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A B S T R A C T

Emerging research indicates the importance of gut microbiota in mediating the relationship between meat intake and human health out-
comes. We aimed to assess the state of available scientific literature on meat intake and gut microbiota in humans (PROSPERO, International
Prospective Register of Systematic Reviews, CRD42020135649). We first conducted a scoping review to identify observational and inter-
ventional studies on this topic. Searches were performed for English language articles using PubMed, Cochrane Library, Scopus, and CINAHL
(Cumulated Index to Nursing and Allied Health Literature) databases from inception to August 2021 and using keywords related to meat
(inclusive of mammalian, avian, and aquatic subtypes) and gut microbiota. Of 14,680 records, 85 eligible articles were included in the
scoping review, comprising 57 observational and 28 interventional studies. One prospective observational study and 13 randomized
controlled trials (RCTs) were identified in adults without diagnosed disease. We included the 13 RCTs, comprising 18 comparisons, in the
systematic review to assess the effects of higher and lower intakes of total meat and meat subtypes on the gut microbiota composition. The
bacterial composition was differentially affected by consuming diets with and without meat or with varied meat subtypes. For example,
higher meat intake tended to decrease population sizes of genera Anerostipes and Faecalibacterium, but it increased the population size of
Roseburia across studies. However, the magnitude and directionality of most microbial responses varied, with inconsistent patterns of re-
sponses across studies. The data were insufficient for comparison within or between meat subtypes. The paucity of research, especially
among meat subtypes, and heterogeneity of findings underscore the need for more well-designed prospective studies and full-feeding RCTs
to address the relationships between and effects of consuming total meat and meat subtypes on gut microbiota, respectively.

Keywords: red meat, poultry, fish, seafood, animal-based protein sources, dietary pattern
Statement of Significance
This scoping and systematic review summarizes the current state of knowledge on meat intake and gut microbiota, and identifies gaps and
priorities for future research.
Introduction

Meat is an integral part of most individuals’ dietary patterns,
which affects their health. Since the 1960s, the total amount of
meat consumed has increased by 40% among Americans and by
100% globally [1]. The meat types consumed by Americans (as
of 2017) include 51% red meat, 42% poultry, and 7% fish and
Abbreviations used: AMSA, American Meat Science Association; RCT, randomized
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shellfish [2]. Historically, meat-related research has focused on
the nutrients in meat and their influence on traditional health
indices (e.g., cardiometabolic diseases and risk factors). This
body of literature presents inconsistent and controversial health
impacts of meat intake. Importantly, accumulating research in-
dicates that the influence of diet on human health may be
mediated, in part, by the gut microbiota. Knowing how meat
controlled trial; TMAO, trimethylamine-N-oxide.
.
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intake influences gut microbiota can provide novel insights into
understanding the impact of meat intake on human health out-
comes. However, how the gut microbiota is impacted by meat
intake is not well-studied.

Notably, “meat” is not a single food, but is defined by the
American Meat Science Association (AMSA) as including
mammalian, avian, aquatic, and other sources of flesh and
related tissue foods [3]. However, the term “meat” is used
inconsistently among and between observational and interven-
tional studies and in regulatory, scientific, or public settings [4].
For example, the 2015–2020 Dietary Guidelines for Americans
identifies meats as mammalian sources, including “beef, goat,
lamb, pork, and game meat (e.g., bison, moose, elk, and deer),”
separate from other muscle food categories such as poultry and
seafood [5]. The varied uses of the term “meat” add to the
inconsistency and controversy of research evidence on meat
intake and health outcomes [6]. Our review addresses the
inconsistency by adhering to the AMSA definition of meat by
including mammalian, avian, and aquatic sources (i.e., red meat,
white meat, and fish/seafood).

Over the past decade, there has been an exponential increase
in the number of studies on human gut microbiota with fast-
advancing sampling and sequencing technologies. In contrast,
few systematic reviews have synthesized meat consumption and
gut microbiota–related outcomes in humans. A rigorous, unbi-
ased, systematic assessment of research literature is needed to
evaluate the current evidence on the effects of consuming
mammalian, avian, and aquatic meats on the gut microbiota.
Although another systematic review included research using
animal models [7], findings in the gut microbiota from animal
models (murine in particular) may have limited transferability
into humans because of the differences in gut and microbial
physiologies and metabolisms [8, 9]. Therefore, this review
aimed to assess the influence of consuming total meat and meat
subtypes on the gut microbiota in humans. Given the large body
of microbial literature, a scoping review was conducted to
identify the types and extent of available research evidence,
followed by a systematic review to chronicle and synthesize
evidence from relevant studies.

Methods

Research question
Our research question comprised 2 parts: 1) What are the

current state of knowledge and gaps in the literature on meat
intake and human gut microbiota? 2) What are the effects of
meat consumption on the gut microbiota in healthy human
adults? To assess the state of knowledge, we conducted a scoping
review to chronicle available literature without regard to
reporting results. Based on the findings from the scoping review,
we conducted a systematic review using suitable literature to
assess the influence of meat intake on the gut microbiota. The
systematic review presents the results and assesses the quality of
the included articles.

The primary outcomes of the systematic review included
changes or differences in the gut microbiota composition at the
community (alpha and beta diversity metrics) and taxonomic
levels (bacterial abundances). The primary outcomes were
compared between the groups of participants who consumed
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diets with higher and lower amounts of meats or no meat. A
priori subgroup analyses included comparisons 1) between
vegetarian and vegan diets; 2) among subtypes of meats (e.g., red
meat, white meat, and fish/seafood; processed or unprocessed),
3) between different meat subtypes and nonmeat, and 4) be-
tween higher and lower intakes of total meat and meat subtypes.

Inclusion and exclusion criteria
This systematic review was registered in the PROSPERO

registry (https://www.crd.york.ac.uk/PROSPERO/) before the
formal screening of search results commenced
(CRD42020135649). The conduct of this review follows the
PRISMA [10] and the PRISMA extension for scoping reviews
[11] guidelines.

The Population, Investigated Condition, Comparison,
Outcome, and Study Type criteria defining our research ques-
tions for the scoping review and systematic review are presented
in Supplemental Tables S1 and S2, respectively. Relevant articles
that met all of the following criteria were included in the scoping
review (Supplemental Table S1): 1) is a peer-reviewed primary
research article; 2) is published in English; 3) includes human
population; 4) has a comparison between higher and lower di-
etary intakes of meat (in whole food form), with or without
control of overall diets; and 5) includes outcomes on the gut
microbiota composition. Articles were excluded if they did not
meet any one of the listed inclusion criteria. Review articles and
gray literature were excluded. Articles from the scoping review
that met all of the additional criteria were included in the sys-
tematic review (Supplemental Table S2): 1) is a randomized
controlled trial (RCT) and 2) includes human adults without
diagnosed disease and with stable health status (e.g., not preg-
nant). Because of the selection process, reference lists of included
articles from the scoping or systematic reviews were not
searched.

Search strategy
The initial search was conducted in 4 scientific databases,

including PubMed, Cochrane Library, Scopus, and CINAHL
(EBSCO, Cumulated Index to Nursing and Allied Health Litera-
ture), on January 14, 2020. An updated search was conducted on
August 17, 2021, in all databases (e.g., with entry dates from 14
January, 2020, to 17 August, 2021, in PubMed). A complete list
of search strategies developed by a research librarian (JBR) is
included (Supplemental Document 1). Briefly, keywords and
alternative terms for meat, gut microbiota, and gut microbial
metabolites were used in combinations to identify relevant ar-
ticles in each database. Definitions of total meat and meat sub-
types used in this review are listed in Table 1 [3, 5]. Searches
were restricted to articles published in English from inception to
August 2021. Trial registries were searched through results
generated from the Cochrane Library.

Article screening and data extraction
Records of identified articles were uploaded to the Rayyan

systematic review management tool (Rayyan Systems Inc, htt
ps://www.rayyan.ai/) for screening. After removing duplicates
(n ¼ 10,543), articles from the initial search (n ¼ 10,297) were
screened independently by pairs of investigators (YW, CNU, REB,
and CMC) and crosschecked to reach an agreement through 2

https://www.crd.york.ac.uk/PROSPERO/
https://www.rayyan.ai/
https://www.rayyan.ai/


TABLE 1
Terminology of meat subtypes.

Meat subtypes Definitions

Meat “Skeletal muscle and its associated tissues derived
from mammalian, avian, reptilian, amphibian, and
aquatic species harvested for human
consumption,” including “edible offal consisting of
organs and non-skeletal muscle tissues” [3].

Red meat “All forms of beef, pork, lamb, veal, goat, and
nonbird game (e.g., venison, bison, and elk)” [5].

White meat/poultry “Domestic avian species that includes chickens,
turkeys, geese, ducks, guinea, squab and in some
cases ratites (ostrich, emu, rhea)” [3].

Fish/seafood “Any form of animal sea life regarded as food by
humans,” which predominantly includes fish (e.g.,
“salmon, tilapia, and catfish”) and shellfish (i.e.,
“various species of mollusks, crustaceans, and
echinoderms”) [3].

Unprocessed meat Meats with “minimal processing,” which includes
“any process where raw, uncooked meat products
have not been significantly altered
compositionally and contain no added ingredients,
but may have been reduced in size by fabrication,
mincing, grinding, and/or a meat recovery
system” [3].

Processed meat Meat that is “preserved by smoking, curing,
salting, and/or the addition of chemical
preservatives” [5]. For the purpose of this review,
salting during home cooking or table use is not
considered processing.
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stages: 1) potential eligibility assessment based on publication
titles and abstracts and 2) confirmation of eligibility based on
full-text assessment of qualified abstracts. To increase the effi-
ciency of the process, results from the updated search (from 14
January, 2020, to date) were first screened by 1 investigator to
exclude clearly irrelevant records (e.g., studies not in human
populations; secondary research; and non–peer-reviewed gray
literature, such as reports, government documents, and white
papers). A second investigator screened the full texts of the
remaining results for eligibility. Information was extracted and
crosschecked by pairs of investigators (YW, CNU, REB, and CMC)
from each of the included articles. The extracted information
primarily included article publication details (title, author, and
year), study design, dietary interventions (meat consumption),
gut microbial composition, and key gut microbial metabolites
and cardiometabolic disease risk factors, if reported. The authors
of these articles were not contacted as the purpose of the review
was to assess the current state of literature based on published
findings and additional information was not needed. During the
screening and extraction processes, disagreements between pairs
of investigators were discussed and resolved by a third
investigator.

Risk of bias assessment
The risk of bias of articles in the systematic review was

assessed independently and crosschecked by 2 investigators (YW
and CNU) using the Cochrane Risk of Bias Assessment Tool 2
[12]. The Cochrane tool assesses each article based on 5 major
domains tailored for crossover and parallel RCTs. The 5 major
domains that were considered were as follows: 1) the study
randomization process, and for crossover RCT, the period and
carryover effects; 2) effects of assignment to intervention; 3)
missing outcome data; 4) outcome measurement; and 5) selec-
tion of results reporting. An overall judgment of low, some
concerns, or high risk of bias was given for each article.

Results

The search and screening process identified 85 and 13 articles
suitable for the scoping and systematic reviews, respectively
(Figure 1).

