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ABSTRACT

The association between FokI polymorphism in the vitamin D receptor (VDR) gene and susceptibility to arterial hypertension (HT) is controversial.
Thus, we evaluated the relation between FokI and HT according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines using MEDLINE® (Medical Literature Analysis and Retrieval System Online)/PubMed, Scopus, and Cochrane Library CENTRAL databases.
Data from case-control studies, including the number of participants, age, 25-hydroxyvitamin D concentrations, systolic and diastolic blood pressure
values, FokI allele, and genotype frequency were extracted by 2 independent authors and OR was calculated with the 95% CI to assess the strength
of the association between the FokI variant and odds of HT. In general and subgroup analyses, we used allelic (f compared with F), common (ff
compared with FF + Ff ), risk (ff + Ff compared with FF), and additive (ff compared with FF) models. Six case-control studies including 3140 cases
and 3882 controls were reviewed in the meta-analysis. Global assessment revealed a correlation between FokI and reduced odds of HT in the
additive/homozygote model (ff compared with FF; OR: 0.65; 95% CI: 0.45–0.94) and common/recessive model (ff compared with FF + Ff; OR: 0.75;
95% CI: 0.57–0.99). In Asian subjects, there was a significant reduction in the odds of HT in additive (ff compared with FF; OR: 0.84; 95% CI: 0.73–
0.98) and risk models (ff + Ff compared with FF; OR: 0.87, 95% CI: 0.78–0.97), in particular, for Indians (South). In Africans, the statistically significant
association occurred in the additive and common models. Allele f in the FokI polymorphism of the VDR gene was associated with reduced odds
of HT in the general population based on the risk model. Thus, nutritional genomics can help understand the influence of nutrition on metabolic
homeostasis pathways and the clinical consequences of hypertension. This study shows the need for healthy, anti-inflammatory, and antioxidant
compounds to prevent or treat chronic complications. Adv Nutr 2020;11:1211–1220.
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Introduction
Arterial hypertension (HT) is a prevalent disease world-
wide. This complex and multifactorial disease, for which
the incidence rate increases progressively with increased
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age (1), represents a significant threat to the health and
wellbeing of several population groups as a risk factor for
cardiovascular illness (2). The impact of lifestyle changes
(smoking, sedentarism, obesity, and excessive consumption
of alcoholic drinks, calories, and sodium), age, sex, and
heredity affect arterial pressure (3). Healthy food intake plays
a central role in regulating chronic inflammation, a condition
that in response to HT damage leads to atherosclerotic plaque
rupture and thrombosis (4). Thus, the organism is altered
by diet, nutritional genomics, the interaction between diet
and genetics, the relation between diet and disease, and
the individual contribution of genotype to HT (5). Genetic
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factors influence the development of HT in 30–50% of cases
(6), especially polymorphisms that cause changes in vitamin
D metabolism (7, 8).

Therefore, vitamin D, by binding to its receptor
(VDR), classically acts on calcium, phosphorus, and bone
metabolism homeostasis, and extraskeletal functions such
as cell proliferation, immunomodulation, oncogenesis (9),
endothelial function, inflammation, and modulation of
renin-angiotensin-aldosterone system (RAAS) activity,
which in particular regulates blood pressure (10). Studies
have revealed an augmented risk of HT in people exposed
to low serum concentrations of 25-hydroxyvitamin
D (25 [OH] D), a biomarker of vitamin D status
(11–17).

In addition, in cardiovascular metabolism, the active form
of vitamin D, 1,25-dihydroxyvitamin D (1,25 [OH]2 D),
exerts its biological effects on myocardiocytes (18), binds to
the VDR, a transcription factor in the aortic endothelium
(19), and smooth muscle vascular cells (20).

Human VDR is the product of a single gene on chro-
mosome 12 at position 12q12–14. This protein mediates
the pleiotropic actions of 1,25(OH)2D by modulating the
expression of target genes (21). 1,25(OH)2D is a negative
endocrine-regulating hormone in the RAAS that acts by
inhibiting the expression of renin mRNA, regardless of cal-
cium metabolism, which is involved in bone function. These
biological activities of vitamin D are mediated by binding to
the VDR, in which single nucleotide polymorphisms (SNPs)
can cause changes in arterial blood pressure and contribute
to the onset of hypertension (22, 23).

One of the most widely studied SNPs in the VDR gene is
the polymorphism known as the FokI restriction fragment
(rs228570 or rs10735810), characterized as the replacement
of thymine with cytosine in the translation initiation codon
(AGT) on chromosome 12q13.1 of exon 2. Studies reporting
hypertension data have shown controversial results, with
some studies detecting a significant statistical association
between FokI and high blood pressure (24, 25) and others
showing opposite results (26).

