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ABSTRACT

Nonalcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases in the world, yet no pharmacotherapies are available. The
lack of translational animal models is a major barrier impeding elucidation of disease mechanisms and drug development. Multiple preclinical
models of NASH have been proposed and can broadly be characterized as diet-induced, deficiency-induced, toxin-induced, genetically induced,
or a combination of these. However, very few models develop advanced fibrosis while still reflecting human disease etiology or pathology, which is
problematic since fibrosis stage is considered the best prognostic marker in patients and an important endpoint in clinical trials of NASH. While mice
and rats predominate the NASH research, several other species have emerged as promising models. This review critically evaluates animal models
of NASH, focusing on their ability to develop advanced fibrosis while maintaining their relevance to the human condition. Adv Nutr 2020;11:1696–
1711.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) is a nutritional
disease driven by overnutrition and/or consumption of an
unhealthy diet, which affects ∼25% of the world’s population
(1–4). NAFLD covers a spectrum of disease states, including
bland steatosis, nonalcoholic steatohepatitis (NASH), and
fibrosis (5). Notably, the extent of liver fibrosis constitutes
the most important prognostic hallmark and is a principal
endpoint in several clinical trials of NASH (6, 7). However,
although several compounds are in clinical trials, no efficient
pharmacological therapy is yet available.

One of the major obstacles limiting our understanding
of disease mechanisms, identification of relevant therapeutic
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targets, and improvement in treatment options is the poor
translational validity of many of the available animal models.
Preclinical models of NASH show considerable variability in
the development and severity of hepatic fibrosis and only
a few exhibit the defining histological features of human
NASH. Progression toward advanced hepatic fibrosis is often
challenging, commonly requiring micronutrient-deficient
diets or hepatotoxins to induce severe fibrosis, which poorly
reflects disease etiology and lacks important construct
validity (8). While mice and rats are frequently used as
NASH research models, and do offer many advantages, other
species have shown promise in reflecting different or broader
aspects of the disease and its progression. In this review, we
critically evaluate animal models of NASH with an emphasis
on their ability to develop hepatic fibrosis and their relevance
to human disease.

Current Status of Knowledge
Hallmarks of NASH-associated fibrosis in humans
The diagnosis of NASH is based on histology and requires the
simultaneous presence of steatosis, ballooning hepatocytes,
and lobular inflammation (9). Although fibrosis is not strictly
part of the histological definition of NASH, it remains the
best predictor of both overall and liver-related mortality in
patients (7, 10). Importantly, risk of death or liver trans-
plantation increases with fibrosis stage (7), scored according
to the recommendations from the NASH Clinical Research
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TABLE 1 Histopathological scoring of NASH-related fibrosis1

Score Definition

0 None
1 Perisinusoidal or periportal
1A Mild, zone 3, perisinusoidal fibrosis
1B Moderate, zone 3, perisinusoidal fibrosis
1C Portal/periportal fibrosis
2 Portal/periportal and perisinusoidal fibrosis
3 Bridging fibrosis
4 Cirrhosis
1Fibrosis scores defined according to the NASH Clinical Research Network (11). NASH,
nonalcoholic steatohepatitis.

Network (Table 1) (11). NAFLD patients exhibit a distinct
distribution pattern of hepatic fibrosis. In contrast to other
liver diseases, in which central veins may only be involved
at late stages, NAFLD-related fibrosis originates pericentrally
in zone 3 with the formation of delicate perisinusoidal
fibrosis (12–14). Another hallmark is the presence of lobular
perisinusoidal fibrosis and thin collagen fibers surround-
ing hepatocytes in a characteristic chicken-wire pattern
(12–14) (Figure 1). As the disease progresses, central veins
and portal areas are linked by fibrous bridges denoting the
stage of advanced fibrosis (F3), which culminates in hepatic

cirrhosis (F4) where fibrotic septa link portal and cen-
tral areas to form nodules that isolate islands of hepatic
parenchyma (13, 18). Portal areas may be spared during
progression, but periportal fibrosis is usually present (13).
Notably, early fibrosis distribution may differ in adult and
pediatric NAFLD. Portal fibrosis predominates in children
(68.4%, 26 of 38 patients), although the characteristic pattern
of “adult” fibrosis has also been reported (28.9%, 11 of
38 patients) (19).

Activation of the hepatic stellate cells (HSCs) enhances
their expression of α-smooth muscle actin (αSMA) and is
the fundamental event in hepatic fibrogenesis (Figure 2).
Several core fibrogenic pathways are conserved across var-
ious liver diseases, including transforming growth factor β

(TGFβ), connective tissue growth factor (CTGF), oxidative
stress, platelet-derived growth factor (PDGF), vascular en-
dothelial growth factor, and integrins (20). Pathways more
specific to NASH and NASH fibrosis have also emerged
and include accumulation of free cholesterol, advanced
glycation end-products, hedgehog signaling, Toll-like re-
ceptors (TLRs), and inflammasome activation (20, 21). In
addition, endoplasmic reticulum (ER) stress and apoptosis
are also important to NASH progression (22, 23). Microarray
analysis of patients with mild (F0–1, n = 23) and severe

