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A B S T R A C T

Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a
reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut
microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and
are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that
may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e.,
NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be
supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in
vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also,
stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing
tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps
regarding carotenoid—GM interactions.
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Statement of significance
This article focuses on an important gap of carotenoid research—the interactions of carotenoids with gut microbiota in the colon and potential

associated health benefits. Mechanisms including altered microbiota composition, carotenoid metabolism, barrier properties, and immune-
relevance are especially highlighted.
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Introduction

Carotenoids are typically C40 tetraterpenoid pigments, pro-
duced by most plants, some bacteria, and fungi, but not by
humans. Although there are >1100 different carotenoids, up to
50 are found in our diets and among those only a dozen appear at
measurable concentrations in the human bloodstream. These
pigments are among the most abundant liposoluble phytochem-
icals in the bloodstream (~0.5–2 μM), despite their low daily
dietary intake (ca. 5–20 mg) [1]. Some carotenoids are vitamin A
precursors (i.e., provitamin A carotenoids) and following con-
sumption they can be cleaved to produce vitamin A in the small
intestine [2]. Vitamin A has well-established biological effects in
eliciting cell differentiation, gap junction formation, immunity,
and visual light-dark adaptation. Both provitamin A and non-
provitamin A carotenoids have also received much interest
because of inverse associations between the consumption of
carotenoid-rich foods and cardio-metabolic diseases [3] and total
mortality [4]. These health benefits have originally been ascribed
to their anti-inflammatory/antioxidant properties, as carotenoids
can protect against lipid peroxidation and damage caused by
reactive oxygen species (ROS) [5]. In the past decade, there has
been a great interest to understand how carotenoids, or their
metabolites, may interact with transcription factors, including the
pro-inflammatory NF-κB and the antioxidant-related Nrf-2 [6].
They could also interact via binding to nuclear receptors,
including retinoic acid receptor/retinoid X receptor (RAR/RXR)
and peroxisome proliferator-activated receptors (PPARs), whose
downstream effects are related to cellular differentiation and the
immune response [7]. Another important aspect is the association
of lutein and zeaxanthin and the reduced risk of age-related
macular degeneration, the main cause of vision loss in the
elderly [8].

Carotenoid absorption can be relatively low and variable,
depending on the carotenoid physical-chemical structure (e.g.,
carotenes vs. xanthophylls), food matrix effects, co-consumption
with other factors (i.e., lipids, metals, etc.), and a variety of host
factors [9, 10]. Thus, the bulk of a given dose of carotenoids
consumed will reach the colon. It is unclear if absorption can
occur in the colon [7]. A major research gap exists also regarding
carotenoid metabolism in the colon and interactions with the gut
microbiota (GM), i.e., the microorganisms residing in the gut
[11]. Metabolized carotenoids such as apo-carotenoids have a
shorter chain length and oxygen modification, which slightly in-
creases their solubility in an aqueous environment. In addition,
their higher electrophilicity wouldmake them suitable to interact
with transcription factors [12]. Recently, dose-dependent pre-
biotic-like effects, including anti-inflammatory ones, of lycopene
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were demonstrated in a clinical trial in influencing abundances of
Bifidobacterium adolescentis and Bifidobacterium longum [13]. A
greater abundance of Lactobacilli spp. was also observed when
lycopenewas consumed. Although the authors demonstrated that
lycopene supplementation improved gut metabolism, they did
not provide any mechanistic basis for the prebiotic effect. Some
potential interactions of carotenoids with the GM have been
highlighted recently [14], emphasizing that this may constitute
an under-explored pathway via which carotenoids could exert
beneficial health effects. Indeed, GM composition has been
associated withmany chronic health complications. For instance,
in some, though not all studies, obesity was associatedwith lower
GM diversity and a lower ratio of Bacteroidetes to Firmicutes [15],
with potential negative influences on resting energy expenditure
[16]. GM may also trigger inflammatory bowel diseases (IBD)
such as Crohn’s disease and ulcerative colitis, and certain pre-
biotics may ameliorate such conditions [17]. IBD is strongly
related to gut barrier functionality, and carotenoids may exert
positive effects here also, either via their systemic
anti-inflammatory and antioxidant properties [18], via the the
GM, or impacting tight junction integrity [19]. The relation of GM
to many chronic diseases is not surprising, given that the GM is
required for anoptimal immune function expression. The immune
system is hampered in germ-free animals, as shown by underde-
veloped lymphatic organs and low IgA in mice [20]. Lyu et al.
recently reviewed interactions between retinoic acid (the most
potent form of vitamin A), astaxanthin, and the GM [21], sug-
gesting that astaxanthinmay enhance IgA production, preventing
gut dysbiosis via recognizing, and coating certain bacteria and
preventing their infiltration through the epithelial barrier.

Though their precise implications in disease remain often
poorly understood, the crucial role of the GM in the etiology of
many diseases has been emphasized, and the involvement of the
gut-brain, gut-liver, and gut-heart axes have been highlighted.
Carotenoids may interact with the GM in a multitude of ways
(Figure 1):

[1) modulate the abundance of bacteria that can either acti-
vate commensal pathways or suppress pathogenic path-
ways [14, 22];

[2) reduce oxidative stress (OS) in the gut, which could like-
wise alter GM composition [23];

[3) foster the production of anti-inflammatory short-chain
fatty acids (SCFA) such as butyrate by altering the abun-
dance of SCFA-producing bacteria [24], which may act on
PPARγ [25], inhibiting the dysbiotic expansion of certain
bacteria and being related to reduced pro-inflammatory
toll-like receptor (TLR) signaling [26];

[4) maintain healthy mucosa and epithelial gut barrier and
tight junction integrity [27], as proposed in a recent study



FIGURE 1. Mechanisms by which carotenoids could interact with the gut mucosa, influencing GM and intestinal barrier properties. GPx,
glutathione peroxidase; HO-1, heme-oxygenase 1; IgA, immunoglobulin A; IL-6, interleukin-6; MAPK, mitogen-activated protein kinase; NF-κB,
nuclear factor kappa B; Nrf2, nuclear factor erythroid 2–related factor 2; OPG, obligate pathogenic bacteria; PPAR, peroxisome proliferator-
activated receptor; ROS, reactive oxygen species; RNS, reactive nitrogen species; SCFA, short-chain fatty acids; SOD-1, superoxide dismutase 1;
TLRs, toll-like receptors; TNF-α, tumor necrosis factor alpha.
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in the small intestine of piglets [28]; improve mucosa
integrity via favorable GM composition [27];

[5) influence gut metabolism and immune-related properties,
such as IgA [21].

In this review, we highlight the present state of knowledge
regarding carotenoid—GM interactions and emphasize possible
pathways in the colon via which these pigments may contribute
to health benefits, also pointing out gaps of knowledge and
possible steps forward.

Brief overview of the processing of carotenoids in
the stomach and small intestine

The processing and digestion of carotenoids in the upper
digestive tract have been extensively reviewed elsewhere [9,
29–31]. Herein, we briefly recapitulate the primary factors of
influence on carotenoid absorption. This evidence provides suf-
ficient background to understand why the carotenoid pro-
portions that remain in the digestive lumen (and are available for
microbial interaction in the colon) are relatively high.

Carotenoids are very hydrophobic (pKa~10–15.6), and must
be released from the food matrix and dissolved to be available for
incorporation within gastric lipid droplets. The most significant
factor that influences carotenoid release is the co-consumption
with lipid (which provides both a medium to solubilize the
carotenoid within and stimulates gastric lipase release [32, 33]).
Following lipid consumption, gastric lipase cleaves free fatty
acids from triglycerides, to facilitate lipid droplet emulsification
[34]. Larger lipid droplets slow the rate of gastric emptying until
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sufficiently small droplets are achieved [35], providing addi-
tional time for both fatty acids to be cleaved from triglycerides to
form smaller droplets, and for the carotenoids to be released
from the matrix.

