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ABSTRACT

With increasing adiposity in obesity, adipose tissue macrophages contribute to adipose tissue malfunction and increased circulating
proinflammatory cytokines. The chronic low-grade inflammation that occurs in obesity ultimately gives rise to a state of metainflammation that
increases the risk of metabolic disease. To date, only lifestyle and surgical interventions have been shown to be somewhat effective at reversing
the negative consequences of obesity and restoring adipose tissue homeostasis. Exercise, dietary interventions, and bariatric surgery result in
immunomodulation, and for some individuals their effects are significant with or without weight loss. Robust evidence suggests that these
interventions reduce chronic inflammation, in part, by affecting macrophage infiltration and promoting a phenotypic switch from the M1- to M2-
like macrophages. The purpose of this review is to discuss the impact of dietary fatty acids, exercise, and bariatric surgery on cellular characteristics
affecting adipose tissue macrophage presence and phenotypes in obesity. Adv Nutr 2021;12:1893–1910.
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Introduction
According to the WHO, the number of individuals with
obesity worldwide, adults and children, has nearly tripled
since 1975 (1). This increased prevalence poses a significant
threat to health as individuals with obesity are more likely
to develop a myriad of related conditions such as type 2
diabetes, cardiovascular diseases (CVD), and certain types of
cancers (2, 3). These health consequences, in part, stem from
the negative effects of excess adipose tissue accumulation
leading to morphologic and functional abnormalities (2).
Subsequent, endocrine, metabolic, and immune derange-
ments follow, which contribute to the obesity-associated
inflammation that is, in part, mediated by macrophages
(4, 5). Indeed, macrophages can be viewed as central to
tissue stress, contributing to adipose tissue malfunction
and increased circulating proinflammatory cytokines as
obesity progresses (5, 6). The resulting chronic inflammatory
state leads to adipocyte maladaptation and subsequent
increases in angiogenesis, production of extracellular ma-
trix (ECM), macrophage infiltration, and proinflammatory
response (5–7); all of the aforementioned local conse-
quences feed in a positive feedback loop exacerbating one
another.

In both human and animal models, lifestyle and surgical
interventions resulting in weight loss decreased macrophage
infiltration and led to a phenotypic switch of the adipose
tissue macrophages (ATM) (8–13). In the case of exercise,
the beneficial effects were observed regardless of weight
loss. Several mechanisms have been proposed to explain
the anti-inflammatory properties of physical activity and
the differential properties of dietary fatty acids culminating
in beneficial quantitative and qualitative changes in ATM
profiles (14). The aim of this review is to discuss the impact
of dietary fatty acids, exercise, and bariatric surgery on the
mechanisms that affect ATM presence and phenotype in
obesity.

Macrophages and Obesity
What are macrophages?
Macrophages are innate immune cells that are typically
found in every tissue and have the unique ability to sense
and respond to pathogens and other environmental cues.
Macrophages are particularly important for: tissue repair
after an injury, clearance of foreign invaders and cellular
debris through phagocytosis, and normal tissue develop-
ment; they are especially efficient at integrating endocrine
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and paracrine signals in order to respond to stimuli (15, 16).
Additionally, these phagocytes are prolific communicators
as they interact directly with the receptors of other tissue-
resident cells, immune cells recruited during injury (e.g. T
cells), and extracellular proteins (15, 16). Other noteworthy
characteristic features of these monocyte-derived cells are
that they are heterogeneous and exhibit high levels of
plasticity.

Macrophages are able to acquire different molecular
and functional phenotypes after being exposed to different
bioactive molecules and environments (16, 17). Indeed,
macrophages can differentiate to proinflammatory M1 or
anti-inflammatory M2 cell phenotypes, though for this
process to occur macrophages need to be activated or
polarized (7, 18). However, how M1 and M2 macrophages
come to be in the adipose tissue remains ambiguous. It has
been suggested that shifts in the M1: M2 macrophage ratio
occurs from the transformation of resident macrophages
during the course of resolution of an injury or from the
continuous recruitment of monocytes in response to tissue
stress (15).

The polarization of macrophages to M1 cells is mediated
by type 1 T helper cells that secrete IFN-γ or with
bacterial products (e.g. LPS). M1 macrophages produce
proinflammatory cytokines such as TNF-α and IL-6 and
they express inducible nitric oxide synthase (iNOS), reactive
oxygen species (ROS), and nitrogen intermediates (7, 18).
These proinflammatory molecules have been associated with
the onset of numerous diseases such as CVD or type 2
diabetes (19–21). For example, TNF-α knockout mice had
improved insulin sensitivity and lower concentrations of
circulating free fatty acids (22). Conversely, the polarization
of macrophages to M2 cells is mediated by type 2 T
helper cells that secrete IL-4 and IL-13. M2 macrophages
produce anti-inflammatory cytokines such as IL-4, IL-
10, and TGF-β , which block the activity of iNOS and
downregulate the synthesis of proinflammatory cytokines
(7, 18, 23). M2 macrophages are more often associated
with wound healing, resolution of inflammation, clearing
of cellular debris, regulating proliferation, precursors of
angiogenesis, and remodeling of the ECM, whereas M1-
like macrophages appear to promote the opposite (6, 24). It
should be noted that the M1/M2 paradigm is often seen as
an oversimplified dichotomous division and should rather be
considered as a continuum (6, 15, 24, 25). The identification
of M1 and M2 cells is also challenging as phenotype
markers are not specific and may indicate other cell types.
The literature therefore identifies macrophage cells as M1-
like and M2-like.

Macrophages in obesity
A plethora of immune cells accumulate within the expanding
adipose tissue (6), although the macrophage population re-
mains the predominant one (26). Macrophages make up ∼5–
10% of the stromal vascular fraction (SVF) cells derived from
adipose tissue of lean individuals, whereas in individuals with
obesity, the SVF can consist of ≤40–50% macrophages (27).
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To preserve adipose tissue homeostasis and functionality,
there has to be a balance between both populations of M1-
and M2-like macrophages (7, 26). However, the phenotypic
heterogeneity of macrophages is environment dependent (7,
18, 26). In the lean state, the balance of the macrophage
population tends to shift towards the anti-inflammatory M2-
like subpopulation (26). In comparison, in the obese state,
the balance tilts toward the M1-like subpopulation, thus,
creating a proinflammatory environment within the adipose
tissue (26, 28–30). The accumulation of ATM in individuals
with obesity has been linked with adipocyte and metabolic
dysfunction (6, 24, 31).

