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ABSTRACT

High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such
as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices
for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high
meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit
antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols,
fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of
meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation
between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining
the extent of functional meat products’ properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response).
The effects of functional meat products in the frame of diet–gene interactions are analyzed to 1) discover target subjects that would benefit from
their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high
oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary
to ascertain their positive impact on degenerative diseases. Adv Nutr 2021;12:1514–1539.

Keywords: functional meat, bioactive ingredients, metabolism, oxidation status, antioxidant mechanisms, animal trials, intervention studies,
precision diet

Introduction
Although meat and meat products are essential foods
for most populations worldwide, high meat and meat-
product consumption can induce pro-oxidant status in
consumers (1). These foods can be a source of oxidized
compounds (given their highly perishable nature), which are
generated during processing, storage, cooking, digestion, and
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malondialdehyde; NAFLD, nonalcoholic fatty liver disease; Nrf2, nuclear factor E2-related factor
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oxygen species; SOD, superoxide dismutase; T2DM, type 2 diabetes mellitus; TXB2,
thromboxane B2; 4-HNE, 4-hydroxy-nonenal.

metabolism (2). Therefore, high meat consumption increases
the risk of developing diseases associated with oxidative
stress such as obesity, type 2 diabetes mellitus (T2DM),
colorectal cancer, and cardiovascular diseases (CVDs)
(1–4).

Nonetheless, because the worldwide consumption of meat
and meat products is very high, it seems plausible to
use them as matrices to ensure adequate consumption of
bioactive ingredients (5). Moreover, besides extending the
meat product’s shelf-life (by minimizing meat oxidation)
and improving its composition (by incorporating antioxidant
molecules), it might also benefit health by reducing the body’s
oxidative status (2, 6). There is increasing interest in the
search for healthier foods that can provide benefits beyond
the merely nutritional (5, 7, 8). In this review, we assess
if designing and consuming functional meat products is a
suitable strategy to improve meat composition and stability,
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FIGURE 1 Strategies and possibilities for improving antioxidant properties of meat and the effects of its consumption on the antioxidant
system. Strategies used for functional-meat development in the production stage (upper left box) and during processing (lower left box).
Improvements obtained both in the final product and derived from its consumption in the body (right box). CAT, catalase; GPx,
glutathione peroxidase; GST, glutathione S-transferase; LOOH, lipoperoxide; SOD, superoxide dismutase.

as well as to palliate the oxidative effects ascribed to the high
consumption of different meat types.

Functional Foods
Due to the growing incidence and prevalence of chronic
degenerative diseases, a new category of food, known as
“functional foods,” has arisen (8). According to Ashwell (9),
“A food can be regarded as ‘functional’ if it is satisfactorily
demonstrated to affect beneficially one or more target
functions in the body, beyond adequate nutritional effects,
in a way that is relevant to either an improved state of
health and well-being and/or reduction of risk of disease.”
A functional food must also remain a food and demonstrate
its effects in quantities consistent with consumption, within
the frame of a balanced diet (8, 10, 11). Currently, the
term “nutraceutical” is widely used and can be defined as
a nutritional complement or supplement of a concentrated
bioactive natural substance presented in a nonfood matrix
(pills, capsules, powder, etc.) (12).

The main strategies when designing functional foods in-
clude: 1) increasing a component already present in the food,
2) adding a component not present in the food, 3) eliminating
a harmful component of the food, 4) substituting a harmful
component for a healthier one, 5) increasing the bioavail-
ability of the ingredient or bioactive substance added, and 6)
mixing some or all of the previous strategies (5) (Figure 1).

Although there are several strategies to obtain functional
meat, efforts have addressed modifying the lipid and fatty
acid content and/or adding functional ingredients such
as fiber, vegetable proteins, MUFAs or PUFAs, vitamins,
minerals, and phytochemicals; even wholefoods such as
walnuts or seaweed can be added (5, 7, 8, 13–16).

Functional Meat and Oxidative Stress
Meat is an excellent source of high biological value proteins,
vitamins (thiamine, niacin, vitamins A, B-6, and B-12), and
minerals (high bioavailability heme iron and zinc, phos-
phorus, selenium, sodium, potassium, and cobalt). However,
meat can also contain potentially deleterious compounds
such as SFAs and cholesterol (14, 17–20). In addition, unde-
sirable compounds can originate during storage and cooking
(Table 1), as well as during digestion and metabolism (21,
22). As shown, following a meat product–based meal, rich
in lipids and proteins, increased susceptibility to bodily
oxidative damage has been found (21, 23). Further, there
is consensus on the rise in oxidation compounds found in
plasma [e.g., malondialdehyde (MDA), advanced glycation
end-products, 4-hydroxy-nonenal, oxysterols, or protein
carbonyls] after the consumption of oxidized foods in both
animals and humans (2). At a low pH in the presence of
oxygen, the stomach increases lipid and protein oxidation
by acting as a bioreactor. In vitro and in vivo studies have
shown that greater MDA and hydroperoxide formation can
occur as food passes through the stomach (22, 24, 25), along
with the oxidation of other components such as vitamin E
and β-carotenes (26). Due to the low pH of the stomach and
presence of pepsin, myoglobin is denatured and hydrolyzed,
releasing free heme iron, which can act as a pro-oxidant
(21). After digestion, the oxidized lipids are absorbed and
included in chylomicrons, increasing oxidative stress in
different tissues, and activating an inflammatory response
(27, 28). Regarding oxidized protein absorption, few studies
have established a clear relation between these compounds’
formation and meat digestion. It has been hypothesized
that reactive oxygen species (ROS) and oxidized lipids

Oxidative stress and functional meat 1515
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generated during digestion might also contribute to meat
protein oxidation (21). Therefore, it seems plausible to design
functional meat that minimizes oxidative processes at all
possible stages (Figure 1).

Meat from animals fed optimum vitamin nutrition (OVN)
has been proposed as a functional meat type (74). Besides
guaranteeing the vitamin quantity required by livestock to
have an adequate state of health and optimal development
(74), OVN meat would also guarantee an increased amount
of vitamins and bioavailability within the consumer, resulting
in improved health status. However, evidence concerning
OVN meat is rather limited. In these sections, meat and meat
products, modified with additional functional ingredients
aimed at reducing oxidative processes during production and
storage, will be reviewed and discussed.

Vitamins
Although meat is a naturally excellent source of A- and B-
group vitamins, some meat products have been enriched with
supplemental vitamins to produce more stable and healthier
formulations (5). The most common strategies when forti-
fying meat have been based on fortifying animal feed with
vitamins to produce meat with higher concentrations of these
vitamins (5, 75).

Retinol equivalents and other carotenoids.
The antioxidant activity of retinol and carotenoids is due
to the long hydrophobic chain in their structure, which can
interact with peroxyl radicals and stop lipid peroxidation
(LPO), eliminating singlet oxygen and glutathione radicals
(76). Vitamin A has been shown to play an important
role in meat oxidative stability by protecting PUFAs from
oxidation (7), thus the meat industry frequently fortifies
animal feed with β-carotenes (77–79). However, this strategy
is not employed to enrich meat with vitamin A, because meat
already contains “optimal” concentrations of this micronu-
trient. Moreover, the European Food Safety Authority takes
no antioxidant-vitamin A health claims into consideration
(80).

Tocols.
Vitamin E includes a group of 4 tocopherols (α, β , δ, γ )
and 4 tocotrienols (α, β , δ, γ ) with vitamin E activity,
among which α-tocopherol stands out. The α-tocopherol
blocks LPO by donating a hydrogen from the hydroxyl
group of its chromanol head to the peroxy lipid radical,
and by eliminating ROS (Figure 2). Vitamin E accumulates
in cell membranes protecting against free radicals in vivo.
Therefore, the food industry has developed functional meat
products enriched in vitamin E, supplementing animal
feed with α-tocopherol acetate (81). Adding the acetate
group protects the α-tocopherol from oxidation; a linear
increase of vitamin E concentration can be shown in muscle
after adding 5–95 mg/kg to the feed (81). In recent years,
dietary supplementation with α-tocopherol has transformed
meat and meat products into a major source of vitamin E
(7).

1520 Macho-González et al.



FIGURE 2 Mechanisms of ROS elimination and oxidized vitamin regeneration. Vitamin E, vitamin C, and the thiol cycle form a complex
antioxidant network to maintain an adequate redox balance. α-Tocopherol is a powerful antioxidant capable of donating a hydroxyl and
reducing potentially toxic oxidation compounds, resulting in its oxidized forms (α-tocopheroxyl and α-tocotrienoxyl). Vitamin C can be
oxidized to ascorbate and help regenerate α-tocopherol. Likewise, ascorbate can be reduced by GPx action, giving rise to the antioxidant
form of vitamin C and oxidized glutathione, which is eliminated by other systems. GPx, glutathione peroxidase; GR, glutathione reductase;
RO•, alkoxy radical; ROH, alcohol; ROO•, peroxyl radical; ROOH, hydroperoxide; ROS, reactive oxygen species.

Some authors, after supplementing chicken feed with
α-tocopherol, found a higher muscle vitamin E concen-
tration compared with the controls, giving rise to lower
oxysterol, MDA, and TBARS production during storage
and cooking (29, 30, 31–34, 82, 83). Likewise, vitamin E
supplementation combined with polyphenols also appears
to be effective (84, 85). This last study (85) revealed an
increase in antioxidant activity in meat, and drip loss
reduction, and improvement of the meat’s water reten-
tion capacity, suggesting better meat quality. These results
suggest that cell membranes containing high tocopherol
concentrations are more resistant to lipid oxidation. This
would also contribute to maintaining meat quality by re-
ducing myoglobin oxidation and inhibiting PUFA oxidation
(86).

