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ABSTRACT

Ecological sensing and inflammation have evolved to ensure optima between organism survival and reproductive success in different and changing
environments. At the molecular level, ecological sensing consists of many types of receptors located in different tissues that orchestrate integrated
responses (immune, neuroendocrine systems) to external and internal stimuli. This review describes emerging data on taste and chemosensory
receptors, proposing them as broad ecological sensors and providing evidence that taste perception is shaped not only according to sense epitopes
from nutrients but also in response to highly diverse external and internal stimuli. We apply a biological anthropological approach to examine how
ecological sensing has been shaped by these stimuli through human evolution for complex interkingdom communication between a host and
pathological and symbiotic bacteria, focusing on population-specific genetic diversity. We then focus on how these sensory receptors play a major
role in inflammatory processes that form the basis of many modern common metabolic diseases such as obesity, type 2 diabetes, and aging.
The impacts of human niche construction and cultural evolution in shaping environments are described with emphasis on consequent biological
responsiveness. Adv Nutr 2020;11:1671–1685.
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Introduction
Across evolution, many mechanisms have evolved to en-
sure organismic survival to environmental stresses and to
optimize reproductive success in changing environments,
which for humans includes highly diverse cultural settings.
Stresses induced by both cognitive and noncognitive stimuli
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can influence different organs and systems of the body
that communicate with each other to allocate energy to
mount an integrated response to them (1). Optimizing
the stress response requires the simultaneous activation of
2 interconnected processes: 1) inflammatory responses and
2) ecological sensing.

Inflammation plays a major role in the stress response
and in mediating energy allocation. Cultural and external
environments (described by the concept of “exposome”)
profoundly changed across human evolution (2), influencing
the “nature” of the inflammatory process and its secondary
outcomes. This shifted from being adaptive (when inflam-
mation is limited in time over a period of days/weeks) to
maladaptive (when inflammation is chronic and long-lasting
over a period of years and decades) (3). An outcome of
this maladaptation is the development of harmful biological
processes that lead to many modern diseases including a high
number of age-related pathologies (4).
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Present-day physiology shows the senses comprise a
complex assemblage of many molecular structures, essen-
tial for such responses. Such structures are involved in
olfaction and sensing of nutrients, pathogens, temperature,
and light, and are located in disparate tissues and inte-
grate different stimuli, mounting biological responses when
required and orchestrating interkingdom communication
between a host and the symbiotic organisms that dwell
in every human body. A major role in these responses
is exerted by taste and chemosensory receptors that have
been fundamentally important in human evolution for
their roles in recognizing external stimuli through cognitive
mechanisms, and in perceiving basic taste sensations (sweet,
salty, bitter, umami, and sour and possibly also fat) for
identifying potential foods and nutrients (5, 6). However,
the definition of taste receptors as only signaling taste
is now in question because of the distribution of these
receptors in many tissues of the body, and their ability
to recognize many epitopes, a phenomenon dubbed “de-
generacy” (7). Degeneracy is a fundamental and pervasive
characteristic of biological systems (8–10) that indicates that
1 receptor can bind to >1 ligand and that 1 ligand can
bind to >1 receptor (9). Moreover, population variability
in genetic data on taste and chemosensory genes highlights
how phenotypic diversity may be the result of evolutionary
dynamics (such as demographic events and local selective
pressures) that occurred in the course of human prehistory
in specific populations.

Ecological sensing is thus much more complex than
previously thought, and the recent literature on physiological
sensing is reviewed here, with a new viewpoint that frames
chemosensation (and especially taste) as a primary form of
evolutionarily integrated sensing in relation to inflammatory
processes. This phenomenon, described using the lens of
biological anthropology, has implications for human health
in the present day, and its role is explored in this article, es-
pecially in the context of modern human niche construction
and the modern proinflammatory environment.

Although the number of receptors and genes involved in
taste and chemosensory perception is very high, it is not the
purpose of this review to attempt to describe them all. Rather,
we have selected the more relevant receptors for ecological
sensing and for which the relations with inflammation and
modern chronic metabolic diseases have been described by
experimental evidence (Table 1).

Current Status of Knowledge
Integrating immune, metabolic, and endocrine signals
Understanding the importance of taste and chemosensory
receptors as systemic ecological sensors involves under-
standing the common evolutionary origin of the immune,
endocrine, and nervous systems, evidence for which is both
morphological and biochemical. This common origin is
supported by the presence of a pool of molecules that are
mediators and effectors of the stress response and that are
shared by these systems in both invertebrates and vertebrates

(11). Many receptors that are able to recode internal and
external environmental signals (ecological sensors) follow
a bow-tie architecture where many stimuli or inputs are
sensed by few receptors, often located in different tissues,
in order to minimize the cost of immune-neuroendocrine
responses to environmental stimuli and to allocate energy
to such sensing in a parsimonious way (12). An example
of degeneracy is that of the toll-like receptors (TLRs) that
act as pattern recognition receptors (PRRs) able to recognize
both self-damage-associated molecular patterns (DAMPs),
such as cell debris and misplaced molecules, and pathogen-
associated molecular patterns (PAMPs), such as nonself-viral
and bacterial products (13). Within this scenario, nutrients
and metabolic products of the gut microbiota function as a
“quasi-self” and are also sensed by a variety of degenerated
PRRs (13).

