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ABSTRACT

Evolutionary selective pressure on lactation has resulted in milk that provides far more than simply essential nutrients, delivering a complex
repertoire of agents from hormones to intact cells. Human infants are born with low barrier integrity of their gut, which means that many of
the complex biopolymer components of milk enter and circulate in lymph and blood, reaching organs throughout the body. Due to this state of
gut maturation, all components of milk are potentially part of the crosstalk between mother and infants. This article highlights the functions of
milk’s complex biopolymers, more specifically the potential role of microRNAs (miRNAs) contained in extracellular vesicles in human milk. miRNAs
are key effectors in the regulation of many biological processes during early-age development, and consequently milk-sourced miRNAs must be
considered to provide unique biological assets to the infant during breastfeeding. This article interprets the evidence of the potential action of
human milk miRNAs on infant development, taking into account their abundance in milk based on the literature and current knowledge. Human
milk miRNAs appear to influence lipid and glucose metabolism, gut maturation, neurogenesis, and immunity. We also show growing evidence
that human milk miRNAs are epigenetic modulators that play a pivotal role in the regulation of tissue-specific gene expression throughout life.
Furthermore, this article addresses the ongoing debate regarding the potential influence of human milk miRNAs on viral infection as a new research
area. This article highlights that these bioactive molecules are now being incorporated into our overall understanding of nutrient needs for healthy
infant development, preparing each individual infant to succeed as a healthy and protected adult throughout its life. In essence, miRNAs are a new
language in the Rosetta stone of health that is mammalian lactation. Adv Nutr 2021;12:1625–1635.

Statement of Significance: This manuscript presents analyses that are new in the field.
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Introduction
The emergence of lactation as the sole source of nourishment
for neonatal mammalian infants has been central to the
success of mammals (1), providing a complete system of
nourishment. The composition of milk has been a singularly
valuable guide for nutrition scientists to identify nutrients,
their quantitative requirements, and various mechanisms
that ensure their successful absorption (2, 3).

The current paradigm for nourishment is that biopoly-
mers, including proteins, saccharides, polynucleotides, and
complex lipids, are denatured by stomach acid, dispersed by
bile acids, and attacked by endogenous hydrolytic enzymes.
This adult model envisions a milk digestive process that
rapidly leads to the release and complete absorption of
monomeric amino acids, sugars, nucleotides, and lipids by
the intestinal epithelia (4). However, human infants are

developmentally naive, produce little gastric acid or bile
acids, and express low levels of digestive enzyme activities
(5). As a result, the infant is exposed to far more of the
components of milk intact. Additionally, the lower barrier
integrity of the infant intestine means that many of the
complex biopolymer components of milk enter and circulate
in lymph and blood, reaching targets throughout the infant
and playing a role in establishing immunity in newborns
(6). The chemical and biological examination of milk must
now consider the functions of those intact and semi-intact
biopolymers and the ensembles of molecules from the
mammary gland in the infant.

The most innovative opportunity for milk research is to
discover the targets on which milk acts to protect infants,
support development, and prevent diseases proactively (7).
With the goal of identifying mechanisms of “function for
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prevention,” multiple independent biopolymers have been
selected for efficacy as ingested components towards the
targets that guide the success of the mother-infant dyad.

Neonates and infants are particularly challenging as
models of biological functions because all of their complex
systems are actively proceeding through their development
processes. Many systems (e.g., cardiovascular, respiratory,
gastrointestinal) undergo significant changes at birth, and
many others (such as neural systems) have not yet completed
their development.

Human milk (HM) contains a complex combination of
lipids, proteins, carbohydrates, and minerals that are essential
for infant growth, development, and immune system (8,
9). Identifying and annotating the complex repertoire of
milk components is part of the daunting scientific task.
Evidence has shown the importance of milk constituents
for infant development. For example, milk lipids illuminate
the complexity of milk’s diverse roles in infant nutrition.
Their presence and abundance are the keys to diverse levels
of metabolic regulation, from subcellular compartments to
whole-body energy control and signaling (10). Intensive re-
search over the last decade has highlighted oligosaccharides
as having a very important role in infant development, in
particular, acting on the gut microbiota (GM) (11). More
recently, scientists have focused on nucleic acids present in
milk. Life scientists have now recognized that cells transcribe
far more RNAs than simply those encoding structural
proteins.