FIGURE 1 Histopathology of human NASH and models with advanced fibrosis following a Western diet. (A) Perisinusoidal fibrosis (F1)
located around a central vein in a patient with NASH (Sirius Red Hemalun stain, ×10 magnification) Modified from reference 14 with
permission. (B) Bridging fibrosis (F3) and (C) cirrhosis (F4) with thick and extensive bridging in patients with NASH. Arrows denote fibrous
bridges and arrowheads indicate perisinusoidal fibrosis, P: portal tract, V: hepatic vein (Elastica van Gieson stain; scale bar, 250 μm).
Modified from reference 15 with permission from Wiley. (D) Bridging fibrosis in the DIAMOND mouse (Sirius Red stain, ×10 magnification).
Modified from reference 16 with permission. (E) Bridging fibrosis in the guinea pig NASH model also showing the prototypical
perisinusoidal (chicken-wire) pattern (Picro Sirius Red stain and Weigert’s hematoxylin; scale bar, 200 μm). (F) Bridging fibrosis (arrows)
with perisinusoidal collagen deposition in hamsters, inset is part of the original figure, but is not used in this reproduction (Sirius Red stain,
×10 magnification). Modified from reference 17 with permission. Permissions to reuse have been obtained for all figures and the
documentation is provided in the Supplemental Material. DIAMOND, diet-induced animal model of nonalcoholic fatty liver disease;
NASH, nonalcoholic steatohepatitis.
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FIGURE 2 Initiation of NASH-related fibrosis. Nutrient overload results in lipotoxicity and hepatocyte injury leading to the release of a
plethora of danger signals (e.g., DAMPs, HhL, and reactive oxygen species) that interact with HSCs and Kupffer cells (resident liver
macrophages) in conjunction with free fatty acids and free cholesterol to promote inflammation (24–26). Monocytes are recruited from
the circulation, in part, via CCL2, CCL5, and M-CSF released by Kupffer cells. Following differentiation into monocyte-derived macrophages,
these infiltrating cells promote hepatic inflammation and recruitment of additional circulating leucocytes by contributing to the release of
CCL2, CCL3, and CCL5 (27). Hepatocyte injury, Kupffer cells, and infiltrating macrophages facilitate activation of HSCs, which normally
reside in a quiescent state in the healthy liver, but differentiate into ECM-producing myofibroblasts upon activation. HSC collagen
production is promoted by TGFβ while PDGF promotes HSC proliferation and migration (27, 28). Macrophages also enhance HSC survival
via TNFα and IL1β . In addition to this, HSCs themselves exert immunoregulatory effects by releasing CCL2, CCL3, CCL4, and CCL5, which
recruit monocytes from the circulation, thereby sustaining their own activation (27). Thus, chronic inflammation and continual activation
of HSCs ultimately result in liver fibrosis or even cirrhosis. CCL, chemokine (c-c motif ) ligand; DAMP, damage-associated molecular pattern;
ECM, extracellular matrix; HhL, hedgehog ligand; HSC, hepatic stellate cells; M-CSF, macrophage colony-stimulating factor; NASH,
nonalcoholic steatohepatitis; PDGF, platelet-derived growth factor; TGFβ , transforming growth factor β ; TLR2, Toll-like receptor 2.

(n = 32, F3–4) NASH identified several pathways (gene
ontology analysis) associated with advanced fibrosis (29).
Patients with advanced fibrosis displayed enhanced biolog-
ical function pathways such as “cell adhesion and migration”
and “development and extracellular matrix (ECM) orga-
nization,” whereas functions related to “metabolism” were
decreased (29). Furthermore, 64 genes could consistently
differentiate severe from mild NASH and were associated
with pathways related to “tissue remodeling/regeneration,”
“progenitor cells,” “cancer,” and “cardiovascular disease.”
A detailed description of the specific genes and pathways
regulated in human NASH and NASH-associated fibrosis is
not within the scope of the current review, but additional
information can be found in selected references (20, 21, 29–
31). Importantly, these genes and pathways may serve as
a reference when validating experimental models of NASH
with advanced fibrosis.

During fibrogenesis, the composition of the hepatic
ECM changes considerably and ECM components directly
contribute to the remodeling process by communicating with
surrounding cells (32). Collagens constitute the major part of
the fibrotic ECM, with type I collagen as the most abundant
component (33). In general, mild fibrosis is characterized by
an initial increase in collagen types I and III, which increase
further during fibrosis progression. In advanced fibrosis and
cirrhosis, other ECM components are increased such as
collagen types V, VI, X, and XVIII, elastin, fibronectin, and
laminin, while collagen type XII may be decreased (32).

Preclinical models of NASH-related fibrosis
NASH research is challenged by the lack of animal models
that adequately mimic etiology, pathogenesis, and, that due to
the importance of histology in diagnosis and trial outcomes,
reproduce the histological features of human NASH (8).
Furthermore, there is substantial interstrain and interspecies

variation in fibrosis development and severity: for example,
some mouse strains readily develop hepatic fibrosis, while
others are practically resistant (34). In general, animal
models of NASH-associated fibrosis can be characterized as
diet-induced, deficiency-induced, toxin-induced, genetically
induced, or as a mixture of these modalities. The most
commonly applied models are discussed below.

Diet-induced models.
The diet-induced models apply a broad range of dietary regi-
mens ranging from alternating contents and sources of fat to
different amounts of cholesterol and additional supplements
promoting a NASH-like phenotype. The following sections
describe selected dietary approaches to exemplify principles
of disease induction and associated mechanisms including
potential limitations to consider when translating findings to
human patients.

High-fat diets. The straightforward high-fat diets (HFDs)
contain up to 70% of calories from fat. The HFD often leads
to obesity and insulin resistance; however, development of
NAFLD in laboratory animals requires prolonged feeding
periods and the condition is typically less severe than in
humans (35, 36). Accordingly, mice fed an HFD (60% of
calories from fat) developed steatosis within 10 wk, mild
inflammation after 34 wk, and slight perivenular fibrosis
after 50 wk (37). Similar to patients (38), gene expression
suggested enhanced de novo lipogenesis in HFD-fed animals
while genes related to inflammation and prototypical fibrosis
monocyte chemoattractant protein 1 [(Mcp1/Ccl2), Tnfa,
Acta2 (actin alpha 2, encoding αSMA), Tgfb1, and collagen
1a1 (Col1a1)] were also increased (37). In rats, steatosis, mild
inflammation, and increased apoptosis were present after
4 wk of being fed an HFD (58% of calories from fat) and mild
pericellular and sinusoidal fibrosis (F1) was detected after
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24 wk (39). Although capturing some of the central fibrogenic
mechanisms, these models are limited by the mild phenotype
and only reflect the earliest stages of NASH, indicating that
other nutritional triggers are required to induce disease
progression, especially fibrosis (Table 2).

High-fat and -cholesterol diets. Cholesterol appears to
drive the progression from steatosis to NASH (24) and may
act synergistically with lipids to induce NASH, possibly
by directly damaging organelle membranes and increasing
production of reactive oxygen species. In turn, this leads to
hepatocellular damage, which promotes inflammation, hep-
atocellular decay, and eventually activates repair mechanisms
including fibrogenesis (40, 41). Indeed, cholesterol and free
cholesterol concentrations correlate with hepatic fibrosis and
a sharp increase in intracellular free cholesterol accompany
the onset of fibrosis (34).

In line with the dietary characteristics associated with
human NAFLD/NASH, cholesterol has been included in
experimental diets to enhance disease severity. Although ap-
plied amounts (>0.5%) of cholesterol are significantly higher
than those found in a human diet, studies show a clear effect
on hepatic endpoints including fibrosis (Table 2). Severe
steatosis, inflammation, and mild perisinusoidal fibrosis (F1)
were induced in mice following high-fat (33% of calories
from fat), high-cholesterol (1%) feeding for 30 wk (42). The
addition of cholate (0.5%), which promotes intestinal fat
and cholesterol absorption, to a high-cholesterol (1.25%) diet
induced hepatic inflammation, HSC activation, and bridging
fibrosis (F3) after 24 wk in mice (42). Pathway analysis
suggested increased TGFβ signaling, but not any other path-
ways directly related to fibrosis. However, hepatic triglyc-
eride concentrations and cholesterol synthesis decreased
while insulin and glucose tolerance actually improved
compared with controls, thereby diverging from human
NASH (42).