Lifestyle and Surgical Interventions
Dietary fatty acids
The seminal work of Weisberg et al. (32) and Xu et al. (33)
were the first to demonstrate that high-fat diets (HFDs)
increase macrophage content and trafficking within the fatty
depots that are associated with the development of obesity-
induced insulin resistance. Indeed, fatty acids are thought to
be immunomodulators of inflammatory pathways. However,
not all fats are equal and different fats may have differential
effects on macrophages and adipose tissue characteristics
(34, 35).

Saturated Fatty Acids.
Effects of saturated fatty acids on macrophage polariza-

tion and infiltration in rodents. Studies suggest that diets
rich in saturated fatty acids (SFA) are associated with
inflammation as they are considered naturally occurring
ligands for the toll-like receptors (TLR), which activate
downstream inflammatory pathways, on both adipocytes
and macrophages/monocytes (36–38). Obese rodents, fed
with diets rich in SFAs (mainly from lard), have increased
expression of TLRs and markers associated with macrophage
infiltration (38–45) (see Table 1). Moreover, the activation
of the TLR inflammatory pathways by an increased flux of
SFAs are thought to contribute to the classical polarization
of M1-like macrophages. For example, Enos et al. (42)
examined the effects of 3 HFDs, differing in the percentage
of total calories from saturated fat (6%, 12%, and 24%)
but identical in total fat (40%), on macrophage behavior.
All HFDs increased adipose tissue inflammation, but the
12% and 24% saturated fat diets increased TLR2 expres-
sion, and led to the greatest increase in M1- and M2-
like macrophages (42). Additionally, several murine studies
reported that feeding of SFA-rich diets worsened ROS pro-
duction, the expression of adipose tissue remodeling markers
[e.g. TGF-β , tissue inhibitor matrix metalloproteinase 1
(TIMP1), collagen VI, hypoxia-inducible factor 1-α (HIF-
1α), and PPARγ ], decreased capillary density, and increased
adipocyte size, proinflammatory cytokines [e.g. IL-6, TNF-
α, monocyte chemoattractant protein-1 (MCP-1), C-reactive
protein (CRP)] and the number of crown-like structures
(39, 41, 42, 44–52). These changes may collectively prompt
the aggregation of proinflammatory macrophages. Thus, it

appears that a diet rich in SFAs may trigger the development
of pathogenic remodeling processes in rodents in response to
the accumulation of M1-like macrophages.

Effects of saturated fatty acids on macrophage polarization
and infiltration in humans. In human studies, SFAs also
increased TLR genes and proinflammatory cytokines [e.g.
IL-1β , IL-6, IL-8, TNF-α, chemokine (C-C motif) ligand
5 (CCL5)] in lean subjects, those with obesity, and in
those with diabetes (54, 55) (see Table 1). van Dijk et
al. (53) conducted a parallel controlled-feeding trial in
20 subjects who were abdominally overweight randomized
to a SFA-based diet or a MUFA-based diet for 8 wk. Whole-
genome microarray and histologic analysis of the adipose
tissue showed that the consumption of SFAs increased
proinflammatory obesity-linked gene expression including
the downregulation of PPARγ and upregulation of the
TLRs and macrophage marker genes (CD14 and CD163)
(53). Of particular note, is that the participants’ weights
were not significantly different between the diet groups
and did not change throughout the intervention, ruling out
the cofounding factor of weight gain. The direct effects of
SFA on macrophage infiltration and polarization, cellular
characteristics, and adipose tissue remodeling in individuals
with obesity are still poorly documented and require further
investigation.

Other contributing factors to inflammation in obesity. A
diet rich in SFAs may also represent a crucial first step in
disturbing the gut microbiota. This disruption in the gut
microbiota results in alterations in the epithelial cells of
the intestinal barrier while promoting the translocation of
bacteria and their cellular components into the circulation
(56, 57). Consequently, a diet high in SFAs may contribute
to a rise in the systemic concentration of LPS, which can
act as a ligand to the TLRs on the surface of ATM and
adipocytes (58–63). As such, it has been hypothesized that
the translocation of LPS and bacterial metabolites may
increase the release of proinflammatory cytokines, promote
macrophage infiltration, and prompt a phenotype switch
towards the M1-like cells (64, 65). However, a phenotypic
switch has yet to be demonstrated in humans, and the
influence of LPS-mediated inflammation on adipose tissue
characteristics is rather unknown. Moreover, recent studies
suggest that lifestyle and surgical interventions may also
partially revert gut microbiota dysbiosis to improve gut
health and possibly inflammation (66–68). Overall, the
gut microbiota-related inflammation represents a promising
alternate pathway to explain the chronic low-grade inflam-
mation seen in individuals with obesity.

n–3 Polyunsaturated Fatty Acids.
Conversely to SFAs, n–3 PUFAs have the capacity to
induce anti-inflammatory and insulin-sensitizing effects on
adipocytes and their resident macrophages. These metabolic
improvements have been predominantly observed with n–
3 PUFA supplementation from fish oil (i.e. EPA and DHA).