Of special interest are microRNAs (miRNAs), which
are now considered key regulators of numerous biological
processes (12). They are actively secreted out of cells that
synthesize them, including in milk. The discovery of miRNAs
in milk in significant amounts has led the scientific milk
community to focus their attention on the potential role
of milk in the health of infants (13–15). In this article, we
provide evidence in support of the multieffector strategy of
milk and the use of miRNAs in milk as a conceptual window
into the targets of those tactics. After a brief description of
miRNA biogenesis and evidences of food-source miRNAs
in humans, this article focuses on small noncoding RNAs
(miRNAs) in human breast milk and their potential effects on
infant development, finishing with the concept of their role in
counteracting viral infections.
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MicroRNA Biogenesis
miRNAs are small noncoding RNAs [∼22 nucleotides (nts)]
transcribed by RNA polymerase II as part of “pri-miRNAs”
(16, 17). Each pri-miRNA forms a hairpin that is a substrate
for the Drosha-DGCR8 complex (18). Drosha has 2 RNase
III domains that each cut the pri-miRNA hairpin, liberating
a ∼60-nt stem-loop called a “pre-miRNA” (19). This pre-
miRNA is exported to the cytoplasm via exportin 5 and
RAN(RAS-related Nuclear protein)-GTP) (20–22), where
Dicer, an endonuclease with 2 RNase III domains, cuts both
strands near the loop to generate the miRNA duplex. Then,
the miRNA duplex is loaded into an Argonaute protein with
chaperone proteins (HSC70/HSP90) to expulse the second
strand of the duplex (named miRNA∗) to form the mature
silencing complex (23). Next, the miRNA targets mRNAs by
base pairing to direct their posttranscriptional repression.
miRNAs control various biological processes and are thought
to regulate ≥60% of genes at the posttranslational level (12,
24). miRNAs have been described as participating in the
crosstalk between cells in the same organ (25). However,
their isolation from extracellular vesicles (EVs; so-called
exosomes) in bodily fluids (as serum) emphasizes their
function in the crosstalk between organs (26, 27).

Milk miRNAs as Food-Sourced miRNAs
There is increasing evidence of the presence of plant food–
sourced miRNAs in human plasma (28). As an example, miR-
168a, an abundant miRNA in rice, was detected in the sera
and tissues of the Chinese population. This exogenous plant
miRNA could target the human LDL receptor adapter protein
1 (LDLRAP1) mRNA, inhibiting its expression in liver
(29). Similarly, a negative correlation between plant miR-
159 and breast cancer incidence and progression was shown
in a Western population (30). Such studies suggest cross-
kingdom action of dietary intake miRNAs and demonstrate
that miRNAs acquired orally through food intake influence
human gene expression after migration through the plasma
and delivery to specific organs (31, 32). The functional
influence of ingested miRNAs on organisms consuming them
has already emerged as a new signaling system affecting the
physiology of consumers through modulation of host gene
expression profiles.

The detection of miRNAs in milk has served as a
starting point for studies investigating the role of miRNAs,
their transfer to and from milk and potential impact
on consumers, and of course, better characterization of
miRNAs in milk. Thus, miRNAs were detected in different
compartments of milk, such as milk fat globules and
exosomes (33–35). A comparison between different fractions
of milk showed that the milk lipid fractions contained higher
concentrations of miRNA compared with skim milk (33).
Milk fat globules have proven to be a complex window to the
miRNA repertoire of the mammary gland, with discrepancies
(35, 36) due, at least in part, to the secretion mechanisms
of milk fat globules (37, 38). Discouragingly, few studies are
dedicated to the survival or to the effects of milk fat globule
miRNA on infants.
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Conversely, the potential biological effects of milk EVs
containing miRNAs have been demonstrated both in vitro
(39) and in vivo (40), suggesting a role of dietary miRNAs.
The stability of miRNAs, including those in milk under
various harsh conditions, has led investigators to suggest that
their packaging in milk EVs has the net effect of protecting
them (41), thus allowing their survival in the gut intestinal
tract of offspring (29). This is an important step in the
delivery of dietary EVs and their cargo, as reported in human
vascular endothelial cells with bovine milk (42). However,
few studies have reported the lack of transfer of miRNAs
from milk to mouse tissues (43, 44). The disagreement
between the 2 competing hypotheses could be due to actions
modulated by their packaging within “transporting vehicles,”
which play an important role in their transfer and action
in the consumer (33, 45). Exosomes containing miRNAs
protect them against degradation and facilitate their uptake
by endocytosis in bovine milk and HM (46, 47). In vitro
studies have revealed the survivability and complexity of
HM exosome miRNAs upon simulated gastric/pancreatic
digestion (48), demonstrating the same ability as preterm
milk exosomes (49), suggesting their functional and nutritive
role (50). This is confirmed by the in vivo detection in
different tissues (such as intestinal mucosa, spleen, liver,
heart, and brain) of fluorophore-labeled synthetic miRNAs
administered in milk exosomes to mice and pigs (51).
Because miRNAs regulate numerous biological processes,
their involvement in infant development is indubitable, and
crossing through the intestinal barrier is one mechanism of
this action.

