (116).
Additionally, another study (3 d of a 23-h fasting:1-h feeding
TRF regimen, with set 1 h vs. random 1 h feeding times)
reported no differences in total food intake between the
restricted-feeding group (69), suggesting that time restriction
affects food intake regardless of whether food was given at the
same time or not. A 1-h TRF feeding window with CR for
40 d in rats resulted in increased NPY protein in the LHA
along with body-weight loss (50). However, future studies
should focus on the effects of TRF on LHA without imposing
CR to tease apart the effect of CR from TRF on NPY and
downstream hunger. Furthermore, studies are required to
confirm these reports of entrainment of neuronal activity in
LHA.

Suprachiasmatic nucleus.
The SCN within the hypothalamus drives and maintains
the 24-h circadian rhythm by releasing “time-of-day” signals
to the periphery, while also modulating its own sensitivity
to peripheral signals (117). The LEO in the SCN responds
to direct and indirect retinal ganglionic inputs and sets
the body clock (25). The SCN regulates the secretion of
melatonin, adrenocorticotrophic hormone, and arginine va-
sopressin, all of which constitute “time-of-day” signals (118,
119).

While the hypocretin system in the LHA receives direct
and indirect input from the SCN, orexin receptors in the
SCN can cause phase shifts in circadian rhythm, establishing
a significant link between sleep–wake cycle, food intake,
and activity (120). Similarly, ghrelin receptors are also found
in the SCN and have been shown to influence the central
circadian clock (121). In addition to these, the gastroin-
testinal clock—enforced by the migrating motor complex
(MMC; the electrical rhythm leading to peristalsis and
gastrointestinal movement)—is influenced by melatonin,
and therefore the SCN (122). Starting in the stomach,
MMC is generated by ghrelin and motilin (122) and may
be “entrained” by TRF differently than non-TRF or CR,
as observed from the peripheral hormone literature. This
suggests a potential central–peripheral interplay mechanism
for where the difference between the CR and TRF regimes
plays out (Figure 2) (122). While it is unclear if there are
insulin receptors on the SCN, the latter does have a significant
impact on insulin resistance, which is mediated by neural
links between the SCN, VMH, and PVN (123). Leptin (via
leptin receptors) has also been observed to interact with and
influence the circadian clock (124). Both leptin and insulin
are central energy-sensing signals, and ghrelin is the primary

peripheral orexigen, so it is reasonable to expect these to
interact with the SCN.

Daily regulation of tissue- and organ-level functions
appears to be regulated by peripheral clocks; however,
large sweeping changes, such as complete phase shift in
light-dark cycles and synchronization of peripheral clocks,
are regulated by the central circadian clock in the SCN
(12, 18), More importantly, non-SCN clocks (which may
or may not constitute the FEO) that exist in the brain
are entrained by timing of food intake and can influence
downstream behavioral and endocrine functions, including
satiety systems, independently of the SCN (24).