The other major factor facilitating gastric carotenoid release
is the breakdown of the food matrix through preceding cooking/
processing [36]. For example, Rich and colleagues [37]
compared the transfer of lutein and β-carotene from raw vs.
blanched and frozen spinach into lipid droplets, under gastric
conditions. Both the rate of carotenoid transfer to the oil droplet,
as well as the absolute concentration achieved at experiment
termination at 110 min, were significantly higher (30–33x) in
the blanched and frozen spinach as compared with the raw
spinach. A similar trend was observed between raw and
blanched carrot juice [37]. Likewise, following consumption of
cooked tomato or spinach puree, a majority of the carotenoids
(i.e. ~95% of the lycopene, ~75% of the lutein, respectively)
remained embedded in the food matrix over 180 min of gastric
digestion [38], with almost all freed carotenoids (5%–25%)
being associated with the lipid droplet fraction. In the same
study, 60% of the β-carotene in cooked carrot puree was trans-
ferred directly to gastric lipid droplets [38].

Because solubility and subsequent bioavailability are so
limited, and because of implications in diseases where bioac-
tivity would be most critical postabsorption, there is keen in-
terest to improve carotenoid delivery. This goal can be attempted
through providing supplemental doses (often administered as a
super saturated, crystal-rich oil product) or through enhanced
bioaccessibility. Recent strategies to improve bioaccessibility
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have included the addition of emulsifying agents or the forma-
tion of nanoemulsions [31, 39–44]. The rationale behind these
approaches is essentially to deliver smaller lipid droplets or small
vesicles that do not need to be micellarized or to more rapidly
produce smaller lipid droplets during the digestive process [43].
Some of these approaches have been successful, whereas others
have been limited, and under some circumstances may reduce
carotenoid lipid droplet incorporation [40, 45]. Additionally, the
complete absence of lipids or consumption of high lipid excess
(i.e., >10%), can cause crystal formation and precipitation [46,
47]. In either of these instances, a high concentration remains in
the gastric lumen, which may provide a source for GM interac-
tion in the stomach.

A number of other factors further influence the proportion of
carotenoids freed in the gastric compartment from foods and
have more attenuated effects, as extensively reviewed previously
[30]. In brief, release is enhanced in the stomach in foods with
carotenoid compartmentalization within liquid-crystalline
chromoplasts of the fruit or vegetable being consumed; pro-
longed cooking or processing times and temperatures;
co-consumption with some citrus flavanones, digestible proteins,
high methyl-ester pectin (relative to low methyl-ester pectin),
and encapsulation. Xanthophylls are also better released relative
to carotenes, all other factors being equal, because of the pres-
ence of one or more oxygen groups and thus higher polarity [29].
In contrast, additional factors that inhibit/reduce carotenoid
release into the lipid droplet include compartmentalization
within solid-crystalline chromoplasts of the fruit or vegetable
being consumed, co-consumption with high doses of divalent
metals [48], anthocyanins [49], or with naringenin [50, 51]. It is
worth noting that absence of release to the lipid droplet would
still leave the carotenoid present within the gastric lumen, but
sequestered in crystalline form, or in a food matrix, thus limiting
GM interaction.

Following gastric emptying, the digesta is met with the
release of bile salts and pancreatic lipase and colipase in the
duodenum. The lipase and colipase continue to facilitate fatty
acid release from triglycerides and diacylglycerols, whereas the
bile salts act as a natural emulsifying agent to produce smaller
lipid droplets. Collectively, the free fatty acids and bile salts
produce subsequently smaller lipid droplets until mixed micelles
(~4 nm in diameter) are formed [52], which also include
phospholipids, monoacylglycerols, and embedded apolar com-
pounds such as cholesterol and carotenoids.

As with the gastric compartment, lipid co-consumption is
arguably the most important factor for carotenoid incorporation
into micelles in the small intestine [53]. The proportion of the
original carotenoid dose that ends up in the micelle is known as
the “bioaccessible” fraction, which is the only proportion of the
original dose thought to be available for absorption [54]. The
type of lipid co-consumed strongly influences bioaccessibility,
with long-chain fatty acids greatly increasing the bioaccessible
(and thus bioavailable) fraction relative to medium-chain fatty
acids [55–57]. In contrast, there is a limited influence of fatty
acid saturation on bioaccessibility [55, 56]. Other factors that
have a smaller but still meaningful impact on carotenoid bio-
accessibility include competition with supplemental doses of
carotenoids or fat-soluble vitamins E, D, and K for micellariza-
tion or uptake by the same transporters [29, 58], presence of
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divalent metals [48, 59, 60], and presence of certain types of
proteins (i.e., β-lactoglobulin [61] and other whey proteins,
caseinate, and soy proteins [62, 63]).

The concentration of carotenoids soluble in the duodenal and
jejunal compartments remains fairly constant through the first 2
h of small intestinal digestion, before rising fourfold to fivefold
over the next 2–3 h [64, 65]. This increase in concentration is at
least partially driven by water reabsorption. Despite these in-
creases, the bioaccessibility and subsequent bioavailability of
carotenoids (i.e., removal from the intestinal lumen and ultimate
release into the blood stream) on average remains low, but with
high inter-individual variability, even under ideal conditions
[10, 29]. Thus, a significant fraction of the original carotenoid
dose remains available for interaction with the GM. The fact that
so much of the carotenoids remain unabsorbed is perplexing, as
fatty acids and bile salts are efficiently absorbed by transport
proteins in the distal small intestine (i.e., 80%–95% fatty acids
absorbed, depending on chain length and saturation, >90% of
bile acids) [66, 67]. We could speculate that the reuptake of
water and loss of fatty acid micelles would cause carotenoid
crystallization to occur (if pure carotenoid supplement was fed),
or at least partial association with digestible and indigestible
fibers if the carotenoid dose was consumed as part of a fruit or
vegetable preparation, and such carotenoid processing in the
upper GI tract is likely to affect the GM. Considering that doses of
2–20 mg of carotenoids can be consumed from a single meal
[68], significant carotenoid quantities are present in the large
intestine and they may modulate the GM either directly or
indirectly.

Human studies support these very high concentrations, using
fecal carotenoid content as a proxy for what remains in the colon.
For example, following 2 weeks of daily consumption of 330 mL
of tomato or carrot juice, fecal concentrations of lycopene,
β-carotene, and α-carotene increased 50–60-fold in healthy men
[69]. Regarding the colonic carotenoid uptake, absorption of
β-carotene into human exfoliated epithelial cells of the colon was
demonstrated [70], and SR-B1 (transporter responsible for up-
take of some carotenoids) is also expressed in the colon [71].
Transporter expression combined with the incomplete carot-
enoid absorption in the small intestine suggest the colon may be
a place for carotenoid uptake. Studies so far have not suggested a
strong correlation between carotenoid dietary intake and colon
tissue concentrations [72], though in a human trial GM compo-
sition (thought to alter absorption from the epithelium) corre-
lated with baseline serum carotenoid concentration [73]. In
mice, the reduced abundance of microbial populations in the gut
led to an increase in β-carotene and vitamin A storage in the
liver, though no further metabolism by GM was detected [74].
The data available are too preliminary to draw conclusions.