Table 1 summarizes the effects of vitamin addition in
meat. Greater stability in vitamin E–enriched sausages, with
a slight decrease of α-tocopherol, during storage and cooking
has been reported (35, 36, 87, 88). However, vitamin E
losses were greater after 6 wk of storage when sausages
were formulated with a lower nitrite concentration (37).
In contrast, the results regarding the LPO of vitamin E–
enriched meat products are contradictory (35–40), because
tocopherol addition to processed meats did not effectively
delay lipid oxidation due to the difficulty of distributing
the antioxidants in the food homogeneously, especially in
nonground meat (79). Unfortunately, to the best of our
knowledge, the antioxidant impact of vitamin E–enriched
meat on consumer antioxidant status has scarcely been tested
(Table 2).

Vitamin C.
Another vitamin that protects biological systems against
oxidative damage is vitamin C because it can donate a
hydrogen atom and form a relatively stable ascorbyl free
radical, thus protecting biological systems against oxidative
damage (76). Given its solubility, it can act both inside

and outside cells by removing hydroxyl and superoxide
radicals, while minimizing lipid peroxide formation. Vitamin
C also plays an important role in α-tocopherol regen-
eration by reducing the tocopheroxyl radicals produced
(Figure 2) (89). Interestingly, in the presence of redox-
active ions such as iron or copper, vitamin C in large
amounts can act as a pro-oxidant, contributing to hydroxyl
radical formation and lipid, DNA, or protein oxidation (86,
90).

Unlike vitamins A and E, vitamin C is frequently
added to a greater extent to meat products (81). This
strategy prevents and reduces oxidation and discoloration
(metmyoglobin formation) during storage and cooking,
especially in ground meat, which increases consumer ac-
ceptance of the meat (Table 1) (41–44, 91). Intravenous
vitamin C infusion, immediately before slaughter, has
been proposed as an effective means of increasing skele-
tal muscle ascorbic acid concentrations (92). Meat with
higher vitamin C concentrations has greater oxymyoglobin
and lipid stability, which results in less discoloration
and rancidity. However, no information is available on
the functional effects of vitamin C–enriched meat prod-
ucts.

Minerals
Minerals are essential micronutrients that participate and
regulate several bodily functions (93). Some minerals such as
copper, magnesium, selenium, silicon, and zinc have antiox-
idant properties and can be a good nutritional alternative to
develop functional meat (94).

Selenium.
Selenium is a trace mineral that acts in neutralizing and
eliminating a body’s reactive species (95). It is a component
of certain enzymes such as selenoproteins, among which
glutathione peroxidase (GPx) stands out.

Oxidative stress and functional meat 1521
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Although meat and meat products are excellent sources
of selenium, its concentration differs depending on the geo-
graphical area of production (118). Most studies have focused
on increasing the selenium contribution via animal feed (86,
46, 119). This practice increases selenium concentrations
in different muscle types destined for consumption, while
also protecting meat products from oxidation during storage
(Table 1). Thus, ABTS (2,2′-azino-bis-3-ethylbenzthiazoline-
6-sulphonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl),
FRAP (ferric reducing antioxidant power), and TBARS are
reduced in relation to their controls (7). In addition, selenium
increases the expression of key antioxidant enzymes [GPx,
superoxide dismutase (SOD), and catalase (CAT)], reduces
microbial growth, and improves the rheological properties
of the final meat product (46, 47, 52, 119, 120). Limited
and contradictory evidence is available on the effectiveness
of selenium-enriched meat on animal or human antioxidant
status. Some researchers revealed an increase in GPx ex-
pression and activity (52, 115, 121), whereas others reported
no significant difference in antioxidant status after the
consumption of selenium-enriched meat (114). This suggests
the need to conduct more studies aimed at evaluating the
antioxidant effectiveness of selenium-enriched meats.

Silicon.
Silicon is an essential trace element for the growth and bio-
logical function of various microorganisms, plants, and ani-
mals (122). Although health benefits from silicon have been
reported (122–124), to date no dietary reference intakes have
been defined. In vitro studies have shown a higher level of
antioxidant activity of silicon in different cell types (125, 126).

Silicon inclusion in restructured meat would ensure the
intake of this essential micronutrient and would confer meat-
functional properties (127). However, no data have been
reported on the oxidative stability of silicon-enriched meat
during storage, cooking, and digestion. Unpublished data
from our research group suggest that silicon-enriched pork
suffers less oxidation than its nonsilicon counterpart in an
in vitro digestive system model. Moreover, animal studies
have revealed significant improvements in antioxidant status
after silicon-enriched meat consumption. For example, a
reduction in VLDL oxidation, along with less LPO and
conjugated diene formation, were reported in old Wistar
rats fed silicon-enriched meat as part of an atherogenic
diet (107). Likewise, a hepatic antioxidant response pathway
improvement, especially for SOD concentrations, via nuclear
factor E2-related factor 2 (Nrf2) activation, was observed in
rats suffering from nonalcoholic fatty liver disease (NAFLD)
fed silicon-enriched meat (102). The improvement in antiox-
idant status could be partially responsible for the reduction
in liver apoptosis found in these animals, suggesting a
hepatoprotective role for consumption of silicon-enriched
meat in an NAFLD animal model (128).

Zinc.
Zinc is an essential mineral for human health and growth
because it is a cofactor for many enzymes and transcription

factors, as well as a mediator of cell signaling and immune
response (129). Zinc inhibits NADPH oxidase, acts as an ROS
scavenger, and affects many enzyme cofactors that contribute
to proper antioxidant pathway functioning. Specifically, it
plays a key role in GPx regulation and is a SOD cofactor (94,
130). In vitro studies with zinc- and selenium-formulated
meat have revealed a greater bioavailability of these minerals
compared with their controls (131).

Several studies have evaluated the convenience of includ-
ing zinc to improve meat production (131–134) and storage
(40, 132), but no studies have been performed testing the
functional effects of zinc-enriched meat on the antioxidant
status of animals or humans (Tables 1 and 2). The vast
majority of studies were based on supplementing a diet
with different zinc concentrations, depending on the mineral
source (132–134). Moreover, subcutaneous injections with a
mineral mix were also performed (135). A rise in the zinc
concentrations in the production stage resulted in an increase
in Nrf2, a major transcriptional switch for the antioxidant
response element and pathways. This increased antioxi-
dant enzyme activities (SOD, CAT, GPx, and glutathione
reductase) and the content of reduced glutathione (GSH),
diminishing meat ROS and lipid peroxide concentrations
during production and storage. These outcomes indicate
better meat stability (132–134, 136).

Bioactive peptides
Proteins contain short amino acid sequences (2–30 amino
acids), called bioactive peptides, which are released by enzy-
matic hydrolysis in the gastrointestinal tract or during food
processing, including drying, curing, and fermentation (137,
138). These peptide sequences are characterized by their high
bioavailability and their ability to modulate several physi-
ological functions by acting as antioxidants, antihyperten-
sives, antimicrobials, antidiabetics, and immunomodulators
(120, 139).

Bioactive peptides can be included in meat products using
2 key strategies: 1) adding proteins that contain active peptide
sequences, which are released after intestinal hydrolysis; and
2) hydrolyzing proteins using enzymatic technology, con-
centrating the fractions of the resulting bioactive peptides,
and incorporating them into the meat (140). The drawback
of strategy 1 is that large protein amounts are necessary to
achieve a sufficient and effective dose of bioactive peptide
to exert a physiological effect. Strategy 2 reduces consumer
acceptability of the meat product because a high level of
bioactive peptide incorporation produces a certain bitter
taste (7). Notably, bioactive peptide effectiveness can be
modified when the peptides are incorporated into different
matrices, making it necessary to check their stability during
the formulated foods’ digestion (141, 142). Further informa-
tion on bioactive peptide production is available in other
reviews (137, 140, 143).

Many studies have shown that bioactive peptides exert
antioxidant effects at different levels. In meat products, they
help to protect cells from damage caused by electrophilic and
oxidative stress by sequestering metal ions, eliminating ROS,
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minimizing LPO, or enhancing the antioxidant pathway
activity (138–141). The bioactive peptides most widely used
by the meat industry are those originating from casein,
egg white, whey protein, soy protein, or fish protein (144).
Their use in pork, beef, or poultry, both original and
minced structures, has shown a significant reduction in
LPO of ≤70% during processing and storage, preventing
oxidation and providing greater stability to the meat product
(48–51, 145) (Table 1). However, there are no studies
testing the bioavailability of these peptides after cooking,
or the in vivo antioxidant effectiveness of functional meat
formulated with bioactive peptides (146). As demonstrated
by in silico predictive analysis (137), meat already contains
large amounts of protein that can release bioactive peptides.
These findings, coupled with high production costs, taste
modifications, limited data on bioavailability and metabolic
fate, and the lack of standardized analytical methods,
predispose the commercialization of these bioactive pep-
tides as nutraceuticals rather than functional ingredients
(147).

Plant origin ingredients
Plant foods or their extracts contain nutrients and bioactive
compounds rarely present in meat products (5, 17, 148).
Their incorporation to meat matrices should preserve both
the composition and quality of functional meat and meat
products (149) as well as the antioxidant status of consumers
(150). Throughout this section, we will discuss the main plant
ingredients with antioxidant properties used in functional-
meat product formulation.

Fiber, polyphenols, and plant extracts.
Meat is high in fat and proteins but lacking in dietary fiber
(151, 152). Incorporation of dietary fiber in functional-meat
development has been extensively studied because, depend-
ing on the ingredient incorporated, it can have noticeable
technological properties (water retention, lubrication, ability
to decrease cooking losses, product stabilization, texture
modification, and neutral flavor) and nutritional properties
(high fiber source, intestinal microbiota diversification, and
hypocholesterolemic, antioxidant, and/or satiating effects)
(13, 153). In addition, many antioxidant compounds, such as
polyphenols and carotenoids, have been associated or linked
to dietary fiber (154, 155). Although there are several types
of polyphenols, their phenolic structure makes them effective
electron or hydrogen donors to neutralize ROS and reactive
nitrogen species (156). Polyphenols have been reported:
1) to interrupt the propagation stage of lipid autoxidation
chain reactions as effective radical scavengers; 2) to act
as metal chelators to convert hydroperoxides or metal
pro-oxidants into stable compounds with the consequent
decrease in reactive •OH caused by the Fenton reaction (157)
(Figure 3); and 3) to activate, as a free or glycosylated form,
the antioxidant pathway by promoting Nrf2 translocation
to the nucleus, activating the antioxidant response element
(158, 159). These properties suggest the convenience of

designing meat products enriched with fiber-associated
antioxidant compounds.