A few studies have looked at the effect of CR and TRF
on the SCN. Satoh et al. (62) reported increases in SIRT-
1 concentrations in the SCN following 14 d of CR (40%
caloric reduction), although no changes in SCN c-FOS
activity were seen. Despite the lack of change in neuronal
activity, Froy et al. (18, 19) have shown that CR enhanced the
synchronicity of biological rhythms and a pronounced SCN-
clock, based on increases in hepatic clock gene expression in
transgenic mice that restrict caloric intake naturally by 30–
50%. However, time restriction has also been shown to reset
the SCN and peripheral clocks through observed changes
in hepatic clock gene expression (18, 125–128). While 2
studies that looked at the effect of TRF for 2–3 wk on clock
gene expression in the SCN have reported contrasting effects,
this is likely due to differences in their study design and
research questions being nonuniform (67, 127). Mendoza
et al. (127) conducted TRF with CR for 3 wk and reported
an increase in PER2 and decrease in CLOCK proteins, as
well as a phase advancement in PER1 and AVP in the TRF
compared with controls. On the other hand, Sorrell et al.
(67) conducted a shorter-term (2-wk) TRF regimen with a
12-h dark-restricted feeding window [in high-fat-fed DIO
(diet-induced obesity) mice] and reported no effect on clock
or melanocortin gene expression. However, this restricted
feeding protocol strengthened leptin and ghrelin receptor
signaling in the SCN, suggesting an effect of peripheral satiety
signals of the central SCN-clock. Yet another study in male
Wistar rats following a 3-wk TRF (2-h feeding window)
also reported no difference in neuronal activity in the SCN
based on c-FOS measurements (102). However, the TRF rats
showed similar entrainment of the SCN as the control rats
after an acute 22-h feed deprivation. In summary, CR may
lead to pronounced SCN-clock signals and synchronization
of biological rhythms, influencing the regulation of metabolic
and satiety mechanisms. TRF likely resets the circadian
rhythm, as seen by changes in the phasic expression of clock
genes and neuronal activity in the SCN, albeit with some
contradictory evidence, and influences leptin and ghrelin
signaling, hinting at a peripheral–central integrated effect
that needs further investigation.

Non-hypothalamic regions
Mesocorticolimbic system: NAc, VTA, PfC, and amygdala.
The NAc along with the VTA, the medial PfC, amygdala, and
hippocampus form what is known as the mesocorticolimbic
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FIGURE 2 Effect of CR and TRF on peripheral and central clocks involved in hunger and satiety. Left: time restriction; right:—calorie
restriction. An overview of mechanisms suggested to be involved in TRF and CR compared with ad libitum food consumption and their
eventual effect on FAA and food choice (highly palatable foods, etc.). This depicts the integration of satiety and hunger signals (blue and
green boxes originating from the gut) with the non-SCN and SCN clocks in the brain. During ad libitum feeding, the light-dark cycle
entrains the light-entrainable oscillators in the SCN, while food cues and peripheral clocks are regulated and reset by the SCN-clock.
Hunger systems may be less “stimulated” following TRF, in contrast to CR, while satiety systems are equally suppressed following both
regimes. Following TRF, the food-entrainable and peripheral clocks become stronger, and induce resetting of the SCN-clock. In the case of
CR, the SCN-clock resets the food-entrainable and peripheral clocks. Combined, the integrated mechanism suggests that the overall lack
of increase in hunger and stronger regulation by peripheral metabolic and food-entrainable non-SCN clocks may mean that TRF could aid
in adherence to specific food intake regimes such as CR. Different color arrows used to indicate entrainment (brown and red), feedback of
peripheral satiety signals to the brain (blue and green), interactions between SCN, non-SCN, and peripheral clocks (black, light blue).
Dashed arrows indicate a reduction in strength of physiological signal compared with no-CR or no-TRF. Created with Biorender.com. CR,
calorie restriction; FAA, food anticipatory activity; GI, gastrointestinal; SCN, suprachiasmatic nucleus; TRF, time-restricted feeding.

system (129). The NAc is 1 of 2 primary nutrient-sensing
regions in the brain and it regulates and participates in
dopamine-mediated behavioral response following a reward-
ing stimulus (130). Dopaminergic inputs from VTA are
received in the NAc, and low concentrations of dopamine
promote lesser-effort/risk-involved reward-seeking behavior,
compared with higher dopamine concentrations (131). In the
context of satiety and food intake regulation, the nucleus ac-
cumbens shell (NAcSh) is reciprocally connected to feeding-
related areas in the hypothalamus (D1R-neurons to the LH).
The NAcSh is purported to be more involved in the hunger
system responses compared with the nucleus accumbens
core (NAcc), although alternate theories emphasize the role
of dopamine signaling in the NAcc (132). When D1R in