Scoping review
Table 2 presents the basic characteristics of the 85 studies

included in the scoping review (13–97). In all observational
studies, comparisons of higher and lower meat intakes were
based on various dietary patterns, instead of being meat-specific,
which further limits the potential for causal inference between
meat intake and gut microbiota. Overall, there was insufficient
evidence from eligible prospective cohort studies for a system-
atic review of total meat intake and gut microbiota. Therefore,
we proceeded with the 13 eligible RCTs to assess the causal re-
lationships between total meat and meat subtype intakes and gut
microbiota in healthy adults with stable health status.

Systematic review
The 13 RCTs generated 18 comparisons (Table 3), including

12 primary comparisons on higher and lower total meat intakes
based on data from 10 RCTs [73, 74, 84–91] and 6 secondary
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comparisons among meat subtypes based on data from 5 RCTs
[71, 85, 87, 92, 93]. Adults with stable health status have rela-
tively more stable gut microbiota composition with less influ-
ence from growth and confounding disease conditions [98]. As a
result, the 13 RCTs in healthy adults included 8 crossover [71,
73, 74, 84–88] and 5 parallel RCTs [89–93].

The characteristics of the 13 RCTs in the systematic review are
summarized in Table 3 (with details presented in Supplemental
Tables S3 and S4), including 1) author, publication year, and
country of study; 2) study length; 3) comparison groups;4) type of
study meat; 5) study diets; 6) use of prebiotics, probiotics, or
antibiotics; 7) cointervention; 8) sample size estimation; 9)
participant characteristics; 10) fecal sample collection timepoint,
collection methods, and storage; 11) microbiota composition
processing and analysis methods; and 12) study’s funding source
and potential conflict of interest. The experimental designs of
RCTs are provided in Table 3 and Supplemental Tables S3Aand S4
and are summarized in the footnote of Supplemental Table S3A.
Microbiome analysis methods used in RCTs are described in
Supplemental Table S3B, including a summary in the footnote.

Type of study meat
Studies used either food substitution with total meat andmeat

subtypes or dietary patterns to compare higher and lower intakes
of total meat and meat subtypes (Table 3). The primary com-
parisons include 12 comparisons from 10 studies [73, 74, 84–91]
to compare higher and lower total meat intakes. Among the
primary comparisons, 7 comparisons from 5 studies [74, 85, 87,
89, 91] were performed between a diet with meat (red meat,
white meat, or mixed meat subtypes) and a diet without meat
(vegan or vegetarian) (Table 3, meat compared with nonmeat).
The other 5 comparisons from 5 studies either substituted meat
(red meat or mixed meat subtypes) with plant-based foods [73,



FIGURE 1. PRISMA flow diagram of the search and screening process.
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84, 86, 88] or increased the amount of meat intake without di-
etary substitution [90], with uncontrolled or minimally
controlled habitual diet (Table 3, higher compared with lower
meat within omnivorous habitual/basal diets).
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Five comparisons from 4 studies [71, 87, 92, 93] were
included as secondary comparisons (Table 3, meat subtypes).
These comparisons substituted meat with other meat subtypes
with or without changes to overall dietary patterns. Specifically,



TABLE 2
Summary of the articles in the scoping review1.

Study type/Health status Total number of studies Age Study design

Observational study Total �18 y <18 y NR Cross-sectional cohort Prospective
cohort

Other (retrospective,
case-control)

All 57 [13–69] 47 [13–40, 48, 49, 51, 54–59, 61–69] 7 [41–47] 3 [50, 52, 53] 47 [13–27, 29–40, 43–53,
55–58, 60, 63, 67–69]

6 [28, 41, 42,
59, 61, 62]

4 [54, 64–66]

Healthy 39 [13–47, 63, 67–69] 32 [13–40, 63, 67–69] 7 [41–47] 0 36 [13–27, 29–40, 43–47,
63, 67–69]

3 [28, 41, 42] 0

With condition/disease2 10 [54–59, 61, 64–66] 10 [54–59, 61, 64–66] 0 0 4 [55–58] 2 [59, 61] 4 [54, 64–66]
NR health status 8 [48–53, 60, 62] 5 [48, 49, 51, 60, 62] 0 3 [50, 52, 53] 7 [48–53, 60] 1 [62] 0
Interventional study Total �18 y <18 y NR Crossover RCT Parallel RCT Other (incomplete

randomization)4

All 28 [70–97] 26 [70–93, 96, 95] 2 [94, 95] 0 12 [70, 71, 73, 74, 79, 82, 84–88, 96] 13 [76–78, 80,
81, 83, 89–95]

3 [72, 75, 97]

Healthy 17 [71–74, 84–95, 97] 15 [71–74, 84–93, 97] 2 [94, 95] 0 8 [71, 73, 74, 84–88] 7 [89–95] 2 [72, 97]
With condition/disease2 10 [70, 75–83]3 10 [70, 75–83] 0 0 3 [70, 79, 82] 6 [76–78, 80,

81, 83]
1 [75]

NR health status 1 [96] 1 [96] 0 0 1 [96] 0 0

1 Age categories were divided based on reported subject inclusion, subject age range, and group mean age of each study. The age category “<18” also includes studies that recruited subjects aged
both <18 and >18 y. The number of studies is reported in each cell, with references of studies included in square brackets.
2 With condition/disease: Ten observational studies had cohorts with certain diseases or health conditions [54–59, 61, 64–66], including reactive hypoglycemia [54], cirrhosis [55], type 2

diabetes [58], metabolic syndrome [61], colorectal cancer [64], intestinal diseases (colon carcinoma, inflammatory bowel disease [56], Crohn’s disease or ulcerative colitis, irritable bowel
syndrome [56, 65, 66]), or pregnancy [57, 59]. Among interventional studies, 10 studies were in cohorts with the following diseases or health conditions: Crohn’s disease [75], type 2 diabetes [76,
77], multiple sclerosis [78], chronic kidney disease [79], obesity with insulin resistance [80] or metabolic syndrome [81], chronic gastrointestinal disease [70], ischemic heart disease [82], or
pregnancy [83].
3 One study [70] included all healthy subjects, except for 1 subject with chronic gastrointestinal disease.
4 One study [75] had all participants receive the same intervention (pre vs. post), thus the study was not categorized as crossover or parallel RCT; 2 studies [72, 97] included partial randomization,

in which the intervention group was compared with a nonrandomly assigned comparison group. NR, not reported; RCT, randomized controlled trial.
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TABLE 3
Characteristics and gut microbiota outcomes of included comparisons by subgroups1.

Study
(year)

Comparison diet 1 Comparison diet 2 Study type Diet
length

Dietary
control

Alpha
diversity

Phylum Class Order Family Genus Species Other Major differences
in gut microbiota
outcomes

Effects?
(p<0.05)

Primary comparisons: meat vs. nonmeat
Lang et al.
2018
[87]

Red meat2,3 Nonmeat2,3 CO, Yes 4 wk F N N NR NR NR Y — — 3 OTUs differed
when high and
low amounts of
saturated fat were
combined

Yes

White meat2,3 CO, Yes 4 wk F N N NR NR NR Y — — 1 OTU differed
when high and
low amounts of
saturated fat were
combined

Yes

van
Faassen
et al.
1987
[85]

Western
omnivorous2

Vegetarian2 CO, NS 20 d F — — N — N N — N12 No difference No
Vegan2 CO, NS 20 d F — — N — N Y — N12 Omnivorous diet ↑

counts of genus
Lactobacilli

Yes14

Kohnert et
al. 2021
[91]

Omnivorous4,5 Vegan4,5 PL 4 wk C N4 NR NR NR NR Y4,5 Y4,5
— Differences in

several genera and
species (Table 4)

Yes

Kahleova
et al.
2020
[89]

Habitual
omnivorous4,5

Vegan4,5 PL 16 wk C Y Y4 N N Y4 Y4 Y4,5
— Differences in

alpha diversity
and bacterial
abundance (Table
4)

Yes

Pagliai et
al. 2020
[74]

Mediterranean4,5 Vegetarian4,5 CO10, No 12 wk C Y5 N4,5 Y4 Y4 Y4,5 Y4,5
— — Differences in

alpha diversity
and bacterial
abundance from
phylum to genus
levels (Table 4)

Yes

Total % of significant out of measured (%) – meat vs. nonmeat 40 25 25 50 50 86 100 N/A N/A 86
Proportion of significant out of measured (counts) – meat vs. nonmeat 2/5 1/4 1/4 1/2 2/4 6/7 2/2 N/A N/A 6/7

Primary comparisons: higher vs. lower meat within omnivorous habitual/basal diets
Hess et al.
2018
[84]

Red meat2 Mushroom2 CO, Yes 10 d P2 — Y NR NR NR Y — — Red meat ↓
phylum
Bacteroidetes and
↑ phylum
Firmicutes

Yes

Foerster
et al.
2014
[86]

Red meat5 Whole grain5 CO, Yes 3 wk P2 — — — — — — Y Y13 Whole grain ↑
DGGE band
number and
species Collinsella
aerofaciens; red
meat ↓ species
Clostridium sp

Yes
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TABLE 3 (continued )

Study
(year)

Comparison diet 1 Comparison diet 2 Study type Diet
length

Dietary
control

Alpha
diversity

Phylum Class Order Family Genus Species Other Major differences
in gut microbiota
outcomes

Effects?
(p<0.05)

Crimarco
et al.
2020
[88]

Animal-based
meat2,6

Plant-based
meat2,6

CO, No 8 wk P1 — NR NR NR NR Y6 Y6
— Differences in

bacterial
abundance (Table
4)

Yes

McKenna
et al.
2021
[90]

Higher red
meat2,4,7

Lower red
meat2,4,7

PL11 10 wk P2 N NR NR Y2,4 Y2,4 Y2,4
— — Differences in

bacterial
abundance (Table
4)

Yes

Windey et
al. 2012
[73]

Higher meat2,8 Lower
meat2,8

CO, No 2 wk C — — — — — — — N13 No difference in
DGGE band
numbers

No

Total % of significant out of measured (%) – higher vs. lower meat 0 100 0 100 100 — 100 N/A N/A 80
Proportion of significant out of measured (counts) – higher vs. lower meat 0/1 1/1 0 1/1 1/1 3/3 2/2 N/A N/A 4/5
Total % of significant out of measured (%) – primary comparisons 33 40 25 67 60 90 100 N/A N/A 83
Proportion of significant out of measured (counts) – primary comparisons 2/6 2/5 1/4 2/3 3/5 9/10 4/4 N/A N/A 10/12

Secondary comparisons: meat subtypes
Lang et al.
2018
[87]

Red meat2,3 White
meat2,3

CO, Yes 4 wk F N N NR NR NR Y — — Several OTUs
differed at low or
high amounts of
saturated fat, but
no difference
when both
amounts were
combined.