Apo-carotenoids during digestion
Apo-carotenoids are catabolites of carotenoids (either caro-

tenes or xanthophylls) that contain <40 carbons. They are
consumed from fresh and processed fruits and vegetables at
concentrations that are 100–1000� lower than the precursor
carotene concentrations in the same foods [75, 76]. These pro-
portionally low concentrations are because apo-carotenoids
(most famously strigolactones and abscisic acid but including
many species that have more recently been identified) serve as
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potent plant hormones, whose production within the plant is
regulated via carotenoid cleavage dioxygenase enzymes [77].
These enzymes produce apo-carotenoids that are �14 carbons in
length, and serve as plant root growth regulators, aid in plant
defense, provide aroma, and modulate plant stress responses
[77–79]. This asymmetric or eccentric cleavage leaves a
longer-chain (i.e., �26 carbon) apo-carotenoid as the corre-
sponding “by-product.” It is these longer-chain products for
which there is the most data present to-date in mammalian
systems. However, both short-chain apo-carotenoids and
longer-chain apo-carotenoids may have health-relevant effects in
humans. For instance, abscisic acid, a C15 carbon apo-carotenoid
acting as a plant hormone, has been shown to improve insulin
glucose response in a murine model of diet-induced obesity [80].
Similarly, the consumption of the C20 carotenoid crocetin
improved insulin resistance in a pilot study of type 2 diabetics
[81]. Further potential biological effects of some of these
apo-carotenoids have been reviewed by Harrison and Quadro
[82].

Interest in the production of these longer-chain apo-caroten-
oids during digestion has arisen as the conjugated double-bond
system of carotenoids is especially labile to chemical degrada-
tion, which can also produce apo-carotenoids. The gastric
compartment provides a hostile environment to carotenoids,
e.g., presence of oxygen, low pH, and large lipid droplets where
carotenoids and unsaturated lipids co-mingle and co-oxidation
can occur. Under simulated in vitro gastric conditions and in
the absence of enzymes (e.g., in the presence of dioxygen, with or
without iron, at the proper pH, emulsified with unsaturated
lipids), some parent carotenoid loss and some apo-carotenoid
production has been reported [83–88]. However, both in vitro
models using enzymes [84], as well as gastric and duodenal as-
pirates from human subjects during digestion [38, 64, 65],
showed very limited (�20%) carotenoid isomerization (the first
step of carotenoid breakdown) during digestion. Additionally, no
marked changes in apo-carotenoid concentrations have been
observed. When lycopene or isotopically labeled β-carotene was
digested alone in healthy men (n ¼ 7), no significant change in
gastric or duodenal apo-carotenoid digestate concentrations was
observed, relative to the quantity of carotenoid, over 4–5 h [64,
65]. When a lycopene meal was co-digested with ferrous sulfate
in healthy men (n ¼ 7), the gastric and duodenal digestate
concentrations of both lycopene and all but one species of
lycopene-derived apo-carotenoids significantly decreased over 4
h, suggesting other lycopene degradation products were pro-
duced instead [65]. Notably, lycopene-derived apo-carotenoid
absorption was observed in this study, as evidenced by the
presence within the newly absorbed lipid-fraction within the
blood and confirmed via follow-up Caco-2 experiments [65].
This evidence suggests that only a fraction of ingested
lycopene-derived apo-carotenoids would remain in the GI tract
for further interaction. In contrast, no isotopically labeled
β-apo-carotenoids were absorbed in the previously cited work,
suggesting that they would remain in the GI lumen, and could
potentially elicit biological effects there [64].

Asymmetric apo-carotenoids may also be to be produced in
the human body via one of the endogenously present carotenoid
cleavage dioxygenases, i.e., β-carotene oxygenase 2 (BCO2).
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Indeed, BCO2 is expressed in a number of human tissues,
including the small intestinal mucosa and the liver, although
notably it is not expressed in the colon [89]. Its activity in model
systems has been well characterized, with BCO2 demonstrating
broad specificity but a clear preference for cleaving xantho-
phylls, specifically at the 90

–100 double bond [90, 91]. BCO2
expression, which occurs in the mitochondria, increases in
response to the knockout of the other main intestinal carotenoid
cleavage enzyme (β-carotene oxygenase 1, BCO1) [92, 93].
Although the purpose of BCO2 expression is not fully under-
stood, it has been postulated to serve an important role in pre-
venting carotenoid concentrations from reaching levels which
might expose the cell to increased oxidative damage [92]. Un-
derstanding the role BCO2 may play in humans is much more
difficult, and very little work has been done. 13C β-carotene
(which contained a baseline concentration of 13C β-apo-car-
otenals) was fed to healthy males, and samples of the gastric and
duodenal digesta, as well as blood plasma and the newly
absorbed lipid-fraction of blood were collected and isolated [64].
Notably, both 13C β-carotene and 13C β-apo-carotenals increased
at largely the same rate over time in plasma (presumably as
water was absorbed). Thus, there was no meaningful net change
in the ratio of any of the β-apo-carotenals inves-
tigated/β-carotene, and no absorption of any 13C β-apo-car-
otenoids into the blood plasma except for vitamin A isoforms.
This suggest that either the 13C β-apo-carotenods in the digesta
were coming from the initial dose without any additional pro-
duction, or it may indicate that any cleavage by BCO2 is quickly
shunted toward vitamin A production, via further catabolism by
BCO1.

It is also possible that apo-carotenoids could be made in other
body compartments, as recently reviewed by Harrison and Kopec
[94], and re-secreted into the gastrointestinal lumen with bile.
Longer-chain apo-carotenoids (from dietary sources [76], or
produced via BCO2 cleavage [95]) could also be cleaved further
by the central, vitamin A-producing cleavage enzyme BCO1.
BCO1 is expressed in some of the same tissues as BCO2, including
the liver and the small intestine. BCO1 is also expressed in the
stomach and the colon [89], and some evidence suggests that
beyond central cleavage of β-carotene, it may also act on carot-
enoids such as lycopene and β-cryptoxanthin [82]. The role of
intestinal BCO1 in cleavage of provitamin A, and the important
effects of vitamin A on maintaining the intestinal barrier and
conferring immune protection have been discussed elsewhere
[91, 96–99]. The exact interplay between BCO1 and BCO2, and
the relative contributions to the apo-carotenoid pool and the
vitamin A pool in the human digestive lumen and within the
epithelial cells themselves, remains a gap in knowledge. In
addition, whether any human colonizing microbiota can syn-
thesize apo-carotenoids remains unclear.

The biological effects of these apo-carotenoid products
remain understudied; however, some apo-carotenoids have
demonstrated antagonistic activity toward nuclear receptors
which are stimulated by retinoic acid (the potent form of vitamin
A) [7, 100]. It is also possible that apo-carotenoids produced
from provitamin A carotenoids could be further cleaved or
oxidized to produce vitamin A itself [101], whose functions
within the GI lumen are discussed in greater detail below.
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Regardless, the concentrations of apo-carotenoids within the
upper gastrointestinal remain relatively low in relation to the
precursor carotenoids from which they are derived, and thus
very low amounts would be passed on to the colon. Thus, the
remainder of this review focuses on the carotenoids themselves.
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Microbial carotenoid metabolism—potential
breakdown and biosynthesis of carotenoids
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essential metabolites and nutrients, training the immune system
to fight pathogens, and eliminating allergic stimulants, to
steering the mood and behavior of its host [102]. One major
symbiotic advantage of hosting microbial communities is
obtaining essential amino acids and vitamins such as isoforms of
all B vitamins as well as vitamin K—nutrients that the human
body cannot synthesize [103]. Likewise, mammals cannot syn-
thesize vitamin A de novo, meaning that it must be obtained
either as preformed vitamin A from animal sources, or as pro-
vitamin A carotenoids from the diet and potentially from gut
bacteria [21]. Although evidence of how microbes contribute to
the bioavailability of carotenoids is still lacking, many lipid
transporters that facilitate carotenoid uptake were found in the
colon, where the highest microbial diversity resides [29]. For
example, SR-B1 (scavenger receptor, class B type I) is expressed
in colonic epithelial cells, suggesting that carotenoids can be
taken up in the colon [7, 104]. The fraction of carotenoids
remaining in the intestinal lumen could either be used by mi-
crobes to enhance lipid metabolism, to serve as antioxidants to
reduce oxidative damage, or secreted in feces with the undi-
gested fibers. Since carotenoids are important for the health of
the human body, it would be desirable to understand how both
the host and the GM assist each other to maximize their benefits
from the ingested carotenoids. However, the mechanisms by
which the carotenoids are made available for the colon host for
absorption and are utilized by microbes are poorly understood.
SuEngineered crops

Recommended intake approx

FIGURE 3. Approaches for delivering carotenoids together
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Very little on colonic metabolites has been mentioned in the
literature. For E. coli, as well as lactic acid bacteria, it has been
reported that the xanthophyll fucoxanthin is metabolized into
fucoxanthinol, following deacetylation [105].