the NAc are activated, food consumption is reduced, via
inhibition of LH GABA-transporter neurons, while D2R in
the NAc appear to be involved in taste perception (133). In
addition to this, ex vivo activation of NAcSh activity upon
ghrelin injection has been reported recently (134), suggesting
a link between peripheral and central food intake control
systems that do not involve the mesocorticolimbic system.
Similarly, CCK-8S, the sulfated form of CCK produced in the
brain, activates CCKB receptors in the NAc and contributes
to dopamine or GABA-induced downstream excitation in
the NAc (135). This is independent, however, from the
peripheral CCK, since CCK cannot cross the blood–brain
barrier (136). Also, insulin receptors in the NAc directly
respond to glucose (137), which is relevant to the systemic
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circulation and food intake drive, since insulin does get past
the blood–brain barrier (138). Amylin, which also crosses
the blood–brain barrier (139), activates amylin receptors
in the NAcSh to suppress feeding (140). PYY3-36 and
GLP-1 also influence activity in the NAc, but most likely
via dopaminergic inputs originating from receptors for these
hormones in the VTA (141). A recent systematic review that
summarized 349 human fMRI studies that probed the link
between peripheral and neural circuits reported that, with
the exception of glucose, no other peripheral satiety hormone
was associated with activity in the NAc (142). This is in
contrast with our earlier reports of independent studies that
report receptor activity in the NAc. The receptor activity
studies were done directly on rat/animal brain slices, and
evaluated either electrical or chemical activity downstream,
and are hence more reliable. However, their translation to the
human brain, and at the systemic level, could be questioned.

CR in female Fischer-344 rats (from 4 to 26 mo of age, 40%
CR vs. ad libitum–fed control group) resulted in increased
dopamine overflow in the ventral striatum and NAc, counter-
ing the age-related decline seen in dopamine neuronal func-
tion (143). In contrast, a different study (also using Fischer-
344 rats, both male and female, with 40% CR, from 3.5 to
22.5 mo of age) did not see any increase in dopamine or re-
lated metabolites in the NAc compared with the ad libitum–
fed control group (144). Instead, they observed a reduction
in 5-hydroxyindoleacetic acid (a serotonin metabolite). In a
more recent investigation, male rhesus monkeys were placed
on a 6-mo 30% CR and compared with an ad libitum–fed
control group (145). They observed an increase in dopamine
and dopamine metabolites (3,4-dihydroxyphenylacetic acid
and homovanillic acid) in the striatal region and NAc
compared with the control group. In mice subjected to
CR (40% CR, for 10 d), there was an accumulation of
�FosB (a protein that plays a role in addiction development
and maintenance) in the NAcSh, suggesting a link between
addiction pathways and seeking behavior of high-energy
foods as a reward (146). Overall, it appears that, while CR in
the acute time frame (days) may result in increased reward-
seeking behavior, over the long run it may mean higher
stimulated dopamine release in the NAc region. This would
increase the reward-seeking behavior—in this case, eating
food. TRF for 3 wk with a 12-h feeding window in mice
has been shown to alter tonic and phasic dopamine release
by increasing dopamine secretion and re-uptake in the NAc,
which affects both motivation and food-consumption drive
(147). In rabbit pups fed in a time-restricted manner (feeding
once a day for 2–4 min), FAA and cytochrome oxidase–
based brain metabolic activity in the NAcc is elevated 2–3
h before scheduled food intake, due to the entrainment, and
this elevation influences the amount of food consumed (148).

