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ABSTRACT

Carotenoids are a category of health-promoting phytonutrients that are found in a variety of fruits and vegetables and have been used as a
biomarker to approximate dietary fruit and vegetable (F/V) intake. Carotenoids are consumed, metabolized, and deposited in blood, skin, and
other tissues. Emerging evidence suggests spectroscopy-based skin carotenoid measurement is a noninvasive method to approximate F/V intake.
Spectroscopy-based skin carotenoid measurement overcomes bias and error inherent in self-reported dietary recall methods, and the challenges
in obtaining, storing, and processing invasive blood samples. The objective of this systematic review was to examine criterion-related validity
of spectroscopy-based skin carotenoid measurement as a proxy for F/V intake. The 3 methods examined were resonance Raman spectroscopy
(RRS), pressure-mediated reflection spectroscopy (RS), and spectrophotometers. A comprehensive literature search of PubMed, Excerpta Medica
Database (Embase), Cumulative Index of Nursing and Allied Health Literature (CINAHL), ProQuest, Cochrane Database of Systematic Reviews,
and Cochrane Central Register of Controlled Trials (CENTRAL) was performed in December 2018, yielding 7931 citations. Studies that examined
associations between spectroscopy, blood carotenoids, and/or dietary intake were identified and reviewed independently by ≥2 reviewers to
determine eligibility for inclusion. Twenty-nine articles met the inclusion criteria and all 29 studies found significant correlations or associations
between spectroscopy-based skin carotenoids and plasma or serum carotenoids and/or dietary F/V intake. A majority of the studies evaluated
carotenoid concentration in adults; however, 4 studies were conducted in infants and 6 studies evaluated children. Twenty studies specified the
racial/ethnic groups from which the samples were drawn, with 6 including ≥20% of the sample from a minority, nonwhite population. The findings
of this systematic review support the use of spectroscopy for estimating F/V intake in diverse human populations, although additional validation is
needed, particularly among racially/ethnically diverse populations and populations of varying ages. Adv Nutr 2020;11:1282–1299.

Keywords: carotenoids, spectroscopy, skin reflectance, fruit and vegetable intake, biomarkers, dietary assessment, resonance Raman spectroscopy,
pressure-mediated reflection spectroscopy, spectrophotometers

Introduction
Adequate fruit and vegetable (F/V) intake is associated with
positive health outcomes and reduced risk of developing
chronic diseases (1). Fruits and vegetables contain a variety
of health-promoting bioactive components, such as phyto-
chemicals, vitamins, and minerals (2). Carotenoids are a class
of compounds in fruits, vegetables, grains, nuts, legumes,
and some animal products that have demonstrated protec-
tive properties against macular degeneration, cardiovascular
disease, sarcopenia, skin damage from ultraviolet radiation
(UV) exposure, and protection against oxidative damage
(3, 4).

With >700 identified carotenoids, the most prevalent
and highly researched that correlate with F/V intake are α-
carotene, β-carotene, lycopene, lutein, zeaxanthin, and β-
cryptoxanthin (5). Carotenoids are found in a variety of yel-
low, red, pink, orange, and green pigmented plant products
and some animal products, such as eggs and pink- or red-
fleshed seafood (5). Carotenoids are exogenous compounds
that must be acquired through dietary sources and cannot
be synthesized de novo. Thus, due to the array of foods
that contain high amounts of carotenoids, circulating blood
carotenoids are considered the gold standard biomarker of
F/V intake (6, 7).

1282 Copyright C© The Author(s) on behalf of the American Society for Nutrition 2020. Adv Nutr 2020;11:1282–1299; doi: https://doi.org/10.1093/advances/nmaa054.

https://doi.org/10.1093/advances/nmaa054


For research, evaluation, and surveillance purposes, F/V
intake is objectively assessed using carotenoids measured
in serum or plasma samples, or estimated subjectively
using dietary recall methods. Serum is derived from coag-
ulated whole blood, and plasma from anticoagulated blood.
Both media can be extracted and analyzed for carotenoid
concentrations using HPLC or LC-MS (8–11). Although
blood biomarkers are a relatively accurate measure and
considered the standard for assessing F/V intake, the process
of collecting blood samples is mildly invasive and might not
reflect long-term dietary intake due to the short half-lives
of circulating carotenoids (12, 13). Thus, plasma or serum
carotenoids reflect recent dietary intake and are detectable in
the blood for ∼2 wk after intake (14, 15).

In addition to serum and plasma carotenoids, F/V intake
is also measured using subjective dietary recall methods or
dietary observations (16). Commonly used methods include
observer-recorded food records, 24-h dietary recall, dietary
record, or FFQs. However, all of these dietary recall methods
are prone to time burden, subjective biases, and intervention-
related biases that can result in inaccurate representation of
true dietary intake (17, 18). Because the existing methods for
recalling dietary intake contain error and bias, such measures
can negatively impact the validity of quantifying F/V intake,
demonstrating the need for an objective indicator of dietary
intake (19).