Systemic ecological sensing became more specialized
across evolution in response to major stressors that can affect
survival and biological fitness, especially nutrient deprivation
and pathogen invasion. Responses are not compartmental-
ized but are co-ordinated across the entire organism and
represent an efficient way of allocating metabolic energy. It
has been suggested that metabolic and immune function may
have evolved from a common ancestral structure (14, 15), an
example of this being the fat body of insects that controls both
metabolic and immune responses (16).

Across human evolution, the ecology of nutrition is
closely linked to immune function. In particular, nutritional
resources are likely to play a central role in setting allocations
to maintenance effort, and in defining the intensity and the
direction of life-history trade-offs (17). Moreover, in the past,
food and water have been consistently rich in external stim-
uli, especially microbial ones. Food and nutrients have quasi-
self-properties, not being part of the body but at the same
time requiring tolerance mechanisms in the intestine to food
antigens and microbiota epitopes to ensure the survival of the
individual hosting the microbiome. The idea that these sys-
tems coevolved is supported by cellular studies that show that
macrophages (immune system) and adipocytes (metabolism)
share many functions. They share common activation,
after stimulation, by pathogen-associated molecules, such
as lipopolysaccharides (LPS) through TLRs that sense
pathogens as well as endogenous damage molecules. Across
human evolution, the interconnections between metabolic
and immune pathways have been optimized to protect the
brain from stress stimuli such as starvation and infection
(18, 19).

Taste and chemosensory receptors: many tissues, many
functions
The capacity of chemosensory receptors to sense multiple
stimuli and to monitor different categories of ligands can be
traced across a long evolutionary timescale (20), and to exert
this function they are localized in many extraoral tissues
(21). For example, the bitter-sensitive neurons of the pro-
boscis of Drosophila melanogaster respond to the inhibitory
pheromone, 7-tricosene. Activation of these neurons by bitter
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tasting molecules during the sexual encounter inhibits court-
ing and sexual reproduction, whereas activating them with
7-tricosene in a feeding context inhibits feeding. This taste
system monitors different categories of ligands, facilitating
or inhibiting behaviors, depending on the context—feeding,
sexual reproduction, or hygienic behavior.

Details of taste receptors: TAS1Rs.
Sweet and umami receptors are G protein-coupled receptor
(GPCR) proteins from the TAS1R family. Sugar is the most
common natural taste stimulus that binds to sweet taste
receptors (51). Umami is the “glutamate” taste (typical of
the seaweed kombu) initially proposed in Japan in 1908,
and more recently taken up in the USA and Europe to
describe savory as a taste (in Japanese, umai: savory, tasty;
and mi: taste) (52). Heterodimeric receptors of TAS1R1 and
TAS1R3 subunits are activated by umami, with TAS1R2 and
TAS1R3 activated by sweet stimuli. Lafitte and colleagues
(53) have shown that sweet taste receptors are expressed
in many extraoral tissues such as those of the pancreas,
intestine, and adipose tissue (all with roles in metabolism
and insulin secretion) and in the colon, brain, heart, bladder,
and immune cells. Furthermore, TAS1R1 has been detected
in brush cells, K-cells, L-cells, K/L enteroendocrine cells,
and X/A-like cells in the stomach, pancreas, gut, liver,
and brain (54). Mice with a knockout for Tas1r3 have
compromised sensibilities for both sweet and umami tastes.
Mice lacking Tas1r3 are unable to increase their expression
of sodium/glucose transporters (fundamental for glucose
uptake from the intestinal lumen to enterocytes) in response
to exposure to dietary carbohydrate. TAS1R1 has also been
found to be localized in β-cells in the pancreas: mice exposed
to sweeteners show activation of TAS1R2 and TAS1R3
with consequent stimulation of insulin secretion (55, 56).
Furthermore, TAS1R3 is also expressed in duct cells of the
liver and pancreas suggesting a role in monitoring pancreatic
and bile juices (57). In mammals, TAS1R1 and TAS1R3 are
also sensors of the fed state and of amino acid availability. If
the receptor is knockdown, there is a reduction in the ability
of amino acids to signal to mTORC1 (mammalian target of
rapamycin complex 1 or mechanistic target of rapamycin
complex 1) and the induction of autophagy (22).

Details of taste receptors: TAS2Rs.
Humans perceive bitter compounds by GPCRs from the
TAS2R family (58, 59). The expression of bitter taste
receptors (TAS2Rs or T2Rs) and their signaling molecules
have been identified in several biological systems including
the digestive, respiratory, and genitourinary systems (60), as
well as in the heart (61), brain, and immune cells, indicating
a potential role of these structures for sensing toxic foods
and compounds beyond the mouth. TAS2R38 is one of
the most studied receptors for bitter taste; in humans, it is
present in adipose tissue, thyroid, esophagus, lymphocyte,
and epithelial cells. A relation between bitter taste and thyroid
function was postulated in 1959 (62), and confirmed more
recently in studies where it was shown that TAS2Rs regulate

thyroid function, the detection of bitter tasting compounds
being linked to changes in thyrocyte function and T3/T4
production (29). TAS2R agonists have been shown to inhibit
intracellular concentrations of calcium and iodine, which
orchestrate the production of thyroid hormones. A study of
763 women from the Korean population showed thyrocyte-
expressed TAS2Rs to be associated with susceptibility to
thyroid diseases (63). TAS2Rs are expressed in many tissues,
their role being to orchestrate responses in organs that
are not directly exposed to external stimuli (such as the
thyroid gland). They are expressed in the upper airways,
exerting their role in neurogenic inflammation and bacterial
clearance. TAS2R agonists increase the beating frequency
of cilia in epithelial cells located in the respiratory tract,
relax the smooth muscle of lung tissue, and induce the
production of proinflammatory and antimicrobial products
by macrophages (64, 65). Bitter taste receptors are also
expressed in the male reproductive system where they are
important for fertility (66–68).