Yes

Schmedes
et al.
2019
[71]

Lean seafood4,5 Non-
seafood
meat4,5

CO, Yes 4 wk P1 — N NR NR NR Y — — Non-seafood diet ↓
genus group
Clostridium
cluster IV

Yes

Bratlie et
al. 2021
[93]

Cod2 Nonfish
habitual
Meat2

PL 8 wk P2 — NR NR Y NR NR NR — Cod/Salmon ↓
order-level
bacterial counts of
Bacteroidales,
Clostridiales, and
Selenomonadales

Yes
Salmon2 PL 8 wk P2 — NR NR Y NR NR NR — Yes

Meslier et
al. 2020
[92]

Mediterranean
(higher fish)2,4,9

Habitual
omnivorous
(higher
nonfish
meat)2,4,9

PL 8 wk P1 — NR NR NR NR NR Y2,4
— Differences in beta

diversity and
several species
(Table 4)

Yes

Total % of significant out of measured (%) – secondary comparisons 0 0 0 100 0 100 100 N/A N/A 100
Proportion of significant out of measured (counts) – secondary comparisons 0/1 0/2 0 2/2 0 2/2 1/1 N/A N/A 5/5

Secondary comparison: vegetarian vs. vegan
van
Faassen
et al.
1987
[85]

Vegetarian2 Vegan2 CO, NS 20 d F — — N — N Y — N12 Vegetarian diet ↑
counts of genus
Enterococci and
Lactobacilli

Yes

(continued on next page)
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TABLE 3 (continued )

Study
(year)

Comparison diet 1 Comparison diet 2 Study type Diet
length

Dietary
control

Alpha
diversity

Phylum Class Order Family Genus Species Other Major differences
in gut microbiota
outcomes

Effects?
(p<0.05)

Total % of significant out of measured (%) – all comparisons 29 29 20 80 50 92 100 N/A N/A 89
Proportion of significant out of measured (counts) - all comparisons 2/7 2/7 1/5 4/5 3/6 12/13 5/5 N/A N/A 16/18

Secondary comparison not available: unprocessed vs. processed meat

1 All vegetarian diets are lacto-ovo vegetarian that included dairy and eggs. Vegan diet did not contain any animal-based products. Meat, if not specified, refers to mixed meat subtypes. Category
“Study type” includes CO and PL RCTs, as well as the washout period for crossover RCTs (Yes for existence, No for no washout, and NS for not specified or not reported). Category “Length” is the
length of intervention of each study arm (d, day; wk, week). Category “Dietary control” includes full control (F) that provided all study foods; partial control that provided some but not all study
foods, either with dietary guidance on basal diet (P1) or with uncontrolled habitual diet (P2) and counseling only (C) that did not provide any study foods except for dietary guidance. Categories
“Alpha diversity” through “Other”: bacterial abundance at taxonomic levels such as phylum, class, order, family, genus, and species, or in other forms of measurement (e.g., OTU, operational
taxonomic unit). Y, significant changes or differences were observed; N, no significant change or difference was observed; NR, outcomes were evaluable using methods reported by the study
authors, but no data were reported at the specific taxonomic level; Em dash (-), outcomes and data likely were not measured based on study description, and thus were not reported for the selected
comparisons; N/A, not applicable. Results were considered significant only when the authors of the included studies reported the statistical significance of the outcome measures. Category
“Effects”: overall effects of diet on gut microbiota. Summary of Table 3: Among the primary comparisons, 83% of the comparisons showed significant effects of meat intake on the gut microbiota
(Figure 2B). Although global bacterial composition measured using alpha diversity metrics was reported in 50% of primary comparisons, only 33% of them showed significant effects of meat
intake on the gut microbiota composition. In contrast, among 83% of primary comparisons that reported bacterial abundances at the genus level, 90% of them showed significant effects. Only 4 of
the 12 primary comparisons reported outcomes at the species level, but all 4 comparisons suggested significant effects. A similar hierarchical pattern of findings was observed among the secondary
comparisons. Two of 2 comparisons (100%) at the genus level and 1 of 1 comparison at the species level showed significant effects, but zero of 1 comparison showed effects for alpha diversity
metrics (Figure 2C).
2 Difference in post-intervention values between groups.
3 Each diet was consumed with high vs. low amounts of saturated fat.
4 Within-group pre–post changes.
5 Difference in between-group changes.
6 Pre- and post-intervention samples combined.
7 Comparisons were made among baseline vs. 1-wk intervention vs. post-intervention within and between the groups.
8 Samples were collected during the diet intervention period without a clearly specified timepoint.
9 Comparisons were made among baseline vs. 4-wk intervention vs. 8-wk intervention within and between the groups.
10 Cointervention with energy restriction.
11 Cointervention with resistance training.
12 Counts of total aerobes and anaerobes.
13 Denaturing gradient gel electrophoresis (DGGE) bandclass counts.
14 Results from this study were obtained via the cultivation-dependent method, which could potentially miss capturing significant gut microbial outcomes compared with more advanced

techniques.

Y
.W

ang
et

al.
A
dvances

in
N
utrition

14
(2023)

215
–237

222



Ta
bl
e
4

G
ut

m
ic
ro
bi
ot
a
ou

tc
om

es
re
po

rt
ed

in
st
ud

ie
s1
.

St
ud

y
au

th
or
,y

ea
r

n
C
om

pa
ri
so
n
di
et

1
C
om

pa
ri
so
n
di
et

2
A
lp
ha

di
ve

rs
it
y

Be
ta

di
ve

rs
it
y

Ph
yl
um

C
la
ss

O
rd
er

Fa
m
ily

G
en

us
Sp

ec
ie
s

O
th
er
/n

ot
es

Si
gn

ifi
ca
nt

ef
fe
ct
s
on

gu
t

m
ic
ro
bi
ot
a?

va
n
Fa

as
se
n

et
al
.1

98
7
[8
5]

12
Po

st
-o
m
ni
vo

ro
us

Po
st
-v
eg
an

—
—

—
C
lo
st
ri
di
a:
↔

—
En

te
ro
ba

ct
er
ia
ce
ae
:↔

A
na

er
ob

es
:

Bi
fi
do

ba
ct
er
ia

(c
ou

nt
):
↔

Ba
ct
er
oi
de
s
(c
ou

nt
):
↔

A
er
ob

es
:

En
te
ro
co
cc
i(
co
un

t)
:↔

La
ct
ob
ac
ill
i(
co
un

t)
:↑

—
M
ea
n
co
un

ts
of

ba
ct
er
ia
:

To
ta
la

na
er
ob

es
:↔

To
ta
la

er
ob

es
:↔

Y
es

12
Po

st
-o
m
ni
vo

ro
us

Po
st
-v
eg
et
ar
ia
n

—
—

—
C
lo
st
ri
di
a:
↔

—
En

te
ro
ba

ct
er
ia
ce
ae
:↔

A
na

er
ob

es
:

Bi
fi
do

ba
ct
er
ia

(c
ou

nt
):
↔

Ba
ct
er
oi
de
s
(c
ou

nt
):
↔

A
er
ob

es
:

En
te
ro
co
cc
i(
co
un

t)
:↔

La
ct
ob
ac
ill
i(
co
un

t)
:↔

—
M
ea
n
co
un

ts
of

ba
ct
er
ia
:

To
ta
la

na
er
ob

es
:↔

To
ta
la

er
ob

es
:↔

N
o

12
Po

st
-v
eg
et
ar
ia
n

Po
st
-v
eg
an

—
—

—
C
lo
st
ri
di
a:
↔

—
En

te
ro
ba

ct
er
ia
ce
ae
:↔

A
na

er
ob

es
:

Bi
fi
do

ba
ct
er
ia

(c
ou

nt
):
↔

Ba
ct
er
oi
de
s
(c
ou

nt
):
↔

A
er
ob

es
:

En
te
ro
co
cc
i(
co
un

t)
:↑

La
ct
ob
ac
ill
i(
co
un

t)
:↑

—
M
ea
n
co
un

ts
of

ba
ct
er
ia
:

To
ta
la

na
er
ob

es
:↔

To
ta
la

er
ob

es
:↔

Y
es

W
in
de

y
20

12
et

al
.[
73

]
20

H
ig
he

r
m
ea
t

Lo
w
er

m
ea
t

—
—

—
—

—
—

—
—

A
m
on

g
64

ba
nd

cl
as
se
s,
no

di
ff
er
en

ce
w
as

de
te
ct
ed

in
th
e
al
lo
ca
ti
on

of
ba

nd
cl
as
s
be

tw
ee
n
di
et
s.

N
o

Fo
er
st
er

et
al
.

20
14

[8
6]

20
Po

st
-r
ed

m
ea
t

Pr
e-
re
d
m
ea
t

—
—

—
—

—
—

—
C
lo
st
ri
di
um

sp
.:
↓

Ba
nd

ap
pe

ar
an

ce
of

ba
ct
er
ia
:

↔
ba

nd
di
ve

rs
it
y
(t
ot
al

nu
m
be

r
of

ba
nd

s)
↑
5
ba

nd
s
ap

pe
ar
an

ce
↓
3
ba

nd
s
ap

pe
ar
an

ce

Y
es

20
Po

st
-w

ho
le

gr
ai
n

Pr
e-
w
ho

le
gr
ai
n

—
—

—
—

—
—

—
C
ol
lin

se
lla

ae
ro
fa
ci
en
s:
↑

Ba
nd

ap
pe

ar
an

ce
of

ba
ct
er
ia
:

↑
ba

nd
di
ve

rs
it
y
(t
ot
al

nu
m
be

r
of

ba
nd

s)
↑
5
ba

nd
s
ap

pe
ar
an

ce
↓
3
ba

nd
s
ap

pe
ar
an

ce
La

ng
et

al
.

20
18

[8
7]

10
9

By
pr
ot
ei
n
so
ur
ce
s

(1
)
R
ed

m
ea
t

(2
)
W
hi
te

m
ea
t

(3
)
N
on

-m
ea
t

By
am

ou
nt
s
of

sa
tu
ra
te
d
fa
t

(1
)
H
ig
h
sa
tu
ra
te
d
fa
t

(2
)
Lo

w
sa
tu
ra
te
d
fa
t

Sh
an

no
n
di
ve

rs
it
y

in
de

x:
↔

am
on

g
pr
ot
ei
n

so
ur
ce
s
or

be
tw

ee
n
hi
gh

vs
lo
w

am
ou

nt
s
of

sa
tu
ra
te
d

fa
t

↔
un

w
ei
gh

te
d
U
ni
Fr
ac

di
st
an

ce
:n

o
cl
us
te
ri
ng

by
di
et

F/
B
ra
ti
o
(l
og

2)
:↔

by
di
et

or
sa
tu
ra
te
d

fa
t

N
R

N
R

N
R

2
re
po

rt
ed

ge
ne

ra
(C

op
ro
co
cc
us

an
d
R
um

in
oc
oc
cu
s)

di
ff
er
ed

by
pr
ot
ei
n
so
ur
ce
s,
bu

t
pa

ir
w
is
e
co
m
pa

ri
so
ns

be
tw

ee
n
pr
ot
ei
n
so
ur
ce
s

w
er
e
no

t
re
po

rt
ed

.5
7
ge

ne
ra

di
ff
er
ed

by
sa
tu
ra
te
d
fa
t

am
ou

nt
s.

—
19

O
TU

s
re
sp
on

de
d
to

pr
ot
ei
n

so
ur
ce

at
bo

th
hi
gh

an
d
lo
w

sa
tu
ra
te
d
fa
t
am

ou
nt
s

(p
ro
te
in
-s
en

si
ti
ve

,b
ut

no
t
sp
ec
ifi
c
to

pr
ot
ei
n
so
ur
ce
s)
.