Spectroscopy has emerged as a noninvasive, objective
approach to measuring dietary intake of fruits and vegetables
(20). Spectroscopy measures the absorption and emission
of light waves at a specific wavelength to identify the type
and density of molecular compounds in the skin (14).
Carotenoids are easily identifiable bioactive compounds that
can be quantified using optical spectroscopy because they are
deposited and primarily visible in the stratum corneum of the
skin at a UV range of 400–500 nm (21). To account for in-
traindividual variability, studies using spectroscopy to deter-
mine carotenoid status often assess multiple locations on the
human body and use duplicate or triplicate measurements
(22–30). The index finger, palm, inner arm, and heel are
frequently used as sites for spectroscopy-based carotenoid
measurement because the thickness of the skin prevents
other skin chromophores, like melanin, from obstructing the
detection of carotenoid compounds (21). Additionally, the
index finger, palm, inner arm, and heel locations do not
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experience excessive sun exposure, a major factor in altering
the molecular structure of carotenoids, which decreases the
amount of identifiable carotenoid molecules (4).

There are various spectroscopy technologies used to iden-
tify and quantify carotenoids in the skin, including resonance
Raman spectroscopy (RRS), pressure-mediated reflection
spectroscopy (RS), and spectrophotometers. RS uses a broad-
band light source (460–500 nm) to measure the density
of skin carotenoids with minimal interference from other
compounds (14). Subsequently, the carotenoids are superim-
posed on a reflection-based absorption spectrum for refer-
ence (14). Supradermal pressure is added during the mea-
surement to temporarily limit blood flow to the assessment
location to reduce the presence of confounding molecules,
specifically oxygenated or deoxygenated hemoglobin (which
can interfere with carotenoid absorption), thus minimizing
the misidentification of carotenoid compounds (14). RRS
utilizes light photons to manipulate the conjugated bonds
of the carotenoid molecules to generate excitatory Raman
signals (31, 32). The excitatory signals initiate vibrational
state changes that alter the bond strength of carotenoids,
resulting in a distinct signal on the Raman spectra (31).
RRS detects combined concentrations of skin carotenoids
with efficiency and precision; however, this method requires
expensive instrumentation and analysis software (14). RS and
RRS detect the major blood concentrations of carotenoids,
but do not detect colorless carotenoids, such as phytoene
and phytofluene, due to differences in spectral regions (33).
Spectrophotometers are measurement devices that evaluate
and analyze the color of dermatological pigments’ yellowness
and redness, which reflect skin carotenoid concentration
(34). Spectrophotometers measure the intensity of light
transmitted through a solvent and identify carotenoid com-
pounds due to the absorption or reflection in a specific
wavelength within the color spectrum (∼350–500 nm) (34,
35). These advancements in technology have resulted in
noninvasive, convenient, and efficient methods of measuring
carotenoid status as a proxy for F/V intake (21).

The development and validation of a noninvasive, objec-
tive measurement to assess F/V intake has the potential to
change the standard for collecting accurate dietary intake
data. The aim of this systematic review was to examine
criterion-related validity of 3 methods of spectroscopy as a
proxy for F/V intake by evaluating studies that examined
associations between skin carotenoid status measured via
spectroscopy and 1) serum or plasma carotenoid concentra-
tion, or 2) self-reported dietary intake, or 3) both serum or
plasma carotenoid concentration and self-reported dietary
intake.

Methods
In accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement
for improved reporting of systematic reviews, the protocol
for this systematic review was prospectively registered with
PROSPERO (registration number 114,605) (36).
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TABLE 1 Search terms and predefined exclusion criteria applied to article selection process

Search terms Exclusion criteria

Spectroscopy
Primary search terms: spectroscopy, spectrum

analysis, Veggie Meter®, skin reflectance
Expanded search terms: BioPhotonic scanner,

carotenoid sensor(s), optical assessment, optical
detection, Raman microscopy, reflectance
spectrophotometer, spectroscopic method(s),
spectrophotometry

1. No direct correlation or validation against dietary intake
or serum or plasma carotenoids

2. Any dietary intervention using non–whole food
supplementation (including fruit or vegetable
extracts)—due to differences in dose–response and
unrealistic carotenoid concentrations not found in
normal dietary amounts

Carotenoids
Primary search terms: carotenoids, α-carotene,
β-carotene

Expanded search terms: astacene, β-cryptoxanthin,
canthaxanthin, fucoxanthin, lutein, lycopene,
zeaxanthin

3. Not a peer-reviewed publication, abstract only, review
article, or dissertation

4. Nonhuman subjects (including in vitro studies using
human cell lines)

5. Nonvalidated methods of recording dietary intake
6. Review articles

Literature search strategy
To identify relevant studies, literature searches of PubMed,
Excerpta Medica Database (Embase), Cumulative Index
of Nursing and Allied Health Literature (CINAHL), Pro-
Quest Search, Cochrane Database of Systematic Reviews
(CDSR), and Cochrane Central Register of Controlled Trials
(CENTRAL) were performed in December 2018 to identify
studies addressing criterion-related validity of spectroscopy
for assessing carotenoid concentrations of human skin as
a measure of dietary F/V intake. Primary search terms for
spectroscopy included spectrum analysis, Veggie Meter®, and
skin reflectance. Primary search terms for carotenoids in-
cluded carotenoids, α-carotene, and β-carotene. Additional
carotenoids, such as lutein and lycopene, were added to
expand the search (Table 1). Attempts to include human skin
and diet as search concepts consistently led to inadequate
retrieval of studies, so these concepts were not included
in the final search strategies. Exact search terms and the
PubMed search strategy are available in Supplemental
Table 1. All articles identified through literature searching
were loaded into Endnote 9.1 (Clarivate Analytics), which
was used to identify and remove publications prior to
1990, newspaper articles, and duplicate citations. Remaining
items were then loaded into Rayyan (Qatar Computing
Research Institute) for the initial review of eligibility
criteria (37).