FokI is the only VDR polymorphism resulting in an altered
protein length, which likely has functional consequences
such as vitamin D deficiency or excess formation and/or
denaturation of the active form of vitamin D (27). The variant
A or T (allele f) in FokI results in the production of the
complete protein (427 amino acids) with lower biological
activity compared with the polymorphic form containing
the variant G or C (allele F); variants G and C generate
a shorter protein of 424 amino acids. VDR with the FokI
genotype GG or CC (FF) results in increased VDR protein
activity compared to that with GA or CT (Ff) or AA or
TT (ff) genotypes (23, 28–31). Thus, dominant homozygotes
(FF) and heterozygotes (Ff) have a 2.2-fold higher risk of
hypertension than recessive homozygotes (ff) (25).

We performed a meta-analysis of case-control studies to
resolve the controversial results reported in previous studies,
aiming to assess the role of the FokI polymorphism in VDR
gene function and the odds of HT.

Methods
Search strategy
This study was performed according to the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (32). Two independent researchers
reviewed published studies in the MEDLINE® (Medical
Literature Analysis and Retrieval System Online)/PubMed,
Scopus, and Cochrane Library CENTRAL databases between
17 January and 24 February, 2019, using combinations of
3 keyword sets as follows: “Genetic and Hypertension and
Polymorphism VDR,” “Vitamin D and Hypertension and
Polymorphism,” and “VDR and Hypertension and FokI.”

Inclusion and exclusion criteria
Study selection was not limited by the time of year or by
sex, age, or ethnicity of the investigated individuals. We
selected studies that used a case-control design conducted
on humans, reporting the genotype frequency of hyperten-
sive (cases) and normotensive (control) individuals, which
enabled us to perform the meta-analysis. All studies analyzed
were published in English. We excluded studies on pregnant
women and animals, those conducted in vitro, transversal
studies, revisions, letters to the editor, and those that did not
report any results of the genotype and allele frequency for
the 2 population groups compared. For studies reporting the
same data more than once, we analyzed the publication found
in the first search and ignored the duplicate results.

Study analysis
After reading the complete text and subsequent discussion
between authors regarding this meta-analysis, the articles
were analyzed to determine the design type, population
characteristics, and main observed results. Study quality
was assessed using the Newcastle–Ottawa scale (NOS) (33),
which uses the “star” classification system and ranges from
0 (worst) to 9 (best). Studies with a score equal to or >7 were
considered high-quality studies and those with values equal
to or <6 were considered medium quality. Two investigators
independently assessed the quality of the included studies,
and the results were revised by a third investigator. Any
disagreements were resolved through discussion.

Statistical analysis
The software STATA (version 12.1; Stata Corp.) was used for
all statistical analyses. The analyses and comparison com-
pleted were considered exploratory. Genotype frequencies
were assessed using the χ2 test for the control group in
Hardy–Weinberg equilibrium (HWE; P < 0.05 was con-
sidered to indicate significant disequilibrium). Four genetic
models were used for the analyses; allelic (f compared with F),
common (ff compared with FF + Ff), risk (ff + Ff compared
with FF), and additive (ff compared with FF). The results
were expressed using the OR for dichotomic data with the
95% CI. A P value of 0.05 for the grouped OR was considered
statistically significant. I2 was used to test heterogeneity
between studies and assess the global association between
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FIGURE 1 Research flow chart.

the FokI polymorphism in the VDR gene and odds of HT.
Due to the varying participant characteristics and genotyping
methods used throughout these studies, we considered using
random effects models for all the analyses. For sensitivity
analysis, a single study was omitted at a time to determine
if the omission influenced the effects and heterogeneity
among studies. Stratification analyses were conducted to
identify possible sources of heterogeneity between variables
such as ethnicity, age groups, sample size, genotyping
methods, and control types. A funnel plot was used to
estimate publication bias among the studies included, with
Egger’s test and Begg’s funnel plot used in all comparison
models.

Results
Study characteristics
A scheme of the study selection process is shown in
Figure 1. The initial literary search revealed 583 publica-
tions. After reading the titles and abstracts of the studies,
12 potential studies were included, and their complete text
was read. According to the inclusion criteria, 6 case-control
studies comprising 3140 HT patients and 3882 normotensive
controls were selected for final analysis.