Details of chemosensory receptors: TRP channels.
TRP channels comprise a large superfamily that has
28 members, divided into 7 subfamilies: TRPA (TRP
ankyrin), TRPC (TRP canonical), TRPM (TRP melastatin),
TRPML (TRP mucolipin), TRPN (TRP NOMPC), TRPP
(TRP polycystin), and TRPV (TRP vanilloid). They sense
very diverse stimuli including pain, pheromones, and tem-
perature (69), and are expressed in different tissues and cell
types including keratinocytes, sensory neurons, melanocytes,
and immune cells. In Drosophila, they are light sensors, in
yeast they perceive and respond to hypertonicity, whereas in
nematodes they work as chemical sensors. In humans, TRP
channels are activated by molecules present in spices such as
garlic (allicin), chili (capsaicin), and wasabi, whereas other
types of TRP channel (TRPM8) are activated by menthol,
camphor, and peppermint. TRPM5 is a key component
of the downstream signaling pathway shared by sweet,
bitter, and umami tastes (70). Trpm5-knockout mice are not
able to perceive sweet, amino acid, and bitter tastes (71)
indicating that TRPM5 is required for transduction of these
stimuli (72). TRPA1, TRPV1, and TRPM8 are the most
studied TRP channels. TRPA1 is an ion channel activated by
pungent irritants such as mustard, garlic, and cinnamon. It
is also involved in pain perception and pain hypersensitivity
as demonstrated in Trpa1-deficient mice. TRPA1 is also
activated by a wide range of environmental irritants such
as vehicle exhaust, that, in combination with endogenous
proalgesic agents, elicit inflammatory pain (73), as well as
being involved in the perception of cold temperatures (74,
75). Many studies that have linked pain perception and
taste are explained by the overlap between the brain regions
involved in both, and some studies have demonstrated that
pain tolerance seems to increase during exposure to sweet
taste (76–78).

TRPM8 is an ion channel that recognizes menthol and
several cooling agents, including icilin and eucalyptol,
and is activated by low temperature. TRPV1, expressed

1674 Giuliani et al.



on a major subset of nociceptive sensory neurons (C
and A δ fibers), is activated by capsaicin and hot chili.
TRPV1 and TRPA1 are coexpressed in sensory neurons
and are involved in the transmission of inflammatory
stimuli by nociceptors (damage-sensing sensory neurons).
Many ligands can activate TRPV1, including exogenous
ligands from the external environment (for example,
capsaicin in chili pepper) but also endogenous ligands
(including anandamide, N-arachidonoyldopamine
[NADA], N-oleoyldopamine, and leukotriene B4,
prostaglandin E2). TRPV1 is also expressed in the
nervous system in somatosensory neurons, in the kidney,
in the gastrointestinal tract, and in immune cells (79,
80).

Taste receptors modulating communication between
two or more ecosystems
Taste receptors are located in “strategic” tissues for eco-
logical surveillance—the gut, immune system, mouth, and
nervous system. Their different functions are ancient in
evolution. Drosophila melanogaster for example, detects
bitter molecules through a specific pool of neurons, distinct
from those responding to sugars or to other stimuli, with
the effect of inhibiting feeding behavior. The activation of
bitter-sensitive neurons also induces grooming, the wings
and legs of Drosophila carrying bitter sensitive neurons
that sense Gram-negative bacteria such as Escherichia coli
(20). Grooming in social insects is a behavioral defense
against pathogens and parasite infection, with chemosensory
receptors sensing LPS initiating grooming. In humans, taste
receptors can also sense bacterial composition (symbiotic
bacteria as well as pathological) through quorum sensing
(QS), which is a mechanism of cell-cell communication (also
interspecies communication) that modulates changes in gene
expression caused by variations of cell density via small
diffusible signaling molecules. It is also the biological mech-
anism that regulates social interactions between bacteria and
shapes the behavior of bacterial communities (81). Through
QS, bacteria synchronize population behaviors including
biofilm formation and exoenzyme production to optimize
population growth and survival in different environments
(82). Taste receptors can monitor and sense the same
mediators produced by bacteria, and thus are fundamental
to interkingdom communication, where immunity also plays
a crucial role (tolerance in the case of symbiotic bacteria or
mounting an immune response in the case of pathogenic
bacteria) (83,30).

Interkingdom communication is fundamental for symbi-
otic bacteria such as gut bacteria to signal the host (gut-host),
in terms of appetite and feeding behavior, to sustain bacterial
population size, and, for the host, to obtain energy (in terms
of ATP) from gut bacteria (see Supplementary Material 1 for
detailed mechanisms on the link between taste receptors and
symbiotic bacteria).