Three authors independently screened titles and abstracts,
with disagreements resolved by additional authors. The
article abstracts were reviewed using strict inclusion criteria.
If the abstract did not report a correlation or validation
between spectroscopy and dietary intake and/or serum
or plasma carotenoids, the abstract was excluded prior
to the full-text review phase. Full-text review was then
independently performed by 2 authors to verify eligibility
based on study protocol and inclusion criteria. A third
author was consulted and assisted with conflict resolution.
References from the included articles were hand-searched
by 2 authors to ensure no relevant articles were missed in
the initial database searches. Seven additional manuscripts

eligible for inclusion were identified during this process
(22, 29, 30, 38–41).

Inclusion and exclusion criteria
Peer-reviewed publications assessing criterion-related valid-
ity of spectroscopy using human skin against dietary intake
and/or plasma or serum carotenoids were the focus of this
review. Animal models and in vitro studies were excluded.
Studies using whole fruits and vegetables with naturally
occurring carotenoids were included. Studies using supple-
mentation were excluded due to unrealistic concentrations
of carotenoids, which would not be present in whole fruits
and vegetables, and limited data regarding the metabolism
and bioavailability of dietary supplements and extracts. It
should be acknowledged that multiple studies that used high-
dose supplementation strategies compared spectroscopy-
based skin carotenoid measurements with serum or plasma
carotenoids and/or dietary intake at baseline prior to supple-
mentation (42–46). However, due to our previously defined
criteria regarding the exclusion of supplementation studies,
these studies were not included in the full analysis. Addition-
ally, studies comparing spectroscopy with dermal biopsies
were excluded from this review. Although dermal biopsies
can confirm the accuracy of spectroscopic measurements,
such biopsies would not corroborate a relation between fruit
or vegetable intake, and therefore would not support the
objective of this review. There were no exclusion criteria
for study design, statistical methods/tools, or population
characteristics. Explicit eligibility criteria are displayed in
Table 1.

Data extraction
Data extraction was performed independently by 2 authors.
A third author reviewed the information and compiled
the 2 extraction data sets into a single entry to ensure
a comprehensive analysis. The following information was
extracted: sample characteristics [mean age, race/ethnicity,
sex, and BMI (kg/m2) if provided by the author], study
design, type of spectroscopy used, intervention details when
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PubMed

1990-2018

7224 Citation(s)

7931 Non-Duplicate

Citations Screened

Inclusion/Exclusion

Criteria Applied to Abstract Screening

EMBASE

1990-2018

4518 Citation(s)

CINAHL

1990-2018

119 Citation(s)

ProQuest

1990-2018

4229 Citation(s)

Cochrane DSR

1990-2018

1 Citation(s)

Cochrane CENTRAL

1990-2018

23 Citation(s)

7877 Articles Excluded

After Title/Abstract Screen due to 

No Direct Correlation or Validation

In Vitro or Animal Models 

54 Articles Retrieved

Inclusion/Exclusion

Criteria Applied to Full-Text Screening

7 Articles Identified

During Comprehensive Hand Search

32 Articles Excluded

After Full Text Screen due to 

Not Peer-Reviewed, Abstracts, Review Articles, or Dissertations (18) 

Non-whole Food Supplementation Studies (8) 

No Direct Correlation or Validation (6) 

29 Articles Included

FIGURE 1 PRISMA flow diagram of detailed search strategy and article selection process.

applicable, statistical interpretation of the correlation or
validation of spectroscopy against blood and/or dietary
intake, and primary findings.

Risk of bias and quality evaluation
Quality of the studies was assessed independently by
2 authors using a modified and combined version of the
Strengthening the Reporting of Observational Studies in Epi-
demiology (STROBE) checklist (47) and the NIH Quality As-
sessment Tool for Observational Cohort and Cross-Sectional
Studies (48). Authors graded the publications based on the
quality assessment and risk of bias criteria. If the 2 reviewing
authors did not agree on overall quality of the publication,
discrepancies were mediated by a third author independently
reviewing the discrepancy without prior knowledge of the
conflicting ratings. Obvious study limitations such as small
sample sizes, population homogeneity, study design, and lack
of control group were considered; however, studies were
graded holistically.

For the purposes of this article, the data were considered
as reported by the author in each study. The correlation
strength was also interpreted according to how the authors
analyzed the data within the individual articles. However,
if the articles did not verbally describe the strength of the
correlation coefficients, the following interpretations were
used: very strong (0.90–1.0), strong (0.70–0.89), moderate
(0.50–0.69), low (0.30–0.49), weak (0.20–0.29), or negligible
(≤ 0.19) (49).