Maintaining optimal conditions and meat stability during
storage and cooking is an important technological and
nutritional challenge (160). Some researchers have designed
meat products enriched with green banana flour, soybean
hulls, or oats, which improved the antioxidant rheological
properties and antioxidant characteristics (53, 54). Likewise,
adding guava or orange powders rich in vitamin C and
polyphenols to nuggets or sausages, improved meat product
stability by delaying LPO (as TBARS values) during storage
and cooking (55, 56).

Ascorbic acid, rosemary extract, grape skin, and tea
extract added to beef patties can reduce MDA formation
in storage conditions (43, 45, 57). Other authors have
shown that adding avocado (Persea americana Mill.) or
Ginkgo biloba L. extracts prevents oxysterol formation in
meat products during storage and cooking (58, 59). En-
riching meat products with different fruit extracts reduces
their oxidative alteration during cooking and subsequent
refrigeration. Thus, the decrease of carbonyl production in
meat has been linked to a high flavonoid concentration,
which blocks the oxidation of lysine, proline, arginine, and
histidine residue side chains (60). Furthermore, 2 carob fruit
(Ceratonia siliqua L.) extracts, rich in proanthocyanidins,
reduced LPO and thermo-oxidized compound formation
during meat storage and cooking (16) (Figure 3). More
information on plant- or extract-derived natural antioxidants
used in meat preparation can be found elsewhere (161).

Several in vivo studies have evaluated the functional
antioxidant effects of plant extract–enriched meat products,
considering both their technological properties and oxidative
stability (Table 2). In one study using a colorectal cancer
animal model, the consumption of cured pork meat enriched
with red wine (2%), pomegranate (0.6%), and α-tocopherol
(0.045%), reduced both fecal LPO and the formation of
urine 1,4-dihydroxynonane mercapturic acid (the main
urinary metabolite of 4-HNE and an LPO indicator) (106).
Likewise, sausages enriched with anthocyanins (0.11%) were
developed to study the protective effect of anthocyanins on
colorectal cancer. Results showed an increase in total plasma
antioxidant activity and a reduction of proinflammatory
bacteria (105) (Table 2).

Our research group has tested the effect of a carob fruit
extract–enriched meat (0.4 g/100 g meat) during 8 wk on
2 animal models of T2DM (Table 2). In the early stage of
T2DM, functional-meat consumption increased arylesterase
(AE) activity and 1 of the 3 activities of the paraoxonase-1
(PON1) enzyme in the liver, but reduced AE in plasma (103).
In the T2DM late stage, the intake of carob fruit extract–
enriched meat increased both the plasma and liver AE and
reduced liver and VLDL oxidation (104). PON1 is defined as
a suicide enzyme, exerting pleiotropic antioxidant effects and
protecting many macromolecules (such as lipoproteins) from
oxidation in high oxidative stress conditions with the absence
of antioxidants (162). Proanthocyanidins are metabolized
by the microbiota, releasing large amounts of antioxidant
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FIGURE 3 Illustrative scheme of functional-meat antioxidant effect in the different steps from production to metabolization.
Development of functional meat with bioactive ingredients with antioxidant potential reduces the intrinsic formation of oxidized
compounds during storage and cooking, as well as the thermo-oxidation of cooking oil. Once consumed, the functional ingredient can
reduce ROS and lipoperoxide formation and minimize the heme-iron pro-oxidant effect of meat, while increasing the endogenous
antioxidant machinery (CAT, GR, GPx and SOD). CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced
glutathione; GSSG, oxidized glutathione; L•, lipid radical; LOO•, lipid peroxyl radical; MDA, malondialdehyde; RAGE, receptor for AGEs
(advanced glycation end-products); ROS, reactive oxygen species; SOD, superoxide dismutase; 4-HNE, 4-hydroxy-nonenal.

metabolites into the plasma. This suggests that meat enriched
in proanthocyanidin extract can reduce the oxidative stress in
the early stage of T2DM, because no extra plasma AE activity
is required (103, 104).

Although numerous studies have examined the effects
of plant extract–enriched meat products on animals, few
studies have been performed in humans. In a crossover trial,
the daily consumption of 1 burger enriched with 7% wine
grape pomace flour for 1 mo improved the antioxidant status
of participants with various metabolic syndrome markers
(108). Flour derived from polyphenol-rich grape pomace,
when added to meat, reduced postprandial oxidative stress,
advanced oxidation protein product formation, uric acid, and
oxidized-LDL (oxLDL) plasma concentrations. In addition,
vitamin C concentrations increased along with antioxidant
activity in the plasma. This suggests a clear improvement
in antioxidant defense (24). The most reliable and accepted
marker for evaluating LPO in vivo is 8-iso-PGF2α (163). The
same marker was used in a randomized and double-blind
crossover trial in volunteers at increased CVD risk, who
consumed cooked ham and turkey (450 g/wk) enriched with
0.03% rosemary extract and 0.9% salmon oil; this showed
an increase in plasma antioxidant capacity with a decrease
in 8-iso-PGF2α (113). In a parallel study, healthy individuals
who consumed meat enriched with microencapsulated olive
aqueous extract (30 g/d) showed a decrease in oxLDL, but no
change in plasma antioxidant activity (116).

Walnuts.
Walnuts are rich in arginin (14, 164), an amino acid precursor
of NO, an endogenous anti-inflammatory vasodilator and

a platelet aggregation inhibitor, which partially explains
why walnuts exert CVD protection (164). Walnuts contain
antioxidant minerals such as magnesium, selenium, copper,
and zinc (14, 165). They also contain noticeable amounts
of antioxidant vitamins (e.g., γ -tocopherol), polyphenols
(e.g., quercetin), and plant sterols (14). In addition, walnuts
are the nuts richest in ω-3 PUFAs, which induce lower
cyclo-oxygenase (COX) production than their ω-6 PUFA
counterparts (166).

Thus, to promote their consumption, walnuts could be
an ingredient in regularly consumed foods (e.g., meat/meat
products), which would make meat products healthier
(5, 14). Due to their specific compositional differences
from other nuts (165, 167), walnuts were selected by
our group as a functional ingredient to be included in
meat. This approach did not substantially reduce other
important nutritional components of walnuts, such as iron
and zinc (5, 14). Furthermore, like any functional food,
meat products containing walnut paste must maintain the
original health properties of the walnuts after cooking. At
least 80% of α-linolenic acid and total PUFAs remain in
walnut paste–enriched meat after surface frying (15, 67)
(Table 1).

As summarized in Table 2, a 5-wk randomized placebo-
controlled crossover study was conducted in men and women
at high risk of CVD, to assess the functional effects of the
weekly consumption of restructured steaks (4 × 150 g) and
frankfurters (150 g) containing 20% walnut paste. Besides
the lipoprotein results obtained, interesting outcomes were
observed for antioxidant and inflammatory markers, no-
tably thromboxane and prostacyclin production (110). The
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improvement in thromboxane and prostacyclin concentra-
tions suggests a reduction in COX, an enzyme that may
activate ROS production (109). The intake of these meat
products 5 times a week increased the concentrations of
CAT, SOD, total glutathione, and GSH/oxidized glutathione
(GSSG) redox index, but reduced concentration of lipid
peroxides compared with the volunteers consuming the low-
fat control products (110). These findings follow previous
studies that showed walnuts can reduce systemic oxidation
(168, 169) and brain oxidative stress (170). A dietary inter-
vention of walnut-enriched meat increased PON1 activity
without changing HDL cholesterol concentrations. Thus, the
increase of PON1 activity, despite HDL cholesterol changes,
denotes increased antioxidant activity for pleiotropic uses,
corroborating the results of other studies (171). Further-
more, the reduction of thromboxane B2 (TXB2) and the
TXB2/PGI2 thrombogenic ratio suggests that consumption
of walnut-enriched meat diminishes the activity of enzymes
such as COX, and thus, ROS production, which explains
the difference in PON1 and AE in different meat treatments
and periods (110). These results suggest the improvement
in antioxidant status in the participants was due to the
consumption of meat enriched with walnuts.

Seaweed.
Different algal bioactive compounds, such as dietary fiber,
proteins, minerals (sodium, calcium, potassium, iron, mag-
nesium, selenium, and manganese), trace elements, vitamins
(C and B-group), unsaturated fatty acids, polyphenols,
carotenoids, and tocopherols, have been reported to exert
functional properties (17, 172–175). However, any general-
ization about algal functionality has to be avoided, because
seaweed composition depends on the species, habitat, and
state of maturity, among other factors (172, 174). Addition-
ally, seaweed can have high amounts of poisonous trace
elements (e.g., arsenic) that would partially block antioxidant
properties (176). It is also important to differentiate between
whole seaweed and extracts, because the extraction process
determines the subsequent antioxidant activity. However,
there is a lack of efficacy and reproducibility between studies
(177).

Our group produced different types of meat enriched
with sea spaghetti (Himanthalia elongata), wakame (Un-
daria pinnatifida), or nori (Porphyra umbilicalis) through
a gel/emulsion system (17, 96–99). The resulting prod-
ucts (frankfurters, patties, and restructured steaks) showed
increased amounts of minerals and soluble polyphenols,
which are responsible for the high antioxidant activity and
stability during processing and storage (68, 178–180). These
results align with other studies that included fucoxanthin
or astaxanthin in meat, which are the main carotenes
of wakame and Haematococcus pluvialis, respectively (61).
Adding algal extracts improves color stability, and decreases
production of lipid peroxides following storage and cooking
(181). In addition, algal inclusion reduced the oxidation
induced by high copper and iron concentrations in meat
(172).