The VTA (mostly talked about along with the substantia
nigra pars compacta) is caudal to the posterior hypotha-
lamus, bracing the third ventricle (130). The generally
accepted notion is that VTA largely uses dopaminergic
systems (while it also has GABAergic and glutamatergic
projections) to direct motivated behavior in response to

inputs that are rewarding or aversive (149) and works closely
with the NAc for these processes. As mentioned earlier,
dopaminergic neurons are involved in estimating the cost
associated with obtaining a reward in the form of food,
following exposure to a food cue (150). The VTA, along
with the NAc, is also involved in FAA. Both acute 24-h
feed deprivation (in mice) and 6 mo CR (30% deficit, in
rhesus monkeys) have been shown to increase dopamine
release into the VTA (145, 151), which is closely linked to
the NAc via the mesocorticolimbic circuit. The VTA has
ghrelin, insulin, and leptin receptors, and activation of all are
involved in modulating dopaminergic reward-seeking be-
haviors originating in the mesocorticolimbic system. Ghrelin
increases reward-based food intake (152, 153), while insulin
and leptin suppress this (154). Furthermore, hypothalamic
ghrelin may also increase the release of GABA, leading to
the hyperpolarization of POMC neurons (155). Ghrelin also
targets the VTA and influences taste sensations and reward-
seeking behavior, through stimulation of the “cholinergic-
dopaminergic” reward link (156). And yet, to our knowledge,
no studies to date have investigated the effect of TRF on
VTA.

The mesocorticolimbic pathway extends to the PfC and
the central nucleus of the amygdala. Studies have shown that
hunger influences activity in various portions of the cortex—
posterior cingulate cortex, caudate-putamen, fusiform gyrus,
and amygdala (157). Moreover, food deprivation resulting
in CR increased reward processing in these areas following
the presentation of energy-dense foods, while satiated states
resulted in elevated rewards processing when exposed to low-
energy foods, along with reduced stress reactivity (157, 158).
A reduction in stress reactivity in the PfC and amygdala also
resulted in reduced anxiety and depression-like behaviors
following TRF (for example nightshift workers) (159). How-
ever, the primary effect of CR on the PfC appears to be related
to increased reward for high-energy foods. The amygdala is
known to inhibit food intake and, for learning aversive cues,
to limit food intake (160). In particular, the activity of the
amgygdala was found to be involved in curbing food intake
during an eating episode, following a fast (161). This suggests
that the amgygdala activation following a fasting–refeeding
regimen, such as in TRF, helps limit subsequent food intake.
The effect of CR on the amgygdala and TRF on the PfC
remains uninvestigated to date.

Based on the few studies that have evaluated the meso-
corticolimbic system, both CR and TRF appear to increase
dopamine and reward-seeking behavior, which aligns with
the reduced satiety seen in the peripheral systems, not to
mention the increase in palatable food intake and craving
with CR. Intricate differences between TRF and CR, if any,
in the non-hypothalamic regions do not seem to be an active
area of study; however, TRF studies do indicate entrainment
of food timing synchronized with change in FAA. Further,
dopaminergic systems in the mesocorticolimbic circuit,
along with food aversion capabilities of the amgygdala,
warrant further investigations into these areas, keeping CR
and TRF in mind.
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Dorsal vagal complex.
The DVC comprises the nucleus tractus solitarius (NTS), the
area postrema (AP), and the dorsal motor nucleus of the
vagus nerve (DMNV) (162) and is involved in determining
long-term feeding adaptation (163). This network compris-
ing NTS, AP, and DMNV is part of the central melanocortin
system, which is involved in nutrient sensing, and interacts
with hypothalamic, limbic, and hindbrain regions (164). The
melanocortin system consists of the melanocortin-3 (MC3R)
and melanocortin-4 (MC4R) receptors. While MC4R helps
regulate peripheral satiety, MC3R mostly works within the
hypothalamic and limbic structures (i.e., the DVC) (165).
There exists an antagonistic interaction between, and co-
localization of, melanocortin and mu-opioid receptors in the
NTS, DMNV, and the vagus; however, the exact mechanisms
involved in this are still under investigation (166, 167).
The mu-opioid receptors are key players that respond to
endogenous opioids and modulate hedonic eating behaviors
(168). When the AP/NTS region was surgically ablated in
rats, their overall food intake decreased, suggesting a reduc-
tion in both physiological and hedonic signal interruption
(169).