Results
Overview of search results
The comprehensive literature search resulted in 16,134
potentially relevant articles based on the initial database

literature search. Removal of duplicate articles, publications
prior to 1990, and non–peer reviewed publications resulted
in 7931 articles. The initial title and abstract screening for
eligibility criteria resulted in 54 articles selected for the full-
text review. Following the completion of full-text review
and hand-search reference screening, 29 studies satisfied the
inclusion criteria and were included in the present review.
The comprehensive article selection process is depicted
in Figure 1.

Characteristics of included studies
The included articles varied in study design and comprised
cross-sectional studies (n = 21), prospective cohort studies
(n = 5), a randomized crossover trial (n = 1), a single-arm
experimental trial (n = 1), and a randomized controlled trial
(n = 1). The quality of the studies was classified as very good
(n = 5), good (n = 20), fair (n = 4), and poor (n = 0).

A majority of the studies involved adult participants;
however, 4 studies examined infants (38, 41, 50, 51), and
6 studies evaluated carotenoid status in children (52–57). The
number of participants included in the studies ranged from
29 (15, 58) to 497 (59). The race/ethnicity of the participants
was variable amongst the studies. Six studies included racially
and ethnically diverse populations (53–57, 59), 13 studies
focused on predominantly Caucasian subjects (15, 22, 24–30,
38, 60–62), 2 studies only had participants from Thailand (52,
58), and 8 studies did not report the race or ethnicity of the
participants (23, 39–41, 50, 51, 63, 64).

Type of spectroscopy used
Three methods of skin carotenoid detection were used in
the included articles: RRS, RS, and spectrophotometers. A
majority of the studies (n = 20) used RRS to measure skin
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carotenoids, a technology developed by Werner Gellermann
et al. (31, 65). Seven studies used the NuSkin BioPhotonic
Scanner (Pharmanex), and 13 studies used unspecified
custom-built RRS devices. Seven of the studies used spec-
trophotometers to measure skin carotenoids; 4 studies (23,
25, 27, 28) used the CM700D spectrophotometer (Konica
Minolta), 2 studies (29, 30) used the CM2600D spectropho-
tometer (Konica Minolta), and 1 study (24) used the Spectro-
Guide 450 Gloss 6801 spectrophotometer (BYK-Gardner).
Two of the studies used RS to measure skin carotenoids using
the Veggie Meter device developed by Igor V Ermakov and
Werner Gellermann (59, 62). Information about the types of
spectroscopy devices is presented in Table 2.

Results of included studies
The included studies can be differentiated by the method
of comparison against spectroscopy technique. The efficacy
of spectroscopy as an objective biomarker for dietary intake
was compared against serum or plasma carotenoid concen-
trations, self-reported dietary intake data, or both serum or
plasma carotenoid concentrations and dietary intake data.

Spectroscopy and plasma or serum carotenoids.
Of the included studies, n = 11 articles compared spec-
troscopy with plasma (n = 3) or serum (n = 8) carotenoid
concentration using HPLC (Table 3). Multiple studies cor-
related spectroscopy to the combined total carotenoids in
the blood (39–41, 50, 51, 64) and other studies analyzed
both total blood carotenoids in conjunction with individ-
ual carotenoid analysis, such as α-carotene, β-carotene,
lycopene, lutein, β-cryptoxanthin, and zeaxanthin and cor-
related spectroscopy data with each specific carotenoid com-
pound (15, 28, 61–63). A majority of the studies analyzing
serum or plasma carotenoids used RRS with the exception
of 2 studies, 1 study using RS (62) and another using the
CM700D spectrophotometer (28).

The correlation coefficients between blood carotenoids
and spectroscopy ranged from strong positive correla-
tions to weak positive correlations. Of the studies eval-
uating blood carotenoids, most studies reported com-
bined total carotenoid concentration when compared with
spectroscopy-based skin carotenoids, unless specified. Two
of the studies (62, 64) using blood carotenoids as the com-
parison variable reported very strong correlation coefficients
(r = 0.81; P < 0.001), and 4 of the studies found strong
correlation coefficients [r = 0.78; P < 0.001 (40); r = 0.72; P
< 0.001 (15); r = 0.72; P < 0.01 (61)] and a linear regression
correlation (R2 = 0.75) (51). Three of the studies found
moderate correlations for mothers (r = 0.63; P < 0.001) and a
low correlation with infants (r = 0.39; P = 0.02) (41); r = 0.47;
P = 0.001 (39); r = 0.44; P = 0.01 (50). In 1 study that
specifically examined lycopene, a moderate correlation was
observed at pre (r = 0.450, P < 0.0001) and post (r = 0.56;
P < 0.0001) (63). Only 1 study (28) reported a relatively
weak correlation (r = 0.27; P < 0.05) when comparing the
CD700M spectrophotometer with plasma carotenoids. There TA
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were no discernible differences in correlation coefficient
strength between plasma and serum samples.

Spectroscopy and dietary intake.
Of the included studies, n = 12 articles correlated spec-
troscopy with dietary intake data using various subjective
dietary collection methods (Table 4). FFQs were used in
n = 7 (22, 24, 29, 30, 52, 54, 57), FFQ in conjunction with
the Automated Self-Administered Dietary Assessment Tool
(ASA-24) was used in n = 1 (55), the Australian Eating Score
was used in n = 2 (25, 27), the Australian Recommended
Food Score, and the Fruit and Vegetable Variety Index were
used in n = 1 (23), and a USDA resource quantifying F/V
servings per day was used in n = 1 (58). After recording
dietary intake data, carotenoid concentration was estimated
using the USDA National Nutrient Database for Standard
Reference (24, 52, 55, 58, 66), AusFoods and FoodWorks (25,
27), NutritionQuest (54, 57), the Fred Hutchinson Cancer
Research Center for quantification (22), the Australian Guide
to Healthy Eating and the Australian Dietary Guidelines (23),
the Canadian Nutrient File v2007b (29), or simply by the
servings of fruit and vegetables (30).