The Potential Effects of Breast Milk EV miRNAs
on Newborn Development
The abundance of miRNAs in milk and their persistence
in milk across millennia of selective pressure argue that
they play important roles in the postnatal development of
mammalian neonates. Here, we performed a functional an-
notation of miRNAs present in human breast milk exosomes
with recent advances in the understanding of their function
related to infant development. Their potential action is
predicted from the influence of miRNAs on metabolism, gut,
neurogenesis, immunity, and epigenetics.

Strategy
We used CAB Abstract (via Ovid at UC Davis Library)
and PubMed to search for articles referring to the effect of
miRNA on development, avoiding those related to diseases.
We focused on 5 main functions that have an important
impact during the first weeks of development in a newborn
just after birth when the intestine wall is thin and still
under development. The thin intestine wall could more
easily allow miRNA–target interactions. The keywords that
were used for the search were miRNA, immunity, lipid,
glycerol, glucose, gut, intestine, epithelium, neurogenesis,
and neuron. We focused on metabolism (lipids and glucose),
gut maturation, neurogenesis, and immunity. We searched
miRNAs regulating these functions. Then, we took into

account only miRNAs detected in HM exosomes (48). The
abundance was also taken into account on the basis of the
total of read counts calculated from Liao et al. (48) with the
categories defined as grade A > 250.00, 250.00 ≥ B > 150.00,
150.00 ≥ C > 50.00, and 50.00 ≥ D > 0 sum of the
total normalized read counts. We identified 32, 86,170,
and 302 miRNAs in grades A, B, C, and D, respectively
(Supplemental Table 1). Then, we created a list of the
miRNAs that have a potential role in the selected functions
based on the rank of abundance (Table 1).

The ranking allowed evaluation of the bioavailability of
each miRNA. In this Perspective article, we chose to discuss
only the high- and medium-ranking miRNAs. We assume
that very low concentrations of miRNA in milk are less
captured by the intestinal cells and thus have less effect on
the infant. However, it should be noted that considering that
exosomes protect their cargoes against the intestinal environ-
ment (low pH, enzymatic activities, etc.), we cannot exclude
that miRNAs in very small quantities might also have effects.

Potential of human milk miRNAs in infant lipid
metabolism
An increasing number of publications report the effects
of miRNAs on metabolism regulation. Such miRNAs
underlying metabolic regulation were detected in HM
(Table 1; Figure 1). Indeed, we identified highly expressed
miRNAs in HM that were shown to target genes involved
in lipid metabolism, such as miR-182-5p, miR-148a-3p, and
miR-22-3p, which were among the top 25 most abundant
miRNAs in HM exosomes (48). They regulate the expression
of the AGPAT6 gene (coding for 1-acylglycerol-3-phosphate
O-acyltransferase 6), having a direct effect on the synthesis
of triacylglycerol and long-chain acyl-CoA fatty acids in cells
(52). Lipid metabolism could also be regulated by miR-26a,
which regulates glucose and lipid metabolism in the liver
of mice fed a high-fat diet (53), and miR-30a-5p has been
reported to influence fatty acid synthesis by regulating the
expression of THEM4 (Thioesterase Superfamily Member 4), a
member of the thioesterase superfamily (54). let-7f-5p (rank
A for abundance) is a member of the large let-7 family.
This family is highly conserved across species in sequence
and function (55). let-7f-5p (rank A) was also identified as
potentially targeting mRNA coding for AGPAT6, which is
an enzyme involved in the synthesis of triacylglycerol (52),
and mRNAs coding for stearoyl-coA desaturase and fatty
acid desaturase 2, two enzymes catalyzing the biosynthesis of
PUFAs, which play pivotal roles in many biological functions.
In addition, the members of this family, let-7f, are proposed
to regulate stem cells by promoting differentiation during
development (56). In addition to these highly abundant
miRNAs (rank A) in HM, miR-33 detected with a lower
abundance (rank C) has also been reported to influence
lipid metabolism. miR-33∗ (miR-33a and miR-33b) is located
within sterol regulatory element-binding protein (SREBP)
genes and is well known as a key transcription factor
regulating lipogenic gene expression. mir-33∗ regulates host
gene expression and therefore lipid metabolism (57, 58).