The analyzed studies included both male and female
subjects from several continents including Europe (n = 3)
(27, 34, 35), Asia (n = 2) (36, 37), and Africa (n = 1) (38). The
main characteristics of the selected studies are summarized
in Table 1, including the following: first author, year of
publication, original country of the researched individuals,
genotyping method of the FokI polymorphism, the number
of participants, average values and age SE, 25(OH)D, and
systolic (SBP) and diastolic blood pressure (DBP). Notably,
all studies (100%) scored 5 stars or more according to the
NOS, supporting the quality of the publications. Cottone TA
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TABLE 2 Genotypic and allelic frequencies of VDR FokI polymorphisms in the studies included in the meta-analysis

Genotypic frequencies (FF/Ff/ff) Allele frequencies (F/f)

Author Case Control Case Control HWE (P)

Swapna (35) 150/100/30 68/102/30 400/160 238/162 0.41
Glocke (39) 36/52/13 75/102/31 124/78 252/164 0.70
Cottone (34) 36/30/5 29/36/7 102/40 94/50 0.38
Jia (36) 756/1180/472 910/1500/648 1936/1652 2410/2148 0.52
Errouagui (37) 120/91/9 79/74/21 211/100 153/95 0.57
Gussago (27) 45/40/10 79/63/21 130/60 221/105 0.14
HWE, Hardy–Weinberg equilibrium; VDR, vitamin D receptor.

et al. (34) used the following exclusion criteria for study
participants; secondary or malignant hypertension, diabetes
or fasting glucose ≥126 mg/dL, heart failure, positive history
or clinical signs of ischemic heart disease, cerebrovascular
disease, renal disease, and major noncardiovascular diseases.
Glocke et al. (39) evaluated 2 groups of volunteers; over and
aged under 90 y. Gussago et al. (27) evaluated those aged
over 100 y and those aged 70–79 y. Jia et al. (36) evaluated
individuals with a self-reported history of chronic kidney
disease, liver disease, or cancer. Swapna et al. (35) did not
include individuals with diabetes and cardiovascular disease.
Errouagui et al. (37) included sex-matched healthy controls.
The distribution of genotypes and P values for HWE of
the controls are shown in Table 2. Among the controls, the
genotype distribution of FokI in all 6 studies was included in
HWE.

Meta-analysis
Pooled ORs were calculated to determine the global asso-
ciation between the FokI polymorphisms in the VDR gene
and the odds of HT. Our analysis revealed no odds of
HT based on the FokI polymorphism in the VDR gene in
the model considering the presence of the variant allele (f
compared with F: P = 0.05; OR: 1.21; 95% CI: 1.00, 1.46)
and the risk/dominant model (ff + Ff compared with FF:
P = 0.06; OR: 0.77; 95% CI: 0.58, 1.01). In contrast, the
additive/homozygote model (ff compared with FF: P = 0.02;
OR: 0.65; 95% CI: 0.45, 0.94) and common/recessive model
(ff compared with FF + Ff: P = 0.045; OR: 0.75; 95% CI: 0.57,
0.99) revealed an association between a decreased odds of HT
and FokI polymorphism in the VDR gene (Figure 2A–D).

To broaden the heterogeneity investigation, we conducted
subgroup analyses (Table 3). To evaluate the effect of

FIGURE 2 A–D. Forest plot of genetic models; A: f compared with F, B: ff compared with FF, C: ff + Ff compared with FF, and D: ff
compared with FF + Ff.
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FIGURE 3 Analysis of the funnel plot to detect publication bias from 6 eligible studies. A: f compared with F, B: ff compared with FF, C:
ff + Ff compared with FF, and D: ff compared with FF + Ff. Circles represent the weight of individual study. log, logarithm.

geographic differences on the global estimates, studies were
classified as Asian, comprising 2 groups, namely Eastern
(China) and Southern (India), European (subdivided as
Italians and Germans), and Africans. Regarding ethnicity, we
found an increased odds of HT in the Asian (f compared with
F; OR: 1.09; 95% CI: 1.01, 1.19; P-heterogeneity <0.0001)
and Southern Asian (f compared with F; OR: 1.70; 95% CI:
1.30, 2.23) populations under the allelic model. However, in
Asians, an inverse association was observed with the additive
model (ff compared with FF; OR: 0.84; 95% CI: 0.73, 0.98;
P-heterogeneity = 0.003) and risk model (ff + Ff compared
with FF; OR: 0.87; 95% CI: 0.78, 0.97; P-heterogeneity
<0.0001). In parallel, this was the same for Indians (South)
in the additive and risky genetic models. In Africans, the
statistically significant association occurred in the additive
and common models.