The correlation coefficients between self-reported dietary
intake and spectroscopy were lower than for spectroscopy
and serum or plasma carotenoid concentrations. The corre-
lations between spectroscopy and dietary F/V intake were
analyzed against multiple variables depending on the study
design; dietary intake of fruits and vegetables, total dietary
carotenoid intake, or individual dietary carotenoids were
used to determine a correlation between spectroscopy-
based skin carotenoid measurements and dietary intake as
displayed in the “Correlation outcomes” column in Table 4. In
terms of the strength of association between the studies com-
paring spectroscopy-based skin carotenoid measurements
with dietary intake, the studies differed in statistical method-
ologies, and therefore might not be directly comparable.
Studies using Pearson correlations found weak to moderate
correlation coefficients, with total dietary carotenoids having
the strongest correlation [r = 0.599; P < 0.001 (24) and
r = 0.52; P = 0.001 (54)] and weaker associations with
individual carotenoids, such as lutein (r = 0.197; P = 0.01)
and lycopene (r = 0.287; P = 0.01) (52). Studies using
Spearman correlations established weak to low correlations
ranging from ρ = 0.224 (P = 0.045) (30) to ρ = 0.47 (P <

0.001) (29). Additional methods of linear regression models
(β coefficient ± SE) were used to determine the relation
between spectroscopy-based skin carotenoid measurements
and dietary intake (22, 25, 27, 57). The studies comparing
spectroscopy with dietary intake used RRS (22, 52, 54, 55,
57, 58) or spectrophotometers (23–25, 27, 29, 30) to measure
skin carotenoid status or skin yellowness/redness.

Spectroscopy and both dietary intake and plasma or
serum carotenoids.
Of the included studies, n = 6 analyzed both dietary intake
and plasma or serum carotenoids to assess the criterion-
related validity of spectroscopy (Table 5). Of the studies
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analyzing blood carotenoids in conjunction with dietary
intake, a majority of the studies used RRS with the exception
of 1 study using RS (59). Of the 6 studies evaluating both
blood carotenoids and dietary intake, 3 studies analyzed
plasma carotenoids (26, 53, 59) and 3 studies evaluated serum
carotenoids (38, 56, 60). All of the studies analyzing blood
samples along with dietary intake used HPLC to quantify
the carotenoids in the blood except for 1 study that used the
LC-MS extraction method (59). To record dietary intake, a
variety of data collection tools were used, including FFQs
(26, 53, 59), FFQ in conjunction with ASA-24 (56), multiple-
day food recall diaries (38), and Fruit and Vegetable Intake
Scores (60). The nutrient analysis of the dietary intake data
was performed using the USDA food database (38, 56),
the National Cancer Institute standard algorithm, and the
Fred Hutchinson Cancer Research Center for quantification
(59), NutritionQuest (53), University of Minnesota Nutrition
Coding Center Nutrient Data System (26), or the NIH
prescribed algorithm for F/V consumption (60).

The correlation pattern mirrored the corresponding
studies that evaluated either blood carotenoids or dietary
intake, such that the correlation coefficients comparing total
serum or plasma carotenoids were all considered moderate
to strong correlations and ranged from r = 0.62 (P < 0.006)
(26) to r = 0.78 (P < 0.0001) (38). Although dietary intake
correlation coefficients were lower than blood carotenoids,
there were weak to moderate correlations with the skin
carotenoids varying from r = 0.38 (P = 0.016) (60) to r = 0.69
(P < 0.0001) (59).

Discussion
Summary of results
This systematic review examined current literature that val-
idated spectroscopy against blood measurements, reported
dietary intake, or both to investigate whether spectroscopy-
based skin carotenoid measurements are an objective, valid
biomarker of F/V intake. All 29 included studies found
statistically significant correlations between skin carotenoids
measured via spectroscopy and plasma or serum carotenoids
and/or dietary intake. Although the included studies dif-
fered in study design, population size, age, and participant
demographics, the evidence provided in all 29 studies
supports the use of spectroscopy as a proxy for F/V intake
when compared with blood carotenoids and/or self-reported
dietary intake. Overall, the strongest correlations existed
between spectroscopy and blood carotenoids; however, the
data supported statistically significant associations between
spectroscopy and blood carotenoids and/or self-reported
dietary intake in all of the included studies.

Although the data support the use of spectroscopy
as a noninvasive, objective biomarker of dietary F/V in-
take, additional research is warranted before spectroscopy-
based skin carotenoid measurements are considered an
equally valid biomarker of F/V intake as plasma or serum
carotenoids or validated dietary intake tools. Understanding
the metabolism, absorption, and storage of carotenoids

among all age groups, and under differing genetic and
environmental conditions, is essential to their accurate
detection in vivo. Increasing the methodological strength
through experimental study designs, such as randomized
controlled or crossover trials and dose–response studies, is
required to understand the efficacy of spectroscopy-based
skin carotenoid measurements as an approximation of F/V
intake in individuals or populations. In addition, expanding
future research to encompass more diverse populations will
improve the generalizability of this technique and the accep-
tance of spectroscopy-based skin carotenoid measurements
as a predictive biomarker of F/V intake.