Milk miRNAs for infant health 1627
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FIGURE 1 Potential effects of human milk exosomal microRNAs (miRNAs) on infant development. The font size and color of each miRNA
corresponds to the abundance classification. The classification was based on the total count reads reported by Liao et al. (48) with
A > 250.00, 250.00 ≥ B > 150.00, 150.00 ≥ C > 50.00, and 50.00 ≥ D > 0 sum of the total normalized read counts (Supplemental Table 1).
miRNAs playing a role in ≥2 functions are in bold. miR, microRNA.

Potential of human milk miRNAs in infant glucose
metabolism
In addition to their action on lipid metabolism, miR-33 and
miR-26a are also depicted as influencing glucose metabolism.
miR-33b is reported to inhibit the expression of phos-
phoenolpyruvate carboxykinase and glucose 6-phosphatase,
2 key enzymes of hepatic gluconeogenesis leading to the
regulation of glucose production (60). The involvement of
hepatic miR-26a in glucose metabolism, lipid metabolism,
and insulin signaling through the regulation of critical
metabolic genes suggests miR-26a is a promising novel target
for the treatment of obesity-associated metabolic syndrome
(53). miR-33a and miR-143, both present in HM EVs,
have been associated with glucose homeostasis and energy
metabolism in a model of Per-Arnt-Sim kinase (PASK)–
deficient mice fed a high-fat diet (80). The action of miR-
143 on glucose homeostasis has also been identified in
mice overexpressing this miRNA (59). Additionally, adipose
glucose homeostasis and insulin sensitivity are reported to
be regulated by miR-181b, which is abundant in HM EVs
(61). All these data suggest a potentially important role of
HM miRNAs in metabolism influencing the development of
infants and therefore their immediate health as well as their
future.

Potential of human milk miRNAs in the infant gut
An expected potential role of breast milk miRNAs is in
gut maturation and function. Our analysis identified ≥4
miRNAs or families of miRNAs with high abundance and
potentially influencing gut function and structure (Table 1;

Figure 1). This influence is particularly important due to
the permeability of the gut during the first days of life.
Intestinal epithelial cells play a fundamental role in the
selective absorption of nutrients. They are also a major source
of immunoregulatory cytokines and a critical part of the
physiological epithelial barrier (81). As mentioned above,
studies have demonstrated the interaction of milk EVs and
intestinal epithelial cells (14, 47), suggesting their regulation
by HM miRNAs. Thus, miR-99b, which is very abundant
(rank A) in milk, is known to enhance intestinal MFG-E8
(also known as milk fat globule membrane protein) and
restore enterocyte migration (64). The miR-200 family, which
is also abundant in HM EVs, is known to influence epithelial-
mesenchymal transition (EMT), which has a key role in the
structure of epithelia. The members of this family are critical
gatekeepers of the epithelial state, restraining the expression
of promesenchymal genes that drive EMT (65). miR-200c was
shown to regulate several important signaling pathways, such
as transforming growth factor β , PI3K/Akt (Phosphoinosi-
tide 3 Kinase/protein kinase), Notch, and NF-κB signaling
(82). miR-200/375 are also reported to control epithelial
plasticity–associated alternative splicing by repressing the
RNA-binding protein Quaking (QKI) known to directly
bind to and regulate alternative splicing targets (65). The
miR-200/miR-375/QKI axis exerts pleiotropic effects, such
as increasing cell migration and invasion. Another member
of this family, miR-200b, inhibits tight junction disruption
of intestinal epithelial cells in vitro (62). Similarly, intestinal
epithelial barrier function is modified by miR-21 (63), which
is also abundant in breast milk EVs. Gastrointestinal tract
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function is influenced by the microbiota. The GM plays an
important role in host metabolism and therefore regulates
a large number of biological processes. The GM interacts
with its host, working together to maintain symbiosis (83).
miRNAs have been shown to act in the intercommunication
between the host and GM (83, 84). This intercommunication
includes an influence of the GM on host miRNA expression
but also an influence of host miRNAs on the GM (83).
miRNAs can enter bacteria and thus regulate their growth
(84). Because the GM is shaped by many factors, including
host diet (85), we can hypothesize that dietary miRNAs could
influence the GM. However, these potential effects are still
unknown. In particular, the role of milk miRNAs in human
neonates and their effects on GM are unidentified.

