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ABSTRACT

Cerebral vascular diseases are the most common high-mortality diseases worldwide. Their onset and development are associated with glycemic
imbalance, genetic background, alteration of atherosclerotic factors, severe inflammation, and abnormal cholesterol metabolism. Recently, the
gut–brain axis has been highlighted as the key to the solution for cerebral vessel dysfunction in view of cholesterol metabolism and systemic lipid
circulation. In particular, glucagon-like peptide 1 (GLP-1) is a cardinal hormone that regulates blood vessel function and cholesterol homeostasis
and acts as a critical messenger between the brain and gut. GLP-1 plays a systemic regulatory role in cholesterol homeostasis and blood vessel
function in various organs through blood vessels. Even though GLP-1 has potential in the treatment and prevention of cerebral vascular diseases,
the importance of and relation between GLP-1 and cerebral vascular diseases are not fully understood. Herein, we review recent findings on the
functions of GLP-1 in cerebral blood vessels in association with cholesterol metabolism. Adv Nutr 2020;11:1686–1695.
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Introduction
Cerebral blood vessel impairment is considered the main
cause of vascular dementia and stroke, the incidences of
which are rapidly increasing worldwide (1). Vascular demen-
tia and stroke are progressive and irreversible neurodegener-
ative conditions that are accompanied by memory loss and
social and psychiatric disturbance (2). With aging, people
experience multiple metabolic impairments and cerebrovas-
cular dysfunction such as diabetes, vascular dysfunction,
atherosclerosis, ischemic stroke, vascular dementia, and
cerebral small vessel disease (3). Recently, researchers have
focused on the relation between cerebrovascular dysfunc-
tion, stroke, and dementia and the factors that link them.
However, the detailed correlation between memory loss and
cerebrovascular damage is unclear (1).

With age, arteries and microcapillaries in both the sys-
temic vascular system and the central nervous system (CNS)
transform into more inflammatory-conditioned blood ves-
sels, resulting in severe vascular damage (4). Inflammation in
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cerebrovascular vessels leads to the infiltration of inflamma-
tory cells into vessel arteriolar walls and triggers endothelial
dysfunction, leading to cerebro-atherosclerosis, fibrinoid
necrosis, perivascular inflammation, lacunar stroke, sec-
ondary thrombosis, arterial thickening, breakdown of the
blood–brain barrier (BBB), and vascular dementia (4–6).

Impaired cholesterol metabolism in blood vessels has
emerged as an important contributor to cerebrovascular
disorders, including stroke and dementia (7, 8). The distur-
bance of cholesterol metabolism induces decreased plaque
clearance in blood vessels, cholinergic dysfunction, abnormal
lipid rafts, and increased toxic amyloid B-peptide deposition
in dementia (9). Recent studies have also demonstrated that
impaired metabolic homeostasis reduces cerebral blood flow
and ultimately leads to memory loss (10) and dementia
(11). Furthermore, cerebral endothelial dysfunction caused
by dyslipidemia (12) is critically associated with the overpro-
duction of chylomicrons by the intestine (13).

Glucagon-like peptide 1 (GLP-1) is an incretin that is
mainly produced in L cells located in the intestine and
acts by binding to GLP-1 receptors (GLP-1Rs) expressed
in the pancreas, blood vessels, gastrointestinal tract, and
brain (14). GLP-1 can control B-cell sensitivity and improve
glycemic and cholesterol homeostasis (15). Moreover, this
hormone maintains stable lipid homeostasis and normal
blood flow in atherosclerosis and vascular dementia (16,
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FIGURE 1 Illustration of blood vessels in the brain and the occurrence of neurovascular disorders due to impaired cholesterol
metabolism. Ischemic stroke occurs when blood flow to the brain is blocked as a result of atherosclerotic plaque formation, which results
in infarction, especially at the common or internal carotid. Vascular dementia occurs when blood flow in the brain is reduced because of
microinfarction. Vascular dementia can sometimes develop after a stroke.

17), as well as glucose metabolism (12). Clinically, GLP-1–
based therapy has already been tried in the treatment of
neurological disorders aside from stroke, including Parkin-
son disease and Alzheimer disease (18). Thus, GLP-1 may
regulate multiple types of metabolic impairments, especially
glucose and cholesterol metabolism, in stroke and vascular
dementia.

Here, we review recent studies on the roles of GLP-1 in
cerebral vascular diseases, focusing on its regulatory effect
on cholesterol metabolism. We highlight further studies
on the potential application of GLP-1 in the CNS as a
promising strategy for understanding the neuropathology
and preventing cerebral vascular diseases, including stroke
and vascular dementia.