In relation to functionality, animal studies have been
performed to assess the effect of algae-enriched meat
consumption on the antioxidant pathway (Table 2) (96–
99). Thus, for 5 wk, growing Wistar rats were fed diets
(with or without added plasma cholesterol-raising factors) of
restructured meats containing 5% w/w nori, wakame, or sea
spaghetti. Interestingly, hypocholesterolemic effects resulted
in lower antioxidant concentrations. Thus, wakame might
act as an antioxidant because it showed little hypocholes-
terolemic effect. Sea spaghetti could partially block the pro-
oxidant effects induced by the cholesterol elimination via
cholic acid thanks to the cytochrome P450 7A1 (CYP7A1)
enzyme action. The CYP7A1 hemoenzyme produces high
ROS concentrations in the presence of iron, requiring large
amounts of antioxidants, which explains the relatively low
antioxidant properties of nori in our experimental conditions
(98). Nonetheless, seaweed-enriched meat seems to exert
buffering effects, because it induced moderate antioxidant
enzyme expression (CAT, Mn-SOD, Zn-SOD, and GPx)
in rats fed the seaweed-enriched meat (96, 97, 99). All
tested algae contained sizeable amounts of xanthophils and
polyphenolic compounds, whose antioxidant activity could
help to eliminate ROS, making it unnecessary to increase
antioxidant pathway expression in the body (182, 183). Like-
wise, some algal bioactive peptides called phycobiliproteins
(protein and pigment complexes) have antioxidant activities
that could be beneficial in reducing the negative effects of
diseases associated with oxidative stress and inflammation
(184). Our group has tested the antioxidant and hypoc-
holesterolemic effects of functional meat formulated with a
mix of glucomannan plus spirulina (Spirulina platensis or
Arthrospira maxima) regarding those of a glucomannan-
enriched meat in fa/fa rats fed an atherogenic diet (100)
(Table 2). The joint action of glucomannan and spirulina
halted the ROS production linked to the active elimination
of cholesterol in the rats (100). Despite the positive effects of
Spirulina on antioxidant activity and the stability provided
by its incorporation into meat, more studies are needed to
evaluate its functional properties both in animal and human
models (17, 173, 177).

Fatty acid profile modification
Fatty acid profile modification is one of the most used
technological strategies to obtain functional meat. It is based
on the meat-fat substitution, rich in SFAs, by PUFAs and/or
ω-3 PUFAs to obtain meat products whose ω-6/ω-3 PUFA
and PUFA/SFA ratios would be adjusted to nutritional
guidelines (5). Therefore, by taking the health benefits of ω-3
PUFAs into account (166), the food industry has developed
strategies to increase their concentration in meat products
(65, 66, 69, 70, 117, 185, 186).

Because meat lipid composition largely depends on an
animal’s diet, mainly in monogastric animals, one of the
most used strategies is incorporating ω-3 PUFA-rich sources
(e.g., fish, rapeseed, or flax oils) into animal feed. This
method is effective in the production of pork or poultry (187,
188); however, there are conflicting results for beef or lamb,

Oxidative stress and functional meat 1529



mainly because dietary unsaturated fatty acids are subject to
rumen biohydrogenation (189, 190). Still, increasing PUFA
concentration in meat could be a somewhat risky strategy
because PUFAs are the main substrates for LPO (2). A
related study reported that the increased oxidation with
PUFA enrichment can be reduced if the animals are fed grass
because it increases their vitamin E concentrations (191).

Furthermore, PUFA addition is especially problematic for
meat products because processing conditions such as milling,
cooking, and drying involve exposure to relatively high
temperatures, decomposition of antioxidants, or increased
oxygenation of the substrate (62, 69–72). Therefore, many
studies include antioxidant compounds, besides ω-3 PUFAs,
to guarantee the stability of ω-3 PUFA-enriched meat until
consumption (Table 1) (63, 67, 113, 192). However, a fat
reduction of 10–20% in the final product diminishes meat
oxidation whereas partially replacing fat with guar gum
decreases the formation of protein carbonyls in meat (64).

In a 5-mo nonrandomized, sequentially controlled study,
our research group has tested the effect of consuming
reduced-fat meat products in volunteers at increased CVD
risk. ω-3 PUFA-enriched/fat-reduced frankfurters and pâtés
with 15% total fat (200 g/wk and 250 g/wk, respectively)
were tested compared with control meat products for several
CVD biomarkers (117). The results revealed an increase in
the AE activity, and a lower AE/oxLDL ratio, suggesting en-
hancement in the antioxidant status of lipoproteins after the
consumption of the fat-modified functional meat products.

Although the positive effects of ω-3 PUFAs seem ir-
refutable, there is growing evidence that these fatty acids
exert a pro-oxidant effect initially to stimulate the antioxidant
pathway, which can have a high therapeutic value in patholo-
gies associated with oxidative stress and inflammation (193).
The mechanism by which this response is induced is not
clear, but 4-hydroxy-2E-hexenal, a final product of LPO, has
been suggested to upregulate heme oxygenase-1 expression
through Nrf2 activation (194, 195).

Despite the promising results associated with ω-3 PUFA
consumption, as far as we know, few industrial meat products
enriched with ω-3 PUFAs are available. The technological
difficulty in guaranteeing their stability could be one cause,
which represents an interesting line of research and product
development to improve consumers’ health.

Functional Meat and Mitotic and Nonmitotic
Tissues: Potential Role for Preventing Chronic
Diseases
From a practical viewpoint, diseases are normally classified
according to their location or the presence of specific altered
physiological mechanisms. Thus, functional foods or their
ingredients can also be classified according to their specific
and/or systemic effects and action mechanisms available
from clinical or preclinical studies (110, 196). Most prevalent
chronic, noncommunicable diseases have a similar origin
based in pro-oxidant/inflammatory factors (2, 196), and
are related or caused by aging (4, 197, 198) (Figure 4), a
phenomenon linked, among several factors, to mitochondrial

oxidative disturbances and dysfunction (199, 200). Thus,
as reviewed in the section entitled functional-meat and
oxidative stress, several ingredients and their functional meat
products exert their health benefits through downregulating
oxidative pathways (86, 96, 98, 99, 101, 104, 108, 145). More-
over, hypercholesterolemic animals have lower activities of
antioxidant enzymes, which can be largely improved by func-
tional meat consumption (96, 98–101,104). This antioxidant
effect would help prevent CVD and have hepatoprotective
effects, because adding polyphenols, tocols, silicon, and fiber
to meat positively affects atherosclerosis and protects liver
cells under oxidative stress by activating Nrf2 and promoting
glutathione synthesis (100–102, 128) (Figure 4). However, the
scientific evidence for the antioxidant effects of functional
meat products is limited to the liver and plasma of nor-
mocholesterolemic and hypercholesterolemic Wistar, fa/fa,
and Fischer rats (affected or not by T2DM), with almost no
data being available for the pancreas, brain, kidneys, spleen,
and heart (Table 2). Therefore, unfortunately, we cannot
clearly link functional meat consumption with improvement
in antioxidant function in specific organs besides the liver.
Likewise, in humans information on the effects of functional
meat products is restricted to plasma, urine, and feces, in
which routine markers were tested (redox index, plasma
antioxidant enzyme activities, AE, and oxLDL) (108, 110–
115, 117, 151).

Moreover, the effects of aging and/or diet differ in distinct
body organs (199, 200). Therefore, the antioxidant effects
of functional meat products have to be differentially tested
in mitotic (e.g., liver, intestine) and nonmitotic organs
(muscle, heart, brain, and retina), because mitochondrial
alterations differ considerably among tissues depending
on the tissue’s capability to repair or replace altered cells
and to recover a given function. Further, liver has been
found to partially buffer the damage as suggested by the
non-effect found on cytochrome c activity (a marker of
mitochondrial integrity) and therefore, is more effective in
repairing mitochondrial DNA damage (199). Cytochrome c
oxidase activity is a marker for mitochondrial function. A
decrease of this enzyme activity leads to the uncoupling of the
mitochondrial electron transport with subsequent increases
in ROS production (201). However, mitochondria from
nonmitotic tissue partially buffer unfavorable situations by
increasing cytochrome b, cytochrome c oxidase, and/or the
lipoprotein membrane unsaturation (e.g., increasing PUFA-
enriched cardiolipin), which makes those tissues more prone
to oxidation (199). Thus, dietary intervention based on
functional meat containing antioxidants could attenuate the
ROS process, but their effects should be tested in different
body organs, because a PUFA/antioxidant imbalance would
be highly deleterious for nonmitotic organs but less so for
mitotic ones.