Differences between spectroscopy devices
The 3 methods of spectroscopy all produced significant cor-
relations between dietary intake and/or blood carotenoids.
Of the articles included in this review, a majority used
RRS to quantify skin carotenoids. RRS has previously
demonstrated increased accuracy and precision in detecting
skin carotenoids compared with RS and spectrophotometers;
however, RS produced moderate to strong correlations,
whereas spectrophotometers produced weak to moderate
correlations. Previous research comparing the efficacy of
spectroscopy devices found spectrophotometer devices to
be more prone to error and chromophore interference than
RRS (44); to date, no such research has compared RS with
spectrophotometry. However, as reported in Tables 3–5, there
were no observable differences in the correlational strength
of the relations between method of detection and blood or
dietary intake. It is important to continue future research on
the sensitivity and specificity of the 3 methods to assess F/V
intake.

The 3 spectroscopy devices explored in this review have
limitations that could determine which device is most
appropriate for specific study purposes. RRS technically has
the capacity to detect different carotenoid molecules based on
the absorption detection spectrum; however, RRS is unable to
produce individualized scores for each carotenoid compound
(67). Different wavelengths have varying affinities depending
on the carotenoid compound; for example, at 514.5 nm,
lycopene exerts an excitation signal 6 times that of β-carotene
(68). Therefore, to examine individual carotenoid molecules,
the excitation wavelength must be predetermined depending
on the length of the conjugated carbon backbone (68). Thus,
the individual carotenoid isomers are measured collectively
with RRS, to avoid constantly recalibrating the wavelength
of the device. RS is dependent on the skin matrix and the
potentially confounding chromophores, such as melanin and
hemoglobin, that could affect the RS measurement (14). RS
is unable to differentiate between the carotenoid isomers
due to a more simplified spectral detection methodology,
and therefore presents only total dermal carotenoids as the
output (14). Spectrophotometers measure skin carotenoids
through the dermatological pigmentation of the skin, and
therefore are limited by the concentration of skin pigment
interference. For accurate evaluation of skin carotenoids
using a spectrophotometer, the participants must have a
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relatively fair complexion for the device to measure the
carotenoid compounds within the color spectrum (69).
These limitations should be considered when selecting a de-
vice for spectroscopy-based skin carotenoid measurements,
acknowledging that many factors, including participant
demographics and environmental conditions, can contribute
inaccuracies to spectroscopic detection.

Spectroscopy and blood carotenoids
Blood carotenoid concentrations were positively associated
with skin carotenoid status measured via spectroscopy.
Carotenoids are detectable in plasma or serum for ∼2 wk fol-
lowing initial consumption of carotenoid-containing foods
(15). In comparison, the deposition of carotenoids into
adipose cells increases the longevity of carotenoids in the
skin to ∼4 wk after dietary intake (15, 53). Carotenoids
in the plasma or serum can be analyzed as total combined
carotenoids or individual carotenoid compounds, whereas
individual carotenoids in the skin cannot be easily de-
tected. As previously confirmed by HPLC analysis of skin
tissue biopsies, human skin is relatively enriched in β-
carotene and lycopene compared with other carotenoids, and
these are found in increased concentrations in the blood,
indicating that spectroscopy could be more sensitive to
sources of these carotenoids than blood (68, 70). In contrast,
carotenoid compounds such as lutein and zeaxanthin are
more concentrated in the macula of the eye, and therefore
are not often associated with skin carotenoid concentrations
(20). Among studies that assessed individual carotenoids
in plasma or serum, the reported data confirmed stronger
correlations between skin carotenoid scores and blood-
derived α-carotene and β-carotene (60). Further research
into the relation of plasma or serum carotenoids and skin
carotenoids to assess F/V intake and the types of foods that
are reflected in the skin is warranted.

Spectroscopy and dietary carotenoids
Studies comparing spectroscopy with dietary intake found
positive and statistically significant associations between skin
carotenoids and F/V consumption or dietary carotenoids.
Among the studies that used self-reporting dietary recalls,
reporting bias was a major critique in recall accuracy
and was mentioned as a potential limitation in multiple
studies (54, 57). The variety of databases used to analyze
dietary intake could contribute to inconsistencies in nutrient
composition of food items, as does the ability of food
composition databases to reflect actual carotenoid content
of foods, consequently affecting carotenoid estimation. For
instance, processing and storage of fruits and vegetables
affects their carotenoid content. Thus, the use of an objec-
tive spectroscopy-based skin carotenoid assessment is very
appealing due to the decreased likelihood of subjective biases
and lack of reliance on nutrient databases. Additional cross-
validation studies of skin carotenoids compared with various
measures of subjective recall, particularly if skin carotenoid
status can be used as a covariate to strengthen dietary intake

analysis, would be valuable to the study of dietary intake of
fruits and vegetables.