Obesity interventions and macrophages 1895



TABLE 1 The effect of SFA-rich diets on macrophage infiltration and polarization in rodent and human studies

Reference N Rodents or participants Diet Weight change

Macrophage/
phenotype

change

Coenen et al.
(38, 39)

48 and 58 C57BL/6 mice Western diet (42% fat + 0.15%
cholesterol) vs. control diet

12 wk

↑ ↑ infiltration of
macrophages

Davis et al. (41) 75 Control male
C57BL/10J mice and
male Tlr-4-deficient
C57BL/10ScN mice

3 experimental diets: low-fat
control (LFC) vs. high-fat control
(HFC) vs. high-fat palmitate
(HFP)

16 wk

↑ ↑ % of
macrophages

Enos et al. (42) 45 Male C57BL/6 mice 5 treatment diets: 2 control diets
vs. 3 HFDs (6% SF, 12% SF, and
24% SF)

16 wk

↑ ↑ M1
↑ M2
↑ infiltration of

macrophages
Prieur et al. (44) 36 Wild-type C57BL/6 male

mice and ob/ob mice
HFD (45% fat) vs. control diet

(11.5% fat)
12 wk

Ø ↑ M1
↓ M2

Cullberg et al.
(40)

N/A Cell culture In vitro: 3T3-L1 adipocytes and
THP-1 macrophages were
incubated for 24 h with FFAs
(oleic, palmitic, and elaidic
acids)

Ø ↑ 1.8-fold M1

Nguyen et al.
(43)

40 Wild-type male C57BL/mice
and ob/obJ male mice

Cell culture

HFD (40% fat) vs. control diet
(12% fat)

For 1, 12, or 20 wk
In vitro: RAW264.7 cells were

cultured and treated with FFA
(arachidonic, lauric, linoleic,
oleic, and myristic acids)

Ø ↑ M1
↑ infiltration of

macrophages

van Dijk et al.
(53)

20 Abdominally overweight
middle-aged adults
(10 male and 10 female)

2 experimental diets: SFA-rich diet
(19% SFAs and 11% MUFAs) vs.
MUFA-rich diet (11% SFAs and
20% MUFAs)

8 wk

Ø ↑ M1
↑ M2

FFA, free fatty acids; HFD: High-fat diet; SF, saturated fat; lean (BMI ≤24.9); overweight (BMI 25–29.9); class I (BMI 30–34.9); class II (BMI 35–39.9); class III (BMI ≥40) ↓ : significant
decrease; ↑ : significant increase; Ø: no significant change; N/A: not applicable.

The anti-inflammatory n–3 PUFAs are known endogenous
ligands to PPARγ and free fatty acid receptor 4 (FFAR4), have
the ability to preferentially inhibit TLR-induced pathways,
and reduce the expression of proinflammatory transcription
factors (69, 70–72).

Numerous studies conducted on both humans and ro-
dents alike have demonstrated the potential advantageous
effects of n–3 PUFAs on macrophage infiltration and pheno-
typic shifts, culminating in the amelioration of adipose tissue
homeostasis. Indeed, following a dietary regimen enriched
in n–3 PUFAs, the number of macrophages and specific
markers of macrophage polarization for the M1- and M2-like
cells fluctuated favoring an M2-dominant ratio (11, 73–92)
(see Table 2). Itariu et al. (75) conducted an 8-wk randomized
trial on 55 nondiabetic individuals with class III obesity who
received either 3.36 g EPA/DHA or the equivalent amount
of butterfat each day. They found that, despite no changes
in M2 macrophage markers [mannose receptor C type 1
(MRC1) and CD163], pan macrophage marker (CD68), and
the total number of macrophages, the expression of CD40,
an M1 marker, was downregulated by n–3 PUFA treatment.
Another study demonstrated that after participants with

class I obesity consumed 4 g of fish oil (∼3.6 g EPA and
DHA) per day for 12 wk, significant decreases in total
macrophage number and CD68 mRNA concentrations were
observed (79). Further in vitro experiments showed that the
addition of DHA to M1 macrophage cultures and cocultures
with adipocytes markedly reduced the expression of MCP-
1 (79). Therefore, fish oils may not only reduce macrophage
abundance in adipose tissue, but also decrease the migration
and infiltration of monocytes into adipose tissue (79). More
recently, 3 other in vitro studies also supported these findings
through similar observations and conclusions (74, 76, 77).
On the other hand, in another study where individuals with
overweight to class I obesity consumed 3.5% of their diet as
fish oil, no difference in ATM gene expression (CD14 and
CD206) was observed (93). The discrepancies in the findings
may be explained by the differences in the n–3 PUFAs dose
administered, the composition of the n–3 PUFAs used, or the
weight status of the participants. The studies by Itariu and
Spencer (75, 79) included individuals with more severe cases
of obesity, which may suggest that the anti-inflammatory
properties of n–3 PUFAs are more significant in individuals
with greater obesity severity.
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TABLE 2 The effects of n–3 PUFAs on macrophage infiltration and polarization in rodent and human studies

Reference N Rodents or participants Diet Weight change

Macrophage/
phenotype

change

Bashir et al. (80) 25 Male C57BL/6J mice 3 experimental diets: control diet vs. HFD
group (60% fat) vs. HFD + flaxseed oil
(4, 8 or 16 mg/kg b.w.)

18 wk

↓ ↓ M1
↑ M2

Fan et al. (84) 47 Male C57BL/6J mice 3 experimental diets: HFD with
ALA-enriched butter vs. HFD with butter
lacking ALA and LA vs. HFD with ALA and
LA-enriched margarine

10 wk

Ø ↓ M1
↑ M2
↓ infiltration of

macrophages

Lopez-Vicario
et al. (86)

46 Wild-type male mice and male
hemizygous fat-1 mice

3 experimental diets: control diet (13% fat)
vs. HFD + placebo (60% fat) vs.
HFD + sEH inhibitor

16 wk

↑ ↑ M2
↓ infiltration of

macrophages

Titos et al. (87) 37 Male C57BL/6J mice Control diet (13% fat) vs. HFD (60% fat)
Animals then received a placebo or DHA

(4 μg/g b.w.) every day for 10 d
12 wk

Ø ↓ M1
↑ M2
Ø total ATM

Todoric et al.
(88)

49 Male C57BL/KsJ-leprdb/leprdb

diabetic (db/db) mice and
nondiabetic mice (db/+)

4 experimental diets: control diet vs.
HFD + SFA + MUFA vs. HFD + n–6 PUFA
vs. HFD + marine n–3 PUFA