D
if
fe
re
nt
ia
lly

ab
un

da
nt

O
TU

s:
[h
ig
h
an

d
lo
w

am
ou

nt
s
of

sa
tu
ra
te
d
fa
t
co
m
bi
ne

d]
3

be
tw

ee
n
re
d
m
ea
t
vs

no
n-
m
ea
t,

1
be

tw
ee
n
w
hi
te

m
ea
t
vs

no
n-
m
ea
t,
0
be

tw
ee
n
re
d

m
ea
t
vs

w
hi
te

m
ea
t;

[l
ow

sa
tu
ra
te
d
fa
t]

11
5,

12
5,

13
0
O
TU

s,
re
sp
ec
ti
ve

ly
;

[h
ig
h
sa
tu
ra
te
d
fa
t]

20
3,

19
8,

24
0
O
TU

s,
re
sp
ec
ti
ve

ly
.

Y
es

H
es
s
et

al
.

20
18

[8
4]

32
Po

st
-R
ed

m
ea
t
(5
d
av

er
ag

e)
Po

st
-M

us
hr
oo

m
(5
d

av
er
ag

e)
—

—
Ba

ct
er
oi
de

te
s:
↓

Fi
rm

ic
ut
es
:↑

N
R

N
R

N
R

Ba
ct
er
oi
de
s:
↓

Pa
ra
ba

ct
er
oi
de
s:
↓

C
op
ro
co
cc
us
:↓

A
na

er
os
tip

es
:↓

Su
tte

re
lla

:↓
D
or
ea
:↑

02
d0

6:
↑

—
Ta

xa
(p
hy

lu
m

an
d
ge

nu
s)

w
it
h
at

le
as
t
0.
05

%
re
la
ti
ve

ab
un

da
nc

e
w
er
e
re
po

rt
ed

.
R
el
at
iv
e
ab

un
da

nc
es

w
er
e

lo
g-
tr
an

sf
or
m
ed

an
d

co
nt
ro
lle

d
fo
r
fa
ls
e

di
sc
ov

er
y
ra
te

w
it
h
p<

0.
00

4.

Y
es

Sc
hm

ed
es

et
al
.

20
18

[7
1]

19
Po

st
-le

an
se
af
oo

d
Pr
e-
le
an

se
af
oo

d
—

—
Fi
rm

ic
ut
es
:↔

Ba
ct
er
oi
de

te
s:
↔

F/
B
ra
ti
o:
↔

—
—

—
C
lo
st
ri
di
um

cl
us
te
r
IV
:↔

—
Th

e
fo
llo

w
in
g
re
su
lt
s
w
er
e

de
sc
ri
be

d
an

d
no

t
re
po

rt
ed

in
de

ta
ils
:t
he

da
ta
se
t
in
cl
ud

ed
"4
2
ba

ct
er
ia
lO

TU
gr
ou

ps
at

th
e
ge

ne
ra

le
ve

l,
8
ba

ct
er
ia
l

O
TU

gr
ou

ps
at

th
e
fa
m
ily

le
ve

l,
2
ba

ct
er
ia
lO

TU
gr
ou

ps
at

th
e
or
de

r
le
ve

l,
1
ba

ct
er
ia
l

O
TU

gr
ou

p
at

th
e
cl
as
s
le
ve

l,
an

d
1
ba

ct
er
ia
lO

TU
gr
ou

p
at

th
e
do

m
ai
n
le
ve

l”
.

Y
es

19
Po

st
-n
on

-s
ea
fo
od

Pr
e-
no

n-
se
af
oo

d
—

—
Fi
rm

ic
ut
es
:↔

(p
¼0

.1
)

Ba
ct
er
oi
de

te
s:
↔
(p
¼0

.1
)

F/
B
ra
ti
o:
↔
(p
¼0

.1
)

N
R

N
R

N
R

C
lo
st
ri
di
um

cl
us
te
r
IV
:↓

(g
re
at
er

re
du

ct
io
n

th
an

le
an

-s
ea
fo
od

gr
ou

p)

—

Pa
gl
ia
ie

t
al
.

20
20

[7
4]

23
Po

st
-M

ed
it
er
ra
ne

an
di
et

Pr
e-
M
ed

it
er
ra
ne

an
di
et

R
ic
hn

es
s;
in
ve

rs
e

Si
m
ps
on

’
s,
G
in
i-S

im
ps
on

’
s,

Sh
an

no
n’
s
in
di
ce
s;

ev
en

ne
ss
,d

om
in
an

ce
:

Ph
yl
um

-le
ve

l:↔
C
la
ss
-le

ve
l:↔

O
rd
er
-le

ve
l:↔

Fa
m
ily

-le
ve

l:↔
G
en

us
-le

ve
l:↔

(1
)
W
ei
gh

te
d
U
ni
fr
ac

(P
C
oA

)
(2
)
Br
ay

-C
ur
ti
s
di
ss
im

ila
ri
ty

m
et
ri
cs

(3
)
Pr
in
ci
pl
e
co
m
po

ne
nt

an
al
ys
is
(P
C
A
)
&

co
-in

er
ti
a

an
al
ys
is
(C

IA
):

N
o
cl
ea
rl
y
se
pa

ra
te
d

cl
us
te
ri
ng

by
di
et
.

LE
fS
e
to
ol
:n

o
di
sc
ri
m
in
at
in
g

ch
ar
ac
te
ri
st
ic
s
by

di
et
.

PE
R
M
A
N
O
V
A
:n

o
di
ff
er
en

ce
in

m
ic
ro
bi
ot
a
co
m
po

si
ti
on

by
di
et

at
an

y
ta
xo

no
m
ic

le
ve

l.

F/
B
ra
ti
o:
↔

F/
P
ra
ti
o:
↔

O
th
er

ph
yl
a:
↔

Be
ta
pr
ot
eo

ba
ct
er
ia
:↓

(p
¼0

.0
5)

Bu
rk
ho

ld
er
ia
le
s:
↓

(p
¼0

.0
5)

A
lc
al
ig
en
ac
ea
e:
↓

(p
¼0

.0
5)

En
te
ro
rh
ab

du
s:
↑

La
ch
no

cl
os
tr
id
iu
m
:↑

Pa
ra
ba

ct
er
oi
de
s:
↓

Pa
ra
su
tte

re
lla

:↓
(p
¼0

.0
5)

—
—

Y
es

23
Po

st
-v
eg
et
ar
ia
n
di
et

Pr
e-
ve

ge
ta
ri
an

di
et

R
ic
hn

es
s;
in
ve

rs
e

Si
m
ps
on

’
s,
G
in
i-S

im
ps
on

’
s,

Sh
an

no
n’
s
in
di
ce
s;

ev
en

ne
ss
,d

om
in
an

ce
:

Ph
yl
um

-le
ve

l:↔
C
la
ss
-le

ve
l:↔

O
rd
er
-le

ve
l:↔

Fa
m
ily

-le
ve

l:↔
G
en

us
-le

ve
l:↔

F/
B
ra
ti
o:
↔

F/
P
ra
ti
o:
↔

Eu
ry
ar
ch

ae
ot
a:
↑

(a
bu

nd
an

ce
m
ed

ia
n

in
cr
ea
se
d
fr
om

0
to

1)
O
th
er

ph
yl
a:
↔

M
et
ha

no
ba

ct
er
ia
:↑

(a
bu

nd
an

ce
m
ed

ia
n

in
cr
ea
se
d
fr
om

0
to

1)

M
et
ha

no
ba

ct
er
ia
le
s:
↑

(a
bu

nd
an

ce
m
ed

ia
n

in
cr
ea
se
d
fr
om

0
to

1)

C
lo
st
ri
di
ac
ea
e_
1:
↓

M
et
ha

no
ba

ct
er
ia
ce
ae
:

↑
(a
bu

nd
an

ce
m
ed

ia
n

in
cr
ea
se
d
fr
om

0
to

1)

A
na

er
os
tip

es
:↑

C
lo
st
ri
di
um

_s
en
su
_

st
ri
ct
o_
1:
↓

M
et
ha

no
br
ev
ib
ac
te
r:
↑

(a
bu

nd
an

ce
m
ed

ia
n
in
cr
ea
se
d

fr
om

0
to

1)
O
do

ri
ba

ct
er
:↓

St
re
pt
oc
oc
cu
s:
↑

Ty
zz
er
el
la
_

3:
ab

un
da

nc
e
m
ed

ia
n¼

0,
in
te
rq
ua

rt
ile

ra
ng

e
↑

—
—

(c
on

tin
ue
d
on

ne
xt

pa
ge
)

Y. Wang et al. Advances in Nutrition 14 (2023) 215–237

223



Ta
bl
e
4
(c
on

tin
ue
d
)

St
ud

y
au

th
or
,y

ea
r

n
C
om

pa
ri
so
n
di
et

1
C
om

pa
ri
so
n
di
et

2
A
lp
ha

di
ve

rs
it
y

Be
ta

di
ve

rs
it
y

Ph
yl
um

C
la
ss

O
rd
er

Fa
m
ily

G
en

us
Sp

ec
ie
s

O
th
er
/n

ot
es

Si
gn

ifi
ca
nt

ef
fe
ct
s
on

gu
t

m
ic
ro
bi
ot
a?

23
Pr
e-
Po

st
ch

an
ge

of
M
ed

it
er
ra
ne

an
di
et

Pr
e-
Po

st
ch

an
ge

of
ve

ge
ta
ri
an

di
et

O
rd
er
-le

ve
lr
ic
hn

es
s:

m
ed

ia
n¼

1,
in
te
rq
ua

rt
ile

ra
ng

e↑
G
en

us
-le

ve
lr
ic
hn

es
s:
↓

A
ll
ot
he

r
pa

ra
m
et
er
s:
↔

F/
B
ra
ti
o:
↔

F/
P
ra
ti
o:
↔

O
th
er

ph
yl
a:
↔

—
—

C
lo
st
ri
di
ac
ea
e_
1:
↑

A
na

er
os
tip

es
:↓

C
lo
st
ri
di
um

_s
en
su
_

st
ri
ct
o_
1:
↑

En
te
ro
rh
ab

du
s:
↑

Sl
ac
ki
a:

ab
un

da
nc

e
m
ed

ia
n¼

0,
in
te
rq
ua

rt
ile

ra
ng

e
↑

V
ei
llo

ne
lla

:↑

—
—

C
ri
m
ar
co

et
al
.2

02
0
[8
8]

36
A
ni
m
al

di
et

Pl
an

t
di
et

—
Br
ay

-C
ur
ti
s

di
ss
im

ila
ri
ty
:↔

N
R

N
R

N
R

N
R

V
ol
ca
no

pl
ot

of
ta
xa

w
it
h

be
tw

ee
n-
gr
ou

p
di
ff
er
en

ce
in

ab
un

da
nc

e:
La

ch
no

sp
ir
ac
ea
e
sp
:m

ix
ed

R
um

in
oc
oc
cu
s
sp
.:↑

R
os
eb
ur
ia

sp
.:↑

R
um

in
oc
oc
ca
ce
ae

sp
.:↓

V
ol
ca
no

pl
ot

of
ta
xa

w
it
h
be

tw
ee
n-
gr
ou

p
di
ff
er
en

ce
in

ab
un

da
nc

e:
H
.p

ar
ai
nfl

ue
nz
ae
:↓

—
Y
es

36
Po

st
-a
ni
m
al

Pr
e-
an

im
al

—
—

—
—

—
—

—
—

36
Po

st
-p
la
nt

Pr
e-
pl
an

t
—

—
—

—
—

—
—

—

K
ah

le
ov

a
et

al
.