Potential Negative Effects of Functional Meat
Formulation and Consumption
Although legislation urges further testing, marketing, and
redacting claims for functional foods (80, 202), several
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FIGURE 4 Functional meat products as modulators of oxidative stress and chronic degenerative diseases. Tentative differential effects on
mitotic and nonmitotic organs. Most chronic, noncommunicable diseases have a similar origin based in pro-oxidant factors and aging, a
phenomenon linked, among several factors, to mitochondrial oxidative disturbances and dysfunction. Functional meat products because
of the functional ingredients added in formulation exert their health benefits through diminishing oxidative pathways (for more details
see text). Differences in the antioxidant effects of functional meat products in mitotic (e.g., liver and intestine) and nonmitotic organs
(muscle, heart, brain, and retina) appear important because mitochondrial alterations differ considerably between tissues depending on
their ability to repair damage, to induce mitochondriogenesis, or to replace altered cells and functions. Mitochondrial dysfunction leads to
the uncoupling of mitochondrial electron transport and increased ROS production. Mitotic organs partially buffer the damage, because
little effect on mitochondrial integrity according to cytochrome c activity suggests they are more effective at repairing mtDNA damage.
Mitochondria from nonmitotic tissue partially buffer unfavorable situations by increasing cytochrome b, cytochrome c oxidase, and/or the
lipoprotein membrane unsaturation that makes this tissue more prone to oxidation. A diet rich in PUFAs and poor in antioxidants will be
highly deleterious for nonmitotic organs, but not for mitotic organs. mtDNA, mitochondrial DNA; ROS, reactive oxygen species. Adapted
from reference 200 with permission.

other aspects (e.g., doses, frequency, incompatibilities, and
interactions) must be considered. The general notion that
improving food composition and stability always implies
health benefits should be avoided because, sometimes,
bioactive compounds added to meat in specific amounts can
be adequate in food for oxidation, but inadequate for specific
consumers. Our group reported that adding hypericum
(Hypericum perforates L.) reduces the oxidation in ω-3
PUFA-enriched meat products (62) and assures a pharma-
cological and nontoxic dose of hypericum extracts with
a maximum of 0.3% hypericin. However, the interactions
of hypericum with selective serotonin reuptake inhibitors
have to be considered. Thus, hypericum extract–enriched
meat consumption should be avoided by people treated
with certain pharmaceutical drugs (203). Similar consid-
erations should be given for bioactive compounds (e.g.,
oligopeptides from meat, eggs, milk, and fish) added to meat
undergoing liver metabolization by the cytochrome P450
isoenzymes (204, 205). Changes in cytochrome P450 isoen-
zyme activity would modify the therapeutic action of several
medicines.

Because algae contain antioxidant compounds (e.g.,
polyphenols and xanthophylls), they can have positive effects
on the consumer’s antioxidant status (17, 172). However,
trace elements (e.g., arsenic) in seaweeds can induce a
poor endogenous antioxidant status in consumers (176).
Therefore, special care should be taken to ensure low
concentrations of such trace elements in algae-enriched
meat. The benefits of adding iodine to food, especially
in countries with a low iodine intake, are appealing (206,
207). Nonetheless, the consumption of iodine-rich algae
has been found to increase thyrotoxicosis risk, mostly in
people adapted to a low iodine intake (208), requiring
caution when consuming algae-enriched meat. β-Sitosterol
and other plant sterols can be added to meat and other foods.
Some plant sterols (e.g., �5-avenasterol) (209) reduce food
oxidation. However, plant sterols should not be consumed
during pregnancy or childhood, because negative effects in
early child development have been reported (209). Dietary
fiber, ω-3 PUFAs, and some bioactive compounds (such
as polyphenols or related compounds) appear to interact
with statins, reducing their presystemic metabolism and
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decreasing their half-life. Consequently, the therapeutic
efficacy of such pharmaceuticals is modified (210).

Lastly, some meat and its functional ingredients (e.g.,
algae) can contain substantial concentrations of sodium
(172, 211), which increases water retention and thus blood
pressure, decreasing the effectiveness of hypotensive drugs
(211). Therefore, strict analysis for detecting and removing
any potential negative compounds present in functional meat
should be performed.

Functional-Meat Consumption and Precision
Nutrition
The effect of any functional food should be considered
according to the phenotypic characteristics of a person, in
whom the genome and the environment are in continuous
dialog (212–214). Thus, precision nutrition seems necessary
to precisely ascertain the effect of dietary nutrients and
bioactive compounds on gene expression by using new omics
approaches (215, 216).

Nutrigenomics was initially defined as the study of the
effects of nutrients/foods on an individual’s gene expression.
Subsequently, it has been expanded to cover the nutritional
factors that protect the genome from damage (217). In
addition, food and its components can cause epigenetic
modifications in DNA transcription and mRNA translation,
contributing to the improvement or worsening of the patho-
physiology of a disease, which reinforces the importance of
conducting adequate nutritional intervention studies (212,
214, 215). However, diet–gene interactions are complex and
difficult to predict, prompting a high number of studies
based on genome-wide association studies, genetic risk score
applications, and next generation sequencing techniques
(212, 213, 215). Likewise, mRNA sequencing analyses,
transcriptomics, proteomics, metabolomics, lipidomics, and
epigenomic-wide association studies will also improve preci-
sion nutrition (212–216).

Our group has reported that the antioxidant responses
in volunteers at high CVD risk consuming walnut paste–
enriched meat varied in 2 major polymorphic forms of the
PON1 Q192R (rs662) and L55M (rs854560) gene variants,
and the APOA4 gene Q360H (rs5110) (109, 111, 112).
Although the samples tested were limited in size, the
results obtained suggest that changes in antioxidant status
markers in walnut-enriched meat after a 5-wk period were
greater in PON1 QQ carriers than in PON1 QR+RR (109,
112). Furthermore, the PON1 Q192R polymorphism was
more closely related to antioxidant status than the PON1
L55M (111). Interestingly, AE activity isolated from PON1
QQ volunteers was more resistant to inactivation than
the AE from PON1 RR counterparts, suggesting higher
antioxidant activity and antiatherogenic properties, because
the remaining active enzyme hydrolyzed greater amounts of
lipid peroxides in the atherosclerotic lesions (218).

Nutrients and bioactive compounds exert their health
effects through nutrigenomic and epigenomic mechanisms
(214). Previous sections have discussed how the consump-
tion of plant extracts, seaweeds, silicon, and so forth

affects antioxidant enzyme gene expression, thus modifying
consumers’ antioxidant status.

The importance of transcriptomics, and other “omics”
technologies in precision nutrition seems evident, because
several gene polymorphisms engaged in metabolic pathways
have been linked to degenerative diseases (216). The negative
effects of high meat consumption on colon cellularity appear
closely related to the nature and presence of the proteolytic
microbiome. A diet rich in carbohydrates made colonic
saccharolytic bacteria predominant. Thus, the conjoint con-
sumption of meat and indigestible carbohydrates allows
buffering of such negative effects (219), highlighting the
importance of consuming a plural diet or including some
fermentable plant compounds in foods consumed every day,
such as meat. Despite these challenges, functional meat
products formulated with antioxidant ingredients should
not only reduce the formation of ROS and other oxidation
compounds, but also enhance antioxidant pathways by mod-
ulating the levels of several transcription factors (e.g., Nfr2,
NF-κB, retinoid X receptor, and vitamin D receptor). These
effects appear mediated by epigenetic changes associated
with consumption of these ingredients, which indicates that
they are a potential nutritional weapon to help improve
chronic pathologies. In addition, vitamins A and D have
been getting more attention due to their antioxidant activity
and their antitumor properties (220). Thus, if cancer has
been epidemiologically associated with meat consumption
(19, 221, 222), the inclusion of vitamin A and/or D as
functional ingredients in meat products would diminish this
negative relation. Nonetheless, cancer is a complex topic
and some antitumor properties of functional ingredients
(such as vitamin D) can be dysregulated (220). Therefore,
studies evaluating the effects of functional-meat consump-
tion on the genome are required to advance this complex
topic.

Conclusions and Future Works
� Numerous potential meat-based functional foods have

been designed and developed to cover 2 main objec-
tives: improving composition and shelf-life of meat
products, and enhancing the health status of con-
sumers by ameliorating ≥1 bodily functions and/or
reducing the risk of degenerative disease development.

� Modified meat products ensure acceptable quality
attributes in terms of physicochemical and sensory
properties, as well as stability and health benefits.

� Animal feeding and food formulation are the 2 most
usual ways to obtain functional foods with antioxidant
properties.

� Meat and meat products have become ideal food
matrices for delivering bioactive compounds, (e.g.,
fiber, ω-3 PUFAs, and bioactive peptides) or whole
foods (e.g., walnuts, and seaweeds) without changing
dietary habits, which helps to improve the dietary
nutritional quality and adequacy.

� Information on meat oxidation protection with func-
tional ingredients is broad, but few studies have
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evaluated the in vivo antioxidant effects of functional
meat after consumption.

� Little evidence is available on the functional ingredi-
ents remaining in functional meat after cooking, and
its effects on functionality.

� Regular consumption of adequately formulated meat
products ensures an improvement in antioxidant sta-
tus, because it reduces the levels of some specific
oxidation markers (TBARS, MDA, and the glutathione
system) and their metabolic consequences (DNA
modification, IL production, cell apoptosis, etc.).

� Future work is needed not only to assess health effects
mediated by functional-meat products but also to
target people who might benefit by their consumption.

� The antioxidant effects of functional-meat products
must be tested in mitotic and postmitotic organs of
males and females and in the frame of several diets and
physiopathological situations.

� Long-term, controlled studies should be designed to
understand how the effects of functional meats are
affected by "omics" measurements.

Acknowledgments
Laura Hoppe edited the English language manuscript. Lind-
sey Price reviewed and edited the scientific English.

The authors’ responsibilities were as follows—AM-G and
FJS-M: conceived the work, wrote the manuscript, revised
the overall manuscript, and were responsible for the overall
review quality; AG, MEL-O, and PG: assisted in drafting
the sections on minerals and vitamins; JB, MJG-M, and SB:
assisted in drafting the sections on plant extracts; and all
authors: read and approved the final manuscript.

References
1. Van Hecke T, Van Camp J, De Smet S. Oxidation during digestion

of meat: interactions with the diet and Helicobacter pylori gastritis,
and implications on human health. Compr Rev Food Sci Food Saf
2017;16(2):214–33.

2. Macho-González A, Garcimartín A, López-Oliva ME, Bastida S,
Benedí J, Ros G, Nieto G, Sánchez-Muniz FJ. Can meat and meat-
products induce oxidative stress? Antioxidants (Basel) 2020;9(7):638.