A second example of interkingdom communication
concerns the relation between a host and opportunistic
bacteria. The bacteria-derived toxin LPS is able to induce

an inflammatory response in the tongue, in association
with decreased taste progenitor cell proliferation, shortened
lifespan of taste bud cells, and reduced taste response,
especially to sucrose (84–87). LPS also influences sickness
behavior which can involve lethargy, depression, anxiety,
malaise, loss of appetite, sleepiness, and hyperalgesia. The
induction of such behaviors may have an evolutionary basis,
with reduction of social interaction limiting pathogen
spread (88). For more examples see Supplementary
Material 2.

The TAS1R2/TAS1R3 receptor recognizes a wide range
of sweeteners but exhibits stereoselectivity for certain
molecules. For example, it is activated by D-tryptophan
but not L-tryptophan (89). D-tryptophan is produced by
probiotic strains of bacteria and is involved in immune
function (90), decreasing the production of T helper 2
(Th2) cytokines and chemokines in human peripheral and
murine immune cells and modulating allergic airway disease
in mice (90). TAS2R and TAS1R work in synergy in
response to infection, the immune system and metabolic
function being modulated simultaneously in response to
pathogens (13, 14). A mechanism in which TAS2R and
TAS1R work together to sense epithelial infection has
been hypothesized (30). TAS1R2/3 may act as a “rheostat”
for controlling the magnitude of the TAS2R response
according to glucose concentration in the airway surface
liquid. Depletion of glucose by bacteria may signal the
onset of a possible infection and play a role in the activa-
tion of TAS2R and subsequent secretion of antimicrobial
peptides (30).

These responses may also be activated by infection with
the parasitic helminth Trichinella spiralis. This helminth can
activate a signaling pathway in intestinal tuft cells similar
to that involving TAS2R bitter-taste receptors and TRPM5,
initiating type 2 immunity (91). TRPM5, a cation channel
that it is essential for the transduction of bitter, sweet, and
umami tastes, is expressed in tuft cells, which use taste
receptors and other surface proteins to sense pathogens,
releasing chemical products to activate an immune re-
sponse (tuft cells have the capacity to produce an unusual
spectrum of biological effector molecules, including IL25,
eicosanoids implicated in allergy, and the neurotransmitter,
acetylcholine). TRPM5-dependent signals activate tuft cells
involved in the initiation of the immune response following
parasite infection, producing IL25 which promotes the rapid
expansion of type 2 innate lymphoid cells (ILC2) (92, 50).
Experiments in mice have shown that the disruption of
chemosensory signaling weakens the ability to respond to
parasitic infections (50). In recent years, tuft cells have been
discovered in the gastrointestinal tract and thymus, and are
sentinels for the detection of pathogens and allergens that are
inhaled (93–95).

Thus, taste receptors may be part of a set of ecological-
sensing mechanisms involved in the systemic response
to internal and external stimuli. Communication between
organs is mediated by taste receptors that constitute the first
sensors in the mouth as well as in other organs.
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Genetic variability in ecological sensing:
population-specific variability
The varied and various functions described in the previous
sections must be contextualized according to the human
population, as the genetics of some of these receptors vary
between groups. Different evolutionary factors, including
drift, migration, and adaptation to local environments,
have created population-specific genetic variability in taste
perception. Cultural and immunological stimuli in the past
may have shaped genetic variability of taste genes and, in
turn, food perception and susceptibility to disease. TAS1R
sequences have been relatively conserved in evolution (96).
Genome sequences of bitter taste receptors (TAS2Rs) vary
among species, omnivorous mammals having the largest
TAS2R gene repertoire (96). Taste receptors have high
levels of segregating loss of function (LoF) variants, these
being among the most diverse in the human genome (97).
Fujikura investigated LoF variant frequency in 14 ethnically
diverse human populations, showing that in taste receptors
(including PKD1L3, PKD2L1 genes) LoF variation (2.10%)
is many times higher than overall frequency in the human
genome (0.16%), this difference being highest for sour and
bitter taste receptors (14.7% and 1.8%, respectively). Thus,
individual differences in taste perception may be, in part, due
to LoF variant frequency in taste receptors.

Genes involved in taste perception have different evo-
lutionary histories that cannot be generalized, although
TAS1R1 and TAS1R3 show patterns of diversity that are com-
patible with positive selection (98, 99). Two single nucleotide
polymorphisms (SNPs)—rs307355 and rs35744813—located
upstream of the TAS1R3 gene are associated with sucrose
perception, and functional experiments have shown that
rs307355-T and rs35744813-T affect gene transcription, si-
lencing promoter activity and modulating sucrose sensitivity.
Both SNPs exhibit gradients across Eurasia, with East Asian
populations having the highest frequencies and Western
European populations the lowest. These 2 noncoding SNPs
explain 16% of population variability in human sweet taste
perception (100). The sweet taste receptor polymorphism
Val191Val in TAS1R2 is associated with higher carbohydrate
intake and hypertriglyceridemia in a west Mexican popula-
tion (101). Taste receptor gene polymorphisms may therefore
be upstream factors influencing chronic metabolic disease
expression in populations where alleles associated with food
consumption behaviors, which create preferences for foods
rich in sweetness, are at high frequency.