Cerebral Vascular Dysfunction and Cholesterol
Homeostasis in the Brain
Cerebral vascular dysfunction in the brain
Based on previous studies, cerebral infarction and cerebro-
atherosclerosis caused by cerebral vascular dysfunction occur
in ∼80% of ischemic strokes and 20% of parenchymal hemor-
rhagic strokes worldwide (19, 20). Cerebro-atherosclerosis is
manifested as large and small intracranial artery thrombosis,
artery-to-artery embolism, or lacunar infarction via the for-
mation of atherosclerotic plaques in cerebrovascular blood
vessels (20–23). It occurs by the excessive accumulation of
lipids and fibrous mediators due to inflammatory response.
The excessive accumulation of lipid-laden macrophages,
known as foam cells, leads to fatty streaks that induce rupture,
erosion, and acute occlusions in blood vessels, resulting in
stroke and vascular dementia (24) (Figure 1).

Stroke is the main cause of disability and death worldwide
(25), and dementia is the second cause of death worldwide
among brain diseases (26). Hypercholesterolemia and blood
vessel dysfunction such as hypertension are implicated as
major risk factors for stroke and vascular dementia (27).
Cerebral vascular disorders such as stroke occur from

inflammation in blood vessels, ultimately resulting in arterial
hypertension and atherosclerosis (28, 29). After stroke, some
patients develop a form of dementia known as post-stroke
dementia (30), which occurs ≤3 mo after the onset of
stroke and induces a gradual cognitive decline (31). Other
studies also demonstrated that stroke patients experienced
cortical vascular dementia, cognitive impairment, and motor
impairment (32–34). Furthermore, elevated blood pressure
and increased blood dysfunction were observed in both
stroke- and cerebrovascular-related dementia in elderly
patients (35).

Vascular dementia is accompanied by cognitive decline,
memory loss, and cerebrovascular dysfunction (36). In
patients with vascular dementia, the increase in cerebral
blood flow, blood vessel thickness, and stiffness leads to
endothelial dysfunction. This, in turn, results in a chronic
reduction in the supply of oxygen and nutrients to brain
tissues (36), which ultimately causes memory loss (37).

As mentioned above, the onset and development of
cerebrovascular diseases are strongly linked to blood ves-
sel dysfunction and abnormal cholesterol metabolism. As
the main cerebrovascular disorder, stroke contributes to
the onset and development of vascular dementia, another
cerebrovascular disease, which can aggravate cognitive
decline.

Impaired cholesterol homeostasis in the brain
In the CNS, cholesterol is the essential lipid component
of neuronal plasma membranes and axon myelin sheaths,
contributing to synaptic plasticity and neuronal function in
the brain (38). In the human body, almost 23% of cholesterol
is present in the brain and is observed in neurons and glia-
like astrocytes (39). Cholesterol is a key factor in synapse
formation and neuronal connectivity (40) and is essential for
electrical synapse transmission (39, 41).

Cerebrovascular diseases such as stroke and dementia
are associated with abnormal cholesterol homeostasis (42).
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Elevated concentrations of LDL cholesterol and low con-
centrations of HDL cholesterol in the blood contribute to
the development of carotid atherosclerosis (42), which im-
plicates cognitive impairment, cerebral hypoperfusion, and
embolism (43). The majority of cerebral cholesterol cannot
be directly transported into the brain because of the BBB (38),
and cerebral cholesterol concentrations are not influenced
by the cholesterol concentration in the plasma. Cholesterol
removal from the brain is mediated by 24-hydroxycholesterol
(39, 44) as a key step in cerebral cholesterol homeostasis (45).

Cholesterol binds with apoE and is taken up in neu-
rons in the form of endosomes through LDL receptors
and LDL receptor–related protein (46). apoE4, the major
apolipoprotein in the brain, controls intracellular lipid
droplet accumulation in glia (47). Under oxidative stress in
the CNS, apoE4 has been reported as the main factor related
to the disrupted lipid homeostasis through increasing lipid
peroxidation in the brain of patients with dementia (48).
Hypercholesterolemia is related to the increase in apoE con-
centrations and amyloid B accumulation in cortical regions
and also induces the onset and development of dementia
(45). Diet-induced hypercholesterolemia triggers increased
amyloid B peptide aggregation and apoE concentrations in
cerebrovascular blood vessels and ultimately aggravates the
neuropathology of dementia (49, 50). One study reported
that higher concentrations of triglycerides increase the risk
of ischemic cerebrovascular diseases (51), while another
suggested that treatment of hypercholesterolemia using statin
reduced the prevalence of dementia compared with that in
control subjects (52).