Hamsters rapidly developed bridging fibrosis alongside
inflammation and microvesicular steatosis located in portal
areas when fed a diet containing fat (∼23%), cholesterol
(1%), and deoxycholate (0.25%) over 12 wk (43). However,
high amounts of dietary cholesterol (≥1%) are potentially
hepatotoxic in hamsters and impair normal lipoprotein
metabolism, which may affect the translatability of find-
ings (44). Following high-fat (30% calories from fat)/high-
cholesterol (2%) feeding, 33% (4/12) of rats developed
mild perisinusoidal fibrosis after 16 wk. From week 24
to 48, fibrosis progressed, with the majority (80%, 8/10)
of animals displaying mild-to-moderate central and portal
perisinusoidal fibrosis and a few (20%, 2/10) developing
bridging fibrosis (45). Cirrhosis was induced in 40% of rats
(2/5) after only 9 wk by increasing the cholesterol content
further (2.5%) in combination with high fat and cholate
(2%), although the reported findings were from a relatively
small group size, potentially affecting the reproducibility
of results (46). Hepatic Tgfb1, Col1a1, and Col4a1 gene
expression was increased, but in contrast to humans, de novo
lipogenesis was unaltered and/or downregulated and insulin

concentrations tended to decrease (38, 46). Furthermore,
it should be considered whether high cholesterol (>0.5%)
amounts that by far exceed human consumption and the
addition of cholate truly reflect human patho-etiology (8).
Importantly, compared with an HFD alone (60% of calories
from fat), the addition of cholate (0.5%) reduced hepatic
triglyceride concentrations in a fibroblast growth factor
21–dependent manner (47). Moreover, body fat accumu-
lation, insulin resistance, and glucose tolerance were also
improved by cholate (47). This suggests that cholate may
reverse the metabolic changes associated with NAFLD, fur-
ther questioning the usefulness of cholate in these studies. In
rabbits, a high-fat and high-cholesterol (0.75%) diet induced
formation of central-central and central-portal bridges after
36 wk (48). Similar to patients, Tlr2, Tlr4, Tnfa, Tgfb1,
Col1a1, Col3a1, and tissue inhibitor of metalloproteinases
(Timp) 1 (Timp1) and Timp2 gene levels were increased in
the liver (48). In contrast to what is reported in humans
with NASH, plasma concentrations of hepatic injury markers
alanine transaminase and aspartate transaminase decreased
nominally, hepatic triglyceride concentrations were not
increased, and insulin sensitivity was enhanced (48).

Overall, high-cholesterol diets can be used to induce
advanced fibrosis. However, a common challenge is the si-
multaneous suppression of endogenous cholesterol synthesis
(42, 46, 48) contrary to humans, where cholesterol synthesis
is increased and associated with disease severity (49).

Western/cafeteria diets. Other diets attempt to mimic
the unhealthy eating habits of humans more closely by
containing a mixture of fat, sugar, and cholesterol. However,
the compositions of the individual regimens of these so-
called Western or cafeteria diets vary substantially between
studies, making interstudy comparisons difficult. Sugar-
containing drinking water may also be added as increased
consumption of soft drinks (i.e., high in sugars) has been
associated with NAFLD (50). Feeding rats a Western diet
(40% fat, 40% sugar, and 2% cholesterol) for 16 wk induced
periportal steatosis (i.e., not the same origin as is most
commonly recorded in adult NASH patients) and inflamma-
tion, but not hepatocyte ballooning or fibrosis (51). While
liver MCP1 protein concentrations were increased, TNFA
concentrations were reduced compared with healthy controls
(51). Portal and bridging fibrosis was observed in hamsters
alongside panlobular microvesicular steatosis, obesity, and
insulin resistance when fed a Western diet (40.8% fat, 0.5%
cholesterol, and sugar water) for 12–16 wk (Figure 1) (17).
However, the underlying fibrogenic mechanisms were not
assessed in the study (17). Mice fed a Western diet (40%
of calories from fat, added sucrose/fructose, and 0.15–2%
cholesterol) with and without sugar water for 24–50 wk
developed obesity, insulin resistance, and progressive hepatic
steatosis and inflammation (52, 53). Similar to humans,
perisinusoidal and -cellular (chicken-wire) fibrosis was noted
around central veins and portal areas (F2) after 16 wk.
Advanced fibrosis (≥F3) was absent (52, 53) or only seen
in a few mice (22%, 2/9) after 50 wk (54). In these models,
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expression of genes related to inflammation (Tnfa and Mcp1)
and fibrosis [Acta2 (αSMA), Col1a1, Col3a1, and Timp1]
was increased in the liver (52, 53, 68), indicating activation
of core fibrogenic pathways. Hepatocyte ballooning was
present in some models (68), while not in others (52),
or more closely resembling microvesicular steatosis than
hepatocellular ballooning (53). This reflects another central
point of criticism in many of the current preclinical models:
is human NASH sufficiently well modeled in the absence of
ballooning hepatocytes?

Recently, the diet-induced animal model of nonalcoholic
fatty liver disease (DIAMOND) mouse was reported to
reflect human NASH after ingestion of a more physiologi-
cally relevant diet [42% of calories from fat, 34% sucrose,
0.1% cholesterol, and sugar water (4.2% fructose/glucose
solution equivalent of commercial soft drinks)] (16). The
DIAMOND mouse is an isogenic cross between C57BL/6J
and 129S1/SvImJ mice and this isogenic strain (B6/129)
develops obesity, insulin resistance, and hepatic steatosis,
which sequentially progresses to NASH with histopathology
and molecular pathways similar to humans. Pericellular
fibrosis located around the central vein (F1) was present after
16–24 wk, with some animals displaying both portal and
central fibrosis (F2). By week 52, the majority of the animals
had developed bridging fibrosis (Figure 1). Furthermore, the
DIAMOND mice displayed enhanced de novo lipogenesis,
ER stress, as well as apoptosis and transcriptomic analysis
supported that the mice mimic the transcriptome of human
NASH (16). Accordingly, the model is promising for the
study of disease mechanisms and intervention strategies,
although the feeding period required to reach advanced
fibrosis is long and weight loss appeared after 44 wk in
animals fed both the Western and control diet, possibly
indicating the onset of senescence (16).