Food preferences and sugar intake are linked to many
factors in addition to taste and chemosensory receptors, but
a detailed description of food intake is beyond the scope of
this review, focused as it is on receptors. In Supplementary
Material 3 we discuss 2 genes, FTO and FGF21, in relation
to food intake, taste perception, and metabolic impairment
(obesity and T2D), because of their greater importance.

Genetic variability of bitter taste genes such as TAS2R16
and TAS2R38 increased in human evolution after the
divergence from chimpanzee as well as in more recent
times, when Homo sapiens faced the challenges of living

in new environments. Human taster and nontaster alleles,
for example, diverged around 1.5 million years ago (102).
The high genetic variability of the TAS2R38 gene rs713598
in different human populations may be due to ancient
balancing selection that took place before Out-Of-Africa,
and present-day variation may be due to more recent demo-
graphic events (103, 104). Three SNPs located in this gene
(rs714598, rs1726866, and rs10246939) at positions encoding
amino acids 49, 262, and 296 represent the most common
variant alleles of TAS2R38, and determine 2 of the most
common haplotypes PAV (Proline, Alanine, Valine) and AVI
(Alanine, Valine, Isoleucine) that correlate with bitterness
perception. The PAV/PAV haplotype is associated with the
supertaster characteristic at the extreme of taste perception
as these individuals perceive PROP (6–n-propylthiouracil)
to be more bitter than others. It also confers more efficient
bacterial clearance, increasing nitrous oxide production and
clearance through the movement of cilia in the upper
respiratory tract. The same 3 SNPs that define the PAV-
AVI haplotype are associated with dental caries, one of the
possible causes of blood infection or death in the past, and a
source of inflammatory molecules that accelerate the process
of atherosclerosis and coronary artery diseases (CAD) in
the present day (105, 106). The PAV/PAV haplotype protects
against caries, but this protection declines with human
aging (107). TAS2R38 modulates innate oral immunity
in a TAS2R38 genotype-specific manner, being differently
regulated by various types of bacteria in the oral cavity (108);
this is an example of coevolution between humans and oral
microbes (109). Moreover, TAS2R38 plays a critical role in
the response to QS molecules produced by Gram-negative
bacteria such as the respiratory pathogen Pseudomonas
aeruginosa. Cultures derived from tasters (PAV/PAV) ex-
hibit the strongest response to pathogens, whereas cultures
from nontasters (AVI/AVI) and heterozygous individuals
(PAV/AVI) have nearly undetectable responses (31) (see
Supplementary Material 2 for details).

A study performed in a cohort of centenarians recruited in
Sardinia (in the Longevity Blue Zone) showed an association
between genetic variants located in the TAS2R38 gene and
human longevity. It was suggested by the authors of this
study that PAV/PAV individuals may have a favorable genetic
condition for the attainment of exceptional longevity (110).

Variants in TAS2R16 are associated with salicin percep-
tion, arising 1.1 million years ago in East Africa, conferring
evolutionary advantage to those exposed to a wider range of
bitter compounds (111). The rs860170 is a SNP located in
TAS2R16 differentiates populations and the rs860170-A allele
is highly predominant in North African populations and is
also associated with salicin bitterness perception (112). This
is in line with the findings of Soranzo and colleagues (113),
who detected signatures of positive selection at TAS2R16 ac-
cording to the geographic patterns of its variants. Campa and
colleagues (114) described a haplotype including TAS2R16
rs860170-A which is associated with longevity in humans,
arguing that salicin could have similar effects to aspirin,
acting as an anti-inflammatory agent and therefore favoring
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healthy aging. Few studies exist on the genetics of taste in
centenarians (115). It is difficult to retrieve phenotypes linked
to taste in very old people, and to our knowledge there is
only one study that describes taste perception in very old
age performed on 126 centenarians and 100 elderly subjects
(mean age 70.5 ± 5.0 y). This study showed a general and
significant decline in taste sensitivity, sweet taste perception
being the most preserved in centenarians (116).

The TRPM8 rs10166942-T allele shows strongly differ-
entiated frequencies in human populations, from 5% in
Nigeria to 88% in Finland (117). This differentiation may
reflect variation in climate as well as variation in factors that
correlate with climate, such as diet, subsistence strategy, and
pathogens. There is strong evidence for local adaptations in
TRPM8 that correlate with latitude and temperature (117).
The T allele of this gene was present in prehistoric European
groups (hunter-gatherers, farmers, steppe pastoralists), there
being evidence for recent local positive selection in all non-
African populations (117). The SNP is strongly associated
with migraine in Europeans, with the ancestral C allele
being protective of migraine with and without aura. Mech-
anistic insights based on TRPM8 expression data showed
a genotype-dependent influence on cold pain sensation
suggesting that carriers of the reduced migraine risk allele
have reduced sensitivity to cold stimuli and that TRPM8
acts as a cold thermosensor and cold pain transducer in
humans (118).

Ecological sensing, taste/chemosensory receptors,
chronic inflammation, and “modern” diseases
Chronic inflammation and modern human niche con-
struction.
Modern human niche construction in postindustrialized
societies are characterized by “new” diseases (transition
from communicable to noncommunicable diseases) such
as obesity, cardiovascular diseases, T2D, and age-related
impairment whose common and shared characteristic is
chronic inflammation (13, 14, 119–121).