20
20

[8
9]

84
Po

st
-o
m
ni
vo

ro
us

Pr
e-
om

ni
vo

ro
us

A
bu

nd
an

ce
-w

ei
gh

te
d

ph
yl
og

en
et
ic

di
ve

rs
it
y

m
ea
su
re
:↑

—
↔

—
—

—
M
et
ha

no
br
ev
ib
ac
te
r
(r
ea
d
co
un

ts
an

d
%
):
↑E

ub
ac
te
ri
um

(r
ea
d

co
un

ts
):
↑

Ba
ct
er
oi
de
s
fr
ag
ili
s

(r
ea
d
co
un

ts
an

d
%
):
↓

—
Y
es

84
Po

st
-v
eg
an

Pr
e-
ve

ga
n

A
bu

nd
an

ce
-w

ei
gh

te
d

ph
yl
og

en
et
ic

di
ve

rs
it
y

m
ea
su
re
:↔

—
Ba

ct
er
oi
de

te
s
(r
ea
d

co
un

ts
):
↑

Pr
ot
eo

ba
ct
er
ia

(%
):
↓

—
—

—
Bi
fi
do

ba
ct
er
iu
m

(r
ea
d
co
un

ts
):
↑

A
na

er
os
tip

es
(r
ea
d
co
un

ts
):
↑

Fa
ec
al
ib
ac
te
ri
um

pr
au

sn
itz
ii
(r
ea
d

co
un

ts
&
%
):
↑

Ba
ct
er
oi
de
s
fr
ag
ili
s
(r
ea
d
co
un

ts
an

d
%
):
↓

—

16
8

Po
st
-p
re

ch
an

ge
in

om
ni
vo

ro
us

Po
st
-p
re

ch
an

ge
in

ve
ga

n
A
bu

nd
an

ce
-w

ei
gh

te
d

ph
yl
og

en
et
ic

di
ve

rs
it
y

m
ea
su
re
:↑

—
↔

—
—

—
↔

Fa
ec
al
ib
ac
te
ri
um

pr
au

sn
itz
ii
(%

):
↓

Ba
ct
er
oi
de
s
fr
ag
ili
s
(r
ea
d
co
un

ts
an

d
%
):
↑

—

M
es
lie

r
et

al
.

20
20

[9
2]

62
Po

st
-M

ed
it
er
ra
ne

an
di
et

(w
k4

)
Po

st
-o
m
ni
vo

ro
us

di
et

(w
k4

)
—

Se
pa

ra
te

di
ve

rs
it
y

(N
-in

te
gr
at
iv
e
su
pe

rv
is
ed

an
al
ys
is
)

D
is
si
m
ila

ri
ty

by
ad

he
re
nc

e
to

M
ed

D
di
et

0-
4w

k

N
R

N
R

N
R

N
R

N
R

77
sp
ec
ie
s
di
ff
er
ed

at
w
ee
k
4,

pr
im

ar
ily

:
↓
sp
ec
ie
s:

R
ut
he
ni
ba

ct
er
iu
m

la
ct
at
ifo

rm
an

s,
Fl
av
on

ifr
ac
to
r
pl
au

tii
,

Pa
ra
ba
ct
er
oi
de
s
m
er
da

e,
R
um

in
oc
oc
cu
st
or
qu

es
,R

um
in
oc
oc
cu
s

G
na

vu
s,
St
re
pt
oc
oc
cu
s
th
er
m
op
hi
lu
si
,

St
re
pt
oc
oc
cu
s
th
er
m
op
hi
lu
s

↑
sp
ec
ie
s:

5
m
em

be
rs

of
Fa

ec
al
ib
ac
te
ri
um

pr
au

sn
itz
ii
an

d
7
m
em

be
rs

of
ta
xa

R
os
eb
ur
ia

an
d
La

ch
no

sp
ir
ac
ea
e

—
Y
es

62
Po

st
-M

ed
it
er
ra
ne

an
di
et

(w
k8

)
Po

st
-o
m
ni
vo

ro
us

di
et

(w
k8

)
—

44
sp
ec
ie
s
di
ff
er
ed

at
w
ee
k
8.

In
fo
rm

at
io
n
on

de
ta
ile

d
sp
ec
ie
sw

as
no

t
ex
tr
ac
te
d.

—

32
Po

st
-o
m
ni
vo

ro
us

di
et

(w
k4

/w
k8

)
Pr
e-
om

ni
vo

ro
us

di
et

—
14

sp
ec
ie
s
di
ff
er
ed

at
w
ee
k
4

co
m
pa

re
d
to

ba
se
lin

e,
19

di
ff
er
ed

at
w
ee
k
8
co
m
pa

re
d
to

w
ee
k
4.

In
fo
rm

at
io
n
on

de
ta
ile

d
sp
ec
ie
sw

as
no

t
ex
tr
ac
te
d.

—

30
Po

st
-M

ed
it
er
ra
ne

an
di
et

(w
k4

/w
k8

)
Pr
e-

M
ed

it
er
ra
ne

an
di
et

—
69

sp
ec
ie
s
di
ff
er
ed

at
w
ee
k
4

co
m
pa

re
d
to

ba
se
lin

e,
17

di
ff
er
ed

at
w
ee
k
8
co
m
pa

re
d
to

w
ee
k
4.

In
fo
rm

at
io
n
on

de
ta
ile

d
sp
ec
ie
sw

as
no

t
ex
tr
ac
te
d.

—

K
oh

ne
rt

et
al
.

20
21

[9
1]

53
Po

st
-p
re

ch
an

ge
in

om
ni
vo

ro
us

Po
st
-p
re

ch
an

ge
in

ve
ga

n
N
R

Br
ay

-C
ur
ti
s
di
ss
im

ila
ri
ty
:

no
cl
us
te
ri
ng

.
N
R

N
R

N
R

N
R

↑
ge

ne
ra

Ba
ct
er
oi
de
s,
C
lo
st
ri
di
um

,
Fa

ec
al
ib
ac
te
ri
um

,R
os
eb
ur
ia

↓
ge

ne
ra
:

Ba
ct
er
oi
de
s,
Bl
au

tia
,D

ia
lis
te
r,

Fa
ec
al
ib
ac
te
ri
um

,R
um

in
oc
oc
cu
s

D
if
fe
re
nc

es
in

sp
ec
ie
s
w
er
e

ob
se
rv
ed

at
A
SV

le
ve

l.
In
fo
rm

at
io
n
on

de
ta
ile

d
sp
ec
ie
sw

as
no

t
ex
tr
ac
te
d.

U
nw

ei
gh

te
d
U
ni
Fr
ac

di
st
an

ce
s
sh
ow

ed
tw

o
se
pa

ra
te

cl
us
te
rs
,b

ut
no

t
cl
ea
rl
y
be

tw
ee
n

tw
o
di
et
s.

Y
es

27
Po

st
-o
m
ni
vo

ro
us

Pr
e-
om

ni
vo

ro
us

C
ha

o1
,S

ha
nn

on
,I
nv

er
se

Si
m
ps
on

,F
is
he

r’
s
in
de

x:
↔

Br
ay

-C
ur
ti
s
di
ss
im

ila
ri
ty
:

no
cl
us
te
ri
ng

N
R

N
R

N
R

N
R

↑
ge

ne
ra
:

A
lis
tip

es
,B

ac
te
ro
id
es
,B

la
ut
ia
,

C
lo
st
ri
di
um

,F
ae
ca
lib

ac
te
ri
um

(u
ns
pe
ci
fi
ed

sp
ec
ie
s)
,

M
eg
am

on
as
,R

os
eb
ur
ia
,

R
um

in
oc
oc
cu
s

↓
ge

ne
ra
:

Ba
ct
er
oi
de
s,
Bi
fi
do

ba
ct
er
iu
m
,

Bl
au

tia
,D

ia
lis
te
r,

Fa
ec
al
ib
ac
te
ri
um

,G
em

m
in
ge
r,

Ph
as
co
la
rc
to
ba

ct
er
iu
m
,

Pr
ev
ot
el
la
,R

um
in
oc
oc
cu
s,

Su
tte

re
lla

Y
es

26
Po

st
-v
eg
an

Pr
e-
ve

ga
n

C
ha

o1
,S

ha
nn

on
,I
nv

er
se

Si
m
ps
on

,F
is
he

r’
s
in
de

x:
↔

Br
ay

-C
ur
ti
s
di
ss
im

ila
ri
ty
:n

o
cl
us
te
ri
ng

N
R

N
R

N
R

N
R

↑
ge

ne
ra
:

A
lis
tip

es
,B

ac
te
ro
id
es
,B

la
ut
ia
,

C
op
ro
co
cc
us
,D

ia
lis
te
r,
D
or
ea
,

Fa
ec
al
ib
ac
te
ri
um

(u
ns
pe
ci
fi
ed

sp
ec
ie
s)
,P

ha
sc
ol
ar
ct
ob
ac
te
ri
um

,
R
um

in
oc
oc
cu
s

↓
ge

ne
ra
:

A
kk

er
m
an

si
a,

Ba
ct
er
oi
de
s,

Bi
fi
do

ba
ct
er
iu
m
,C

lo
st
ri
di
um

,
C
op
ro
co
cc
us
,F

ae
ca
lib
ac
te
ri
um

,
R
os
eb
ur
ia
,R

um
in
oc
oc
cu
s

Y
es

M
cK

en
na

et
al
.

20
21

[9
0]

28
w
k1

-h
ig
he

r
re
d
m
ea
t
(h
ig
h)

Pr
e-
hi
gh

Fa
it
h’
s
ph

yl
og

en
et
ic

di
ve

rs
it
y
an

d
Sh

an
no

n:
↔

U
nw

ei
gh

te
d
U
ni
Fr
ac
:

si
gn

ifi
ca
nt

be
tw

ee
n-
gr
ou

p
di
ff
er
en

ce
W
ei
gh

te
d
U
ni
Fr
ac
:↔

D
EI
C
O
D
E
m
et
ri
cs
:↔

N
R

N
R

Be
ta
pr
ot
eo

ba
ct
er
ia
le
s:
↑

—
↓
ge

ne
ra
:

A
kk

er
m
an

si
a,

un
cl
as
si
fi
ed

ge
nu

s
of

fa
m
ily

Eg
ge
rt
he
lla

ce
ae
,

R
um

in
oc
oc
ca
ce
ae

U
C
G
-0
10

,
M
eg
as
ph
ae
ra
,V

ei
llo

ne
lla

↑
ge

ne
ra
:

C
at
en
ib
ac
te
ri
um

—
—

Y
es

Y. Wang et al. Advances in Nutrition 14 (2023) 215–237

224



Table 4 (continued )

Study author, year n Comparison diet 1 Comparison diet 2 Alpha diversity Beta diversity Phylum Class Order Family Genus Species Other/notes Significant
effects on gut
microbiota?