The excessive accumulation of LDL cholesterol in blood
vessels aggravates the development of atherosclerosis and
subsequently increases the risk of dementia (53). One study
demonstrated that LDL-cholesterol receptor–knockout mice
showed memory loss and reduced synaptic plasticity in the
hippocampus (54) and excessive toxic amyloid B deposition
in the brain (55). In contrast, HDL cholesterol contributes
to the suppression of excessive cholesterol in the brain
through apoE and heparin sulfate proteoglycans in cerebral
microvessels (56). It also inhibits the negative action of
oxidized LDL particles on arterial relaxation (57), blocks
the expression of cytokines such as endothelial cell adhesion
molecules (58), and ultimately reduces vascular dementia
onset. Some epidemiological studies have demonstrated that
a lower concentration of HDL cholesterol and a higher
concentration of total cholesterol promote the onset of
dementia, and also aggravate the progression of dementia
(59, 60).

The concentration of triglycerides in blood vessels is
related to the breakdown of the BBB, which may lead to
lacunar stroke (61), and is directly linked to inflammation
in the CNS (62). In addition, triglyceride concentrations in
blood vessels contribute to the occlusion of small arteries (63)
and hypoperfusion in the white matter regions of the brain
(64).

Based on previous findings, we assume that the accumu-
lation of LDL cholesterol, the increase in total cholesterol in

blood vessels, and the impaired cholesterol homeostasis lead
to vascular dysfunction, which is subsequently associated
with the onset of dementia and stroke. Hence, the regulation
of cholesterol homeostasis in the brain may be critical in
alleviating and preventing the various neuropathologies in
cerebrovascular diseases.

GLP-1
GLP-1 is an incretin hormone mainly produced by enteroen-
docrine L cells in response to food intake and controls insulin
secretion from pancreatic islets (14, 65) (Figure 2). GLP-
1 secreted from the nucleus tractus solitarius in the brain
stem acts as a neurotransmitter (66) and regulates glucose
homeostasis and cholesterol metabolism in the brain (67).
GLP-1 derived from the gastrointestinal tract could enter the
brain through the BBB and also through circumventricular
organs such as the pineal gland (68, 69). GLP-1–expressing
neurons in the nucleus tractus solitarius in the brain stem
project to broad regions of the brain, including the hy-
pothalamus, arcuate nucleus, paraventricular nucleus, dorsal
vagal nucleus, and thalamus (70–72). Although GLP-1 and
its specific receptors are important in neuroinflammation,
glucose and lipid metabolism, and vascular function, their
underlying mechanisms associated with diverse diseases are
unclear (67).

GLP-1 and GLP-1R are linked to the inhibition of platelet
aggregation and thrombus formation in blood vessels (73).
Platelet aggregation is involved in the pathology of vascular
disorders, such as atherosclerosis, via blood thrombosis for-
mation and impaired NO action (74). Hypercholesterolemia
may promote atherosclerosis through platelet aggregation
in blood vessels (75), and some reports have demonstrated
that GLP-1 modulated the hyperreactivity of platelets under
hypercholesterolemia (76).

Beneficial effect of GLP-1 on cholesterol homeostasis in
cerebral vascular diseases
Cholesterol metabolism is important in both systemic
metabolic syndromes such as diabetes and CNS diseases
such as dementia (Table 1). A clinical study showed the
preventive and protective effect of GLP-1 analog treatment
on cardiovascular mortality and arterial stiffness (77). GLP-
1 improved glycemic control and blood glucose metabolism
and prevented the development of atherosclerosis (12, 15).
Moreover, the beneficial effects of GLP-1 treatment on car-
diovascular pathology, including blood pressure regulation
and lipid metabolism control, have been reported (78, 79).
Other studies have found that GLP-1 concentration is related
to the onset of vascular disorders such as atherosclerosis
(80, 81). It was also demonstrated that GLP-1 and GLP-
1R agonist treatment suppressed vascular inflammation
(82) and improved vascular function (83). GLP-1R agonist
treatment contributed to lower concentrations of circulating
triglycerides and apoB48, a marker of chylomicron particles
(84, 85). Some studies have highlighted that GLP-1 regulated
intestinal lipoprotein metabolism in response to lipid inges-
tion and improved dyslipidemia (86, 87).
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Secreted from nucleus tractus solitarius

GLP-1 from gut enters the brain through
BBB and circumventricular organs

Mainly produced by L cells
in response to food intake

Role of GLP-1 in the body Experimental modulation of GLP-1

Regulates glucose homeostasis and
  cholesterol metabolism in the brain

Controls peripheral lipid metabolism

Inhibits platelet aggregation
and thrombus formation in
blood vessels

Controls insulin secretion
from pancreatic islets

Attenuates the onset of stroke
Reduces the stroke volume
Improves neuronal survival
Suppresses neurologic deficit
Protects the breakdown of BBB