In this section, we describe how taste/chemosensory
receptors and inflammation are interconnected and how
inflammation may impact and impair proper ecological
sensing that, in turn, sustains the inflammatory pro-
cess through human behavior, determining multilevel re-
sponses and a vicious cycle detrimental for health. Before
mentioning some experimental examples of the relations
between inflammation and taste/chemosensory receptors
there are two ecological considerations that influence the
extent to which new niche construction may increase
susceptibility to diseases through chronic inflammation.
These are described by evolutionary mismatch theories
(122, 123):

1) inflammation highly impacts energy allocation (mod-
ulating energetic homeostasis at different organs and
systems and many molecular mechanisms have evolved
to counteract acute inflammation and sepsis—rapid
response), whereas chronic inflammation, both in terms

of magnitude and duration, is detrimental to health
(119, 121);

2) modern humans evolved in environments profoundly
different from the present day, never experiencing nu-
trient excess. Improved access to food resources and the
emergence and rise in use of antibiotics and vaccination
have profoundly increased life expectancy but have also
profoundly changed human ecological interactions.

Obesity constitutes the best example of the link between
new niche construction, chronic metabolic inflammation,
called metaflammation (14, 15, 124, 125), and taste receptor
impairment.

Taste dysfunction among obese individuals is a product of
such systemic inflammation; in mice, reduction of inflamma-
tory tone is crucial to the maintenance of the function of these
receptors (126). This has implications for taste preference
among people carrying excess body fatness. The perception
of certain foods rich in sugars activates mechanisms of strong
reward, motivating consumption of such foods (and thus
likely contributing to sustained metaflammation). Taste re-
ceptors trigger specific behavioral responses, the expression
of human TAS1R2-receptor in mice generates animals with
humanized sweet taste preferences (127).

Taste sensing influences human behavior and decision-
making, while at the same time influencing immune and
metabolic processing and signaling across organs, through
inflammatory responses.

Taste, chemosensory receptors, and chronic inflammation:
a vicious cycle.
TAS1R1, TAS1R2, and TAS1R3 are not directly activated
by inflammatory molecules, but are crucially involved in
chronic inflammatory diseases, including T2D. This is
because they are expressed in the brain (influencing food
choice), in the gastrointestinal tract, in the kidney, and in
adipose tissue, where they influence metabolic processes
such as insulin secretion, and glucose and fat metabolism
(128, 129, 27). Overnutrition affects taste perception, obese
individuals needing greater stimulus to activate taste recep-
tors for the same hedonic response that nonobese subjects
have (28). Nonnutritive sweeteners (NNSs) such as saccharin,
aspartame, acesulfame-K, and sucralose, provide a sweet
taste with few or no calories, but trigger the same hedonic
response as sugars and activate sweet taste receptors in
the same way. This may have several metabolic outcomes,
impacting on glucose and lipid metabolism as well as bone
health, adipogenesis, and reproductive function (130). For
example, consumption of acesulfame-K for 4 wk can alter
gut microbiota composition towards a proinflammatory state
(131), whereas sucralose consumption can induce changes
in proinflammatory genes, promoting inflammation (132).
A recent study placed attention on the role of the kidney
in sweet taste sensing and subsequent regulation of in-
flammasome signaling. The inflammasome is a multiprotein
complex located in the cytoplasm of the cell that is re-
sponsible for the maturation of proinflammatory cytokines,
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and high glucose concentrations induce the generation
of reactive oxygen species (ROS), which is one of the
first identified triggers of NOD-, LRR- and pyrin domain-
containing protein 3 (NLRP3) inflammasome activation, in
part via sweet taste receptors (133).

TRPA1, TRPV1, and TRPM8 play crucial roles in the
inflammatory process, there being complex interactions
between inflammation, the immune and nociceptive systems.
TRPA1, a somatosensory receptor for exogenous irritants
ingested from food, is also activated by endogenous in-
flammatory signals (134). TRPA1 channels are required
for the release of inflammatory neuropeptides (causing
pain), being activated by many inflammatory agents from
nonneuronal cells of the skin, airways, and gastrointestinal
tract, among other tissues (135). TRPV1 and TRPA1 are also
involved in the most common inflammatory disease which
affects the airways, asthma. Inhibition of the 2 genes for
TRPV1 and TRPA1 results in complete reduction of airway
hyperresponsiveness in both allergic and nonallergic mouse
models, suggesting a link between exposure to irritants
and increased airway sensitivity (136–138). TRPA1 is also
involved in the chronic inflammation of colitis (139).

TRPV1 plays an important role in glycemic control (37),
loss of control of the activity of TRPV1 being implicated
in pathogenetic mechanisms of both type 1 (140) and type
2 (141) diabetes. TRPV1 agonists increase carbohydrate
oxidation, increase the consumption of oxygen in muscle
cell, and stimulate both mitochondrial activity and fatty acid
oxidation (142). Activation of TRPV1 channels by dietary
capsaicin triggers browning of white adipose tissue, offering
a possible molecular strategy for counteracting obesity (143).
The activation of TRPV1 in brown adipose tissue enhances
the expression of SIRT-1 (sirtuin 1), which facilitates the
deacetylation and interaction of PPARγ (peroxisome pro-
liferator activated receptor gamma) and PRDM16 (PR/SET
domain 16), enhancing metabolism and energy expenditure
(144).