Guinea pigs fed a Western diet (45% of calories from
fat, 15% sucrose, 0.35% cholesterol) also develop the
central histological hallmarks (steatosis, ballooning, and
inflammation) of human NASH, constituting a relatively
novel and perhaps underappreciated model of NASH (55).
Molecular pathways reflect human pathophysiology and
suggest enhanced de novo lipogenesis [sterol-regulatory
element-binding transcription factor (Srebf1; encoding sterol
regulatory element-binding protein 1) and fatty acid synthase
(Fasn)], inflammation (Mcp1, Il8, and Tnfa) and upregulation
of core fibrogenic pathways [Tgfb1, Pdgfb, Acta2 (αSMA),
Col1a1, and Col3a1] (69). The model is further supported
by a response to a pharmacological intervention similar to
humans (70). While guinea pigs were not obese relative to
feed pellet–fed controls and glucose homeostasis did not
appear compromised (55, 71), impaired glucose tolerance
and insulin resistance have previously been reported in high-
fat–fed guinea pigs (72). These animals were fed exclusively
with carbohydrates originating from sucrose and fructose
(72), which may explain differences between studies. Central
perisinusoidal (chicken-wire) fibrosis (F1) was present after
16 wk, progressing to bridging fibrosis (F3) between central
and portal areas after 25 wk (55) (Figure 1). Furthermore,
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in contrast to the HDL-dominated plasma profile of rats,
mice, hamsters, and rabbits, both guinea pigs and humans
have an LDL-dominant profile, adding to their translational
relevance (73).

Considering larger animal models, Ossabaw pigs fed a
Western diet (43% of calories from fat, ≤20% fructose/high-
fructose corn syrup, 2% cholesterol) or Ossabaw miniature
pigs fed the same diet with decreased amounts of choline
and 0.5% cholate for 16–34 wk developed obesity, insulin
resistance, and high concentrations of circulating cholesterol
(56–58), thereby, mimicking the metabolic disturbances
often seen in human NASH. However, in contrast to patients,
the hepatic lipid accumulation predominantly presented as
microvesicular steatosis. While ballooning hepatocytes were
reported (56–58), they may not have completely mimicked
typical human-like ballooning [as also mentioned by others
(74)], which is also a challenge in many of the small-animal
models, as noted previously. Mild pericellular fibrosis was
evident in 50% (3/6) of animals at week 16 and progressed to
moderate fibrosis in 83.3% (5/6) of animals at week 24 (57).
In contrast, Iberian pigs fed a Western diet (9.1% fat, 12%
fructose, 0.7% cholesterol) for 10 wk did not develop fibrosis
(75), but this may have been due to the relatively short study
duration. At week 34, mRNA levels of TLR4, TLR9, TNFA,
and TGFB were increased and F3 fibrosis was reported,
indicating that bridging fibrosis may be present in Ossabaw
pigs (56). However, the scoring system was not described,
making it difficult to ascertain the reported fibrosis stages.
Bridging fibrosis was reported in a few (2/14) Göttingen
minipigs fed a Western diet (43% fat, 17.8% fructose, 1–2%
cholesterol) for 13 mo, with the majority of the animals (9/14)
developing mild-to-moderate (F1–2) fibrosis (74). However,
steatosis was absent, thereby deviating considerably from the
human disease. Thus, induction of advanced fibrosis in pigs is
possible, but requires prolonged feeding periods and does not
develop in all animals. This may be a challenge considering
the smaller group sizes often resulting from the cost of
maintaining large-animal models. Importantly, the anatomy
of the pig liver differs significantly from that of human
livers and almost all other small-animal models. In pigs, the
hepatic lobuli are clearly defined and outlined by fibrotic
tissue that connects the portal areas [illustrated in (75,
76)]. Thus, portal–portal bridges are already present under
physiological conditions and the amount of connective tissue
in the normal porcine liver is comparable with amounts in
fibrotic livers from humans (76). In pigs with NASH, fibrosis
was predominantly located periportally and originated from
the septa connecting the portal areas (58), which contrasts
with findings from humans (12–14, 18). Furthermore, the
quantity and distribution of hepatic connective tissue change
from birth until 6 mo of age (77) and may complicate study
comparison. It should also be noted that the pigs used in
these studies were usually quite young (ranging from 13 d to
10 mo) (56–58, 74, 75). Combined with their periportal
fibrosis patterns, which are similar to human pediatric NASH
(19), these porcine models may reflect pediatric/juvenile
NASH more than adult NASH.

While HFD and Westernized diets attempt to mimic
human disease etiology, differences in metabolic profile
and hepatic histopathological phenotype compromise repro-
ducibility and limit the translational potential of findings.
Similar to high-cholesterol diets, Western diets utilizing even
low amounts of cholesterol (0.1%) suppress endogenous
cholesterol synthesis (16, 68, 69).

Interestingly, compared with toxin- and deficiency-
induced models, mice fed a Western diet displayed a
much greater overlap of molecular pathways compared
with patients with NASH (78), suggesting that they might
better reflect the mechanisms underlying human NASH.
However, other analyses did not confirm such a close relation
and, as stated by the authors, the overall overlap between
the different mouse models and human livers is small
(78). Consequently, there is still a need for improvement
and critical consideration of biochemical read-outs and
pathological endpoints associated with model characteristics
and concurrent disease progression.

Role of macronutrients in diet-induced NASH-fibrosis.
The amount of sugar used in so-called Western diets varies
widely and is usually substantially higher than that of actual
human diets in the Western world that they supposedly
model, where added sugars are estimated to account for
∼15% of the overall energy intake (79). In rats fed a diet
with free fructose (30%) and glucose (30%) or sucrose
(60%) for 4 mo, hepatic collagen-III did not differ between
groups (80). Similarly, mice fed an HFD (60% fat) for
10 wk supplemented with either 30% fructose or glucose in
drinking water developed NASH and mild hepatic fibrosis
independent of the sugar type, although insulin sensitivity,
glucose tolerance, and obesity were all worsened in fructose-
consuming mice (81). While daily fructose consumption has
been shown to correlate with increased fibrosis in individuals
with NAFLD (82), a meta-analysis from 2014 concluded that
there was insufficient evidence to draw conclusions on the
effect of sucrose, fructose, or high-fructose corn syrup on
NAFLD, including liver fibrosis markers (83). Consequently,
it remains unclear if certain types of sugar are more fibrogenic
than others.