Protects from cardiovascular diseases
Improves glycemic control
Improves blood glucose metabolism
Decreases chylomicron production
Lowers circulating triglyceride

Improves vascular function
Suppresses vascular inflammation
Blocks severe inflammatory response

FIGURE 2 Role of GLP-1 in cholesterol metabolism in the body. The secretion of GLP-1 and its movement throughout the body are
illustrated by green arrows. The roles of GLP-1 are described in the blue boxes. The effects of the experimental modulation of GLP-1 based
on previous studies are shown in yellow boxes. BBB, blood–brain barrier; GLP-1, glucagon-like peptide 1.

A recent study reported that GLP-1 treatment attenuated
the onset of stroke (88), whereas another demonstrated
that GLP-1 administration reduced stroke volume, improved
neuronal survival, and suppressed neurologic deficit (89).
Furthermore, the GLP-1 agonist liraglutide downregulated
the expression of vascular cell adhesion molecule 1 and
E-cadherin in endothelial cells (90), in turn attenuating
hypertension and stroke (91). The GLP-1 agonist exendin-
4 also reduced blood cell infiltration and adhesion in the
atherosclerosis model (92). Recent research has suggested
that GLP-1R agonists and dipeptidyl peptidase 4 (DPP-4)
inhibitors could act as anti-stroke regulators and clinically
decrease the incidence of stroke (93, 94). DPP-4 inhibitors
and GLP-1R agonists have been known to block severe
inflammatory responses of monocytes and macrophages and
subsequently alleviate atherosclerotic lesion progression in
apoE-knockout mice (95). In addition, GLP-1R agonists
enhanced endothelial cell function and downregulated the
expression of cell adhesion markers in blood vessels in
a knockout model (96). Furthermore, GLP-1R agonists
protected the BBB from breakdown by suppressing the
expression of matrix metallopeptidase 9, and GLP-1 analogs

lowered vascular permeability by inhibiting intercellular
adhesion molecule 1 expression (97, 98).

Some studies have demonstrated that GLP-1R agonists
exhibited an antihyperglycemic function and reduced gly-
cated hemoglobin concentrations, blood pressure, and serum
lipid concentrations (99, 100). In particular, GLP-1R agonists
refined lipid profiles and were associated with a decrease in
LDL cholesterol and total cholesterol and triglycerides (101).

Several studies have demonstrated that GLP-1R agonist
injection induced low concentrations of cholesterol, such
as circulating triglycerides and chylomicron particles (84,
85, 87, 102–104). Others have suggested that GLP-1 admin-
istration can enhance lipoprotein metabolism in response
to lipid ingestion (86, 105), suppress the expression of
lipogenic genes, and contribute to lipid metabolism control
(106, 107). Recent studies mentioned that GLP-1 inhibited
lipid absorption by decreasing intestinal chylomicron output
(108).

Importantly, GLP-1 in the brain was shown to control pe-
ripheral lipid metabolism (106) and the stimulation of GLP-
1R in the CNS suppressed chylomicron production (109).
Thus, GLP-1 may be a therapeutic solution for abnormal
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cholesterol homeostasis in dementia, as suggested by reports
showing that lowering of LDL cholesterol could improve
cognitive dysfunction (110) and dementia neuropathology
(111).

As mentioned above, the ability of GLP-1 to regulate
cholesterol metabolism and the fact that GLP-1 circulates
between the CNS and systemic metabolism suggest that GLP-
1 is an important target in the treatment of cerebrovascular
diseases in terms of altered cholesterol metabolism and
vascular dysfunction. Even though the specific mechanisms
underlying the action of GLP-1 in cholesterol homeostasis
have been unclear until now, further studies on the role of
GLP-1 in vascular dysfunction are essential for the treatment
and prevention of cerebral vascular diseases.

Conclusions
Cerebral vascular disorders are strongly related to vascular
dysfunction and impaired cholesterol homeostasis. Ischemic
stroke and vascular dementia are major cerebral vascular
diseases, and cholesterol homeostasis is one of the main
causes of the onset of cerebral vascular disorders. Here we
reviewed recent data on the promising therapeutic effect
of GLP-1 on vascular dysfunction via the modulation of
cholesterol homeostasis, both in the CNS and in systemic
circulation. We suggest that GLP-1 should be highlighted
in developing a solution for cerebral vascular diseases,
with a specific focus on its ability to regulate cholesterol
homeostasis.
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