An analysis of studies divided according to the subjects’
age revealed an association with HT in adults based on all
genetic models as follows: allelic (f compared with F; OR:
1.10; 95% CI: 1.01, 1.20; P-heterogeneity = 0.002), additive
(ff compared with FF; OR: 0.81; 95% CI: 0.70, 0.94; P-
heterogeneity = 0.001), risk (ff + Ff compared with FF;
OR: 0.85; 95% CI: 0.77, 0.95; P-heterogeneity <0.0001),
and common model (ff compared with FF + Ff; OR: 0.87;
95% CI: 0.76, 0.98; P-heterogeneity = 0.02). In addition,
when categorized by both sample size (>500 or <500),
with a cut-off point of 500, PCR-restriction fragment length

polymorphism (RFLP) genotyping, and health condition of
the control group, an association between FokI polymor-
phism and HT in all genetic models was revealed.

Sensitivity analysis.
Sensitivity analysis to test the data quality revealed no altered
outcomes in overall and subgroup comparisons, indicating
the statistical stability of the findings.

Publication bias.
A funnel plot was generated to estimate the publication bias
among the studies included in this meta-analysis (Figure
3A–D). The shape of the funnel plots revealed no evidence of
publication bias in the genetic models used for the following
comparisons: f compared with F, ff compared with FF, ff + Ff
compared with FF, and ff compared with FF + Ff.

Conclusions
The VDR gene is a good candidate to study arterial HT, which
is affected by the complex interactions among genetic and
environmental factors (36, 37). Several genetic variants are
involved in this multifactorial disease, such as SNPs, showing
phenotypic effects and the ability to alter gene expression. In
this context, FokI is considered a functional polymorphism of
VDR, as it produces an altered protein. Considering that this
SNP is not in linkage disequilibrium with other SNPs on the
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FIGURE 4 Metabolic interaction among vitamin D, FokI, and cardiovascular disease risk. SNP, single nucleotide polymorphism; UVB, UV
radiation B; UTR, untranslated region; VDR, vitamin D receptor; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)2D3, 1,25-dihydroxyvitamin D3.

VDR gene, its associations with genotypes are independent
markers (23).

The short version of the protein (genotype FF) likely
has an elevated transcriptional activity compared with the
longer protein, as it is more responsive to 1,25(OH)2D,
supporting differences in VDR functionality and the effect
of vitamin D on cells and tissues (38). In 2000, an in vitro
study confirmed that the SNP FokI-f results in a lower
transcriptional activity than the specific RNA polymerase II
transcription factor, having a protective effect against vitamin
D deficiency, because of its influence on the circulating
vitamin D concentrations and cardiovascular disease risk
(29).

Low concentrations of 25(OH)D combined with FokI have
been associated with increased plasmatic renin activity and
RAAS (35), supporting the biological role of 1,25(OH)2D in
inhibiting renin expression in humans. This might increase
cardiovascular and metabolic risks (40). A previous meta-
analysis detected an inverse linear association between
1,25(OH)2D and cardiovascular disease risk (41), indicating
that the genomic effects of 1,25(OH)2D are mediated in a
wide variety of tissues by VDR (42) (Figure 4).

The present meta-analysis tested the strength of the
association between FokI and the odds of HT based on 6 case-
control studies, as by grouping data from individual studies,
the probability of random errors is reduced. Additionally,

the surveys included in the meta-analysis were scored with
5 or more stars according to the NOS criteria, suggesting
the excellent quality of the publications, considering that
the sample size, genotype, inclusion criteria, and patient and
control subject characteristics were successfully obtained.

Data analysis has consistently demonstrated the influ-
ence of FokI on HT. Allele f was found to be associated
with a significantly lower odds of HT in global analy-
sis under the additive/homozygote and common/recessive
genetic models (Figure 2B, D), particularly in the Asian
population and specifically in the southern population,
under the risk/dominant, additive/homozygote, and com-
mon/recessive models. However, the results were not signifi-
cant for Europeans (Table 3).

These data might be explained by ethnic differences, as
the SNP FokI plays a multifunctional role in HT and varies
among ethnic populations, indicating the influence of genetic
and environmental factors. The ethnic populations evaluated
in this study were well-defined. Studies on mixed populations
are needed, such as the previous study on Brazilians (43), to
assess the impact of ethnicity more accurately.