The type of fatty acids in the diet also affects the devel-
opment of NASH fibrosis and is an important consideration
when formulating experimental diets. Only a Western diet
(40% of energy from fat, 22% fructose, 2% cholesterol) with
trans-fatty acids but not lard (containing primarily a mixture
of saturated and unsaturated fatty acids) induced hepatic fi-
brosis in ob/ob mice (84). In contrast, mice fed a Western diet
(40% of energy from fat, 20% of energy from fructose, and
2% cholesterol) developed more severe NASH with fibrosis
using a non–trans- compared with a trans-fat lipid source
(85). Together with the much lower consumption of trans fats
by humans and since regulatory bodies are limiting their use
(discussed below), this advocates the use of other fat sources
to model human disease. Interestingly, the amount of SFAs
(especially palmitic acid (C16H32O2, hexadecanoic acid)) was
much higher in the non–trans-fat diet described previously
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(44.5%) compared with the trans-fat diet (26.6%) (85). Long-
term injections with the SFA palmitate induced liver fibrosis
in mice fed a normal diet or HFD, suggesting a role of
palmitate in NASH-related fibrosis (86). Moreover, SFAs may
be more fibrogenic than PUFA as they induced higher expres-
sion of fibrogenic genes [Acta2 (αSMA), Tgfb, and Col1a1] in
rats fed an HFD for 8 wk (87). Accordingly, increased accu-
mulation of SFAs (palmitic acid and stearic acid) (C18H36O2,
octadecanoic acid) relative to MUFAs was found in patients
with NAFLD and this accumulation correlated with disease
severity (88). However, it is important to note that the effect
of dietary fat and other macronutrients is confounded by
other factors, such as micronutrient content and palatability,
that differ between the diets being compared, thus further
complicating interpretation (89). Clearly, the impact of the
various dietary fat sources in relation to NASH fibrosis is
complex, but collectively, the data suggest that SFAs are useful
in inducing NASH and liver fibrosis in animal models.

Micronutrient-deficiency models.
Methionine- and choline-deficient diets. The methionine-

and choline-deficient (MCD) diet induces steatohepatitis and
fibrosis by impairing β-oxidation and VLDL particle pro-
duction, both pivotal for hepatic lipid disposal, consequently
“trapping” lipids in the liver (36, 38). Compared with mice
fed a Western diet (45% of calories from fat, 0.2% cholesterol,
and sugar water), liver inflammation, fibrosis, and HSC
activation were more severe in MCD mice (90). Steatosis and
hepatic inflammation were observed in MCD mice after only
2 wk with periportal (F1) fibrosis depositions present after
10 wk; thus, the initial fibrotic pattern resembled pediatric
rather than adult NASH (59). Perisinusoidal and periportal
fibrosis (F2, week 14) progressed to bridging fibrosis (F3)
at week 16 (59). Similar to mice, MCD rats exhibited
progressive development of steatohepatitis with steatosis
(week 2), inflammation (week 5), central pericellular fibrosis
(week 12), bridging fibrosis (week 17), and cirrhosis, with
nodule formation in 89.5% (17/19) of rats by week 20 (60,
61). This was accompanied by an increase in αSMA-positive
cells, TGFβ1 protein concentrations, and fibrogenic gene
expression [Ccn2 (encoding CTGF), Timp1, Timp2, Col1a1,
and Col1a2] in the liver (60, 61). Thus, compared with
HFD and Western diets, steatohepatitis and advanced fibrosis
(≥F3) are more rapidly induced by the MCD diet, which
is an appealing feature of this model. However, enhanced
insulin sensitivity and glucose tolerance in addition to
weight loss (≤40% within 8 wk and ≤70% after 20 wk) are
common (8, 59–61, 91), raising serious concerns regarding
animal welfare and questioning the translational relevance
of the model. Furthermore, hepatic gene expression patterns
suggest that the pathogenesis is different, as MCD models
exhibit suppressed de novo lipogenesis (92, 93) in contrast to
the enhanced de novo lipogenesis reported in patients (38,
94, 95). Using gene-set enrichment analysis, none or only
few KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways overlapped between mice fed an MCD diet for 4 or
8 wk, respectively, and patients with NASH, even when only

comparing with patients with fibrosis (78). Consequently,
while the MCD diet may rapidly induce a NASH-like liver
phenotype with advanced fibrosis and cirrhosis, the disease
mechanisms and metabolic context are not similar to those
in humans. For example, the substantial weight loss is not
clinically relevant and a substantial drawback of the model.
Given the availability of other models, particularly Western
diet–based models, that more closely mimic human NASH
etiology and develop advanced hepatic fibrosis, there seem
to be better alternatives and results from the MCD model
should be interpreted with caution (8, 35).

To overcome the weight loss associated with the MCD
diet, choline deficiency has been combined with an HFD
(45% of calories from fat, 17% of calories from sucrose) (62).
The choline-deficient–HFD (CD-HFD) induced obesity,
glucose intolerance (measured at week 26), hepatic steatosis,
and NASH with hepatocellular ballooning and inflamma-
tion. In addition, 25% of animals had liver tumors after
52 wk (62). At this time point, CD-HFD animals developed
mild pericellular fibrosis and increased hepatic expressions
of fibrogenic genes [e.g., Acta2 (αSMA)], macrophage in-
flammatory protein 1α, Col1a2, Mmp2, Timp1, and Timp2,
thereby reflecting the mechanistic pathways of human liver
fibrosis (62).