Role in neurogenesis
To date, few highly abundant miRNAs present in breast milk
EVs are known to influence neurogenesis (Table 1; Figure 1),
and in vivo studies have been performed in rodents. The
most abundant miRNAs belong to the let-7 family. An
increase in let-7 precursor processing activity is associated
with neural differentiation of cells, suggesting the role of let-
7 in early developmental regulation of embryonic stem cell
differentiation and neurogenesis reported in mice in vivo and
in vitro (67). miR-29b is also detected in HM EVs and is
reported to influence neurogenesis. Its knockdown in vivo in
mice results in neural cell death (71). miR-574-5p, moderately
abundant in HM EVs, is also an actor in neurogenesis. The
overexpression and downregulation of this miRNA promotes
and inhibits neurogenesis, respectively, in rat mesenchymal
stem cells (68). Three other miRNAs (miR-15b, -132, and -
210), detected in HM but in lower abundance, were described
as influencing neurogenesis. As a let-7 family member, miR-
15b promotes neuronal differentiation and inhibits neural
progenitor proliferation in mice (69). miR-132 has been
shown to exert effects within the central nervous system
by improving memory (86). Conversely, miR-210 inhibition
was reported to increase neuronal survival in vitro (70).
These few data report the potential role of some miRNAs
on neurogenesis but also underline the need to increase our
knowledge on the link between miRNAs and neurogenesis
and open up new avenues of investigation.

Influence on immune function development
Milk is well known to transfer immunity-related substances
from mother to infants. For instance, HM contains large
quantities of immunological components but also several
nonspecific factors, such as lysozyme, lactoferrin, and
oligosaccharides, which have antimicrobial properties (87–
89). In addition, miRNAs could participate in this transfer
(Table 1; Figure 1). HM is rich in immune-related miRNAs
(innate and acquired), including miR-223, -146b-5p, -181a,
-150, -155, -92a, and -17 (41, 90). Among them, miR-223, -
146, -181a, and -155 have been detected in higher abundance
in colostrum than in mature HM (91). Such abundance is in
line with the role of transfer of immunity to neonates. Thus,
miR-181a is reported to target the 3´-untranslated region

(UTR) of IL1a mRNA, regulating inflammatory responses
in monocytes and macrophages in vitro (74), whereas miR-
223 regulates granulocyte function and fine-tunes the inflam-
matory response in mice (72). Both miRNAs act on human
T cell and granulocyte cell populations as selective targets
(92), suggesting that miRNAs could affect newborn immune
homeostasis at early stages of life. The innate immune
response is also regulated by miR-146b, which is predicted,
in vitro, to base-pair the 3′-UTRs of the TNF receptor-
associated factor 6 and IL-1α receptor-associated kinase
1 mRNAs encoding 2 key adapter molecules downstream
of Toll-like receptors and cytokine signaling (73). miR-
155 regulates T-helper-cell differentiation and participates
in the development of immune cells such as B and T
lymphocytes and macrophages by regulating their function
and activation (93, 79). miR-150 is also reported in mice to
be an effector controlling B-cell differentiation (94). These
studies demonstrate a potential role of HM miRNAs in the
establishment of the immune system in infants.