Human adipocytes express TRPV1, and its activation
causes the release of inflammatory cytokines in white
adipocytes (145), but not brown adipose tissue. TRPV1
is involved in the pathogenesis of atherosclerosis (a com-
mon chronic inflammatory condition), treatment with a
TRPV1 agonist promoting cholesterol efflux in the foamy
macrophages of atherosclerotic aortas of apoE-deficient mice
(80). TRPM8 is involved in preventing abnormalities in
glucose metabolism, probably because of increased energy
expenditure with its activation (146). TRPM8 has anti-
inflammatory capacity (47); its expression, induced by either
cold stress or menthol, exerts an inhibitory effect on TNFα,
mediated by NF-kB (147), inhibiting the inflammatory re-
sponse. The combined roles of TRPA1, TRPV1, and TRPM8
in inflammation have been examined in evolutionary per-
spective by Straub (148), taking a lead from evolutionary
medicine (149,150). TRPV1, TRPA1, and TRPM8 genes may
have been positively selected during human evolution for
their role in acute inflammatory processes. TRP channels
have the role of orchestrating a systemic response of all the

organs in order to ensure survival from exposure to acute
stressors. These channels transmit and collect information
from peripheral inflammation to the central nervous system,
which then orchestrates appropriate energy allocation from
adipose tissue stores, skeletal muscle, and the liver to the
activated immune system. In chronic inflammation, the
immune system is constantly stimulated (sometimes also
through sterile stimuli that come from the body itself)
(151), and continuous nonspecific TRP responses propagate
inflammatory stimuli that are the basis of many age-related
diseases (for more details see “garb-aging theory”) (151).
Given the role of taste genes in chronic inflammation, and
that one of the central mechanisms in aging is inflammaging
(119), it is not surprising to find studies that highlight the
role of these sensors in longevity (152). Trpv1 mutations
protect against diet-induced obesity in animals fed with
high-fat diets (153), also increasing longevity (154). Riera
and colleagues (154) have identified novel neuroendocrine
circuitry that affects aging and longevity, and whose main
actors are TRPV1 genes. Trpv1 mutant mice have been shown
to have a youthful metabolism at old age; a genetic deletion
of Trpv1 not only regulates the activity of CREB regulated
transcription coactivator 1 (CRTC1) in peripheral sensory
neurons, but also improves glucose tolerance and increases
energy expenditure throughout aging. In sensory neurons,
TRPV1 integrates multiple sensory inputs and transduces
them into neuroendocrine signals that regulate the activity
of CREB/CRTC1 that, in turn, modulate metabolic activity.
This is compatible with recent data on centenarians, who
have metabolically healthy phenotypes that are similar to
those found in adults following a calorie-restricted diet
(13, 155). More examples of the complex relations between
ecological sensing, taste, and inflammation are reported in
Supplementary Material 4.

These taste and chemosensory receptors are thus broad
ecological sensors important in many systems and or-
gans linked with inflammation (see Table 1 for a general
overview). We report a method of visualizing these links
in Figures 1 and 2. Figure 1A and 2A show networks based
on protein-protein interactions [based on STRING (156)]
for TAS1Rs/TAS2Rs and TRPs, respectively. Figure 1B and
2B show the genes that encode for the proteins reported in
the networks and their involvement in different pathologies
[according to DISEASES (157)]. For network 1 (Figure 1A)
5 genes are associated with the common cold, obesity,
and diabetes mellitus, whereas for network 2 (Figure 2),
6 genes are closely associated with migraine and pain agnosia.
Inflammation plays a major role in the vast majority of
the pathologies listed in both networks (see Supplementary
Table 1 and Supplementary Table 2 for the entire list of
pathologies and related genes). A detailed description of the
method is reported in Supplementary Material 5.

Social implications of taste variation
Population genetic variation in taste perception has been
shaped by human social evolution. In turn, the major patterns
of human social evolution have been shaped by changes
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FIGURE 1 (A) Interactions between TAS1R1, TAS1R2, TAS1R3, TAS2R38, TAS2R16, and other receptors with disease or disorder. Edges
represent protein-protein associations. (B) Names of the genes involved in pathology are according to the DISEASES database. Only
pathologies that have ≥3 connections with proteins of the network are reported.

in the environment or changes in the ecological relations
between humans and their resources (158). Taste receptors
operate within integrated interactive biological systems—
immunological, endocrine, and nervous—which are fun-
damental to human ecological success. Aspects of human

social evolution, including increased range size, meat eating,
cooking, sociality, and technology-use would have influenced
taste receptor function through socially mediated exposure
to pathogens and food through consequent changes in gut
microbiota. These influences would have been mediated at

FIGURE 2 (A) Interactions between TRPV1, TRPA1, TRPM8, and other channels with disease or disorder. Edges represent protein-protein
associations. (B) Names of the genes involved in pathology are according to the DISEASES database. Only the pathologies that present ≥2
connections with proteins of the network are reported.
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a higher level through human niche construction, which
would have accelerated the control of the environment by
adding ecological inheritance (159) to genetic inheritance.
Ecological inheritance includes social transmission and
inheritance of cultural knowledge and material culture and
can include horizontal gene transfer of microbiota between
members of the same communities.