6 wk

↑ ↓ M1
↓ infiltration of

macrophages

White et al. (89) 4–14 de-
pending
on mea-

sure-
ment

Male hemizygous fat-1 (+/−) Control diet vs. HFD (55% fat)
8 wk
∗Transgenic expression of fat-1 n–3 fatty

acid desaturase was used to
endogenously produce n–3 fatty acids in
HF-fed mice

Ø ↓ infiltration of
macrophages

↓ crown-like
structures

Chan et al. (81) Ø Cell culture Low-fat diet (10% fat) vs. HFD (60% fat)
18 wk
In vitro: bone marrow-derived

macrophages were cultured with
palmitate or palmitoleate

Ø ↑ M2
↓ M1

Chang et al.
(82)

Ø Cell culture In vitro: murine macrophages and human T
lymphocytes were cocultured and
treated with DHA

Ø ↑ M2
↓ M1

Colson et al.
(83)

24 Male C57BL/6J mice
Cell culture

n–6-enriched control diet (12% fat) vs.
n–3-enriched control diet (12% fat)

12 wk
In vitro: THP-1 cells were cultured for

differentiation experiments

Ø ↑ M2
Ø M1

De Boer et al.
(91)

32 Male and female C57BL/6 mice
Cell culture

4 experimental diets: HF control diet (34%
fat) vs. HFD + FO (34% fat + 7.6% FO) vs.
low-fat control diet (10% fat) vs. low
fat + FO (10% fat + 3% FO)

12 wk
In vitro: macrophages were cocultured with

adipocytes

↑ ↓ M1

De Boer et al.
(92)

10 Male C57BL/6 mice
Cell culture

Control diet (10% SO) vs. LC n–3
PUFA-enriched diet (3% FO + 7% SO)

4 wk
In vitro: visceral adipose tissue were

collected to create adipose tissue
conditioned media and challenged with
LPS to mimic acute and chronic
conditions

↑ ↓ M1
↓ M2

(Continued)
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TABLE 2 (Continued)

Reference N Rodents or participants Diet Weight change

Macrophage/
phenotype

change

Liddle et al. (85) 30 Male and female C57BL/6 mice
Cell culture

Control diet (10% SO) vs. treatment diet
(7% SO + 3% FO)

4 wk
In vitro: RAW264.7 macrophages were

cocultured with LPS-stimulated CD8+ T
cells/adipocytes

Ø ↓ M1
↑ M2

Baranowski
et al. (11)

21 Male fa/fa Zucker rats and 7
lean Zucker rats

Control diet vs. ALA-rich flaxseed oil diet
8 wk

Ø Ø macrophage
infiltration
among groups

Itariu et al. (75) 55 Nondiabetic adults with class III
obesity

3.36 g long-chain n–3 PUFAs/d vs. 5 g of
butter/d in addition to an isocaloric diet
(55% carbohydrates, 15% protein, and
30% fat)

8 wk

Ø ↓ M1
Ø M2
Ø total ATM and

infiltration

Kratz et al. (93) 24 Individuals with overweight to
class I obesity (8 males and
16 females)

Control diet (0.5% n–3 PUFAs) vs. n–3
PUFA-rich diet (3.5%)

14 wk

↓ Ø macrophage
phenotypes
and infiltration

Spencer et al.
(79)

33 Adults with class I obesity
(11 males and 22 females)

Cell culture

4 g of n–3 fatty acid ethyl esters vs. placebo
(corn oil)

12 wk
In vitro: M1 macrophage culture and M1

macrophage cocultured with adipocytes
were treated with DHA

Ø ↓ total ATM
↓ crown-like

structures
DHA decreased

MCP-1
expression in
cultured M1
macrophages
and in
cocultures of
macrophages
and adipocytes

Ferguson et al.
(74)

N/A Cell culture In vitro: human SAT from lean and obese
subjects were treated with EPA and/or
DHA throughout differentiation or for
72 h postdifferentiation. THP-1
monocytes were added to adipocyte
cocultures

Ø ↑ M2
↓ M1

Pandurangan
et al. (77)

Ø Cell culture In vitro: human adipocytes and
macrophages were cocultured and
treated with chia seed fatty acid (0–6.4
μg/mL)

Ø ↓ M1
↓ macrophage

recruitment

Montserrat-de
la Paz et al.
(76)

6 Healthy adult males
Cell culture

Participants were all given 3 times a meal
rich in SFA, MUFA or MUFA + ω-3 LC
PUFA with or without niacin.

In vitro: monocytes were isolated to be
differentiated into naïve macrophages;
TLRs were also isolated

Ø ↓ M1
↑ M2

ALA, α-linoleic acid; ATM, adipose tissue macrophage; b.w., body weight; FO, fish oil; HF, high-fat; HFD, high-fat diet; LA, linoleic acid; LC, long chain; SAT, subcutaneous adipose
tissue; sHE, soluble epoxide hydrolase; SO, safflower oil; TLR, toll-like receptor; %fat expressed based on total energy; lean (BMI ≤24.9); overweight (BMI 25–29.9); class I (BMI
30–34.9); class II (BMI 35–39.9); class III (BMI ≥40); ↓ : significant decrease; ↑ : significant increase; Ø: no significant change; N/A: not applicable.

Beneficial shifts in the M1-:M2-like macrophage ratio
following n–3 PUFA supplementation may be due to a num-
ber of underlying mechanisms. Supplementation resulted in
improvements in cellular stress (45, 66, 85, 94–98), metabolic
profile (99), synthesis and release of anti-inflammatory medi-
ators [i.e. IL-10, IL-4, arginase-1 (ARG-1) and adiponectin],
while decreasing the secretion of proinflammatory mediators
(i.e. IL-1β , IL-6, TNF-α, and MCP-1) (11, 73–75, 77, 79–
81, 83–85, 100–105, 100), adipocyte enlargement (11, 12,

73, 77, 84, 95, 100, 106, 107), and the deposition of ECM
and the expression of its associated markers (12, 75, 80, 85).
Increased capillary density (79) and adipogenesis (73, 95,
106, 108, 109) have also been shown with supplementation.
Moreover, supplementation of n–3 PUFAs downregulated
the expression of important inflammatory transcription
factors and receptors, such as NF-κB and TLR4, concomitant
with an upregulation in adipogenic regulators [PPARγ and
CCAAT-enhancer-binding protein α (C/EBPα)] (45, 73, 77,

1898 Turner and Santosa



80, 85, 90, 102, 103, 106, 109, 110). Additionally, some
murine studies also observed changes in weight and fat
mass loss with the previously mentioned improvements (73),
whereas studies in humans showed the downregulation of
inflammatory factors associated with PUFA consumption
in the absence of changes in weight or body composition
(73, 75, 93).