In addition to the potential effects of EV milk miRNAs
on neonatal immune function, recent evidence demonstrates
the influence of EVs during viral infections. During viral
infection, host EVs can package the virus, thus giving them
potential protection from the host’s immune system and
providing secreted entry into host cells. In this way, EVs
can contribute to the spread of the virus, as suggested
for COVID-19 virus infection in a review (95). However,
EVs must be considered to influence various aspects of
the infection process, because EVs carry miRNAs, which
could affect the interactions between viruses and hosts. A
burgeoning body of data suggests a complex 2-way relation
between miRNAs and viruses (95). Host miRNAs can act
on virus. Host miRNAs can affect RNA virus replication
and pathogenesis through direct binding to the RNA virus
genome or through virus-mediated changes in the host
transcriptome (96). An increasing number of examples
have described the influence of host miRNAs during viral
infection, leading to the identification of novel mechanisms
to block RNA virus replication. As described above, food-
source miRNAs can act in consumer cells, and we can
hypothesize that they also influence the spread of a viral
infection by acting on virus replication (96). To explore
this possibility, we compared the 23 miRNAs (Supplemental
Table 1) already known to affect virus replication by directly
binding numerous RNA virus genomes (96) regardless of the
type of virus, with the miRNAs detected in EV milk (48).
We observed that among those 23 miRNAs, 16 were present
in EV milk (Figure 2). We identified miR-29a, miR-21, and
miR-181, which can inhibit the replication of different viruses
and are abundantly present in milk EVs (rank A or B). For
example, miR-29a, miR-21, miR-181, miR-23, miR-28, and
let-7c were reported to bind HIV, porcine reproductive and
respiratory syndrome virus, infectious bursal disease virus,
enterovirus 71, human T-cell leukemia virus 1, and H1N1
influenza virus, respectively. miR-23, miR-28, and let-7c or
miR-150, miR-223, miR-378, miR-505, and miR-296 were
also identified to act on virus replication and detected in
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FIGURE 2 Comparison between milk exosomal microRNAs (miRNAs) taking into account their abundance [rank A (high) to D (low)
abundance with A > 250.00, 250.00 ≥ B > 150.00, 150.00 ≥ C > 50.00, and 50.00 ≥ D > 0 sum of the total normalized read counts] and
the list of miRNAs targeting viral RNA. Additional knowledge on the effects of host miRNAs on virus replication is indicated in the panel
bottom right. 1From Liao et al. (48); 2from Trobaugh and Klimstra (96). miR, microRNA.

rank A, B, or C abundance as milk exosomal miRNAs. The
last 4 miRNAs (miR-142, miR-32, miR-491, miR-654) were
weakly abundant. In addition, other publications reported
a role of host miRNAs in viral replication, because mir-
30a (97), miR-16-5p (98), and miR-103a (99) were highly
expressed (rank A for abundance in HM exosomes), and
miR-203 (100) had lower expression (rank C). In contrast,
miR-340-5p, belonging to the rank B class in milk, has been
described to enhance influenza A virus replication. The
diverse roles of miRNAs at the host–virus interface must be
deeply explored as well as the mechanisms of action. The
effectiveness of the role of food-source miRNAs on viral
replication is one of the exciting challenges of the field,
particularly in the COVID-19 pandemic context. We used the
same strategy to compare the milk exosomal miRNA (from
reference 48) with the miRNA computationally predicted to
target SARS-CoV-2 RNA (101). We identified 10 miRNAs
(Figure 3A). However, their abundances reported by Liao
et al. (48) are low. Further analyses of their abundance
during different lactation statuses showed that 9 of them
were less abundant during late lactation than during early or
midlactation (Figure 3B).

In conclusion, based on all these observations, we can
suggest that EV miRNAs from milk should be predicted to
target viral RNA, including SARS-CoV-2. The determination
of the conceivable action of milk miRNAs on viral replication
raises the question of their possible role in protecting against
viral infection. Such a role should be investigated to be
considered in parallel with more conventional therapeutic
strategies.