3. Estévez M, Xiong Y. Intake of oxidized proteins and amino acids and
causative oxidative stress and disease: recent scientific evidences and
hypotheses. J Food Sci 2019;84(3):387–96.

4. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo
G, Testa G, Cacciatore F, Bonaduce D, et al. Oxidative stress, aging, and
diseases. Clin Interv Aging 2018;13:757–72.

5. Olmedilla-Alonso B, Jiménez-Colmenero F, Sánchez-Muniz FJ.
Development and assessment of healthy properties of meat and meat
products designed as functional foods. Meat Sci 2013;95(4):919–30.

6. Aune D. Plant foods, antioxidant biomarkers, and the risk of
cardiovascular disease, cancer, and mortality: a review of the evidence.
Adv Nutr 2019;10(Suppl 4):S404–21.

7. Decker EA, Park Y. Healthier meat products as functional foods. Meat
Sci 2010;86(1):49–55.

8. Fernández-Ginés JM, Fernández-López J, Sayas-Barberá E, Pérez-
Álvarez JA. Meat products as functional foods: a review. J Food Sci
2005;70(2):R37–R43.

9. Ashwell M. Concepts of functional foods. ILSI Europe Concise
Monograph Series. ILSI Europe; 2002.

10. Diplock A, Aggett P, Ashwell M, Bornet F, Fern E, Roberfroid M.
Scientific concepts of functional foods in Europe consensus document.
Br J Nutr 1999;81(4):S1–S27.

11. Sánchez-Muniz FJ, , Bocanegra de Juana A, Bastida S, Benedí J.
Algae and cardiovascular health. In: Domínguez H, editor. Functional
ingredients from algae for foods and nutraceuticals. Cambridge (UK):
Woodhead Publishing; 2013. p. 369–415.

12. Kalra EK. Nutraceutical—definition and introduction. AAPS
PharmSci 2003;5(3):27.

13. Jimenez-Colmenero F, Carballo J, Cofrades S. Healthier meat and meat
products: their role as functional foods. Meat Sci 2001;59(1):5–13.

14. Jiménez-Colmenero F, Sánchez-Muniz FJ, Olmedilla-Alonso B,
Collaborators. Design and development of meat-based functional
foods with walnut: Technological, nutritional and health impact. Food
Chem 2010;123(4):959–67.

15. Librelotto J, Bastida S, Serrano A, Cofrades S, Jiménez-Colmenero
F, Sánchez-Muniz FJ. Changes in fatty acids and polar material of
restructured low-fat or walnut-added steaks pan-fried in olive oil. Meat
Sci 2008;80(2):431–41.

16. Bastida S, Sánchez-Muniz FJ, Olivero R, Pérez-Olleros L, Ruíz-Roso
B, Jiménez-Colmenero F. Antioxidant activity of carob fruit extracts
in cooked pork meat systems during chilled and frozen storage. Food
Chem 2009;116(3):748–54.

17. Cofrades S, Benedí J, Garcimartín A, Sánchez-Muniz FJ, Jiménez-
Colmenero F. A comprehensive approach to formulation of
seaweed-enriched meat products: from technological development to
assessment of healthy properties. Food Res Int 2017;99:1084–94.

18. Celada P, Bastida S, Sánchez-Muniz FJ. To eat or not to eat meat. That
is the question. Nutr Hosp 2016;33(1):177–81.

19. Celada P, Sánchez-Muniz FJ. Are meat and meat product
consumptions harmful? Their relationship with the risk of
colorectal cancer and other degenerative diseases. An Real Acad
Farm 2016;82:68–90.

20. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, Iqbal
R, Kumar R, Wentzel-Viljoen E, Rosengren A, et al. Associations of fats
and carbohydrate intake with cardiovascular disease and mortality in
18 countries from five continents (PURE): a prospective cohort study.
Lancet 2017;390(10107):2050–62.

21. Papuc C, Goran GV, Predescu CN, Nicorescu V. Mechanisms of
oxidative processes in meat and toxicity induced by postprandial
degradation products: a review. Compr Rev Food Sci Food Saf
2017;16(1):96–123.

22. Olivero David R, Sánchez-Muniz FJ, Bastida S, Benedi J, González-
Muñoz MJ. Gastric emptying and short-term digestibility of thermally
oxidized sunflower oil used for frying in fasted and nonfasted rats. J
Agric Food Chem 2010;58(16):9242–8.

23. Kanner J, Gorelik S, Roman S, Kohen R. Protection by polyphenols of
postprandial human plasma and low-density lipoprotein modification:
the stomach as a bioreactor. J Agric Food Chem 2012;60(36):8790–6.

24. Gorelik S, Ligumsky M, Kohen R, Kanner J. The stomach as a
"bioreactor": when red meat meets red wine. J Agric Food Chem
2008;56(13):5002–7.

25. Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid
peroxidation in the gastric fluid and the effects of plant-derived
antioxidants. Free Radic Biol Med 2001;31(11):1388–95

26. Gorelik S, Lapidot T, Shaham I, Granit R, Ligumsky M, Kohen
R, Kanner J. Lipid peroxidation and coupled vitamin oxidation in
simulated and human gastric fluid inhibited by dietary polyphenols:
health implications. J Agric Food Chem 2005;53(9):3397–402.

27. Kanner J. Dietary advanced lipid oxidation endproducts are risk
factors to human health. Mol Nutr Food Res 2007;51(9):1094–101.

28. Garcimartín A, Macho-González A, Caso G, Benedí J, Bastida
S, Sánchez-Muniz FJ. Frying: a cultural way of cooking in the
Mediterranean diet and how to obtain improved fried foods. In:
Preedy V, Watson R, editors. The Mediterranean diet. London (UK):
Academic Press; 2020. p. 191–207.

29. Arshad MS, Anjum FM, Khan MI, Saeed F, Imran A, Sohaib M,
Nadeem M, Hussain S. Manipulation of natural antioxidants in feed to

Oxidative stress and functional meat 1533



enhance the oxidative stability and quality of broiler breast meat and
nuggets. J Food Process Preserv 2017;41(1):e12849.

30. Leskovec J, Levart A, Peric L, Stojeic MD, Tomovic V, Pirman T,
Salobir J, Rezar V. Antioxidative effects of supplementing linseed
oil-enriched diets with alpha-tocopherol, ascorbic acid, selenium, or
their combination on carcass and meat quality in broilers. Poult Sci
2019;98(12):6733–41.

31. Niu ZY, Min YN, Liu FZ. Dietary vitamin E improves meat quality
and antioxidant capacity in broilers by upregulating the expression of
antioxidant enzyme genes. J Appl Anim Res 2018;46(1):397–401.

32. Delosiere M, Durand D, Bourguet C, Terlouw EMC. Lipid oxidation,
pre-slaughter animal stress and meat packaging: can dietary
supplementation of vitamin E and plant extracts come to the
rescue? Food Chem 2020;309:125668.

33. Eder K, Muller G, Kluge H, Hirche F, Brandsch C. Concentrations of
oxysterols in meat and meat products from pigs fed diets differing in
the type of fat (palm oil or soybean oil) and vitamin E concentrations.
Meat Sci 2005;70(1):15–23.

34. Bou R, Grimpa S, Baucells MD, Codony R, Guardiola F. Dose
and duration effect of alpha-tocopheryl acetate supplementation on
chicken meat fatty acid composition, tocopherol content, and oxidative
status. J Agric Food Chem 2006;54(14):5020–6.

35. Harms C, Fuhrmann H, Nowak B, Wenzel S, Sallmann HP. Effect
of dietary vitamin E supplementation on the shelf life of cured pork
sausage. Meat Sci 2003;63(1):101–5.

36. Bolger Z, Brunton NP, Lyng JG, Monahan FJ. Quality attributes and
retention of vitamin E in reduced salt chicken sausages fortified with
vitamin E. J Food Sci Technol 2016;53(11):3948–59.

37. Sammet K, Duehlmeier R, Sallmann HP, Von Canstein C, Von
Mueffling T, Nowak B. Assessment of the antioxidative potential of
dietary supplementation with alpha-tocopherol in low-nitrite salami-
type sausages. Meat Sci 2006;72(2):270–9.

38. Georgantelis D, Ambrosiadis I, Katikou P, Blekas G, Georgakis
PA. Effect of rosemary extract, chitosan and alpha-tocopherol on
microbiological parameters and lipid oxidation of fresh pork sausages
stored at 4 degrees C. Meat Sci 2007;76(1):172–81.

39. Georgantelis D, Blekas G, Katikou P, Ambrosiadis I, Fletouris DJ.
Effect of rosemary extract, chitosan and alpha-tocopherol on lipid
oxidation and colour stability during frozen storage of beef burgers.
Meat Sci 2007;75(2):256–64.

40. Bou R, Guardiola F, Tres A, Barroeta AC, Codony R. Effect of
dietary fish oil, α-tocopheryl acetate, and zinc supplementation on the
composition and consumer acceptability of chicken meat. Poult Sci
2004;83(2):282–92.

41. Hwang KE, Choi YS, Choi SM, Kim HW, Choi JH, Lee MA, Kim CJ.
Antioxidant action of ganghwayakssuk (Artemisia princeps Pamp.) in
combination with ascorbic acid to increase the shelf life in raw and
deep fried chicken nuggets. Meat Sci 2013;95(3):593–602.

42. Mancini S, Preziuso G, Dal Bosco A, Roscini V, Szendro Z, Fratini
F, Paci G. Effect of turmeric powder (Curcuma longa L.) and ascorbic
acid on physical characteristics and oxidative status of fresh and stored
rabbit burgers. Meat Sci 2015;110:93–100.

43. Sánchez-Escalante A, Djenane D, Torrescano G, Beltran JA, Roncales
P. The effects of ascorbic acid, taurine, carnosine and rosemary powder
on colour and lipid stability of beef patties packaged in modified
atmosphere. Meat Sci 2001;58(4):421–9.