Spectroscopy in diverse populations
Despite the studies in this review generating statisti-
cally significant correlations between spectroscopy, blood
carotenoids, and/or reported dietary intake, it is imperative
to acknowledge potential confounding variables, such as age,
sex, BMI, and race/ethnicity (71). The articles analyzed in
this review indicated that spectroscopy could be an effective
measure of carotenoid status in most ages, including infants,
children, and adults. Assessing infant carotenoid status
using spectroscopy is challenging due to the thin, delicate
skin of newborns and infants, resulting in subdermal laser
penetration beyond the epidermis, reducing the accuracy
of carotenoid detection. However, RRS scores in infants
were strongly correlated with serum carotenoids (R2 = 0.75)
in healthy infants, whereas there were relatively weak to
moderate correlations in premature infants (r = 0.44;
P = 0.01, and r = 0.52; P = 0.01), respectively (50, 51).
Scarmo et al. (57) detected high skin carotenoid scores along
with a positive association between age and skin carotenoid
status in a large population of preschool-aged children.
The age of participants is also considered as a potential
confounding variable due to the lack of knowledge regarding
carotenoid metabolism and aging (53, 71, 72). In addition
to the limited understanding of carotenoid metabolism, few
studies addressed the physiological changes that accompany
aging, which could result in difficulties detecting carotenoids
using spectroscopy (26, 27). Although only 1 of the studies
was conducted primarily in older adults, Bernstein et al.
(39) found a positive and significant correlation between
serum carotenoid and spectroscopy-based skin carotenoid
measurements. Mayne et al. (26) included the lack of older
adults as a study limitation and acknowledged the potential
differences with skin quality, skin thinning due to collagen
loss, and decreased energy intake that can affect the accuracy
of spectroscopy in this population. Although the included
studies reflected the ages across the lifespan, the sample sizes
in some of the studies were relatively small, and therefore
might not be generalizable to the broader population in that
specific age range.

Studies controlling for individual variability resulted in
differences in carotenoid status based on BMI classification
(25, 27, 53–59, 63). Nguyen et al. (53) found incongruencies
between reported dietary intake, skin carotenoids, and
plasma carotenoids and attributed this to the increased BMI
within a subgroup of participants due to the storage of
circulating carotenoids into adipose cells. To limit the effect
of BMI potentially altering skin carotenoid status, some
studies controlled for weight by only including nonobese,
adult participants with a BMI <30 (15, 24, 60). Additional
methods of stratifying analyses by weight or BMI percentile
were used to minimize the potential effect of adiposity
on skin carotenoid detection (51, 53, 55–57). It should be
noted that studies using BMI percentiles for stratifying data
analyses were conducted in study populations primarily
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consisting of child participants, and therefore extrapolating
these results to adult populations could result in inaccurate
assumptions.

Race and ethnicity can impact skin carotenoid measure-
ments due to the interference of confounding compounds,
such as melanin (14, 23, 24, 51). Melanin is detected within
a similar absorption spectrum as carotenoids, that is, 360–
560 nm (73). To minimize the effect of skin pigmentation,
many studies used the palm or the heel to measure skin
carotenoids, because there is minimal melanin interference
and an increased thickness of the stratum corneum to
prevent the laser from penetrating beyond the storage
location of carotenoids (26, 51, 53, 57, 62). RS accounts
for the potential melanin obstruction through an automatic
deconvolution algorithm to correct for residual melanin
and other biochrome compounds that can interfere in the
tissue site (74). Therefore, RS has a lower specificity for
the exclusive detection of carotenoid molecules due to the
potential error of this algorithmic computation (14). To the
authors’ knowledge, there have been no studies evaluating
the algorithmic correction in individuals with high melanin
concentrations, although it can be assumed that a larger
margin of error is associated with a higher concentration
of skin chromophores. With regards to RRS, it has been
observed that melanin interference can be easily corrected
by spectrophotometrically measuring the melanin content of
the skin and correcting for individual differences in skin pig-
mentation; however, these methods of correcting for melanin
interference cause RRS to underestimate skin carotenoids
whereas RS overestimates skin carotenoid status (14, 62, 75,
76). Ermakov et al. (62) investigated the effects of melanin
interference in carotenoid detection using both RS and RRS
and found that both methods had very low correlation
coefficients when compared with melanin indices, indicating
no significant association between melanin and RS or RRS.
Spectrophotometers specifically measure the melanin in the
skin and provide a melanin index, which can be used to adjust
for differences in melanin concentration (62, 77). However,
all 7 of the studies that used spectrophotometers included
in this review adjusted for potential melanin interference
by selecting predominantly homogeneous Caucasian sample
populations (23–25, 27–30).

Genetic factors can also influence carotenoid metabolism
and detection via spectroscopy (78). Jilcott Pitts et al. (59)
attempted to determine the effectiveness of spectroscopy to
measure skin carotenoids in a diverse population and found
that the association between self-reported total F/V intake
and RS-assessed skin carotenoids was nonsignificant among
African-American participants, although the association was
significant in a Caucasian subsample within the same study.
As discussed above, melanin might not be a significant con-
founder, suggesting a potential genetic difference between
races/ethnicities (59, 78). There are many regulatory proteins
involved in the uptake, transport, and cleavage of carotenoids
that could be susceptible to genetic modifications resulting in
alterations to protein transcription (78). These modifications,
including single nucleotide polymorphisms, can affect the

use or storage of carotenoids, thus resulting in inaccurate
reflection of dietary intake of fruits and vegetables (78,
79). It has been demonstrated through genome sequencing
that different ethnic groups display varying efficiencies of
carotenoid metabolism, and that ethnic origin should be
considered as a covariate when assessing skin carotenoids
using spectroscopy (79).