Engineering carotenoid biosynthesis and the
applicability to the gut

In this section, we will review the current state of the art in
engineering carotenoid biosynthesis and the applicability of
these strategies to the gut as a novel possibility to enhance gut
health and to improve carotenoid and vitamin A status. Tradi-
tionally, food has been the main source of carotenoids. However,
a variety of factors, including low crop yields or lack of access to
crops with high carotenoid content [106, 107], can lead to an
inability to consume a sufficient amount of provitamin A carot-
enoid to meet vitamin A needs. Furthermore, as carotenoids find
use as food colorants, cosmetics, and pharmaceutical products,
new ways to synthesize, produce, and extract carotenoids have
been developed [108, 109]. Recent studies have shown that
carotenoid biosynthesis in microorganisms proceeds in a highly
specific fashion, whereas chemical synthesis usually yields
multiple geometric carotenoid isomers [110]. Using biotechno-
logical processes, genetically engineered microorganisms (i.e.,
bacteria and fungi) can be easily scaled up and are not impacted
by factors such as seasonal harvest fluctuations, especially in the
era of climate change [109].
pplements
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Two main pathways that are responsible for the production of
carotenoids in plants and microorganisms are the mevalonate
(MVA) and plastidial 2-C-methyl-D-erythritol 4-phosphate
(MEP) pathway (Figure 2) [109]. Naturally, although
carotenoid-producing eukaryotes and archaea mainly follow the
MVA pathway, bacteria and plant plastids mainly have the MEP
pathway. To create the building blocks of any carotenoids, the
MVA and MEP pathways exploit molecules that are produced by
the central carbon pathway, mainly pyruvate, acetyl-CoA, and
glyceraldehyde-3-phosphate (G3P). Both pathways use these
substrates to create iso-pentenyl diphosphate (IPP) and dime-
thylallyl diphosphate (DMAPP), which are then assembled into
different carotenoid structures. For example, 7 IPP molecules
and 1 DMAPP molecule are needed to create 1 molecule of
lycopene. Overexpression of certain genes in those pathways,
e.g., 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMGR), phytoene synthase (PSY), and phytoene desaturase
(CRTI) and introduction of homologs of these genes, can increase
production of total carotenoids.

The use of microorganisms for producing relatively small
molecules such as carotenoids is attractive because microbes
can be cultured year-round and do not require large land areas
or greenhouses [111]. With the availability and simplicity of
genetic engineering tools to manipulate microbial genomes, as
well as advances in fermentation strategies, the development of
high carotenoid-producing strains is becoming increasingly
possible [110]. Lycopene, β-carotene, zeaxanthin, lutein, and
β-cryptoxanthin are the most relevant carotenoids related to
human health and therefore most microbial engineering efforts
have focused on optimizing their production (Figure 3) [112].
Some of the engineering approaches used to increase the pro-
duction of these carotenoids in yeast and bacteria include:
regulation of the biosynthesis pathways, enhancing enzyme
expression, increasing membrane synthesis, optimization of the
central metabolic pathways, rewiring central carbon meta-
bolism [113], combinatorial assembly of different genetic parts
and combinations of these methods (Table 1). Although these
TABLE 1
Sources of carotenoid production by microorganisms, and their delivery m

Delivery to gut Carotenoid Amount Source

Probiotic β-carotene 37 μg/g Saccharo
Probiotic lycopene 40.8 mg/mL Bacillus i
Probiotic lycopenoate 23.6 mg/mL Bacillus i
Probiotic lycopene 1.09 mg/L Lactococc
Supplement β-carotene 7 mg/L Coryneba
Supplement β-carotene 6500 mg/L (90 mg/g) Saccharo
Supplement β-carotene 4000 mg/L Saccharo
Supplement β-carotene 2370 mg/L (73.3 mg/g) Saccharo
Supplement β-carotene 2100 mg/L Saccharo
Supplement β-carotene 704.1 mg/L Blakeslea
Supplement β-carotene 44.2 mg/g Saccharo
Supplement lycopene 2300 mg/L Saccharo
Supplement lycopene 500 mg/g DCW Escherich
Supplement lycopene 256 mg/L Blakeslea
Supplement lycopene 220 mg/L Escherich
Supplement lycopene 56 mg/g DCW Saccharo
Supplement lycopene 10 mg/g DCW Rhodobac
Supplement astaxanthin 385.0 mg/L (7.0 mg/g) Escherich
Supplement astaxanthin 320 mg/L Escherich
Supplement astaxanthin 218 mg/L Saccharo
Supplement astaxanthin 1.7 mg/g Coryneba
Supplement zeaxanthin 0.5 mg/g DCW Xanthoph
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approaches and optimization of the MVA and MEP pathways
have increased carotenoid production, the amount of IPP
biosynthesis limits further optimization [109]. Therefore, a
chemoenzymatic approach to increase IPP was explored [109].
Transfecting the isopentenol utilization pathway (IUP) into
Escherichia coli MG1655 and Yarrowia lipolytica increased the
biosynthesis of IPP by 15–100-fold and thus the production of
carotenoids [114]. The IUP pathway uses the isopentenol iso-
mer isoprenol or/and prenol, which can be supplemented in the
growth media, as the main substrate for creating IPP and
DMAPP molecules [114]. Compared with the MVA and MEP
pathways, the IUP pathway only goes through 2 steps (MVA and
MEP pathways contain 6 and 7 steps, respectively) to create one
molecule of IPP, which consequently reduces byproducts and
the energy expenditure required for creating carotenoid build-
ing blocks.

In situ production of carotenoids by probiotics in the GI tract
offers a novel, potentially more sustainable approach for deliv-
ering carotenoids [115–117]. Probiotics are live microbes that
are attractive vehicles for the engineered production of desired
molecules and biologics. By delivering these molecules right
where they are needed, they can ultimately reduce the cost of
carotenoid production by bypassing purification and concen-
tration steps [115, 116, 118]. Using probiotics for the production
and delivery of carotenoids, such as β-carotene, could be most
beneficial in developing countries where vitamin A deficiency is
still prevalent, as probiotics are relatively easy to obtain [117].

Building on the progress of microbial engineering for the
production of carotenoids, Durmusoglu et al. first demonstrated
that the probiotic yeast Saccharomyces boulardii could produce
β-carotene in the gut of gnotobiotic mice. In this study, a single
dose of S. boulardii expressing heterologous β-carotene pathway
was delivered to mice, and the fecal concentration of β-carotene
was monitored over 2 weeks. The authors detected up to 37 μg/g
of β-carotene (68 μM) in feces. Another study conducted by
Stevens et al. focused on Bacillus indicus (PD01), which was
isolated from the fecal matter of a healthy volunteer and found to
echanisms. DCW ¼ dry cell weight.