44. Cheng JH, Wang ST, Ockerman HW. Quality preservation of reduced
sodium pork patties: effects of antioxidants on colour and lipid
stability. J Sci Food Agric 2013;93(12):2959–62.

45. Haak L, Raes K, De Smet S. Effect of plant phenolics, tocopherol and
ascorbic acid on oxidative stability of pork patties. J Sci Food Agric
2009;89(8):1360–5.

46. Ibrahim D, Kishawy ATY, Khater SI, Arisha AH, Mohammed
HA, Abdelaziz AS, Abd El-Rahman GI, Elabbasy MT. Effect of
dietary modulation of selenium form and level on performance,
tissue retention, quality of frozen stored meat and gene expression
of antioxidant status in ross broiler chickens. Animals 2019;9(6):
342.

47. Korzeniowska M, Kroliczewska B, Kopec W. Effect of dietary
selenium on protein and lipid oxidation and the antioxidative
potential of selected chicken culinary parts during frozen storage. J
Chem[Internet] 2018. doi:10.1155/2018/3492456.

48. Diaz M, Decker EA. Antioxidant mechanisms of
caseinophosphopeptides and casein hydrolysates and their application
in ground beef. J Agric Food Chem 2004;52(26):8208–13.

49. Pena-Ramos EA, Xiong YLL. Whey and soy protein hydrolysates
inhibit lipid oxidation in cooked pork patties. Meat Sci
2003;64(3):259–63.

50. Bougatef H, Krichen F, Kobbi S, Martinez-Alvarez O, Nedjar N,
Bougatef A, Sila A. Physicochemical and biological properties of eel by-
products protein hydrolysates: potential application to meat product
preservation. Waste Biomass Valor 2020;11(3):931–42.

51. Aslam S, Shukat R, Khan MI, Shahid M. Effect of dietary
supplementation of bioactive peptides on antioxidant potential
of broiler breast meat and physicochemical characteristics of nuggets.
Food Sci Anim Resour 2020;40(1):55–73.

52. de Ciriano MGI, Larequi E, Rehecho S, Calvo MI, Cavero RY, Navarro-
Blasco I, Astiasaran I, Ansorena D. Selenium, iodine, omega-3 PUFA
and natural antioxidant from Melissa officinalis L.: a combination of
components from healthier dry fermented sausages formulation. Meat
Sci 2010;85(2):274–9.

53. Kumar V, Biswas AK, Sahoo J, Chatli MK, Sivakumar S. Quality
and storability of chicken nuggets formulated with green banana and
soybean hulls flours. J Food Sci Technol 2013;50(6):1058–68.

54. Prasad B, Rashmi MD, Yashoda KP, Modi VK. Effect of casein and oat
flour on physicochemical and oxidative processes of cooked chicken
kofta. J Food Process Preserv 2011;35(3):359–68.

55. Verma AK, Rajkumar V, Banerjee R, Biswas S, Das AK. Guava
(Psidium guajava L.) powder as an antioxidant dietary fibre in sheep
meat nuggets. Asian Australas J Anim Sci 2013;26(6):886–95.

56. Fernández-Ginés JM, Fernández-López J, Sayas-Barberá E, Sendra E,
Pérez-Álvarez JA. Effect of storage conditions on quality characteristics
of Bologna sausages made with citrus fiber. J Food Sci 2003;68(2):710–
5.

57. Nissen LR, Byrne DV, Bertelsen G, Skibsted LH. The antioxidative
activity of plant extracts in cooked pork patties as evaluated
by descriptive sensory profiling and chemical analysis. Meat Sci
2004;68(3):485–95.

58. Rodríguez-Carpena JG, Morcuende D, Petron MJ, Estévez M.
Inhibition of cholesterol oxidation products (COPs) formation in
emulsified porcine patties by phenolic-rich avocado (Persea americana
Mill.) extracts. J Agric Food Chem 2012;60(9):2224–30.

59. Kobus-Cisowska J, Flaczyk E, Rudzinska M, Kmiecik D. Antioxidant
properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci
2014;97(2):174–80.

60. Ganhao R, Morcuende D, Estévez M. Protein oxidation in emulsified
cooked burger patties with added fruit extracts: influence on
colour and texture deterioration during chill storage. Meat Sci
2010;85(3):402–9.

61. Pogorzelska E, Godziszewska J, Brodowska M, Wierzbicka A.
Antioxidant potential of Haematococcus pluvialis extract rich in
astaxanthin on colour and oxidative stability of raw ground pork meat
during refrigerated storage. Meat Sci 2018;135:54–61.

62. Sánchez-Muniz FJ, Olivero-David R, Triki M, Salcedo L, González-
Munoz MJ, Cofrades S, Ruiz-Capillas C, Jiménez-Colmenero F, Benedí
J. Antioxidant activity of H ypericum perforatum L. extract in enriched
n–3 PUFA pork meat systems during chilled storage. Food Res Int
2012;48(2):909–15.

63. Kumar F, Tyagi PK, Mir NA, Dev K, Begum J, Biswas A, Sheikh SA,
Tyagi PK, Sharma D, Sahu B, et al. Dietary flaxseed and turmeric
is a novel strategy to enrich chicken meat with long chain omega-
3 polyunsaturated fatty acids with better oxidative stability and
functional properties. Food Chem 2020;305:125458.

64. Rather SA, Masoodi FA, Akhter R, Rather JA, Gani A, Wani SM, Malik
AH. Application of guar-xanthan gum mixture as a partial fat replacer
in meat emulsions. J Food Sci Technol 2016;53(6):2876–86.

1534 Macho-González et al.



65. Salcedo-Sandoval L, Cofrades S, Ruiz-Capillas C, Carballo J, Jiménez-
Colmenero F. Konjac-based oil bulking system for development
of improved-lipid pork patties: technological, microbiological and
sensory assessment. Meat Sci 2015;101:95–102.

66. Salcedo-Sandoval L, Ruiz-Capillas C, Cofrades S, Triki M, Jiménez-
Colmenero F. Shelf-life of n–3 PUFA enriched frankfurters formulated
with a konjac-based oil bulking agent. LWT Food Sci Technol
2015;62(1, Part 2):711–7.

67. Serrano A, Librelotto J, Cofrades S, Sánchez-Muniz FJ, Jiménez-
Colmenero F. Composition and physicochemical characteristics of
restructured beef steaks containing walnuts as affected by cooking
method. Meat Sci 2007;77(3):304–13.

68. López-López I, Bastida S, Ruiz-Capillas C, Bravo L, Larrea MT,
Sánchez-Muniz F, Cofrades S, Jiménez-Colmenero F. Composition
and antioxidant capacity of low-salt meat emulsion model systems
containing edible seaweeds. Meat Sci 2009;83(3):492–8.

69. Gómez-Estaca J, Pintado T, Jiménez-Colmenero F, Cofrades S. The
effect of household storage and cooking practices on quality attributes
of pork burgers formulated with PUFA- and curcumin-loaded oleogels
as healthy fat substitutes. LWT 2020;119:108909.

70. Freire M, Cofrades S, Serrano-Casas V, Pintado T, Jimenez MJ,
Jimenez-Colmenero F. Gelled double emulsions as delivery systems for
hydroxytyrosol and n–3 fatty acids in healthy pork patties. J Food Sci
Technol 2017;54(12):3959–68.

71. Gómez-Estaca J, Herrero AM, Herranz B, Álvarez MD, Jiménez-
Colmenero F, Cofrades S. Characterization of ethyl cellulose and
beeswax oleogels and their suitability as fat replacers in healthier lipid
pâtés development. Food Hydrocolloids 2019;87:960–9.

72. Pintado T, Cofrades S. Quality characteristics of healthy dry fermented
sausages formulated with a mixture of olive and chia oil structured in
oleogel or emulsion gel as animal fat replacer. Foods 2020;9(6):830.

73. Freire M, Bou R, Cofrades S, Solas MT, Jiménez-Colmenero F. Double
emulsions to improve frankfurter lipid content: impact of perilla oil
and pork backfat. J Sci Food Agric 2016;96(3):900–8.

74. Barroeta A, Baucells M, Pérez AB, Calsamiglia S, Casals R, Briz
RC, Davin R, González G, Hernández J, Isabel B. Optimum vitamin
nutrition in poultry breeders. In: Linden J, editor. Optimum vitamin
nutrition in the production of quality animal foods. Sheffield (UK): 5M
Publishing; 2012. p. 41–87.

75. Hui YH. Handbook of meat and meat processing. 2nd ed. Boca
Raton(FL): Taylor & Francis; 2012.

76. Landete JM. Dietary intake of natural antioxidants: vitamins and
polyphenols. Crit Rev Food Sci Nutr 2013;53(7):706–21.

77. Condron KN, Lemenager RP, Claeys MC, Lipkie TE, Schoonmaker
JP. Supplemental beta-carotene I: effect on plasma vitamin A, growth,
performance, and carcass characteristics of feedlot cattle. Meat Sci
2014;98(4):736–43.

78. Jin Q, Cheng HJ, Wan FC, Bi YL, Liu GF, Liu XM, Zhao HB, You W, Liu
YF, Tan XW. Effects of feeding beta-carotene on levels of beta-carotene
and vitamin A in blood and tissues of beef cattle and the effects on beef
quality. Meat Sci 2015;110:293–301.

79. Bou R, Codony R, Tres A, Decker EA, Guardiola F. Dietary
strategies to improve nutritional value, oxidative stability, and sensory
properties of poultry products. Crit Rev Food Sci Nutr 2009;49(9):
800–22.

80. European Parliament and the Council of the European Union.
Nutrition and health claims made on foods. (EC) 1924/2006.

81. Sánchez-Muniz FJ. Nuevos alimentos. Realidad y perspectivas de la
carne y sus derivados como alimentos funcionales. In: Derivados
cárnicos funcionales: estrategias y perspectivas. Madrid: Fundación
Española de la Nutrición; 2005; p. 43–54. Spanish.