Choline-deficient, l-amino acid–defined diets. Like the
MCD diet, the choline-deficient, l-amino acid–defined
(CDAA) diet is deficient in choline. In addition, proteins are
substituted with an equivalent mixture of l-amino acids (36).
In CDAA-fed mice, weight gain is stagnated or similar to
that of controls (63, 96), an advantage compared with the
MCD diet. After 8 wk, hepatic steatosis was more severe
in CDAA mice and inflammation was similar compared
with MCD mice. While absent at week 8 (96), fibrosis was
reported in CDAA-fed mice after 20 wk with a concomitant
increase in fibrogenic and inflammatory gene expression
[e.g., Acta2 (αSMA), Tgfb1, Col1a1, Timp1, Tnfa, and Mcp1]
(63). However, glucose tolerance, insulin sensitivity, and
Srebf1cmRNA levels (regulating de novo lipogenesis) were
not affected by the CDAA diet (63). Compared with mice,
rats appear to be more susceptible to the fibrogenic stimuli
imposed by the CDAA diet and developed NASH with
severe bridging fibrosis including the formation of hepatic
nodules after only 12 wk (54). The addition of 1–2%
cholesterol to the CDAA diet nominally enhanced collagen
deposition but did not otherwise affect liver histology (54).
Thus, the CDAA diet captures several aspects of NASH,
including progression of advanced fibrosis, and the absence
of weight loss is a considerable improvement over the
MCD diet. The CDAA diet can also be combined with
an HFD. After 24 wk fed this choline-deficient, l-amino
acid–defined high-fat diet (CDAA-HFD), mice developed
NASH with moderate (F2, perisinusoidal and periportal)
fibrosis, which progressed to bridging fibrosis (F3) and
hepatocellular carcinoma after 48 wk of being fed the diet
(64). Although not necessarily specific to NASH, expression
of fibrogenic and inflammatory genes [Tnfa, Tgfb1, Acta2
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(αSMA), Col1a1, and Col3a1] mirrored those commonly
observed in human liver fibrosis (64). However, weight gain
was significantly decreased compared with standard feed
pellets, which is a common feature in this model (64, 65,
97). Opposite to what is generally observed in patients with
NASH, glucose and insulin concentrations were decreased
and circulating cholesterol and triglyceride concentrations
were lower in CDAA-HFD mice compared with feed-
pellet–fed controls (65, 97). In contrast to CDAA alone,
alanine aminotransferase and aspartate aminotransferase
were elevated in mice fed a CDAA-HFD for 6 wk (66).
Furthermore, hepatic steatosis, collagen content, and αSMA-
positive cells were higher in CDAA-HFD mice, which also
displayed hepatocellular ballooning and mild (F1) fibrosis
at week 6 or 8 (66, 98). Thus, the CDAA-HFD may have
more rapidly induced NASH compared with the CDAA diet
alone. However, the decreased weight gain compared with
feed pellet–fed animals seemed more pronounced in the
CDAA-HFD compared with the CDAA diet alone (66, 98).
Similar to rodents, a CDAA-HFD (30% fat, 20% sucrose or
fructose) supplemented with 1% cholesterol rapidly induced
steatohepatitis with macrovesicular steatosis and lobular
inflammation in young Göttingen minipigs (67). However,
hepatocyte ballooning was absent, insulin concentrations
nominally decreased, and the CDAA-HFD animals weighed
less than normal controls (67). Gene expression suggested
decreased endogenous cholesterol synthesis, similar to other
models utilizing high amounts of dietary cholesterol (42,
48, 46, 16, 68, 69). αSMA-positive HSC and relative fibrosis
area were increased alongside enhanced expression of genes
[COL1A1, COL3A1, TIMP1, and ACTA2 (αSMA)] related
to core fibrogenic pathways. The fibrotic tissue formed the
classical chicken-wire pattern observed in patients with
NASH, but fibrotic bridges were not noted (67).

Even though, the CDAA, CDAA-HFD, and CD-HFD
circumvent the weight loss associated with the MCD diet it is
questionable if hepatic steatosis caused by defective VLDL-
triglyceride export secondary to choline deficiency reflects
the mechanisms underlying human NASH. Thus, nutritional
deficiency of this magnitude is far from human NASH
etiology and results should be interpreted with this in mind.

Toxin-induced models.
Classic models of liver fibrosis include carbon tetrachlo-
ride (CCl4) or thioacetamide (TAA) administration that
rapidly and robustly induce advanced fibrosis and cirrhosis
(Table 3). However, in particular when used by itself, acute
toxicity-induced liver fibrosis is not a relevant model of
NASH and the translational value of CCl4 or TAA in relation
to NASH-associated fibrosis is highly questionable. Never-
theless, they are still used and therefore briefly discussed
below.

CCl4 and TAA. CCl4 is activated via cytochrome P450
2E1, expressed mainly by centrilobular hepatocytes, generat-
ing the trichloromethyl free radical (99, 100). Consequently,
the toxicity induces central fibrosis, which is similar to

NASH, although the underlying mechanisms differ con-
siderably (99). This is followed by central-central bridges
and the development of pseudo-lobuli with initial sparing
of portal areas (99). Notably, the zonal pattern should be
characterized with care as pseudo-lobulization may cause
the zonation to be misinterpreted as portal (99). In mice,
centrilobular fibrosis can be observed already 2 wk post–
CCl4 administration and central-central bridges are formed
after 4 wk. These are accentuated by week 12 alongside for-
mation of central-portal bridges that progressed to cirrhosis
by week 16 (101). In rats, bridging fibrosis (week 6) and
cirrhosis (week 9) have also been reported (102). Unlike the
fibrosis observed in NASH patients, the advanced fibrosis
formed after CCl4 treatment is not persistent and prone to
spontaneous regression upon ceasing administration (103,
104). In TAA-treated rats and mice, periportal fibrosis was
present after 6 wk and progressed with portal-portal and
portal-central bridging after week 12 and cirrhosis at week 16
(101). In this model, the periportal origin of the fibrosis is not
comparable to the central origin associated with adult NASH.
Fibrosis induced by TAA may be more persistent compared
with CCL4 (105, 106), and no regression of cirrhosis was
reported 8 wk post–TAA treatment (107). Despite the appeal
of rapidly induced advanced fibrosis, these models do not
clearly reflect human NASH or NASH-associated fibrosis as
the nutritional and metabolic components are completely
absent. To attempt to overcome these shortcomings, weekly
CCL4 administration has been combined with a Western diet
(42% of calories from fat, 41% sucrose, 1.25% cholesterol,
and sugar water), which induced histopathological and
transcriptomic changes similar to those of human NASH
(108). Bridging fibrosis was observed after 12 wk and “some
animals” were recorded to progress to cirrhosis after 24 wk,
allowing for the study of NASH-related advanced fibrosis.
Pathway analysis at week 24 showed that the Western
diet/CCl4 model resembled human NASH (e.g., increased
“focal adhesion,” “ECM receptor interaction,” and “Toll-
like receptor pathway”) and did so better than 16 other
models including toxin-induced (streptozotocin), genetic
(e.g., Pten-/- and ob/ob), and dietary models (MCD, high-fat/-
cholesterol and high-fat/-sugar/-cholesterol) (108).

Similar to Western diets alone, cholesterol synthesis path-
ways were decreased, which is not observed in human NASH
(49, 108). However, CCl4 treatment decreased food intake,
weight gain, and circulating insulin and somewhat improved
insulin resistance compared with animals fed a Western diet
alone (108). Thus, although the model mimics the hepatic
phenotype and the underlying molecular mechanisms of
patients, it is important to consider if the loss of metabolic
context and difference in disease etiology are worth the
rapid induction of advanced NASH fibrosis, especially since
dietary models can produce similar hepatic phenotypes while
maintaining metabolic context, albeit more time is required.
Furthermore, CCl4 has no known role in human NASH and
may even induce drug-metabolizing enzymes, which could
complicate the interpretation of pharmacological studies in
this model (109).
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TABLE 3 Chemically and genetically (hyperphagic) induced fibrosis1

Chemical/genetic Species (ref) Fibrosis (time to development)
Comments/applicable to advanced NASH

fibrosis?

CCL4 Mice and rats (101, 102) Centrilobular fibrosis (week 2), central-central
bridging fibrosis (week 4–6); cirrhosis
(week 9–16).