Genetically modified organism Reference

myces boulardii Yes [117]
ndicus No [28]
ndicus No [28]
us lactis Yes [177]
cterium glutamicum No [178]
myces cerevisiae Yes [179]
myces cerevisiae Yes [180]
myces cerevisiae Yes [181]
myces cerevisiae Yes [182]
trispora No [183]
myces cerevisiae Yes [184]
myces cerevisiae Yes [185]
ia coli Yes [186]
trispora No [187]
ia coli Yes [115]
myces cerevisiae Yes [188]
ter sphaeroides Yes [189]
ia coli Yes [190]
ia coli Yes [191]
myces cerevisiae Yes [192]
cterium glutamicum No [193]
yllomyces dendrorhous Yes [194]
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naturally produce methyl-glycosyl-apo-80-lycopenoate and
glycosyl-apo-80-lycopene [28]. The authors also used weaned
piglets with impaired intestinal barrier function to examine the
efficacy of PD01 to limit intestinal permeability or treat intesti-
nal barrier dysfunction [119]. In a human cohort with healthy
volunteers, the carotenoids produced by PD01 were observed in
the plasma of the subjects, and PD01 was not found to impair
intestinal barrier function, GI tract tolerance, and stool frequency
or consistency [28].

Although only examined in a limited number of test subjects,
these studies demonstrate that probiotics can deliver carotenoids
to the GI tract and may provide a viable option to mitigate
vitamin A deficiency and perhaps improve gut health. Future
studies should focus on the effects of provitamin A-producing
probiotics and testing carotenoid-producing probiotics in a
greater diversity of subjects, and for a longer period of time.

Carotenoids and shift of gut microbiota—prebiotic-
like and bactericidal effects against pathogens

About the same number of microorganisms exist in our gut as
the number of human cells in our body (i.e., 1010–1012), primarily
as bacteria in the colon [120, 121]. Prebiotic effects are based on
preventing dysbiosis and shifting the composition of the GM to-
ward one associated with health, by acting as a substrate for
certain bacteria. In other words, prebiotics improve host health
and physiology [106]. Such prebiotic effects are well recognized
for several fermentable dietary fibers, such as fructooligo-
saccharides and galactooligosaccharides [122]. Also, some poly-
phenols may act similarly, since they are poorly absorbed in the
small intestine and are present as glycosides that could be fer-
mented by certain bacteria [14]. Health-beneficial bacteria
include Lactobacillus and Bifidobacterium, both of which are lactic
acid producers that may aid in displacing more
health-detrimental bacteria, e.g., biofilm-producing Pseudomonas
[123]. This displacement prevents an overgrowth of opportu-
nistic bacterial pathogens (OBP), which is also an important
function of prebiotics. Other fermentation products may confer
protection, such as the short-chain fatty acid butyrate, which is
associated with anti-inflammatory effects locally and systemically
following mucosal uptake [124]. Some bacteria, such as Faecali-
bacterium prausnitzii, a dominant butyrate-producing bacteria,
have been reported to be decreased under certain dysbiotic con-
ditions, including IBD [125]. Administration of a β-carotene-rich
oil (1 g. L�1 in tucuma oil rich in oleic acid) to the rumen resulted
in a shift from acetate to propionate [126], which is considered
even more anti-inflammatory than butyrate [127]. In addition,
this β-carotene-rich oil also induced GM changes, though rumen
physiology can be quite different from humans (Table 2).

As Bacteroidetes and Firmicutes account for >90% of the phyla
in the gut [128], changes in taxa that fall under these phyla are
also of interest. For example, a higher ratio of Firmicutes to Bac-
teroidetes has been associated with obesity, and a lower one with
IBD, as reviewed recently [129]. It should be noted though that
until recently, bacterial populations have been primarily
assessed using 16S rRNA, allowing differentiation only at the
genus level. Moving forward, more insightful results may be
obtained on a lower taxonomic level, adding more information
about functionality but requiring more elaborated metagenomics
analyses [130]. Beyond composition and abundance, a better
understanding of the metabolic behavior of each bacterial
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species, which can radically change depending on dietary intakes
[131], may better elucidate the role each microbe plays in health
and disease.

There is little direct evidence that carotenoids serve as pre-
biotics or as direct energy sources for bacteria, and certainly
other dietary factors can easily confound human studies, unless
pure carotenoids are supplemented. Alcoholic or lactic acid
fermentation did not result in significant losses of carotenoids
[132]. In contrast, β-carotene and lycopene appeared to be pro-
duced by certain bacteria, such as Blakeslea trispora, as reviewed
recently [132]. Certain bacteria and yeast were also reported to
be capable of producing carotenoids, as recently summarized
[133].

Nevertheless, microbial shifts were reported following inter-
vention with carotenoids. In animal studies, capsanthin from bell
pepper (>90% purity) (dose of 200 mg. kg�1 body weight) was
administered to obese mice for 12 weeks [134]. Notably, the
abundance of Bacteroidetes, Bifidobacterium, and Akkermansia
were increased, whereas Ruminococcus and Firmicutes were
reduced. In another study [135], astaxanthin from yeast (0.04%
in the diet, for 8 weeks) significantly reduced OBP (i.e., Proteo-
bacteria and Bacteroides) in β-carotene oxygenase 2 (BCO2)
knockout mice, whereas strongly increasing Actinobacteria and
Bifidobacterium in wild-type mice. In another animal experiment,
pigs on a low-protein diet received carotenoid-fortified corn (20%
of the diet, rich in zeaxanthin, ca. 10 μg. g�1 total carotenoids) or
corn without carotenoids for 30 d [136]. Sequencing (16S rRNA)
of feces demonstrated that, though the carotenoid-rich diet did
not alter the microbiome diversity, 162 amplicon sequence var-
iants differed in abundance in the carotenoid-treated vs. the
control group, and abundance of Epulopiscium was higher in the
carotenoid group. Another porcine study investigated changes
related to intestinal inflammation induced by weaning: 24 piglets
were distributed into a normal suckling group, and weaning
piglets were randomized to receive somewhat
supra-physiological carotenoid doses (either 40 mg. kg�1 body
weight β-carotene or 80 mg. kg�1 body weight β-carotene) for 2
weeks [119]. Pigs receiving β-carotene had significantly
decreased species from the Bacteroidetes phyla and the genus
Prevotella and Blautia. The authors reasoned that reducing Pre-
votella especially could be of interest, because of its correlation
with pro-inflammatory conditions. Furthermore, β-carotene
increased abundance of the phyla Firmicutes and the genera
p-75-a5 and Parabacteroides vs. the control group, believed to be
because of changes in inflammatory cytokines. Parabacteroides
and Synergistes correlated inversely with interleukin-1β (IL-1β),
IL-6, and TNF-α concentrations, likewise p-75-a5 inversely
correlated with IL-6 in serum, pointing to important activations in
the immune system in young piglets. Indeed, results were related
to a reduction of NF-κB in the colon, also indicative of a decreased
pro-inflammatory state. GM diversity indices (i.e., Chao1 and
ACE) also improved with β-carotene consumption. Summarizing
these animal studies, it appears that carotenoid consumption
altered the abundance of various phyla and genera, and that these
changes were inversely correlated with inflammatory signaling.

In terms of human studies, consumption of a mixture of
blackcurrant powder, lactoferrin, and lutein (nonspecified
quantities) for 2 weeks significantly increased Bifidobacteria and
Lactobacilli populations but reduced levels of β-glucuronidase
(associated with colon cancer) producing Bacteroides spp. and



TABLE 2
Studies with carotenoids involving effects on the GM

Compound Study type Dosing and major outcomes Main findings Reference

Human studies
β-Carotene Observational study in

subjects (n = 16) with cystic
fibrosis

Associations tested between fecal
microbiota and corresponding
micronutrient intakes.