The NTS is the site of integration of signals related to
satiety and forms an important junction between peripheral
and central (hypothalamic and non-hypothalamic) signals.
In mice placed on TRF protocols (presented with food
briefly once every 24 h), there was increased wakefulness
and FAA, and the expression of MC3R receptor in the NTS
was associated with and involved in these behaviors by
influencing the clock genes Bmal1 and Rev-erbα (164). Rats
placed on time-restricted access to food (both normal feed
pellets and sweetened palatable foods, given access for 2 h
in a 24-h cycle) displayed reduced expression of mu-opioid
mRNA in the NTS, suggesting that the hedonic pathways
may also be dampened under restricted-feeding regimes
(170).

The DMNV is intricately involved in pancreatic secretory
function and has receptors for ghrelin, insulin, CCK, PP,
and PYY3-36 (162). Ghrelin is produced in the DVC, and
ghrelin protein and mRNA expression increased during feed
deprivation (24 and 48 h feed deprivation) conditions; longer
periods of feed deprivation meant greater increases in DVC
(primarily in the DMNV) in rats (31). Therefore, while
ghrelin can cross the blood–brain barrier, endogenously
produced ghrelin in the DVC responds to nutrient status
(mechanisms for which remain yet unclear), and likely
elicits downstream behavior via its projections to the central
amygdala within the mesocorticolimbic system (171). When
access to food is restricted (3–4 h per 24-h cycle), rodents
exhibit FAA. However, recent evidence suggests that neural
peripheral postprandial signals (from leptin and insulin),
which are important elements in the “food entrainment”
system, play a larger role in entrainment-based appetite
regulation during time-restricted access to food (102) and
that the DMNV is involved in this process. The DVC appears
to be a poorly investigated area with regard to CR and
TRF.

If the peripheral signals elicited by feeding contribute to
the food entrainment system, this may suggest that the FAA
may be balanced by the food entrainment aspects of appetite
control, offering a system check. Since FAA is associated with
energy intake, the entrainment may offer control on energy
intake.

Conclusions
CR and TRF affect various hypothalamic and non-
hypothalamic regions associated with appetite and satiety.
Short-term studies (ranging from days to weeks) indicate
that both CR and TRF increased NPY expression (which
is associated with increased hunger) and decreased
POMC expression (suggesting reduced satiety). CR also
increases mRNA expression of AgRP and GABA, which also
stimulate hunger and signal for food intake. Additionally,
CR increases the amplitude of clock gene expression in
SCN-controlled peripheral tissues, indicating that there is
both strengthening/pronouncement of the SCN-clock, and
increased synchronicity with peripheral tissues (18, 19).
Further research on the effects of CR on other hypothalamic
regions associated with appetite and satiety and the
integration of signals between each of these regions is
needed.

Unlike CR, TRF has been shown to improve both energy
balance signals in the hypothalamus and the ability of leptin
to preserve body fat mass, resulting in blunted hyperphagia
leading to weight loss. In a companion paper where we
summarized the results from CR and TRF protocols and
their effect on peripheral circulating hormones, we report
that CR results in elevated fasting ghrelin while TRF results
in decreased or unchanged ghrelin (9). Taken together,
these suggest that in TRF the central and peripheral hunger
and satiety mechanisms act via hypothalamic melanocortin
systems to regulate energy balance, and mitigate hyperphagia
seen in CR.

Several studies report that a few days of TRF results in
entrainment of neuronal activity in several hypothalamic
regions, including the ARC, LHA, VMH, and DMH, which
dictates both food anticipatory behavior and food intake
(68, 92, 102, 125). Further, this entrainment lasts as long as
the behavior is sustained, or even in complete abstinence
from feeding. Many TRF studies examining changes in
the hypothalamus largely focus on FAA, entrainment, and
neuronal activity with feeding windows that were extremely
short, resulting in increased locomotor activity and weight
loss (50, 69, 80, 103). While this provides insight into intra-
hypothalamic networks and mechanisms that synchronize
FAA, FEO, and food timing, more research is needed on
the effect of TRF or slight shifts in meal timing (without
CR or increased energy expenditure) on these brain regions.
The addition of circulating appetite/satiety-related hormone
concentrations and food intake measurements in these
studies would provide valuable insight into this area.