Disease etiology differs significantly from
humans; weight loss; not applicable

TAA Mice and rats (101) Periportal fibrosis (week 6); portal-portal and
portal-central bridging fibrosis (week 12);
cirrhosis (week 16)

Disease etiology differs significantly from
humans; fibrosis can have portal origin;
weight loss; not applicable

CCl4 + Western diet Mice (108) Bridging fibrosis (week 12); cirrhosis in some
animals (week 24)

Transciptomic pathways similar to humans;
CCl4 decreases weight gain, insulin, and
dyslipidemia; no role of CCl4 in human
NASH; potential applicable for specific
research questions, but other models may
be more advantageous

DMN and DEN Rats (110, 111) Central fibrosis (week 3) and portal-central
bridging fibrosis and cirrhosis (week 8–12)

Bridging necrosis, weight loss, and high
mortality; weight loss; not applicable

Streptozotocin Rats (112–114) Central and portal fibrosis (week 20); bridging
fibrosis in some animals if administered
postnatally (week 20)

Disease etiology differs from humans;
hypoinsulinemic; not applicable

Ob/ob Mice (115, 116) Absent on feed pellet diet; mild perisinusoidal
fibrosis in portal areas on HFD (week 12);
bridging fibrosis on AMLN diet (week 12)

Fibrosis has portal origin; leptin important
during fibrogenesis; could be applicable on
an ALMN diet

Db/db Mice (115, 116) Absent on feed pellet diet; mild
perisinusoidal fibrosis in portal areas on
HFD (week 12); central and portal fibrosis
on MCD diet (week 4)

Fibrosis has portal origin and is only
mild/moderate; leptin important during
fibrogenesis; not applicable

Fa/fa Rats (117) Mild periportal fibrosis on HFD (week 8);
resistant to MCD-induced fibrosis

Fibrosis has portal origin and is only mild;
leptin important during fibrogenesis; not
applicable

Foz/foz (Alms1) Mice (118, 119) Portal and central perisinusoidal fibrosis
(week 24)

Fibrosis is only mild/moderate; not applicable

KK-ay Mice (97, 120) Fibrosis absent on feed pellet diet;
mild/moderate fibrosis on MCD diet (week
8); mild/moderate fibrosis on CDAA diet
(week 30)

Weight loss and decreased glucose
concentrations on MCD diet; CDAA
decreased insulin/glucose concentrations
and fibrosis not increased in KK-ay
compared with wild-type; not applicable

Mc4r−/− Mice (121) Periportal and -central fibrosis (week 20) Could be applicable if advance fibrosis
develops with longer study duration

1Alms1, Alström gene; AMLN, Amylin liver NASH; CDAAD, choline-deficient, L-amino acid–defined; CCl4, carbon tetrachloride; DEN, diethylnitrosamine; DMN, dimethylnitrosamine;
HFD, high-fat diet; MCD, methionine and choline deficient; Mc4r, melanocortin 4 receptor; NASH, nonalcoholic steatohepatitis; Ref, reference; TTA, thioacetamide.

Dimethylnitrosamine and diethylnitrosamine. Dimethyl-
nitrosamine (DMN) and diethylnitrosamine (DEN) are
mutagenic compounds that cause fibrosis, cirrhosis, and
hepatocellular carcinoma (122, 123). Unlike CCl4, the injury
is auto-progressive and fibrosis and tumors can form after
drug cessation (123). In rats, DMN causes hemorrhage,
bridging necrosis, and collagen deposition around central
veins with occasional portal-central bridging (110). Similarly,
DEN administration results in inflammation followed by per-
ilobular fibrosis, which progresses to cirrhosis, hepatocellular
carcinoma, and upregulation of genes [Acta2 (αSMA), Tgfb1,
Col1, and Col3] related to general fibrosis (111). In addition
to the bridging necrosis, which is not a feature of NASH (12),
the administration of DMN/DEN has been associated with
high mortality, weight loss (≤40%), and lethargy (110, 111).
While these compounds are most often used to study liver
cancer, the models are rarely applied in isolated studies of
fibrosis (105) and alone they do not reflect NAFLD/NASH.
Additionally, it is still unclear if these models reflect

NAFLD-related hepatocellular carcinoma as the underlying
carcinogenic stimulus differs (36). Analogous to CCL4 and
TAA, isolated administration of DMN and DEN fails to
reproduce the metabolic context of NASH-induced fibrosis
and, due to the substantial pathophysiological differences
(e.g., extensive necrosis), they are unlikely to model NASH
fibrosis.

Streptozotocin. As NAFLD is prevalent in patients with
diabetes (4), some models attempt to mimic the hyper-
glycemia associated with the disease by destroying the pan-
creatic β-cells through administration of the toxic glucose
analog streptozotocin (124). Compared with an HFD (45%
of calories from fat) alone, streptozotocin-treated mice fed an
HFD further increased fibrosis around central veins, portal
tracts, and in zone 2 after 20 wk (112). In addition, hepatic
mRNA levels of Ccn2 (CTGF), Timp1, Col1, and Col3 were
increased (112). Postnatal streptozotocin treatment of mice
followed by an HFD (57% of calories from fat) induces slight
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fibrosis after 5 wk, without progression at week 10 (113),
and, although infrequent, some mice developed bridging
fibrosis after 20 wk (114). In contrast to patients, these
models are associated with hypoinsulinemia, weight loss, or
reduced weight gain (112–114) and seem to lack hepato-
cellular ballooning (8). Furthermore, HFD-streptozotocin–
treated mice (59% of calories from fat + sugar water)
did not reflect the pathways dysregulated in human NASH
(78). Moreover, streptozotocin may be directly liver toxic,
questioning whether the observed effect on liver fibrosis is
mediated by the induced hyperglycemia or rather by direct
hepatic toxicity.

Thus, while hepatotoxic compounds may be used to
rapidly induce advanced fibrosis, these models differ con-
siderably from NASH etiology and pathogenesis and are
generally more likely to reflect an effect of local hepatic
toxicity rather than the more systemic metabolic origin of
NASH-related fibrosis (8).

Genetic models.
Animals overexpressing genes related to disease develop-
ment, such as TGFβ1, can be useful in validating specific
disease mechanisms, but may override or bypass normal
counter-regulatory mechanisms, induce ectopic gene expres-
sion, and generally represent an oversimplification of NASH
pathophysiology (125). Given the nutritional origin of the
disease, the following discussion only focuses on genetic
models of hyperphagia-driven obesity attempting to mirror
the metabolic context of NASH (Table 3).