Intake of β-carotene (and several other
antioxidants) was related to lower
Bacteroides and higher Firmicutes.

[139]

Methyl-glycosyl-apo-80-
lycopenoate and
glycosyl-apo-80-
lycopene produced by
Bacillus indicus

Randomized, controlled trial
in overweight/obese subjects
(n =67)

Consumption of carotenoid-producing
bacteria vs. placebo for 6 wk, plasma
carotenoid concentrations, and colonic
permeability.

0.044 and 0.076 vs. 0 μM in controls as
the sum of bacterial carotenoid
compounds after 3 and 6 wk,
respectively. No significant difference in
gastro-duodenal or colonic permeability
as determined by multi-sugar test (l-
rhamnose; S/E : sucralose/erythritol). No
difference in GI tolerance.

[28]

Lycopene Adult subjects with obesity (n
= 30), double-blinded
design

7 mg or 30 mg for 30 d as supplement,
GM abundances measured.

Dose-related improvement in GM profile
with enhanced fractions of, e.g.,
Bifidobacterium adolescentis and
Bifidobacterium longum. Also related to
dose-dependent variation in the blood,
liver metabolism, skeletal muscle, and
skin measures.

[13]

Animal trials
Fucoxanthin Male BALB/c mice (n = 40) For 4 wk, mice were fed NCD (normal

chow diet), NCD + fucoxanthin
(NCDF, 125 mg/kg), HFD +
fucoxanthin (HFDF, 125 mg/kg).

No difference detected between the NCD
and NCDF. Firmicutes and Bacteroidetes
increased in the NCDF group (26%). In
the HFDF group, it increased (13%) vs.
the HFD group, suggesting a positive
effect of fucoxanthin. Fucoxanthin
decreased abundance of Verrucomicrobia
phylum.

[173]

β-Carotene Piglets (n = 24) Suckling group, weaning group,
weaning + β-carotene (40 mg/kg bw.)
group, and the weaning + β-carotene
(80 mg/kg bw.) group, 2 wk
intervention. Serum, jejunum, colon,
and feces were investigated.

β-Carotene decreased phyla Bacteroidetes
and the genus Prevotella, and Blautia, but
increased species from the phyla
Firmicutes and Parabacteroides vs.
weaning animals. Spearman’s correlation
analysis: revealed positive correlation
between Prevotella and Blautia, and
Parabacteroides and Synergistes were
negatively correlated with concentrations
of interleukin-1β (IL-1β), IL-6, and tumor
necrosis factor-α (TNF-α). p-75-a5
showed negative correlation with serum
IL-6.

[119]

Lycopene Mice (n = 10 per group) Lycopene at 0.03% in the diet for 10
wk, together with a high fat diet. A
number of behavioral tests and
biomarkers were investigated.

Lycopene improved HFD-triggered
memory loss. Lycopene also improved
synaptic functioning. It also reduced
insulin resistance, improved lipid
metabolism dysfunction, and
inflammatory responses in brain and
liver. Finally, lycopene improved
intestinal barrier integrity as shown by
higher expressed claudin-1 and occludin
as well as reduced circulating
lipopolysaccharides.

[167]

Lycopene “Cobiotic” treatment: Male
Swiss albino mice, (n=8–10
per group)

5 and 10 mg lycopene/kg bw. and
isomalto-oligosaccharides (IMO), for
12 wk. A variety of systemic markers
(OS, inflammation), GM, and
histopathologic examinations were
carried out.

Lycopene improved SCFA concentration
and ileal and colonic health. This was
measured by histopathology and reduced
Enterobacteriacea and increased
Lactobacilli, increased total SCFA as well
as improving systemic markers of OS
stress and inflammation (e.g., SOD and
CAT and various cytokines, respectively).

[163]

(continued on next page)
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TABLE 2 (continued )

Compound Study type Dosing and major outcomes Main findings Reference

Synergistic effects were observed with
IMO.

β-Carotene Mouse model of ulcerative
colitis, number of animals
nonspecified

Receiving (application mode not
further specified) 5, 10, and 20 mg
β-carotene/kg bw. for 28 d.

β-Carotene improved severity of UC,
modulating various targets. e.g., NF-κB,
cyclooxygenase- 2, interleukin 17, signal
transducer and activator of transcription
3, Nrf2, matrix metalloproteinase-9, and
connective tissue growth factor. Further
more, β-carotene treatment maintained
gut barrier integrity by increasing
occludin expression. Also, β-carotene
reduced plasma lipopolysaccharide
levels.

[164]

Carotene (and proteins) Duroc pigs (n = 32) Pigs were fed 2 different diets for 1
mo.: a standard protein (SP) diet or
SP+ carotene-enriched (CE) diet (20%
of M37W-Ph3 carotenoid-enriched
corn), unspecified amount carotenes.

Proteins had a stronger modifying effect
than carotenes on the pig GM patterns.
160 amplicon sequences variants differed
between CE and SP.

[136]

Methyl-glycosyl-apo-80-
lycopenoate and
glycosyl-apo-80 -
lycopene produced by
Bacillus indicus

Piglets (n = 16) Either control diet or control diet with
Bacillus indicus for 23 d. Barrier
functionality in the gut was tested.

Supplementation with Bacillus indicus
improved expression of occludin in distal
small intestine and TEER in the mid colon
vs. control. No differences regarding
crypt depth and villus height.

[28]

Tomato powder (TP) rich
in carotenoids

Male BCO1�/�+ BCO2�/�

knockout mice (n = 18)
Mice were fed a HFD with or without
dietary TP (42 g/kg diet) intervention
for 24 wk. Carotenoid dose of 2.39 mg
of lycopene, 0.11 mg of β-carotene/g
TP

The fraction of Gram-positive bacteria
was enhanced following TP; the fraction
of Gram-negative bacteria was lowered
accordingly. TP diminished the relative
abundance of Clostridium spp. and
Mucispirillum spp.

[174]

In vitro investigations
Lycopene In vitro inhibition assay:

B. subtilis
Extraction from tomato paste and tests
on B. subtilis, 50 μg/mL lycopene.

Inhibition against B. subtilis. [175]

β-Carotene and extracts
of carotenoids from red
paprika, apples,
oranges

In vitro inhibition assays:
HSC-2, HSG, and HTLV1

extracts of carotenoids and β-carotene
from red paprika tested on infected
cells (H. pylori and HIV-1 type IIIB) for
5 d.

Prevention of the development of
H.pylori-associated disease, MIC50 of
β-carotene and red paprika extract of >
200 μg/mL), extract from apples showed
MIC50 of 36 μg/mL.

[147]

Tucuma oil rich in beta-
carotene (1 g/L oil)

In vitro trial with rumen
inoculum from donor
Holstein cows

Tucuma oil at 0.5 and 1% added to
diet, mostly containing oleic acid,
added to rumen inocculum (n =3)
during 15-d experiments.

With tucoma oil, reduced number of
Fibrobacter and Rikenellacea RC9 group,
and enriched Pyramidobacter,
Megasphaera, Anaerovibrio, and
Selenomonas. Reduced acetate and
butyrate fraction of volatile fatty acids,
increased fraction of propionate and
valerate.

[126]

Extract carotenoids
(from Shatian
pummelo C. grandis)

In vitro inhibition assays:
B. subtilis, S. aureus, E. coli, A.
niger, A. flavu, P.
chrysogenum, R. oryzae and
S. cerevisiae

The extract was incubated for 24 h
with the microorganisms tested.