28 Post-high wk1-high — — ↓ genera:
Catenibacterium
↑ genera:
Akkermansia, unclassified genus
of family Eggerthellaceae,
Veillonella

— —

28 Post-high Pre-high Betaproteobacteriales:↑ — Megasphaera:↓ — —

22 wk1-Lower red meat (MOD) Pre-MOD Faith’s phylogenetic
diversity and Shannon: ↔

Unweighted UniFrac:
significant between-group
difference
Weighted UniFrac:↔
DEICODE metrics:↔

NR NR Mollicutes RF39:↓ Lachnospiraceae:↑ ↓ genera:
Streptococcus
↑ genera:
Coprococcus 2, Holdemanella,
Acidaminococcus

— —

22 Post-MOD wk1-MOD Mollicutes RF39:↑ — ↓ genera:
Acidaminococcus, Holdemanella,
Catenibacterium
↑ genera:
Veillonella

— —

22 Post-MOD Pre-MOD — Lachnospiraceae:↑ ↓ genera:
Blautia, Catenibacterium
↑ genera:
Coprococcus 2

— —

50 Post-MOD Post-high Faith’s phylogenetic
diversity and Shannon: ↔

Unweighted UniFrac:
significant between-group
difference
Weighted UniFrac:↔
DEICODE metrics:↔

NR NR — Ruminococcaceae:↓ ↓ genera:
HoldemanellaI, Acidaminococcus
↑ genera:
Megasphaera, metagenome

— —

50 wk1-MOD wk1-high Mollicutes RF39:↓ — ↑ genera:
Ruminiclostridium 5,
Oscillibacter, Megasphaera,
metagenome, Lactobacillus,
Veillonella, uncultured genus of
family Eggerthellaceae

— —

50 Pre-MOD Pre-high Betaproteobacteriales:↑ Enterobacteriaceae:↑ ↓ genera:
[Eubacterium] eligens group,
Ruminococcaceae UCG-013,
Coprococcus 2, Holdemanella,
Acidaminococcus, Slackia,
uncultured genus of family
Eggerthellaceae
↑ genera:
Streptococcus, Catenibacterium,
metagenome, Dielma

— —

Bratlie
et al. 2021 [93]

9 Post-cod Pre-cod — No clear separation between
diets pre-intervention.
Trend of separation between
diets post-intervention,
especially between post-
salmon and post-control.

NR NR Post-Cod & Post-Salmon
compared to Post-Control
(bacterial counts):
Bacteroidales:↓
Clostridiales:↓
Selenomonadales:↓

NR NR NR — Yes
13 Post-salmon Pre-salmon
11 Post-control Pre-control

1 Higher abundance (↑), lower abundance (↓), or comparable abundances (↔). NR, data measured but not reported; OTU, operational taxonomic unit; ASV, amplicon sequence variant.
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3 comparisons from 2 studies [71, 93] substituted fish or seafood
with non-seafood meat; 1 comparison [92] compared Mediter-
ranean diet with higher fish-meat intake to a habitual omnivo-
rous diet with higher non–fish-meat intake. Only 1 comparison
[87] was between red and white meat. We also documented 1
comparison [85] of vegetarian and vegan diets based on data
from RCTs, but this comparison was not used because it was not
covered in our a priori search strategies.
Summary of study outcomes on gut microbiota
Overall, the effects of consuming meat on the gut microbiota

were more frequently detected at the lower taxonomic levels
(genus and species) than at the higher taxonomic levels (phylum
and class) or in overall community diversity (e.g., Shannon’s and
inverse Simpson’s indices; Table 3). Significant changes or dif-
ferences in the gut microbiota composition were reported at the
genus (12 of 13 comparisons) and species (5 of 5 comparisons,
Figure 2A) levels. In contrast, significant effects on gut micro-
biota composition were reported for alpha diversity in only 2 of 7
comparisons (Figure 2A). The percentages of primary and sec-
ondary comparisons showing study-reported significant effects
of meat intake on the gut microbiota are presented in Figure 2
and Table 3, with a summary in the footnote of Table 3.

The types and directionality of bacterial taxa responses
varied (Table 3, Table 4). Complementing the summary pro-
vided in Table 3, Table 4 presents the types and directionality of
bacterial differences per taxonomic level for all studies.
Although most comparisons did not show any significant effects
of higher intake of total meat and meat subtypes on the phyla
Bacteroidota (formerly Bacteroidetes [99]), Bacillota (formerly
Firmicutes [99]), and Pseudomonadota (formerly Proteobac-
teria [99]), seemingly consistent directions of changes or dif-
ferences in members of the phylum Bacteroidota were observed
in 2 primary comparisons [84, 89]. After consuming red meat or
mushroom in an otherwise uncontrolled diet for 10 d, abun-
dances of bacteroidota and bacillota were lower and higher,
respectively [84]. Consuming a controlled vegan diet or a
habitual omnivorous diet for 16 wk did not influence the
observed increase in bacteroidota over time [89].

There was limited consistency in bacterial taxa responses at
the lower taxonomic levels when effects were detected. At the
genus level, which was the most frequently reported taxonomic
level by the included studies, 28 genera were reported to be
affected by meat intake, with only 4 of these genera observed
more than once (Bacteroides, Anaerostipes, Ruminococcus, and
Roseburia; Table 5). Higher meat consumption, including pre-
sumably self-chosen omnivorous diets before vegan or vege-
tarian diets, appeared to reduce Anaerostipes abundance as
reported in 3 studies [74, 84, 89]. The abundance of Bacteroides
was reduced in 1 study [84] after consuming red meat
compared with mushroom but not different as reported in 2
other studies [85, 91]. Similarly, the abundance of Roseburia
was increased by higher meat intake in 2 studies [88, 91] but
reduced in another study [92]. Although 3 studies [87, 88, 91]
reported meat-related changes or differences in Ruminococcus
abundance, the results were not clearly reported or were
inconsistent for a comparison between higher and lower meat
intakes. At the species level, Faecalibacterium prausnitzii was
reported in 2 studies [89, 92] to have a lower abundance with
higher meat intake (Table 5).
226
Subgroup analysis for heterogeneity exploration
To investigate potential contributors to the heterogeneity in

reported outcomes, our a priori subgroup analyses included the
following: 1) lacto-ovo vegetarian diet compared with the vegan
diet; 2) comparisons between meat subtypes, including i) un-
processed compared with processed meat and ii) red meat
compared with white meat compared with fish/seafood; 3)meat
compared with nonmeat (plant-based foods or vegetarian/vegan
diet), including i) red meat compared with nonmeat, ii) white
meat compared with nonmeat, and iii) fish/seafood compared
with nonmeat; and 4) higher and lower meat intakes (mixed
meat subtypes). We also included additional subgroup analyses
based on the type and length of studies, type of study diets, and
levels of dietary control. The categorization of studies based on
the listed subgroups is presented in Table 3.

Insufficient comparisons were available to compare specific
meat subtypes, with only 1 comparison [87] available between red
meat and white meat and 3 comparisons [71, 93] between mixed
seafood subtypes and mixed non-seafood meat subtypes. No com-
parison was available between unprocessed and processed meat,
redmeat andfish/seafood, orwhitemeat andfish/seafood.Among
the 12 primary comparisons on higher and lower meat intakes,
comparisons were between red meat (4 comparisons [84, 86, 87,
90]), white meat (1 comparison [87]), or mixed meat subtypes (7
comparisons [73, 74, 85, 88, 89, 91])andplant-based foodsordiets
(Table 3). Although 4 comparisons [84, 86, 87, 90] used red meat
and 3 [84, 86, 87] of them compared red meat with plant-based
foods (e.g., mushroom and whole grains), only 1 of them [87]
controlled basal dietary intake besides the intervention foods.

The effects of meat consumption on the gut microbiota were
observed in studies utilizing various experimental design fea-
tures (Figure 3). The proportions of outcomes showing and not
showing effects of meat consumption on the gut microbiota are
comparable between the crossover and parallel RCTs (Figure 3A)
or between studies with meat-specific diets and those with di-
etary patterns (Figure 3C). At least 67% of comparisons across
different study lengths and levels of dietary control consistently
showed some effects (Figure 3B, D). The direction of changes and
specific differences in the gut microbiota composition for each
comparison showed limited consistency across studies (Table 4).
Risk of bias assessments
Crossover and parallel RCTs were assessed separately for the

intention-to-treat effects on the gut microbiota with selected
experimental and comparator groups. Among the 13 studies,
none was rated low risk, 11 were rated with some concerns, and
2 were rated high risk of bias (Table 6) [71, 73, 74, 84–93]. The
risk of bias is mainly generated from 1) period and carryover
effects, 2) deviations from the intended interventions (effect of
assignment to intervention), and 3) selection of the reported
results. The 2 studies [73, 74] rated high risk of bias were
crossover RCTs without washout periods between interventions,
of which the one [74] with cointervention of energy restriction
showed significant effects on the gut microbiota.
Discussion

The scoping review documents both observational and exper-
imental research assessing the influence of meat consumption on



FIGURE 2. Percentages of (A) all, (B) primary, and (C) sec-
ondary comparisons that reported gut microbial outcomes at the
specified levels, with (darker gray) or without (lighter gray)
significant effects of diet on gut microbiota. The effects refer to
whether significant changes or differences in microbiota
composition were reported by authors of the included studies.
The percentages and numbers of studies showing any significant
effects out of the total number of studies that reported the spe-
cific outcome were denoted in percentages and n.
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the gut microbiota. Most observational research used cross-
sectional designs. The paucity of meticulously designed prospec-
tive cohort studies precluded systematically assessing associations
between meat intake and gut microbiota. Experimental research,
primarily conducted with apparently healthy adults and using
227
RCTswith crossover or parallel intervention designs, suggests that
changes and differences in gut microbiota composition due to
meat consumption are more detectable at lower taxonomic levels
(e.g., genus and species) than higher taxonomic or community
levels. Caution is warranted against drawing firm conclusions



TABLE 5
Genera and species that were affected by meat intake as reported by at least 2 studies.

Bacteria Study Higher meat intake Lower meat intake Higher vs lower1

Genera
Bacteroides van Faassen et al. 1987 [85] Post-omnivorous Post-vegan ↔

Post-omnivorous Post-vegetarian ↔
Post-vegetarian Post-vegan ↔

Hess et al. 2018 [84] Post-red meat Post-mushroom ↓
Kohnert et al. 2021 [91] Post-pre-omnivorous Post-pre, post-, or pre-vegan ↔2

Anaerostipes Hess et al. 2018 [84] Post-red meat Post-mushroom ↓
Kahleova et al. 2020 [89] Pre-vegan Post-vegan ↓
Pagliai et al. 2020 [74] Post-pre-Mediterranean Post-pre-vegetarian ↓

Pre-vegetarian Post-vegetarian ↓
Ruminococcus Lang et al. 2018 [87] Red/white meat Nonmeat Differed3

Crimarco et al. 2020 [88] Animal-based diet Plant-based diet ↑
Kohnert et al. 2021 [91] Post-pre-omnivorous Post-pre-vegan ↓

Post-omnivorous Pre-omnivorous ↔2

Pre-vegan Post-vegan ↔2

Roseburia Crimarco et al. 2020 [88] Animal-based diet Plant-based diet ↑
Meslier et al. 2020 [92] Post-omnivorous

(higher nonfish meat)
Post-Mediterranean
diet (higher fish)

↓

Kohnert et al. 2021 [91] Post-pre-omnivorous Post-pre-vegan ↑
Post-omnivorous Pre-omnivorous ↑
Pre-vegan Post-vegan ↑

Species
Faecalibacterium prausnitzii Kahleova et al. 2020 [89] Post-pre-omnivorous Post-pre-vegan ↓

Pre-vegan Post-vegan ↓
Meslier et al. 2020 [92] Post-omnivorous

(higher nonfish meat)
Post-Mediterranean
diet (higher fish)

↓

1 Higher abundance (↑), Lower abundance (↓), or comparable abundances (↔) in the higher meat intake group compared to the lower meat intake
group.
2 Amplicon sequence variant of the genus or species was reported as both enriched and depleted in the comparison by the study author.
3 Authors reported that the abundance of the genus differed among the red meat, white meat, and non-meat groups, but did not report the pair-

wise difference between groups.