Overall, n–3 PUFA supplementation may represent
a potential therapeutic avenue to improve macrophage-
mediated inflammation and adipose tissue characteristics,
although the effects were less potent in vivo (73, 75, 93).
The inconsistent results in human studies are likely to be
attributed to variability in study design, weight status of
participants, and adherence as most trials are outpatient
studies and rely on self-reporting. Other factors may in-
clude differences in the amount of dosage administered
or methods of calculating n–3 PUFA intake (71, 73, 111).
Nonetheless, further studies should continue to explore
the role of n–3 PUFAs in mediating ATM infiltration and
phenotype.

Physical activity
Lack of exercise and prolonged sedentary behaviors are
important catalysts for a cluster of metabolic and chronic
diseases, whereas regular exercise may prevent or delay
the progression of insulin resistance, hypertension, CVD,
and diabetes (112, 113). Although numerous studies have
denoted that the salutary effects of exercise are independent
of weight loss (113–116); significant weight loss may amplify
the exercise-induced benefits and have a greater impact on
the inflammatory markers in humans (9, 117, 118). In fact,
physical activity was shown to induce cellular and molecular
changes in the adipose tissue in a way that alleviates the low-
grade chronic inflammation that accompanies obesity (8–10,
119–121). The underlying mechanisms that contribute to the
exercise-induced anti-inflammatory responses have not been
completely elucidated. A major contributor to the reduction
in inflammation accompanying exercise may reside in the
mediation of ATM (14, 113, 116, 122, 123).

The effects of exercise on macrophage infiltration and
phenotypes.
Exercise, with or without weight loss, may decrease in-
flammation via promoting a phenotypic switching from M1
to M2 macrophages while simultaneously diminishing the
trafficking of the macrophages within the adipose tissue. The
early work of Kawanishi et al. (47) demonstrated that 16 wk
of cardiovascular exercise training (12–20 m/min, 60 min/d,
and 5 times/wk) in mice with obesity reduced M1-like and
increased M2-like macrophage mRNA expression in adipose
tissue such that the M1-:M2-like ratio was ∼50% lower with
the exercise intervention relative to control. Quantification
of macrophages in adipose tissue by flow cytometry also
showed that exercise decreased both the proportion and
absolute number of M1-like (CD11c+) macrophages (124).
Another study found that in comparison to continuous
training (steady state running at 20 m/min), aerobic interval

training (3-min bouts at 40 m/min, interspersed by 3-min
active recovery at 20 m/min on a treadmill with 15% incline,
repeated 6 times per session) has been shown to result in
greater increases in the number of M2-like macrophages
(181% versus 122%) in mesenteric adipose tissue (48).
More recent murine studies have demonstrated diminished
infiltration and phenotypic shifts in macrophages (48, 125–
130) (see Table 3).

In humans, few studies have looked at the direct impact of
exercise on the polarization of the macrophage populations
(9, 119, 131) (see Table 3). These studies have found exercise-
induced shifts towards a predominant M2-like phenotype.
An 8-wk low-intensity exercise intervention (walking 10,000
steps 3 times/wk) in adults with overweight and class I
obesity showed that exercise was associated with a ∼2.1-fold
upregulation of M2 markers and a downregulation of M1
markers independent of weight loss (132). Additionally,
Auerbach et al. (119) and Bruun et al. (9) corroborated
the previous findings through an exercise-induced weight-
loss protocol suggesting that pronounced weight loss may
also further affect macrophage infiltration and phenotype
resulting in an anti-inflammatory milieu within adipose
tissue.

Mechanisms altering macrophage infiltration and pheno-
types in exercise.

Exercise decreases expression of proinflammatory and
chemotactic signals. There is a growing body of evidence
suggesting that exercise decreases the expression of proin-
flammatory and chemotactic cytokines involved in the
recruitment of macrophages and monocytes (14, 113, 116).
Among all the cytokines known to potentially contribute to
inflammation within the adipose tissue and the chemotaxis
of macrophages, TNF-α, IL-6, and MCP-1 appear to be
the best studied and were consistently shown to have
lower levels of expression following exercise treatment in
humans, mice, and rats (8–10, 117, 120, 121, 124, 126,
127, 132, 133–144). Baturcam et al. (133) found that 3-mo
supervised exercise {combination of moderate intensity [50–
80% of max heart rate (HR)] aerobic exercise and resistance
training using either a treadmill or cycling 3–5 times/wk}
significantly reduced the expression of both CCL5 and C-C
chemokine receptor type 5 (CCR5) in the adipose tissue of
individuals with class I to class II obesity with decreases in
the concentrations of the proinflammatory markers TNF-α,
IL-6, and protein and c-jun NH2 terminal kinase (P-JNK).
Complementing these findings, Barry et al. (8) demonstrated
that both high-intensity interval training (at 90% of HRpeak,
for 1 min interspersed with 1 min of low-intensity recovery
periods, progressing from 4 to 10 intervals) and moderate-
intensity continuous training (at 65% of HRpeak, progressing
from 20 to 50 min) in humans, in the absence of weight
and fat mass loss, altered leukocyte trafficking through the
downregulation of inflammatory chemokine receptors such
as CCR2, CCR5, and C-X-C chemokine receptor type 2
(CXCR2). In humans and rodents, exercise has also been
associated with an increase in the expression and release
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TABLE 3 The effects of exercise on macrophage infiltration and polarization in rodent and human studies

Reference N Rodents or participants Exercise intervention Weight change

Macrophage/
phenotype

change

Kawanishi et al.
(47, 124)