Ecological inheritance would have helped to create dis-
tinct niches which would have accelerated the coevolution of
ecological sensors to environmental stimuli. Such coevolved
systems might have operated in reasonable balance until
the origins of agriculture, which would have been a major
disruptor of existing local coevolved structures. As well as
being the key evolutionary transformation in the history
of humanity (160), the origin of agriculture had broad-
reaching effects on human diet (161). Starting from around
10,000 y ago (according to location) radical economic,
societal, and technological change saw agriculture become
the dominant mode of provisioning for the majority of the
world’s populations (162). With this came the dominance
of grains and other carbohydrate-rich foods in most human
diets. The ability to produce surpluses of grain set the
conditions for the development of religion, government,
and social and economic inequality (162), all cultural
forces that have shaped human niche construction since.
The emergence of agriculture as an economic system led
to the spatial concentration of homogeneous resources
and an intensification of food production, storage, and
technological development (163), which further intensified
niche construction in response to changing relations between
energy content and micronutrient content of the diet, and
established closer relations between humans and potentially
pathogenic bacteria increased (164).

Human disease in history and prehistory is closely tied to
the changing size and density of human populations and the
behaviors that promote disease transmission (165). Natural
selection for resistance to infectious disease was underway
well before the advent of agricultural society (166) and it is
unlikely that this took place against specific pathogens as we
know them now. Rather, genetic adaptations are likely to have
emerged in response to sets of pathogenic agents within local
ecologies, and the adaptations to disease we see today are
relics of the past. Using HapMap project data, Amato et al.
(167) identified positive selection to have taken place against
disorders that can be grouped as being of hematological,
infectious, and immunological nature, respectively.

Although it is common to think of taste receptors, the
immune system, and the microbiome residing within indi-
viduals, humans are intensely social and have evolved to best
live in groups (168). Although individuals can make choices
with respect to their energy intake and the biodiversity
represented in the food they choose, humans prefer to eat
commensally (169). Such commensality not only influences
what individuals may choose to eat, but also the microbiota
they inevitably share with other people. The microbiota of an
individual is not an isolated community, but is rather more
similar within human communities than between them and

in certain nonindustrialized regions, such as in Papua New
Guinea and Tanzania (170), bacterial dispersal also shapes
the microbiomes of unrelated individuals (171). A study in
mice has shown that conditions of cohousing of coprophagic
mice influences their gut microbiota composition (172). In
humans, the microbiota of cohabitating individuals increases
similarly, indicating that the transfer of gut taxa occurs
most between individuals of the same family, including also
their dogs (173). As biocultural beings, humans embody
their social environments, and the inequalities therein (174).
People of low socioeconomic status are more likely to con-
sume more cheap, energy-dense, nutrient-poor processed
foods (175), as they struggle with food insecurity and
food poverty, and are forced to satiate chronic hunger
with inexpensive, nutrient-poor foods (176,177). As the
microbiome depends on the types of food consumed, people
embody inequality at the level of the gastrointestinal tract.
Taste is thus shaped according to food availability and afford-
ability, niche construction influencing taste diversity in yet
another way.

Conclusions
Physiological taste is much more than taste. Taste receptors
and chemosensory receptors are complex ecological sensors
that can be modulated by many stimuli from different sys-
tems, and which orchestrate interkingdom communication.
Many receptors and genes involved in taste perception are
shaped for complex ecological sensing, and their stimulation
not only has an impact on gustatory perception and dietary
behavior, but also on the inflammatory process and health,
their activation having important influences on the immune,
metabolic, and nervous systems. Figure 3 is a summary
illustration of the relations between bodily internal and
external environments, and the ways in which taste receptors
and channels mediate both behavior and inflammation in
maintaining a coadapted state, which is evolutionarily stable
and extremely responsive to environmental change. These
receptors show considerable genetic variability between
human populations, reflecting the history of populations
and the genetic backgrounds of individuals within them,
as outcomes of demographic change and past adaptations.
Humans always profoundly change their surrounding envi-
ronments, which in turn affect their biology. Ecological sens-
ing is pivotal to survivorship, but major human ecological
disruptors in the present day (which include consumption
of ultraprocessed foods and diets high in energy density and
sweetness) impact on these receptors, influencing commu-
nication among organs and causing elevated inflammatory
tone. Such elevated inflammatory tone is central to many
modern, chronic metabolic pathologies such as T2D, obesity
(metaflammation) and also to age-related diseases (inflam-
maging). We argue that these receptors—because of the
degeneracy that makes them excellent ecological sensors—
may be potential targets for modulating inflammatory levels
in different diseases where inflammation plays a major
role (178).
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FIGURE 3 Overview of dynamics of ecological sensing through taste and chemosensation that mediates inflammation. A high number
of external and internal stimuli converge on taste and chemosensory receptors, which are in effect ecological sensors for a variety of
stimuli or molecules able to bind to them. The figure reports a bow-tie architecture with many stimuli that converge on the same pool of
receptors able to sense many ligands – a phenomenon known as “degeneracy.” These receptors are found in many tissues and organs,
orchestrating and integrating communications among them with impacts on human behavior. The rapid and recently changing
environments of the present day create new selective pressures that impinge upon these sensors (that have been shaped during
evolution by other stimuli) and can increase inflammatory tone, a molecular biomarker of many modern diseases such as obesity and T2D.
In red are reported a list of pathologies according to a network-based approach that highlight the role of these receptors in apparently
distinct pathophenotypes (the reported pathologies are not all those possible but we selected those linked to the receptors described in
the present review).
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