In looking at non-hypothalamic regions, both short-term
CR and TRF increased dopamine secretion and activity in the
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mesocorticolimbic system; however, TRF regimens also re-
sult in entrainment of FAA and reduced neuroinflammation.
Additionally, the DVC is poorly investigated in CR and TRF
conditions, and it is difficult to draw any conclusions based
on the available literature at this time.

There are not enough long-term studies done on CR
and TRF to understand their effects on central mechanisms
related to satiety. It is known that the SCN is plastic due
to changes at the level of DNA methylation and network
interactions (172, 173), induced by external factors such as
season and time-of-day (174). Thus, TRF and potentially CR
might indirectly lead to neuroplastic changes in the SCN
and peripheral oscillators (175, 176). In addition, plasticity
of brain regions involved in food-related behavior and satiety
(such as PfC and VTA) could potentially be involved in
long-term changes in response to CR and TRF (177). Future
studies are required to examine the nature of such alterations
to identify the long-term effects of CR and TRF.

Another aspect to consider when evaluating CR and TRF
is the effect of sleep on LEO/peripheral clocks/FEO. The LEO
is responsible for regulating sleep cycles, both CR and TRF
have been shown to increase sleep (178–180), and on the flip
side, lack of adequate sleep has been shown to increase caloric
intake (181). Since satiety mechanisms involving ghrelin and
orexin are critical to how the brain regulates food intake,
and orexin influences both hunger and sleep, it is clear
that timing, duration, quality, and type of sleep affect these
mechanisms, and need to be factored in for a clear picture to
evolve. Qian et al. (182) reported that a complete phase shift
(as seen in nightshift workers) of both sleep patterns and food
intake influenced metabolic health by increasing circulating
lipids and catecholamines. More such studies that look at the
effect of sleep, along with food intake, are necessary to better
understand underlying mechanisms.

Limitations and Directions for Future Research
Animal studies that looked at the effect of CR and TRF on
brain regions used nonuniform caloric and time-restriction
protocols (20–50% CR, 24-h–40-d TRF regimes) along with
differing study designs (CR vs. non-CR, TRF vs. non-
TRF, CR vs. TRF, TRF + CR vs. ad libitum intake), diets
(regular feed pellets, high-fat), animal models (rats, mice–
wild-type/transgenic, primates, rabbits, human), and light-
dark entrainment (light feeding, dark feeding, all-time food
access, randomly selected times for food access), making
it challenging to identify clear effects. Moreover, very few
studies were able to minimize the effect of SCN-clocks
while looking at non-SCN and peripheral clock entrainment
effects of TRF, and only 1 study mimicked the effect of
weekday compared with weekend schedule misalignment as
seen in shift workers. These variations impact our ability
to draw clear conclusions, and more studies in this area
addressing these sources of variation will help us better
understand the effect of CR and TRF. Animal studies that
looked at central satiety mechanisms and brain region
receptor activation failed to report on circulating hormone
concentrations. This makes it difficult to draw connections

between the 2. Given that some peripheral hormones that act
as satiety and hunger signals may also be produced centrally,
a measure of these hormones in peripheral circulation
could answer important questions. More imaging-based
studies in humans that also measure and report circulating
hormones are necessary if we are to gain more insight into
physiological satiety systems that play a role in regulating
food intake. Satiety and hunger systems play a significant role
in facilitating long-term dietary modifications and weight
loss (27). The study of these systems would fill the current
knowledge gap and elevate the mechanistic basis of obesity
research.
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