40 Male C57BL/6 mice Treadmill running
12–20 m/min × 60 min/d
16 wk

Ø ↓ M1
↑ M2
↓ number of

macrophages
Macpherson et

al. (126)
27 Male C57BL/6 mice Treadmill running

3 d × 15 min/d at 15 m/min acclimation
2 h at 15 m/min with 5% incline

Ø ↓ M1
↑ M2
↓ infiltration of

M1-like
macrophages

Linden et al.
(125)

113 Male C57Bl6/J mice Treadmill running
40 min/d at 12 m/min with 8% incline
4, 8, or 12 wk

Ø ↓ M1
↑ M2
↓ infiltration of

macrophages
Luo et al. (128) 54 Male C57BL/6H mice Treadmill running

45% of peak running speed, with 5%
incline, 1 h/d, 6 d/wk

8 wk

↓ ↓ M1
↑ M2

Baek et al. (129) 49 Male C57BL/6 J mice Treadmill running at
10 m/min for 60 min

Mice ran at different intensities from
week 2 to week 8

↓ ↓ M1
↑ M2

Oliveira et al.
(127)

24 Male Wistar rats Swimming
2-d swimming × 10 min/d acclimation
3 h of exercise with a 45-min rest period

Ø ↓ M1
↑ M2
Ø in infiltration

Kolahdouzi et
al. (48)

48 Male Wistar rats Treadmill running
5 d/wk
3 groups: Sedentary vs. CT vs. AIT
10 wk

CT: ↓ 30% weight
loss AIT: ↓ 40%

weight loss

↓ M1
↑ M2
↓ number of

macrophages

Shanaki et al.
(130)

45 Male Wistar rats Treadmill running (HIIT or CT)
5 d/wk
10 wk

↓ ↓ M1
↑ M2

Bruun et al. (9) 27 Individuals with class III
obesity (15 females and
12 males)

2–3 h of exercise
5 d/wk
15 wk
Included a diet

↓ ∼ 14% weight
loss

↓ ∼55% M1
↓ ∼40% number

of macrophages

Auerbach et al.
(119)

60 Healthy and overweight
adult men

Endurance training for 7 d/wk
4 groups: training-induced weight loss

(T) vs. diet-induced weight loss (D) vs.
training and increased diet without
weight loss (T-iD) vs. control (C)

12 wk

↓ 6% weight loss
in the endurance
training group (T)

↑ 2.5-fold M2
Ø macrophage

number

Yakeu et al.
(132)

17 Healthy overweight adults
(9 males and 8 females)

Walking on treadmill
10,000 steps 3 times/wk for 75 min
8 wk

Ø ↓ M1
↑ M2

Ruffino et al.
(146)

19 Overweight adult women Walking on treadmill
3 times/wk for 45 min
8 wk

↓ ↓ M1
↑ M2

Lee et al. (131) 26 Sedentary lean or
overweight men with or
without dysglycemia

2 sessions of strength training and 2
sessions of spinning

4 h/wk
12 wk

↓ Ø M1
↓ M2
↓ infiltration of

macrophages
AIT, aerobic-interval training; CT, continuous training; HIIT, high-intensity interval training; lean (BMI ≤24.9); overweight (BMI 25–29.9); class I (BMI 30–34.9); class II (BMI 35–39.9);
class III (BMI ≥40); ↓ : significant decrease; ↑ : significant increase; Ø no significant change.

of anti-inflammatory signals such as IL-10, IL-6, ARG-
1, and adiponectin (9, 14, 115, 117, 126, 136, 137, 145).
Despite the fact that the positive effects of exercise have
been observed in the absence of weight loss, weight loss may
compound the benefits. An exercise study (aerobic training,

60–75 min/session and 3 times/wk) found that compared
with subjects in the lowest tertile (–3%) of weight loss, those
in the highest tertile of weight loss (–14.5% weight loss)
had larger decreases in macrophage inflammatory protein-
1α (MIP-1α) and IL-15 and greater increases in adiponectin
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(117). Aside from TNF-α, IL-6, and MCP-1, several other
cytokines associated with inflammation were shown to have
a reduced expression following an exercise intervention
such as CCL5, plasminogen activator inhibitor-1 (PAI-1),
MIP-1α, CRP, chemerin, IFN-γ , IL-1, IL-8, IL-15, and IL-
18, which may also further improve the chronic low-grade
inflammation seen in adipose tissue (9, 117, 120, 121, 127,
133, 134, 136, 140).

Exercise affects adipose tissue characteristics. In addition
to decreasing proinflammatory and chemotactic signals
associated with macrophage recruitment, exercise also di-
rectly affects adipose tissue characteristics that are associated
with the recruitment and phenotypic changes of ATM. A
recent murine study by Kolahdouzi et al. (48) found that aer-
obic interval training improved adipose tissue dysfunction
induced by a HFD through increasing the number of M2-like
cells and capillary density while decreasing the total number
of crown-like structures and mean adipocyte size (48). Multi-
ple murine studies have also demonstrated beneficial changes
in cellularity that may be associated with decreased ATMs.
Moreover, several key features of dysfunctional adipose tissue
are improved such as lipid and glucose metabolism (134,
135, 147), improved mitochondrial activity and biogenesis
(147–150), decreased expression of apoptotic signals (151),
decreased expression of angiogenesis precursors (152–157),
increased capillary density (48), reduced accumulation of
fibrotic depots (10, 46), and reduced adipocyte size (48, 134,
148, 158, 159). Similar findings were also made in human
studies where lipid metabolism, mean adipocyte size, adipose
tissue fibrosis, and proangiogenic responses were improved
following exercise training with or without weight loss (139,
160, 161).

Exercise modifies gene expression patterns. Underlying the
mechanisms of the potent anti-inflammatory properties of
exercise are tremendous gene expression alterations that may
have a direct impact on chronic low-grade inflammation
as well as the ubiquitous proinflammatory macrophage
infiltration seen in adipose tissue of individuals with obesity
(148, 162). Aside from varying the gene expression of
pro- and anti-inflammatory cytokines, angiogenic regulators,
ECM precursors, markers of mitochondrial activity, and lipid
and glucose metabolism (9, 46, 120, 147, 153), physical
activity also affects the gene expression of key adipogenic
regulators (such as PPARs) and well-characterized immune
receptors that modulate inflammatory pathways (like the
TLRs) (14).