Spectroscopy and seasonality
Seasonality can affect skin carotenoid concentrations by
either reflecting differences in dietary intake of carotenoid-
rich foods or skin carotenoid oxidation by UV exposure (22).
Dietary data collected by Beccarelli et al. (54) showed sea-
sonal variations due to increased consumption of carotenoid-
rich autumn vegetables, such as sweet potatoes, compared
with springtime vegetables lower in carotenoids, such as
cucumbers. Other researchers have controlled for potential
seasonal effects of sun exposure on skin carotenoid status
by conducting studies during only 1 season (56). Mayne
et al. (26) evaluated skin carotenoid scores over a 6-mo
period in a climate with notable seasonal differences and
found no differences by season, with intraclass correlation
coefficients over the 6 time points that ranged from 0.85
to 0.89. In agreement with Mayne et al., a 1-y study by
Jahns et al. (80) found no differences in skin carotenoid
scores based on season; however, blood carotenoids were
lower in the summer, lending credence to the potential
of seasonality to affect skin carotenoid scores. Additional
studies are warranted to determine the effect of seasonality
on skin carotenoid status, and researchers should collect data
on season of measurement to test as a potential confounder
in statistical models.

Spectroscopy in nonclinical settings
A subordinate aim of multiple studies was to determine
the feasibility of using spectroscopy in atypical, nonclinical
settings. Community environments, such as daycare centers
(62), elementary schools (53, 54), small food (corner)
stores (59), and outdoor community parks (62) were all
locations assessed for field feasibility in both child and adult
participants. Jilcott Pitts et al. (59) and Scarmo et al. (57)
reported the average time it took to complete triplicate
measurements and found, respectively, that on average it took
∼94 s per participant to record triplicate measures using RS,
or 30 s per measurement using RRS.

Conclusions
The reviewed literature suggests that all 3 spectroscopy
methods are valid tools for quantifying skin carotenoids
as an approximation of F/V intake. The data collected
from spectroscopy-based skin carotenoid measurements
were positively and significantly correlated with blood
carotenoids and/or reported dietary intake, supporting the
use of spectroscopy as a valid biomarker of dietary intake of
F/V intake.
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Application of the findings
The data provided in this review support the use of
spectroscopy as a reflective measure of F/V intake in diverse
ages and racial/ethnic groups; however, more research is
required for these results to be extrapolated to the general
population. Many of the studies included in this review
conducted on-site data collection in various community
settings because spectroscopy provides a rapid and painless
measure of dietary intake in a matter of seconds. This
technology has the potential to enhance the health field
by providing information on dietary patterns and tracking
dietary behaviors to support preventive health services (26,
51, 61, 63). The consistent monitoring of carotenoid status
can increase early detection or track the progression of
various chronic diseases (51, 52, 61, 63, 81); however, current
methods of spectroscopy are unable to diagnose acute or
chronic diseases exclusively based on carotenoid status.

As a result of the successful implementation of spec-
troscopy techniques in the community setting, this method
could be used to assess the outcomes of nutrition in-
tervention programs in large, diverse populations (82).
Spectroscopy can provide an objective reflection of F/V
intake in children in the school setting (53, 54). This
rapid and quantitative assessment of skin carotenoids can
be an impactful method for evaluating nutrition-based
interventions because effective strategies to support obesity
and chronic disease prevention in both children and adults
are public health priorities (82).

Limitations of the review
It is imperative to acknowledge that the current review
presents several limitations. Although the findings were
established in diverse populations in different ages and
ethnic groups, a majority of the studies were cross-sectional,
or prospective cohort study designs, and therefore do not
provide the degree of evidence to prove causation that
results from randomized controlled trials. In addition, non–
whole food supplementation was an exclusion criterion to
complete the objective of this review—that spectroscopy is
a valid biomarker of F/V intake. High-dose supplementation
likely results in substantial increases in both spectroscopy-
based skin carotenoid measurements and plasma or serum
carotenoids; however, this is not indicative of normal
dietary intake as would be seen in nutrition surveillance or
intervention evaluation studies. Thus, we limited our review
to articles that did not include high-dose supplementation,
to investigate the sensitivity of the spectroscopy-based
skin measurement devices to detect changes in carotenoid
concentrations that are found naturally in fruits and veg-
etables. Additionally, the use of dietary supplements was
also excluded due to potential differences in bioavailability
and gastrointestinal absorption compared to dietary con-
sumption of fruits and vegetables (83). However, due to
this exclusion criterion, it was noted that multiple studies
were excluded that used natural food concentrates, such as
kale extract or high-carotenoid additives. Nonetheless, the
elevated concentration of carotenoids likely exceeded the

typical daily intake and therefore studies using any type of
non–whole food supplementation were excluded from the
review. Finally, it should also be recognized that due to
the high volume of potential articles retrieved during the
comprehensive literature search, only articles published in
English were considered for this review.
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