Y. Wang et al. Advances in Nutrition 14 (2023) 215–237
regarding the effects of meat intake on gut microbiota due to in-
consistencies among the levels of dietary control, sources of meat,
and specificity of bacterial composition.

Current state of knowledge (scoping review)
To our knowledge, our scoping and systematic review is

among the first systematic reviews pertinent to meat intake and
gut microbiota in humans. Our scoping review provides a
comprehensive overview of the current state of knowledge and
clearly identifies where research gaps exist. Compared with
interventional studies, the number of observational studies more
than doubled, whereas the health status and ages of participants
in these studies were not always clearly described. Most obser-
vational research did not focus on meat intake but more broadly
on dietary patterns with or without meat. Importantly, there is a
paucity of prospective cohorts especially in healthy humans and
RCTs, in particular crossover RCTs, in children and adolescents.
In addition, the degree of meat processing (including the use of
meat extenders) and cooking methods were not well docu-
mented by most studies. Given that most Americans and the
global population consume meat, the influence of consuming
total meat and specific meat subtypes on the gut microbiota
composition across different age groups requires investigation.

Limitations and gaps in the current literature
(systematic review)

Our systematic review included 13 RCTs in healthy adults
with stable health status to assess the effects of meat intake on
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the gut microbiota. Initially, we planned to include both pro-
spective cohort and RCT studies in healthy human adults with
stable health status in our systematic review. However, only 1
eligible prospective cohort [25] was identified, which was
insufficient for a systematic review. The findings from our sys-
tematic review implicate that the consumption of total meat and
meat subtypes affects the gut microbiota composition, but the
directionality and interpretation of these changes should be
cautiously discussed, considering the inconsistencies across
studies.

To investigate potential sources of heterogeneity, our a
priori subgroup analyses based on the sources of meat did not
yield any meaningful results because of the inadequate number
of comparisons per subgroup. Gathering available literature,
the number of comparisons between red meat and nonmeat
intakes (4 comparisons [84, 86, 87, 90]) may potentially
qualify for a subgroup review. However, only 1 of these 4
comparisons fully controlled participants’ basal dietary intake,
and their comparator foods ranged from high-fiber plant-based
foods (e.g., mushroom and whole grains) to mixed nonmeat
foods or lower amounts of red meat. Comparing meat to
different comparator foods was shown to result in differential
cardiometabolic effects in a meta-analysis of RCTs [100]. For
example, consuming red meat led to greater reductions in LDL
and HDL cholesterol concentrations when fish was the
comparator and to greater reductions in triglycerides when
carbohydrates were the comparat but lesser reductions in tri-
glycerides when high-quality plant-based protein foods were



FIGURE 3. Percentages of primary comparisons that did vs. did not report significant effects of diet on gut microbiota based on the (A) type of
randomized controlled trial (RCT), (B) length of RCT, (C) type of diet, and (D) level of dietary control. The partial level of dietary control (D)
encompasses the studies in which partial foods were provided with or without control over basal dietary intake, as well as studies in which 1 group
was controlled and 1 group followed a habitual diet. The significant effects refer to whether significant changes or differences in microbiota
composition were reported by authors of the included studies. The percentages and numbers of studies showing any significant effects out of the
total number of studies with the specific study characteristics were denoted in percentages and n.
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the comparator [100]. It remains questionable how much of
the dietary effects on the gut microbiota were attributable to
red meat intake when the participant’s dietary intake was not
fully controlled and the comparator food was not specific,
highlighting the importance of the “instead of what” question
inherent to all nutrition science inquiries [101].

There is a particular paucity of research on the degree of
meat processing. Of all red meat and poultry consumed by the
US population, 55% were red meat and 45% were poultry,
among which 32% of total red meat and 14% of total poultry
were consumed in processed form (NHANES 2015–2018)
[102]. Only ~10% of the US adults who are beef consumers
choose lean and unprocessed forms [103]. Accumulating
observational research indicates that consuming processed
meat is associated with a higher risk for cardiometabolic dis-
eases compared with consuming unprocessed meat [104].
However, our search did not identify any available study
comparing intakes of unprocessed and processed meats.
High-temperature cooking methods (e.g., grilling) also produce
carcinogens from meat that may increase the risk for certain
cancers (e.g., colorectal cancer) [105, 106]. However, among
the 4 studies [84, 86, 87, 90] that reported using meat in un-
processed form, only 1 study [90] briefly described the cooking
method (Supplemental Table S4).

Although the study designs varied among studies, our post
hoc subgroup analyses based on selected study characteristics
(i.e., study type, length of diet, type of diet, and level of dietary
control) did not suggest any specific sources of heterogeneity.
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Other subgroup analyses by demographic and anthropometric
criteria may be considered but were not possible due to reasons
such as unclear age cut-offs or an insufficient number of com-
parisons (male compared with female). The mean group ages of
the study participants were between 18 and 65 y, whereas
healthy older adults aged>65 y were rarely studied. Aging shifts
the gut microbiota composition by reducing Bacteroides, which
contributes to healthy aging [107]. Most studies have more fe-
male than male participants included in one or both of their
intervention arms, whereas gut microbiota composition and re-
sponses can differ by sex [108, 109]. The racial diversity was
inconsistently reported among studies (6 of 13 studies [71, 74,
85, 87–89]), with most participants being Caucasian. Collec-
tively, these limitations underscore the importance of future
research being inclusive of age, sex, and racial diversity.

Noteworthy, we observed a lack of a priori power calculation
based on the microbiota outcome in almost all RCTs. Only 1 [89]
of the 13 RCTs reported the estimation of sample size based on
outcomes related to gut microbiota. The lack of a priori power
calculation could be due to not only a lack of pilot data or
challenge of estimating the sample size for microbiota outcomes
[110] but also that the gut microbiota were secondary or
exploratory outcomes. Each study’s primary outcome is pre-
sented in Supplemental Table S3A (column “sample size esti-
mation”). Although an adequate sample size is important for
detecting statistical significance in outcomes of interest, the
limited comparability and lack of research evidence restrict
meaningful sample size estimation. Age, sex, and race are



TABLE 6
Cochrane risk of bias.

Study
(year)

Domain 1a: risk
of bias arising
from the
randomization
process

Domain S: risk of
bias arising from
period and
carryover effects

Domain 2: risk of bias due to
deviations from the intended
interventions (effect of
assignment to intervention)

Domain 3: risk
of bias due to
missing
outcome data

Domain 4: risk
of bias in the
measurement of
the outcome

Domain 5: risk
of bias in the
selection of the
reported result

Overall
risk of
bias1

Crossover RCTs
van
Faassen
et al.
(1987)
[85]

Some concerns Low Low Low Low Some concerns Some
concerns

Windey
et al.
(2012)
[73]

Low High Some concerns Low Low Some concerns High

Foerster
et al.
(2014)
[86]

Low Some concerns Low Low Low Some concerns Some
concerns

Lang et al.
(2018)
[87]

Some concerns Some concerns Some concerns Low Low Some concerns Some
concerns

Hess et al.
(2018)
[84]

Some concerns Some concerns Some concerns Low Low Some concerns Some
concerns

Schmedes
et al.
(2019)
[71]

Low Low Some concerns Low Low Some concerns Some
concerns

Pagliai
et al.
(2020)
[74]

Low High Some concerns Low Low Some concerns High

Crimarco
et al.
(2020)
[88]

Low Low Low Low Low Some concerns Some
concerns

Parallel RCTs
Kahleova
et al.
(2020)
[89]

Low N/A Low Low Low Some concerns Some
concerns

Meslier
et al.
(2020)
[92]

Low N/A Low Low Low Some concerns Some
concerns

Kohnert
et al.
(2021)
[91]

Low N/A Low Low Low Some concerns Some
concerns

McKenna
et al.
(2021)
[90]

Low N/A Low Low Low Some concerns Some
concerns

Bratlie
et al.
(2020)
[93]

Low N/A Some concerns Low Low Some concerns Some
concerns

1 For the description of overall risk of bias, “some concerns” refers to “the study is judged to raise some concerns in �1 domain for this result but
not to be at high risk of bias for any domain”; “high” refers to “the study is judged to have some concerns for multiple domains in a way that
substantially lowers confidence in the result.” N/A, not applicable; RCT, randomized controlled trial.
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important participant characteristics to consider, which
contribute to interpersonal variability in the gut microbiota but
remain challenging to be addressed or adjusted for. One RCT
[87] assessed how individual biological and anthropometric
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characteristics altered gut microbiota relative abundances.
Genera such as Akkermansia and Haemophilus are positively and
negatively associated with age, respectively; race and sex were
found to influence community diversity and dozens of bacterial
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taxa abundances [87]. However, individual traits were not
adjusted for when assessing diet-induced effects [87]. Three
studies [84, 86, 89] reported statistical adjustments of potential
confounders (e.g., age, sex, BMI, and race). Studies also
attempted to control for differences in individual traits by
recruiting within the same race (e.g., Caucasian [71, 74, 85]) or
the same sex (e.g., male [85]). However, they missed considering
other potential confounders such as the use of medications (e.g.,
antibiotics) or supplementations (e.g., pre- or probiotics), as well
as intakes of certain dietary components (e.g., fiber) with a
known impact on the gut microbiota. Nevertheless, data from
these RCTs can serve as preliminary pilot data for future research
studying the effects of specific meat subtypes on the gut
microbiota.