Notably, the expression and role of VDR in transactivating
target genes are determined not only by genetics but also by
ethnicity and the environment and involve complex interac-
tions that can alter associations with the disease. The impact
of debilitating variants on VDR function can be exacerbated
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by vitamin D deficiency or the reduced cutaneous production
or inadequate ingestion of vitamin D (44). To the best of
our knowledge, this is the first meta-analysis to evaluate the
association between HT and the SNP FokI; however, unique
nucleotide polymorphisms of VDR have been widely studied
in other diseases such as tuberculosis, multiple sclerosis,
systemic lupus erythematosus, asthma, cirrhosis, and cancer
(45). This meta-analysis included only specific cases of HT
from relevant studies. In addition, the results have been
corroborated by other experimental studies (46–48), which
could not be included in this meta-analysis because they did
not meet the eligibility criteria.

Regarding the role of SNP FokI in other chronic diseases,
Liu et al. (49) analyzed its association with psoriasis but the
results were not significant for Caucasians and East Asians. In
contrast, Alizadeh et al. (50) found no significant association
between SNP FokI and coronary artery disease (CAD) based
on a general analysis in Caucasians and East Asians. Recently,
Shi et al. (51) observed no relation between this SNP and
susceptibility to polycystic ovary syndrome. However, Liu et
al. (52) showed that FokI is a susceptibility factor for ovarian
cancer. Further, Zhao et al. (53) found an increased risk
of intervertebral disc degeneration in Hispanics and Asians
with the f allele and Lu et al. (54) suggested that FokI protects
against CAD. Cao et al. (55) found that homozygosis is
associated with an increased risk of tuberculosis, particularly
in East and Southeast Asia, and Jiao et al. (56) observed that
the F allele is associated with a decreased risk of diabetic
retinopathy in Chinese subjects.

Whether FokI increases disease susceptibility remains
unclear. Our meta-analysis demonstrated that the FokI poly-
morphism in the VDR gene is significantly associated with
HT; particularly the f allele, which is considered protective.
Our results appear to be reliable based on the statistical
power of the 6 studies and the funnel chart, which did not
indicate publication bias, as the data were analyzed based on
ethnicity. Additionally, heterogeneity was significant in the
general analysis.

One limitation of this meta-analysis is the limited sample
size used in some of the subgroup assessments, which
might not represent the whole population. The publications
were restricted to those in English, which could have also
introduced bias in the data analysis. Moreover, a limited
number of electronic databases were examined.

Another limitation of this study is the risk of making a
type I error due to multiple test results, considering that all
analyses were exploratory. To reduce this risk, the α-value of
5% was adopted, the value which is most commonly used in
research.

Additional studies are needed to understand the mecha-
nisms underlying the association between SNPs and VDR,
such as 25(OH)D and 1,25(OH)2D concentrations, and
SBP and DBP. Thus, our results should be considered
with caution, and large-scale case-controlled studies are still
needed to validate our findings.

Studies are also needed to evaluate the functional activity
of the normal VDR protein (ff) compared with that of

FIGURE 5 Cycle of nutritional genomics. SNP, single nucleotide
polymorphism; VDR, vitamin D receptor.

the truncated protein (FF) (57). Moreover, the possible
interactions among epistatic genes should be evaluated to
identify combinations of genes that synergistically influence
the regulation of blood pressure and HT (6) and reveal the
physiopathological mechanisms underlying hypertension, as
SBP and DBP are associated with FokI (58).

In addition, nutritionally balanced food consumption is
important, from birth to old age, for the control of blood
pressure throughout the life of an individual (59). Adequate
supplementation with vitamin D, dietary intake of vitamin
D nutrient sources, fortified foods and supplements, and/or
exposure to sunlight to reach adequate concentrations of this
vitamin might be useful to prevent cardiovascular diseases
(60). Long-term clinical and random control studies are
needed to confirm these associations, which might enable the
correction of vitamin D deficiency in individuals with and
without the FokI polymorphism (61).

Thus, a genetic variant could influence the response to
dietary factors and modulate the risk of disease development.
In addition, the epigenome responds to environmental
changes and depends on the individual’s lifestyle. Adequate
vitamin D intake and/or supplementation response rate,
categorized into low, medium, and high responders, might
change due to aging or the onset of diseases such as high
blood pressure (62). Thus, the evaluation of gene-nutrient
interactions is vital for public health policies worldwide to
identify prevention strategies, such as the practice of healthy
eating, in each country (63) (Figure 5).

However, most studies do not analyze genetic and en-
vironmental factors together, limiting the broad analysis
of this theme. The studies selected for the present meta-
analysis did not reveal data on participants’ usual dietary
intake, vitamin D supplement use, the nutritional content
of macronutrients or micronutrients, and especially vitamin
D, or energy. The authors also did not try to evaluate such
variables associated with diet, which could also be associated
with FokI polymorphism, and reveal more information on its
influence on hypertension.
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