Inhibition against B. subtilis, S. aureus, E.
coli, A. niger, A. flavus, S. cerevisiae.

[176]

Annatto, carrot, corn,
and tomato extracts

In vitro inhibition assays:
E.coli and S. aureus

Extracts were incubated for 18–24 h
with microorganisms tested.

Annatto, carrot, and tomato extracts
exhibited antibacterial property for
S. aureus. Annatto Extract, having the
highest total carotenoid content, also
exhibited the major MIC50 for S. aureus.

[149]

GI, gastrointestinal tract; HFD, high-fat diet; MIC, Minimally inhibitory concentration; OS, Oxidative stress; TEER, transepithelial electrical
resistance.
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Clostridium spp. [137] in healthy subjects. However, a similar
mixture tested without lactoferrin and lutein had similar effects,
suggesting that the effects may have been because of compounds
in the blackcurrant extract. In a human association study, 11
taxonomic units of GM were significantly associated with serum
carotenoid concentrations [73]. Specifically, serum carotenoid
concentrations were negatively correlated with the abundance of
Firmicutes and positively correlated with the abundance of Bac-
teroidetes. Similar results were found in a study with pregnant
women, with plasma carotenoid concentrations positively
correlating with α-diversity [138]. In cystic fibrosis patients,
dietary intake of β-carotene was related to a higher Firmicu-
tes/Bacteroides ratio [139]. Of course, these effects may be
explained by carotenoids serving as a marker for fruit and
vegetable, and thus fiber, intake. Most notably, in a 1-mo inter-
vention trial, lycopene was tested in obese adults, and provided
alone (7 mg or 10 mg/d) or incorporated into dark chocolate (7
mg/d), vs. respective controls (i.e., placebo, dark chocolate)
[13]. Lycopene dose-dependently increased the relative abun-
dance of Bifidobacterium adolescentis and B. longum, together with
Lactobacilli. Also, dose-dependent reductions of LDL-C,
LDL-peroxidase, and MDA as markers of oxidative stress (OS)
were noted. Because of its low bioavailability, lycopene may
reach the colon at an especially high proportion [140, 141]. The
main open questions were whether lycopene directly stimulated
the growth of health-beneficial bacteria or if these were indirect
effects, i.e., whether the improvements in blood lipids, OS, etc.,
induced changes in the GM.

As carotenoids are unlikely to act as energy sources and thus
as direct prebiotics for bacteria, additional modes of actions have
been investigated. It is plausible that carotenoids contribute to
reduced (OS) in the gut, including the colon, preventing ROS
formation that may be detrimental to some bacteria [138, 142,
143]. Such effects were shown for an antioxidant peptide which
decreased intracellular bacterial ROS, improving bacterial sur-
vival in the presence of antibiotics [144]. The importance of ROS
for intestinal physiology, including GM and the epithelium, has
been emphasized earlier. For instance, Firmicutes taxa were
shown to be influenced by OS and the presence of antioxidants,
with, e.g., higher numbers of Lactobacilli spp. at lower OS
induced by lipoic acid [145]. Such mechanisms may be more
plausible in eliciting effects on the GM, rather than through
fermentation/metabolism of carotenoids, though data in this
area is lacking.

Another effect by which carotenoids could alter GM compo-
sitionmay be because of potential bactericidal effects, though it is
questionable whether sufficiently high concentrations are
reached in the colon to exert such effects. Though selective sup-
pression of pathogenic microorganisms in vivo has not been
shown, carotenoids have demonstrated bactericidal properties ex
vivo. For instance, an apple nonpolar (diethyl ether) extract (later
diluted in DMSO) containing violaxanthin and zeaxanthin/lutein
reducedH. pylori numbers at anMIC50 (50%minimum inhibitory
concentration) of a carotenoid concentration of 36 μg. mL�1.
Though the effects could have also been because of other apple
constituents (e.g., other triterpenes), similar concentrations,
though high, could be reachable in vivo after a carotenoid-rich
meal or supplements, and the observed effects were not unlike
the antibiotic metronidazole, also employed in this study [146].
In another study, citrus (Shatian pummelo) peel carotenoids
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reduced growth of especially E. coli, but also of potentially path-
ogenic bacteria including B. subtilis, S. aureus, Aspergillus niger, A.
flavus, and Penicillium chrysogenum [147], with MIC50 of 19–140
μg.mL�1, concentrations that are achievablewith carotenoid-rich
meals. Lycopene in tomato oleoresin inhibited pathogenic Pseu-
domonas aeruginosa (MIC50: 150 μg. mL�1), whereas MIC50 for
other bacteria (e.g., E. coli) were higher [148]. Carotenoid-rich
extracts (annatto, carrot, tomato, ca. 0.1–1.0 mg. g�1 caroten-
oids) had antibacterial activity against S. aureus [149]. Fucoxan-
thin fromalgaewas effective against pathogenic S. aureus at 63 μg.
mL�1 concentrations. Similarly, fucoxanthinol, a metabolite of
fucoxanthin in the gut, was found effective (at high concentra-
tions of 4.25mg.mL�1) against S. faecalis, Enterococcus sp., aswell
as S. aureus, and B. subtilis. This activity was similar to the positive
control chloramphenicol tested at 1 mg. mL�1 [105]. Achievable
carotenoid concentrations in the colon may be around 50mg. L�1

(50 μg. mL�1), as supplements with 50 mg are commercially
available and a total postprandial liquid volume of digestive fluid
of ~1L is common, not considering water uptake and concentra-
tion effects in the colon.

Taken together, carotenoids and carotenoid-rich extracts
have been associated with a GM microbial profile that is more
closely correlated with positive health attributes; however, what
remains to be elucidated are 1) the underlying mechanism(s) and
2) whether changes in GM were a cause of, and not the conse-
quence of, other favorable physiological changes observed.
Carotenoids and IgA
An important factor for gut health is also the host’s immune

system, and provitamin A carotenoid metabolites can interact
via RAR/RXR nuclear receptors that elicit immune system re-
sponses [150]. IgA is the most abundant antibody isotype
[151], expressed mainly in the mucosa and the gut. SlgA is the
secreted form of IgA, which is formed by the concerted activity
of plasma cells and endothelial cells. This results in secreted IgA
and a free secretory component (SC) that are released into the
colon by transcytosis. For further information, the reader is
referred to a more detailed review [151]. SlgA has been re-
ported to protect against enteric pathogens and toxins [152],
whereas IgA can bind to specific microbiota, contributing to the
gut homeostasis [153]. SC protects immunoglobulins from their
proteolytic degradation by proteases. SC also contributes to
activating recognition functions on SlgA and soluble IgM
(SIgM), resulting in the binding and removal of bacteria [154].
IgA dysfunction has been reported to disturb GM homeostasis,
reducing the abundance of Bifidobacterium and Lactobacilli and
increasing Gammaproteobacteria [21]. De-regulated gut IgA
expression has also been related to many allergies [155].

It is known that retinoids can have cell proliferative effects,
and β-carotene (50 mg/kg feed) was shown in weanling mice to
increase IgA antibody-secreting cells (ASC), an effect mainly
attributed to all-trans retinoic acid [156]. Certainly, all-trans
retinoic acid, the most potent form of vitamin A, can bind to
retinoic acid receptor β (RARβ) to produce IgA in the mucosa,
which may confer some protection, among other possible
mechanisms [157]. Similar results were reported earlier by
Nishiyama et al. [158]. In this study, pregnant mice received 50
mg. kg�1 β-carotene in the diet 6.5 d postcoitus (dpc) to 14
d postpartum (dpp). In the offspring, IgA concentrations were
significantly higher in the stomach, serum, and feces of mice
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receiving β-carotene vs. a control group. Of note, mice have a
much higher cleavage efficiency to convert β-carotene to vitamin
A than humans [159]. This further supports vitamin A as the
main agonist behind IgA production in this model. Similarly, it is
known that mice deficient in vitamin A have compromised IgA
secretion of the colonic mucosa [160].