Several studies highlight the crucial immunomodulating
role of PPARs, more specifically PPARγ , in regulating adi-
pose tissue inflammation by promoting the infiltration of M2
macrophages in humans and mice (163–165). Macrophage-
specific deletion of the PPARγ gene (163) and upregulation
of PPARγ by rosiglitazone (164) in mice demonstrated the
role of PPARγ in M2-like macrophage activation. Exercise
upregulates PPARγ expression and its related signaling
events in adipose tissue and monocytes/macrophages of

humans, mice, and rats (146, 166–171), favoring a phenotypic
shift towards the M2-like macrophages. In a human study,
Yakeu et al. (132) found that low-intensity exercise (walking
10,000 steps 3 times/wk) shares similar effects to the pharma-
cological activation of PPARγ and that a ∼4–5-fold increase
in PPARγ activity and expression coincided with a ∼2.1-fold
increase in the M2-like macrophage marker (CD14).

TLRs are a class of membrane proteins that play an
important role in the innate immune system by initiating key
downstream inflammatory pathways through recognition of
exogenous and endogenous ligands (172). TLRs, especially
TLR2 and TLR4, are present on the cell surface of adipocytes
and macrophages [especially M1-like macrophages (173)]
and play a pivotal role in obesity-related pathogenesis,
including in the development of insulin resistance, and the
metabolic syndrome (14, 172). The TLR family are activated
by a vast array of ligands, many of which are higher in
obesity such as LPS (a marker of gut permeability), oxidized
LDLs, and SFAs. The binding of a bioactive molecule to
TLRs, results in the activation of NF-κB and the release of
proinflammatory cytokines (6, 113, 172). The pivotal role of
TLR4 in obesity-associated pathogenesis was demonstrated
from the observations that TLR4 knockout mice were
protected from the adverse effects of high-fat feeding with
attenuated inflammation and macrophage infiltration (113,
172). In parallel with TLR4 knockout mice, exercise training
resulted in similar metabolic improvements by decreasing
the expression of TLR4 on the cell surface of monocytes
and macrophages (138, 174–178); in some cases, TLR4
expression and activity was reduced by ≤35% following
exercise interventions (178). In mice and rats, the reduced
expression of TLR4 on the surface of the adipocytes and/or
SVF cells following exercise correlates with the phenotypic
shift in ATM from the M1- to the M2-like phenotype, and
reduced macrophage infiltration (47, 127, 177, 179, 180).
However, despite the decreased expression of TLR4 activity
following exercise training in humans (136, 178, 181–187),
more questions remain to be explored regarding the role
of TLR4 in macrophage polarization and infiltration. To
our knowledge, most human studies on TLR4 expression
following exercise examined monocytes rather than ATM
directly and results were sometimes inconclusive (188).
Given that monocytes are precursor cells of macrophages,
it is plausible that the decreased TLR4 expression may also
coincide with changes in the phenotype of macrophages as
seen in rodents. Further investigations examining the effects
of exercise on TLR4 expression in humans is required.

Overall, what remains unknown is which form of exercise
training is best to mitigate ATM infiltration and phenotypes
in obesity. Several studies indicate that higher intensities
and combined training (e.g. combined aerobic and resis-
tance training versus aerobic or resistance training alone)
better improved obesity-associated inflammation (116, 189).
However, the comparison of these training modalities has
not been investigated in ATM infiltration. Future studies
should further explore the mechanisms driving macrophage
infiltration and polarization in response to exercise and
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focus on the training modalities (duration, type, volume, and
intensity) that are best at mitigating ATM inflammation.

Bariatric surgery
Often, when first-line treatment options, such as dietary
interventions and exercise programs, are not enough to
induce significant weight loss or metabolic improvements
in individuals with obesity, many turn to bariatric surgery.
Indeed, bariatric surgery is one of the most powerful tools
to induce weight loss; a worldwide study from 31 countries
found that the surgeries induced an overall 1 y-weight loss
of ∼30.5% (190). Aside from the effectiveness for weight
loss, bariatric surgery is often accompanied with weight-loss-
dependent metabolic improvements including the mitigation
of ATM inflammation.

Effects of surgery on macrophage populations.
Several studies observed significant reductions in
macrophage number up to a year after surgery using
the CD68 marker (30, 191–194) (see Table 4). Cancello
et al. (30) found an ∼12% reduction in the number of
ATM after surgery, which is likely due to the decreased
expression of chemotactic genes. Bariatric surgery was also
found to alter the phenotype of macrophages favoring a
shift towards M2-like macrophages (195–201) (see Table 4).
Aron-Wisnewsky et al. (195) found that in premenopausal
women without diabetes, the ratio of M1-: M2-like (CD40+:
CD206+) macrophages was 2-fold lower in subcutaneous
adipose tissue (SAT) after 3 mo than before surgery due
to a simultaneous decrease of CD40+ and an increase of
CD206+ macrophages. Similarly, others have found an
increased presence of M2- over M1-like macrophages in
the adipose tissue ≤12 to 24 mo after surgery (198, 199).
Altogether, these studies suggest that the immune and
inflammatory profile of bariatric surgery patients may take
years to reach new baseline levels. Overall, robust evidence
indicates quantitative and qualitative changes in ATM
populations following weight loss surgery.

Mechanisms affecting macrophage infiltration and polar-
ization after bariatric surgery.