Leptin- and leptin receptor–deficient models. A mutation
in the gene coding for leptin (ob/ob mice) or the leptin
receptor (db/db mice and fa/fa rats) results in obesity, hepatic
steatosis, and mild inflammation, but not fibrosis (115–117).
Ingesting an HFD (37% of calories as fat, 11% saccharose),
most ob/ob and db/db mice developed mild pericellular
fibrosis in portal areas after 3 mo (115). Similarly, mild
periportal fibrosis and increased hepatic protein expression
of COL1, αSMA and TIMP1 can be induced in fa/fa rats
by feeding them an HFD (60% of calories from fat) for
8 wk (117). Notably, this fibrosis pattern does not mimic
adult human NASH (19). The induction of fibrosis can be
accelerated by an MCD diet, and after 4 wk ob/ob mice
exhibited more steatosis but less severe inflammation than
db/db mice. However, while central and portal pericellular
fibrosis were observed in db/db mice, advanced fibrosis was
absent and ob/ob mice were resistant to fibrosis development
(116). Accordingly, mRNA levels of Tgfb were significantly
increased following the MCD diet in db/db but not in
ob/ob mice (116). It is possible to induce advanced fibrosis
in ob/ob mice by feeding them a Western-type diet (40%
of calories from fat, 18% of fat calories from trans fat,
20% fructose, and 2% cholesterol), as developed by Amylin
Pharmaceuticals and subsequently termed the Amylin liver
NASH (AMLN) diet (126). This diet rapidly induces NASH
and ≥F3 fibrosis in the majority of animals in only
12 wk, a benefit of this model considering the otherwise

mild/moderate fibrosis usually observed in ob/ob mice (127).
At week 26, genes related to human NASH [e.g., Mcp1,
C-C chemokine receptor type 2 (Ccr2), and various Tlr]
and general fibrosis (e.g., Col1a1, Col3a1, and Col4a1) were
increased, but, unlike in humans, cholesterol synthesis was
suppressed (127). Notably, the amounts of trans fat in these
diets are disproportionate compared with human intake,
where trans fat has been estimated to account for 0.3–4.2%
of total energy intake (128). The increased attention on the
negative consequences of trans fatty acids in human health,
and subsequent restricted use as stated by the US FDA and
in the European Union (effective from 2021), have forced the
dietary composition to be changed, which may affect disease
outcome. It should also be noted that leptin is an important
mediator of fibrosis and leptin deficiency or resistance due
to gene mutations is extremely rare in humans (129–131).
Thus, these models likely differ fundamentally in disease-
related etiology and the molecular mechanisms underlying
development of NASH-associated fibrosis.

Alms1 (foz/foz) mice. A spontaneous mutation in the
Alström gene (Alms1) renders foz/foz mice hyperphagic,
obese, and hyperglycemic (118, 119). Feeding the animals a
high-fat (43% of calories from fat)/high-cholesterol (0.19%)
diet exacerbates the obese phenotype and results in hepatic
steatosis and inflammation after 12 wk (118). After 24 wk,
foz/foz mice developed central and portal perisinusoidal
fibrosis (F2) and livers were characterized by increased
hepatocyte apoptosis alongside higher mRNA levels of Mcp1,
Tgfb, Pdgfa, Pdgfb, and Col1a1, similar to human liver
fibrosis (118, 119). Unexpectedly, protein concentrations of
TIMP1 and TIMP2 were decreased (119). Liver injury was
greater on a C57BL/6 compared with Balb/c background in
which HSC activation and fibrosis were absent (132).

KK-ay mice. KK-ay mice are hyperphagic due to a
heterozygous mutation in the Agouti gene and develop
obesity, hyperglycemia, and insulin resistance as well as
hepatic steatosis and mild lobular inflammation (120, 133).
The steatohepatitis can be aggravated by an MCD diet,
which promotes mild to moderate fibrosis after 8 wk, but
also the weight loss and decreased glucose concentrations
characteristic of the MCD diet (120). To mitigate the
weight loss, KK-ay mice were fed a CDAA-HFD (61% of
calories from fat) or Western diet (41% of calories from
fat, 30% of calories from fructose, 2% cholesterol) for
≤30 wk (97). Hepatic inflammation and fibrosis were more
pronounced with the CDAA-HFD, but not compared with
CDAA-HFD–fed wild-type mice (97). In this regard, the
genetic model offered little advantage with respect to liver
histology and disease development. Fibrosis did not progress
to advanced stages and the CDAA-HFD decreased insulin
and glucose concentrations, as opposed to the phenotype
usually encountered in patients (97).

Melanocortin 4 receptor–deficient mice. Melanocortin 4
receptor regulates food intake and deficient mice (due to
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receptor knock-out; Mc4r-/-) fed an HFD (60% fat) for
20 wk develop NASH with steatosis, ballooning, inflam-
mation, and fibrosis (121). Furthermore, hepatic gene ex-
pression seemed to mirror patients with increased de novo
lipogenesis [Fasn and acetyl-CoA carboxylase 1 (Acc1)],
fibrogenesis (Tgfb1, Timp1, and Col1a1), and inflammation
(Tnfa) (121). However, fibrosis did not progress beyond
moderate (F2), suggesting that longer feeding periods might
be needed to induce advanced fibrosis or limiting this model
to the study of early fibrogenesis.

Although these genetic models reproduce many of the
metabolic and pathological changes associated with human
NASH, the apparent lack of advanced fibrosis limits their
usefulness in the pursuit of targets for this key endpoint. In
addition, the genetic alterations exploited in these models
rarely reflect the patient population, which could affect
translational validity.

Conclusions
NASH and the closely related metabolic disturbances (e.g.,
obesity and type 2 diabetes) are nutritional diseases. Con-
sequently, the induction of NASH in preclinical models
should ideally rely on human-like diets that produce similar
metabolic disturbances, both systemically and in the liver,
rather than supraphysiological levels of nutrients (e.g.,
extremely high concentrations of cholesterol), toxins, or
micronutrient deficiencies that are not relevant for human
NASH. An unhealthy diet rich in fat and sugar is an
important risk factor for NAFLD (134). Accordingly, models
utilizing “Western diets” seem promising as they can induce
NASH (with steatosis, ballooning, and inflammation) and
advanced fibrosis. A closer association with the molecular
pathways of human NASH compared with other models
further supports the use of such dietary regimens (78).
With this in mind, the DIAMOND mouse, guinea pigs, and
perhaps hamsters fed Western diets are promising models
of NASH and NASH-associated fibrosis. Ob/ob mice fed the
AMLN diet may also be applicable, although it is necessary to
carefully consider the relevance of leptin deficiency and high
amounts of trans fat in relation to human disease.

Nevertheless, the mechanisms of human and mouse
NASH differ significantly (78), and while models may often
reflect core fibrogenic pathways, relatively little is known
about their ability to mirror the fibrogenic mechanisms
more specifically associated with NASH. Thus, it is es-
sential to keep improving and validating these models,
particularly with regard to the underlying molecular mech-
anisms, to ensure that they properly reflect human NASH-
related advanced fibrosis and to increase their predictive
validity.
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