82. Panda AK, Cherian G. Tissue tocopherol status, meat lipid stability,
and serum lipids in broiler chickens fed Artemisia annua. Eur J Lipid
Sci Technol 2017;119(2):1500438.

83. Pompeu MA, Cavalcanti LFL, Toral FLB. Effect of vitamin E
supplementation on growth performance, meat quality, and immune
response of male broiler chickens: a meta-analysis. Livestock Sci
2018;208:5–13.

84. Sohaib M, Butt MS, Shabbir MA, Shahid M. Lipid stability,
antioxidant potential and fatty acid composition of broilers breast
meat as influenced by quercetin in combination with alpha-tocopherol
enriched diets. Lipids Health Dis 2015;14:61.

85. Mazur-Kusnirek M, Antoszkiewicz Z, Lipinski K, Kaliniewicz J,
Kotlarczyk S, Zukowski P. The effect of polyphenols and vitamin E on
the antioxidant status and meat quality of broiler chickens exposed to
high temperature. Arch Anim Nutr 2019;73(2):111–26.

86. Jiang J, Xiong YLL. Natural antioxidants as food and feed additives to
promote health benefits and quality of meat products: a review. Meat
Sci 2016;120:107–17.

87. Gerling EM, Ternes W. Stability of alpha-tocotrienol and alpha-
tocopherol in salami-type sausages and curing brine depending on
nitrite and pH. Meat Sci 2014;98(4):657–64.

88. Rosli WIW, Babji AS, Aminah A, Foo SP, Abd Malik O. Vitamin E
contents of processed meats blended with palm oils. J Food Lipids
2006;13(2):186–98.

89. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a
mechanistic perspective. Free Radic Biol Med 2011;51(5):1000–13.

90. Pion SJ, van Heugten E, See MT, Larick DK, Pardue S. Effects of
vitamin C supplementation on plasma ascorbic acid and oxalate
concentrations and meat quality in swine. J Anim Sci 2004;82(7):2004–
12.

91. Varvara M, Bozzo G, Celano G, Disanto C, Pagliarone CN, Celano GV.
The use of ascorbic acid as a food additive: technical-legal issues. Ital J
Food Saf 2016;5(1):4313.

92. Schaefer DM, Liu QP, Faustman C, Yin MC. Supranutritional
administration of vitamin-E and vitamin-C improves oxidative
stability of beef. J Nutr 1995;125(6):S1792–S8.

93. Shenkin A. Micronutrients in health and disease. Postgrad Med J
2006;82(971):559–67.

94. Tan BL, Norhaizan ME, Liew WPP, Rahman HS. Antioxidant and
oxidative stress: a mutual interplay in age-related diseases. Front
Pharmacol 2018;9:1162.

95. Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium:
a review of reactive oxygen species scavenging, glutathione peroxidase,
and metal-binding antioxidant mechanisms. Cell Biochem Biophys
2009;55(1):1–23.

96. Olivero-David R, Schultz-Moreira A, Vázquez-Velasco M, González-
Torres L, Bastida S, Benedi J, Sánchez-Reus MI, González-Muñoz
MJ, Sánchez-Muniz FJ. Effects of nori- and wakame-enriched meats
with or without supplementary cholesterol on arylesterase activity,
lipaemia and lipoproteinaemia in growing Wistar rats. Br J Nutr
2011;106(10):1476–86.

97. Schultz-Moreira A, González-Torres L, Olivero-David R, Bastida S,
Benedí J, Sánchez-Muniz FJ. Wakame and nori in restructured meats
included in cholesterol-enriched diets affect the antioxidant enzyme
gene expressions and activities in Wistar rats. Plant Foods Hum Nutr
2010;65(3):290–8.

98. Schultz-Moreira A, Benedi J, González Torres L, Olivero-David R,
Bastida S, Sánchez-Reus M, González-Muñoz M, Sánchez-Muniz
F. Effects of diet enriched with restructured meats, containing
Himanthalia elongata, on hypercholesterolaemic induction, CYP7A1
expression and antioxidant enzyme activity and expression in growing
rats. Food Chem 2011;129(4):1623–30.

99. Schultz-Moreira A, Olivero-David R, Vázquez-Velasco M, González-
Torres L, Benedí J, Bastida S, Sánchez-Muniz FJ. Protective effects of
sea spaghetti-enriched restructured pork against dietary cholesterol:
effects on arylesterase and lipoprotein profile and composition of
growing rats. J Med Food 2014;17(8):921–8.

100. González-Torres L, Matos C, Vázquez-Velasco M, Santos-López
JA, Sánchez-Martínez I, García-Fernández C, Bastida S, Benedí J,
Sánchez-Muniz FJ. Glucomannan- and glucomannan plus spirulina-
enriched pork affect liver fatty acid profile, LDL receptor expression
and antioxidant status in Zucker fa/fa rats fed atherogenic diets. Food
Nutr Res 2017;61(1):1264710.

101. Santos-López JA, Garcimartín A, López-Oliva ME, Bautista-Ávila M,
González-Muñoz MJ, Bastida S, Benedí J, Sánchez-Muniz FJ. Chia

Oxidative stress and functional meat 1535



oil-enriched restructured pork effects on oxidative and inflammatory
status of aged rats fed high cholesterol/high fat diets. J Med Food
2017;20(5):526–34.

102. Santos-López JA, Garcimartín A, Merino P, López-Oliva ME, Bastida
S, Benedí J, Sánchez-Muniz FJ. Effects of silicon vs. hydroxytyrosol-
enriched restructured pork on liver oxidation status of aged rats
fed high-saturated/high-cholesterol diets. PLoS One 2016;11(1):
e0147469.

103. Macho-González A, Garcimartín A, López-Oliva ME, Celada P,
Bastida S, Benedí J, Sánchez-Muniz FJ. Carob-fruit-extract-enriched
meat modulates lipoprotein metabolism and insulin signaling in
diabetic rats induced by high-saturated-fat diet. J Funct Foods
2020;64:103600.

104. Macho-González A, Garcimartín A, López-Oliva ME, Ruiz-Roso B,
Martín de la Torre I, Bastida S, Benedí J, Sánchez-Muniz FJ. Can carob-
fruit-extract-enriched meat improve the lipoprotein profile, VLDL-
oxidation, and LDL receptor levels induced by an atherogenic diet in
STZ-NAD-diabetic rats? Nutrients 2019;11(2):332.

105. Fernández J, García L, Monte J, Villar CJ, Lombo F. Functional
anthocyanin-rich sausages diminish colorectal cancer in an animal
model and reduce pro-inflammatory bacteria in the intestinal
microbiota. Genes 2018;9(3):133.

106. Bastide NM, Naud N, Nassy G, Vendeuvre JL, Tache S, Gueraud
F, Hobbs DA, Kuhnle GG, Corpet DE, Pierre FHF. Red wine and
pomegranate extracts suppress cured meat promotion of colonic
mucin-depleted foci in carcinogen-induced rats. Nutr Cancer
2017;69(2):289–98.

107. Garcimartín A, Santos-López JA, Bastida S, Benedí J, Sánchez-Muniz
FJ. Silicon-enriched restructured pork affects the lipoprotein profile,
VLDL oxidation, and LDL receptor gene expression in aged rats fed an
atherogenic diet. J Nutr 2015;145(9):2039–45.

108. Urquiaga I, Troncoso D, Mackenna MJ, Urzua C, Perez D, Dicenta
S, de la Cerda PM, Amigo L, Carreno JC, Echeverria G, et al.
The consumption of beef burgers prepared with wine grape pomace
flour improves fasting glucose, plasma antioxidant levels, and
oxidative damage markers in humans: a controlled trial. Nutrients
2018;10(10):1388.

109. Canales A, Sánchez-Muniz FJ, Bastida S, Librelotto J, Nus M, Corella
D, Guillén M, Benedí J. Effect of walnut-enriched meat on the
relationship between VCAM, ICAM, and LTB4 levels and PON-
1 activity in ApoA4 360 and PON-1 allele carriers at increased
cardiovascular risk. Eur J Clin Nutr 2011;65(6):703–10.

110. Canales A, Benedí J, Nus M, Librelotto J, Sánchez-Montero JM,
Sánchez-Muniz FJ. Effect of walnut-enriched restructured meat in the
antioxidant status of overweight/obese senior subjects with at least one
extra CHD-risk factor. J Am Coll Nutr 2007;26(3):225–32.

111. Nus M, Frances F, Librelotto J, Canales A, Corella D, Sánchez-
Montero JM, Sánchez-Muniz FJ. Arylesterase activity and antioxidant
status depend on PON1-Q192R and PON1-L55M polymorphisms
in subjects with increased risk of cardiovascular disease consuming
walnut-enriched meat. J Nutr 2007;137(7):1783–8.

112. Sánchez-Muniz FJ, Canales A, Nus M, Bastida S, Guillen M, Corella D,
Olmedilla-Alonso B, Granado-Lorencio F, Benedi J. The antioxidant
status response to low-fat and walnut paste-enriched meat differs
in volunteers at high cardiovascular risk carrying different PON-1
polymorphisms. J Am Coll Nutr 2012;31(3):194–205.

113. Bermejo LM, López-Plaza B, Weber TK, Palma-Milla S, Iglesias
C, Reglero G, Gómez-Candela C. Impact of cooked functional
meat enriched with omega-3 fatty acids and rosemary extract on
inflammatory and oxidative status; a randomised, double-blind,
crossover study. Nutr Hosp 2014;30(5):1084–91.

114. Navas-Carretero S, Cuervo M, Abete I, Zulet MA, Martínez JA.
Frequent consumption of selenium-enriched chicken meat by adults
causes weight loss and maintains their antioxidant status. Biol Trace
Elem Res 2011;143(1):8–19.
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