Weight loss by bariatric surgery decreases expression
of proinflammatory cytokines and chemotactic signals. An
extensive amount of research has studied how bariatric
surgery affects cytokine-related macrophage chemotaxis and
polarization. Although unclear, current literature suggests
that bariatric surgery may improve the inflammatory status
of individuals with obesity. Two previous reviews (13, 202)
listed several cytokines and their variations at different time
points after bariatric surgery. An example being that CRP
and leptin unanimously decreased, adiponectin constantly
increased, and TNF-α remained unchanged at all time points
after surgery. As for the other highly expressed cytokines
during obesity such as IL-1β , IL-6, IL-10, and MCP-1, results
are inconsistent even ≤2 y postoperation. For instance,
3 mo after surgery, Xu et al. (203) observed improved
insulin sensitivity, increased AMP-activated protein kinase

(AMPK) expression, and decreased oxidative stress with
no changes in IL-1β , TNF-α, and IL-10 levels in patients.
Such discrepancies were hypothesized to be the result of
the presurgical presence of diabetes and the baseline level
of insulin sensitivity (204–206). For example, a greater CRP
reduction was observed after surgery in ex-obese patients
with diabetes compared with those who were not diabetic
(206). Moreover, the inflammatory state of visceral adipose
tissue and the patients’ nutritional status presurgery were also
suggested to influence the postsurgical inflammation state
(202). Overall, the inconsistent effects of surgically induced
weight loss on cytokine fluctuation remain unexplained due
to a lack of convincing results. The long-term effects of
cytokine secretion on health of individuals with obesity after
surgery are unknown.

Effects of surgery on adipocyte morphology. Appreciable
weight loss after bariatric surgery results in extensive adipose
tissue remodeling on multiple levels, implicating mecha-
nisms underlying adipose tissue plasticity. The architecture
and homeostasis of the adipose tissue and the cells compos-
ing the SVF are tightly regulated by the equilibrium between
hypertrophy and hyperplasia, which may be improved
following weight loss resulting in diminished macrophage-
mediated inflammation. Several studies analyzing either the
volume or the area of the adipocytes found that postsurgery
fat cells were smaller, ultimately approaching measurements
similar to lean controls (191, 194, 207–209). For example,
Casmatra et al. (210) and Löfgren et al. (211) reported a
postsurgical reduction of fat cell area by 50% and volume
by 43%, respectively. Additionally, Andersson et al. (212)
reported significant adipocyte volume loss after surgery,
but with no changes in cell number. Thus, suggesting that
adipocyte atrophy is the main plastic event taking place
during weight loss induced by surgery.

Effects of surgery on angiogenesis in adipose tissue. Adi-
pose tissue expansion is intricately dependent on vasculature,
which is increased during obesity. Indeed, angiogenesis
is a response to adipose tissue hypoxia that results from
its expansion and poor blood supply. As such, angiogenic
markers like vascular endothelial growth factor (VEGF),
angiopoietin-1 (ANG-1), ANG2, tyrosine-protein kinase
receptor Tie-2 (Tie-2), and HIF-1α are overexpressed in
obesity which potentiate proangiogenic responses to improve
tissue blood supply, inflammation, and ultimately adipocyte
dysfunction (213). Bariatric surgery may induce significant
reduction of these angiogenic markers while concomitantly
decreasing the recruitment of M1-like macrophages. Wei-
wiora et al. (214) studied the concentrations of circulat-
ing angiogenesis biomarkers [ANG-2, granulocyte colony-
stimulating factor (G-CSF), hepatocyte growth factor (HGF),
platelet endothelial cell adhesion molecule-1 (PECAM-
1), VEGF, and follistatin] preoperatively and 12 mo after
surgery in 24 patients with class III obesity. The expression
levels of these angiogenic markers were all downregulated
postsurgery and their changes were dependent upon the
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amount of weight loss. Similarly, Figueroa-Vega et al. (213)
found that before surgery the concentrations of proan-
giogenic markers (ANG-1, ANG-2, Tie-2, and HIF-1α)
were overexpressed (both in serum and adipose tissue),
which correlated with an increased number of infiltrating
M1-like macrophages expressing angiogenic receptor Tie-
2 especially in SAT (213). At 6 mo after surgery, the
expression of these markers was significantly reduced and
correlated with a diminished number of infiltrating M1-
like macrophages (213). Therefore, angiogenesis may not
only be important for adipose tissue expansion, but it
may also represent another pathway to explain the chronic
inflammation observed in obesity, which is alleviated by
weight loss surgery. However, the knowledge of angiogenic
mechanisms and its impact on adipose tissue dysfunction
and health postsurgery is still rudimentary and requires more
research.

Effects of surgery on adipose tissue fibrosis. Fibrosis is
a hallmark feature of adipose tissue inflammation as it is
triggered and exacerbated by macrophage infiltration (215,
216). However, the reversibility of adipose tissue fibrosis after
surgery-induced weight loss is unclear. To our knowledge,
only 2 studies have directly examined fibrosis pre- and
post-bariatric surgery and both have concluded that levels
of fibrosis remained unchanged and persisted despite the
significant weight loss in most participants from 6 mo to
≤2 y after surgery (194, 217). In contrast, Liu et al. (198)
and Reggio et al. (218) observed a downregulation in the
expression levels of genes encoding markers of adipose
tissue fibrosis from 6 mo to 1 y postsurgery (198, 218).
Moreover, Liu et al. (198) observed a positive relationship
between collagen accumulation and the number of M2-like
(CD163+) cells prior to surgery, indicating a role in the
generation of fibrosis in obese SAT. However, this M2-to-
pericellular collagen accumulation relation became a neg-
ative correlation at the 1-y-follow-up despite the moderate
increase in the number of CD163+ cells. Overall, the evolu-
tion of fibrosis postsurgery, the role played by ECM proteins,
and their link with ATM during weight loss are poorly
documented.

Conclusion and Future Prospects
In this review, we discussed the impact of dietary fatty acids,
exercise, and bariatric surgery on cellular characteristics
affecting ATM presence and phenotypes in obesity. We
have shown that dietary fatty acids, exercise training, and
bariatric surgery decrease ATM and induce a phenotypic
switch to M2-like macrophages through modifying a number
of potential mechanisms. In the case of the type of fat ingested
and exercise, improvements in ATM occurred regardless of
weight loss. These interventions modify ATM by affecting
key adipose tissue characteristics such as adipocyte size,
adipose tissue fibrosis, angiogenesis, and cytokine and
adipokine secretion. Future studies should focus on gaining
a better understanding of the underlying mechanisms and
consequences of the reduction in macrophage presence and

phenotypes, especially in humans. Understanding the events
contributing to the pathogenesis of obesity may allow for the
development of potential new therapies against obesity and
its associated comorbidities.
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