The interaction between carotenoids, GM, and IgA has been
reviewed by Lyu et al. [21]. Both astaxanthin and retinoic acid
were shown to enhance IgA production, preventing gut dysbiosis
presumably via recognition and coating of pathogenic bacteria,
preventing their infiltration through the epithelial barrier.
However, the mechanism(s) remain unclear. For example, in
weanling mice, astaxanthin-enriched yeast (120 mg/(kg. d) feed)
increased IgA ASC after 7 d and enhanced small intestinal IgA
mRNA expression after 14 d (colonic effects were not studied)
[135]. The authors reasoned that astaxanthin could be confer-
ring protection via ROS scavenging properties. However, it was
also noted that the yeast alone could have had some IgA stimu-
latory effects, and this effect was not controlled for. Another
study feeding mice with astaxanthin (at 200 mg/(kg. d) body
weight for 10 d) or no carotenoids reported reduced bacterial
loads of H. pylori in the stomach, reduced mucosal inflammation,
and changes in T-lymphocyte response in the astaxanthin ani-
mals as compared with controls. This supports a role for astax-
anthin in perhaps modulating IgA, though IgA was not measured
in this study [161]. In a recent human study with young soccer
players [162], astaxanthin supplementation (4 mg/d for 90 d)
reduced CRP, and neutrophil levels in the blood compared with a
placebo-receiving group. Salivary SlgA concentrations and
secretion rate were also significantly increased by ~20%. In
summary, both retinoic acid and astaxanthin consumption
favorably appear to regulate IgA and SlgA expression, effects that
have been associated with a more favorable GM composition in
animal studies.

Carotenoids and gut barrier
Another remarkable property of carotenoids is their influence

on gut barrier function, especially gut mucosa integrity and
maintenance of tight gap junction functionality. Stevens et al.
[28] fed the carotenoid-producing strainBacillus indicus to piglets,
for 23 d. Following necropsy, enhanced expression of tight junc-
tion proteins (Tjp1 and occludin) in the mid and distal small in-
testine, and improved colonic transepithelial electrical resistance
were reported, whereas crypt depth and villus height were not
influenced. The same bacterial strain fed to obese-overweight
humans for 6 weeks was not shown to impact excretion of
certain sugars (an objective measure of intestinal barrier func-
tion) [28], but other measures of intestinal permeability (e.g.,
those assessed in the piglet study) were not investigated.

Earlier studies on mice with β-carotene and lycopene likewise
showed positive effects on gut barrier functionality. In one of the
studies [163], Swiss albino mice received a high-fat diet with or
without lycopene (5 or 10 mg/(kg. d) for 12 weeks), provided in
combination with or without a prebiotic (isomalto-olig
osaccharides, IMO). Lycopene alone improved ileal and colonic
health. This was measured by histopathology and reduced
Enterobacteriaceae abundance, increased Lactobacilli abundance,
increased total SCFA concentrations, and improved systemic
markers of OS and inflammation (i.e., increased concentrations of
enzymes such as SOD and reduced cytokines, respectively). Ad-
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ditive effects were observed when lycopene þ IMO was fed. In
another study by Trivedi and Jena [164], β-carotene was given at
3 different doses (0, 5, 10, 20 mg/(kg. d) body weight for 21 d) to
mice with induced ulcerative colitis (UC). Compared with con-
trols, β-carotene reduced systemic markers of OS and inflamma-
tion, and increased occludin expression in the colon. This was
accompanied by reduced plasma lipopolysaccharide concentra-
tions, which also suggested that barrier integrity improved. Colon
length and histology scores based on optical appearances were
also improved dose-dependently with increasing β-carotene in-
takes. The authors hypothesized that the increase in Nrf2
expression related to OS prevention contributed to the mucosal
protection. VitaminA and β-carotene also contributed to gut-tight
junction functionality in infants of HIV-positivemothers [165]. In
this study, mothers received 1.5 mg retinyl palmitate and 30 mg
β-carotene daily, in addition to 60 mg retinyl palmitate at de-
livery. Improved gut barrier function was demonstrated via
mannitol and lactulose appearance in urine after an oral chal-
lenge. Because these women were at increased risk of vitamin A
depletion and deficiency, the important role of vitamin A in
mucus production from goblet cells was likely at least partially
responsible for the effects observed [166]. In a study by Wang
et al. [167],mice received 0.03% lycopene in ahigh-fat diet for 10
weeks. Lycopene was shown to improve intestinal barrier prop-
erties as shown by occludin and claudin-1 in the jejunum (colon
was notmeasured), but also decreased plasma lipopolysaccharide
levels, relative to a control group.

An earlier study has highlighted that gut bacteria may reduce
the mucosal lining if dietary fiber is low [27], as these glycopro-
teins could serve as an alternative energy source. Likewise, bac-
terial shifts may also lead to changes in species important for the
maintenance of themucus layer, i.e., depending on the abundance
and activity ofmucin degraders. A reduced thickness of themucus
layer has been associated with an increased risk of allergen up-
take, as well as the development of colitis and infections, as
reviewed elsewhere [168]. A damagedmucus layer in the GI tract
impacts microbial colonization and stability by changing the
adherence and the organization of theGMand therefore changing
the composition of communities [169]. Therefore, changes such
as reductions in Akkermansia muciniphila could be important for
optimal mucosa integrity and gut health [170]. Utilization of
certain carotenoids has been shown to reduce the abundance of
Akkermansia, which impacts the integrity of the gut mucosa, as
reviewed previously [14]. Lactobacillus spp., Lactobacillus reuteri,
and Bifidobacterium longum have also been reported to contribute
to increasedmucus layer thickness and growth [171]. Djuric et al.
[73] found in ahuman study that carotenoids inplasma correlated
with 11 operational taxonomic units, including a positive asso-
ciation with Bacteroidetes and a negative association with Firmi-
cutes. It is also important to consider that carotenoids maymerely
serve as an indicator of a healthy diet. For example, the Medi-
terranean diet, which is carotenoid-rich, was also generally found
to be associated with lower presence of Firmicutes and Lachno-
spiraceae [172]. Thus, though a direct relationship between
carotenoid consumption and gutmucosa thickness is stillmissing,
these associations merit further study to establish if such a causal
relationship exists. In summary, several carotenoidsmay improve
gut barrier functionality via increasing expression of occludin and
claudin-1, increased mucus production, altered GM, and poten-
tially antioxidant and anti-inflammatory effects.
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In conclusion, there is mounting evidence that carotenoids
can contribute to colonic health. Due to limited absorption in the
small intestine, the majority of carotenoids are passed on to the
colon, where they may act via different mechanisms. Though
carotenoids are unlikely to present any significant source of en-
ergy for bacteria, potential mechanisms include alterations of the
GM composition, likely via direct bactericidal effects, effects on
IgA, or altering local OS levels. Additional effects such as
improving tight junction integrity are also likely. Gaps in our
knowledge include elucidating causal relationships between ca-
rotenoids and the mechanisms discussed herein. They also
include questions on the effects of apo-carotenoids on GM, the
structure and potential function of bacterially-derived metabo-
lites, and also to what extent carotenoids or apo-carotenoid
metabolites could be absorbed from the colon. A rather novel
approach is the colonization of the GM with carotenoid-
producing strains, which could be a promising alternative to
consuming carotenoid-rich food items for carotenoid delivery.
More studies on the relationship of carotenoids to the GM and
colon-related health are needed.
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