The analysis and reporting of data were not standardized,
thereby limiting the comparability of findings among studies.
For instance, 2 of the 12 primary comparisons [73, 85] did not
suggest any effect of meat consumption on the gut microbiota.
Yet, these 2 studies [73, 85] differ from others in both study
design (i.e., no washout [73]) and molecular analysis methods
(i.e., denaturing gradient gel electrophoresis [73] and cell cul-
ture [85]). Compared with more recent techniques such as 16S
rRNA amplicon and shotgun sequencing, cell culture captures a
small fraction of the bacterial profile, and denaturing gradient
gel electrophoresis does not provide phylogenetic characteriza-
tion without further analysis [111]. For community-level di-
versity measures, operational taxonomic unit (OTU)-based
Shannon’s index and Bray–Curtis dissimilarity were used most
frequently for measuring alpha and beta diversity, respectively,
in the RCTs (Table 4), but they tend to be less sensitive in
detecting differences than phylotype-based approaches (e.g.,
weighted UniFrac distance) [112, 113]. The type of metrics used
for alpha and beta diversity was not consistent either, which
requires careful consideration based on the meaning and
ecological relevance of the indices or metrics [114]. Biases in
assessing the bacterial composition are introduced when
different sample collection, processing, and analysis methods are
chosen [115–117], whereas they were generally not justified by
the study authors. In the 2 comparisons [71, 93] that compared
fish/seafood with a mixture of non–fish/seafood meat subtypes,
changes in bacterial abundances were detected in both studies
but were reported at different taxonomic levels for different taxa.
Recent findings argue against using the relative abundance of
bacteria compared with absolute abundance for potentially
misleading reporting [118]. Among the comparisons with sig-
nificant effects, either mean change values or post-intervention
values were used for between-group comparisons. In line with
the aforementioned inconsistencies, all studies were rated as
having some concerns for or high risk of bias. Although it was
impractical to completely blind subjects regarding the type of
diet in RCTs studying the effects of meat intake at the whole food
level, in 3 crossover RCTs without a washout period between 2
diet interventions [73, 74, 88], the effects of the first diet on the
following diet were not adequately assessed or discussed in 2
studies [73, 74]. The lack of washout period and repeated
measures for baseline assessments and comparisons before each
intervention leads to a high risk of bias from period and carry-
over effects in these 2 studies [73, 74]. Future studies on diet and
gut microbiota should follow standardized protocols that are
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comparable with those reported in the previous studies, with
justified and comprehensive reporting to improve research
reproducibility [119].

The connections behind changes in the gut microbiota and
host health outcomes warrant further research. Ten [71, 74,
86–93] of the 13 RCTs measured clinical health outcomes be-
sides gut microbiota, and 9 [71, 74, 86, 87, 89–93] of the 10
studies conducted correlation analyses to explore potential
concurrence. Among the genera and species reported to be
affected by meat intake (Table 5), Anaerostipes was shown to be
positively associated with LDL cholesterol and total cholesterol
[74]. However, the functions and clinical relevance of bacteria
and their metabolites remain largely unclear. Bacteria with no
expression of metabolic activities may not be as clinically rele-
vant as those producing clinically relevant metabolites, but the
metabolic activities of bacteria can also be altered by the envi-
ronment (e.g., diet) [118]. Identified correlations between gut
microbiota and health outcomes should be further validated with
functional analyses, which, however, requires expensive molec-
ular and analysis methods with higher resolution (e.g., meta-
genomics and multiomic approaches) [118], and is currently
limited by the availability of functional databases [120].

Potential mechanisms of meat–microbiota
interactions

The effects of meat intake on the gut microbiota and host
health are complex. Mechanistically, meat may influence gut
microbiota by providing abundant nutrients (e.g., protein, fat,
choline, and iron) available after host digestion and absorption
for further metabolism, influencing the host health directly
through bacterial components (e.g., LPS entering the systemic
circulation) or indirectly through generating metabolites.
Although these nutrients are not unique to meat, it is unclear
how the matrix (e.g., combination of dietary components) and
processing (e.g., cooking and addition of dietary emulsifiers) of
meat may influence the health effects of consumption on gut
microbiota [121]. Potential health-impacting gut micro-
biota–derived metabolites include secondary bile acids (e.g.,
deoxycholic and lithocholic acids) [122], SCFAs and
branched-chained fatty acids [122], and trimethylamine and
trimethylamine-N-oxide (TMAO) [123], as well as ammonia,
hydrogen sulfide, polyamine, and indolic and phenolic com-
pounds [124]. However, inconsistencies in the effects of meat
intake on these metabolites (e.g., secondary bile acids [85, 92,
93], SCFAs and branched-chained fatty acids [71, 73, 74, 84, 86,
92, 93], and TMAO [71, 88, 92]) were observed in RCTs
included in this review. Assessments of purported plausible
mechanisms to explain the effects of meat intakes on the gut
microbiota and host health outcomes are beyond the scope and
focus of this review.

The effects of meat intake on the gut microbiota are further
complexed by interactions with and the effects of nonmeat com-
ponents within a dietary pattern [125–127]. Purported con-
founding dietary factors may include differentfiber intakes [128]
between higher and lower meat intake groups [84, 89, 91, 92],
saturated fat with overriding effects on gut microbiota indepen-
dent of meat subtypes or protein sources [87], or components
(e.g., 3,3-dimethyl-1-butanol in olive oil) [129, 130] of a healthy
dietary pattern that counteracts certain effects of meat intake.
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Therefore, it is important to specifymeat subtypes and control the
overall dietary intake (including acutely co-consumed foods and
broader dietary patterns) when studyingmeat and gutmicrobiota
and to interpret changes in the gut microbiota considering their
functional impacts.
Strengths and limitations
Our scoping and systematic reviews provide a comprehensive

summary and overview of the current scientific literature on
meat intake and gut microbiota in humans. By focusing on RCTs
in the systematic review, we provided informative guidance on
features of study design and reporting of results for conducting
the human gut microbiota study with dietary interventions.
However, our review focuses on summarizing and synthesizing
research evidence for gut microbial changes related to meat
intake and not on mechanisms. Although we observed the effects
of dietary modifications on the gut microbiota, the biological
significance of these effects is limited by associations but not
causal relationships to health indices. The findings of results
were determined by authors of the studies, which are prone to
the bias of results’ reporting. Furthermore, adequate data are not
available for quantitative analysis of outcome measures, but a
quantitative assessment and meta-analysis of the gut microbiota
outcomes remain implausible.

Conclusions

The prominence of meat consumed in the United States and
globally underscores the importance of knowing how it relates to
and affects the human gut microbiota as an important diet-health
mediator. The main intentions of this research were to provide a
scoping review and a systematic review to inform meat industry
stakeholders, nutrition and health researchers, and policymakers
about the current state of literature and directions for future
research. The main findings from this review are as follows: 1) a
limited number of RCTs (particularly in older adults) and pro-
spective cohort studies have been conducted to understand the
relationships between meat intake and gut microbiota in healthy
adults; 2) inconsistencies among studies were observed for the
types of bacteria affected and the magnitude and directionality of
bacterial responses; 3) the experimental designs and reporting of
results were inconsistent among studies, highlighting the need for
well-designed, full-feed RCTs; 4) the current evidence is not
adequate for studying the heterogeneity of results based on meat
subtypes, the degree of processing (including degree of meat
extension), or method of cooking; and 5) the directionality and
health implications of changes or differences in the gutmicrobiota
warrant future research. Our findings will hopefully shed light on
areas that have not been well explored and spur new research.
Recommendations for Future Research
Based on the findings from our scoping review and systematic

review, future research may consider the following 3 high-
priority recommendations:

1) Full-feeding RCTs are warranted to assess the effects of
consuming specific meat subtypes, with specified degrees
of meat processing and dietary patterns, on the gut
microbiota in humans.
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Rationale
Our findings indicate a paucity of research assessing meat

subtypes with full-feeding dietary interventions. Our review
identified only 1 study in white meat [87], 2 studies in fish/-
seafood [71, 93], and 4 studies in red meat [84, 86, 87, 90].
None of the studies assessed how the degree of meat processing
(e.g., unprocessed or processed meat) or methods of cooking
(e.g., baking or grilling) affects the gut microbiota. We identified
and excluded 1 RCT [131] comparing the effects of processed
meat and nitrate-added drinking water on the gut microbiota
because it did not provide a comparison between higher and
lower meat intakes and no changes in gut microbiota abundance
were reported; it is also unlikely that nitrate by itself transits to
the colon [132]. Although the level of dietary control (i.e.,
full-feed, partial-feed, and dietary counseling) did not seem to
influence whether any diet-induced effects can be observed in
the gut microbiota, when meat was consumed within different
dietary patterns or minimally controlled habitual diets, it was
implausible to assess meat-specific effects. There also seems to be
a trend of more studies showing dietary effects on the gut
microbiota when the diet intervention was >4 wk. However, the
selection of 4 wk to categorize and group studies was based on
the observations of included study durations and not on an
established definition of short- and long-term studies. Further,
the 2 studies that showed “no effects” either used a
cultivation-based method that is prone to miss capturing statis-
tically significant findings in the gut microbiota [85] or did not
include a washout period between 2 interventions to avoid any
carryover effects [73]. Thus, the recommended length of inter-
vention should be determined based on the expected time
needed for both microbial and nonmicrobial outcomes of interest
to respond to a diet intervention. Studies should also be powered
based on the gut microbiota outcomes of interest a priori. Addi-
tional suggestions are presented elsewhere [119]. Nevertheless,
data from these RCTs can be used for sample size estimation
based on gut microbiota outcomes in future studies.

2) There is a need for more prospective observational studies
on gut microbiota with total meat and meat subtypes as a
priori independent variables among adults without diag-
nosed disease. A standardized definition of total meat and
meat subtypes should be used and reported.
Rationale
Only 1 prospective observational study on meat intake and

gut microbiota in healthy adults was identified through our
comprehensive and systematic search of available English peer-
reviewed literature. Most observational studies were cross-
sectional (47 of 57 studies) with a weak level of temporality
(i.e., exposure happens before the outcome occurs). Meat was
studied as part of a habitual dietary pattern with inconsistent
groupings of meat [133], making it challenging to draw consis-
tent conclusions on the associations between meat and gut
microbiota based on observational evidence. Furthermore, most
of our identified observational studies had a small sample size.
However, current national databases such as the NHANES [134]
or the Human Microbiome Project [135,136] provide data on
either dietary intake or gut microbiota composition, but not
both. Further research collecting data on both dietary intake and
gut microbiota with larger cohorts is warranted.
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3) Upon addressing recommendations 1 and 2, systematic
reviews and meta-analyses are needed to assess the effects
of meat intake on gut microbiota–derived metabolites and
health outcomes (e.g., cardiometabolic risk factors), as
well as the relationships between meat-induced gut
microbiota compositional changes and health outcomes.
Rationale
It remains unclear how the effects of meat consumption on

gut microbiota would impact the host’s health. Although gut
microbiota–derived metabolites and health indices other than
gut microbiota were also assessed in the included RCTs, their
conclusions generally only describe effect or no-effect regarding
diet and gut microbiota. Six [71, 86, 88–91] of the 13 RCTs
associated results in the gut microbiota with potential health
implications, but only 1 [91] of them summarized their findings
with directional terms (e.g., harmful or beneficial). Our sys-
tematic review documents secondary outcomes of gut micro-
biota–derived metabolites that were also measured and reported
in the included RCTs (Supplemental Table S5). We specifically
selected metabolites that are associated with health outcomes
(e.g., cardiometabolic disease risk factors). We also documented
whether a correlational analysis was conducted between changes
in gut microbiota composition and these metabolites or car-
diometabolic health outcomes (Supplemental Table S5). How-
ever, this was not the focus and intention of our current review.
Systematic reviews and meta-analyses with targeted focus on
dietary intake and gut microbiota are lacking. Based on our brief
search on PubMed, the few systematic reviews published previ-
ously on diet and gut microbiota are mostly qualitative or have a
broader scope of focus on nutrition, including diet and nutrition
in general [137, 138], probiotic supplementation [139], oat
intake [140], and a specific nutrient in both humans and animals
[7]. None of them included any of the 13 RCTs identified and
included in our systematic review. Importantly, both the current
and previous reviews emphasize the need for future research to
address the differences in individual responses, the influence of
dietary patterns and processing and cooking methods, and health
implications and mechanisms related to microbial changes.
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