Predicted role of HM in epigenetic regulation
In addition to the diverse roles of miRNAs in neonatal
development, long-term effects must be considered such as

their actions on epigenetic processes. Epigenetic processes
are shown to play a pivotal role in regulating tissue-specific
gene expression and can induce long-term changes, which
persist throughout the life course (102). There is accumu-
lating evidence that milk is a major epigenetic modulator of
gene expression in infants and therefore in adults. miRNAs
were demonstrated to act on epigenetics via the expression
regulation of DNA methyltransferases (DNMTs) involved
in DNA methylation, which is crucial for gene expression
and hallmarks of human diseases. For example, the miR-
29 family targets DNMT family members, because miR-29
reverts aberrant methylation via complementarities to the
3′-UTRs of DNMT3A and DNMT3B mRNA, encoding 2
key de novo methyltransferases (103). Similarly, miR-148a-
3p represses human DNMT3B gene expression (104). These
2 miRNAs reduced DNA methylation in humans. Thus, the
presence of miR-29b and miR-148a-3p in HM exosomes
(41) raises the question of the role of HM miRNAs in the
epigenome of infants.

Conclusion
This study highlighted the predicted key role of HM miRNAs
in infant development: they participate in the continuum
between mother and infant. We related the predicted effects
on the infant to the abundance of miRNA in milk, presented
here as a ranking. This point is important to strengthen their
potential influence. All these data underscore the complexity
of regulation by miRNAs. Their abundance in milk must
be taken into account to assess their effects on infants.
There was compelling evidence showing the importance of
milk as a diverse, complex, and highly functional matrix
of support systems selected through evolution for newborn
development. More recently, the presence of miRNAs in
breast milk allowed us to answer the following question:
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FIGURE 3 Potential relation between milk exosomal microRNAs
(miRNAs) and SARS-CoV-2 virus. (A) Comparison between milk
exosomal miRNAs and the list of miRNAs targeting SARS-CoV-2
RNA. (B) Abundance of common miRNAs in undigested exosomal
miRNAs according to lactation status. Yellow, orange, and red
colors indicate the level of abundance, with yellow being less
abundant than orange than red. 1From Liao et al. (48); 2from
Demirci and Adan (101). miR, microRNA.

what targets does milk act upon to improve the health of
infants? We report a detailed examination of the effects of
several dozen of those miRNAs involved in the control of
functions related to infant development. Several miRNAs
that are abundant in milk could potentially influence various
functions (Figure 1). For example, miR-21 was reported to
be involved in immunity and gut maturation, miR-29b could
regulate epigenetics and influence neurogenesis, miR-182-
5p was described to act both on metabolism and immunity,
and miR-148 influenced metabolism and epigenetics. The let-
7 family is represented by several members in milk and is
known to be involved in multiple functions (e.g., neurogen-
esis, immunity, metabolism). Based on this set of evidences,
in addition to the greater permeability of the gut during the
first days of life, the potential role of miRNAs, especially those
abundant in milk, in infant development can reasonably be
suggested. These discoveries have to be incorporated into our

overall understanding of nutrient needs for healthy infant
development, preparing each individual infant to succeed as a
healthy and protected adult throughout life. This study builds
on the concept of natural selection throughout evolution for
a biofluid that transfers bioactive components from mother
to infant through milk for successful infant development.
In addition, this study strengthens the crucial role of milk
in infant development and protection using examples of the
importance of multiple milk constituents. This evolutionary
perspective on the protection and prevention of disease is
envisioned as a complement to the history of therapeutic
interventions based on the model of 1 target–1 molecule drug
development. In practice, HM is a model combining efficacy
and safety in natural selection that takes into account the
daunting challenge of this complexity. In the most modern
context, milk miRNAs can be considered in the face of
viral infection and how to build scientific strategies for
prevention. We propose that within the significant ongoing
research to fully understand human breast milk and its
targeted function, miRNAs provide an attractive path for
functional discovery. However, functional redundancy across
biopolymers acting upon unique targets in concert should
be the goal of future strategies. This massive task of reverse
engineering a bioreactor as complex as the mammary gland
and a product as dynamic as milk will require new tools,
models, and paradigms (105). Nonetheless, accomplishing
this task will have immediate benefits on infants and mothers
and provide a clear map for guiding improved health for
everyone. In essence, miRNAs are a new language in the
Rosetta stone of health, mammalian lactation.
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