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ABSTRACT

Methionine restriction (MR) extends lifespans in multiple species through mechanisms that include enhanced oxidative stress resistance and
inhibition of insulin/insulin-like growth factor I (IGF-I) signaling. Methionine and S-adenosylmethionine (SAM) are the essential precursors of bacterial
quorum sensing (QS) molecules, and therefore, MR might also affect bacterial communication to prevent enteric bacterial infection as well as
chronic inflammation, which contributes to lifespan prolongation. Here, we discuss the influence of MR on oxidative stress resistance and inhibition
of insulin/IGF-I cell signaling and further propose a potential mechanism involving bacterial QS inhibition for lifespan extension. Unraveling the
connection between MR and inhibition of QS provides new strategies for combating infectious diseases, resulting in enriched understanding of
MR-induced lifespan extension. Adv Nutr 2020;11:773–783.
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Introduction
Methionine is an essential amino acid that promotes growth
(1), improves immunity (2, 3), enhances antioxidant func-
tion (4), regulates energy metabolism (5), and improves
reproductive performance (6). Over the past several decades,
research has focused on the beneficial effects of methionine
supplementation (dietary dosage of methionine exceeding
the animal requirements) in various species (Table 1).
However, there is evidence that excess methionine intake (2
times higher compared with a basal diet) results in growth
retardation and atherosclerosis in Apoe-deficient mice, which
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is referred to as “methionine toxicity” (7). Methionine restric-
tion (MR), a partial depletion of methionine from dietary
nutrition, is proposed to improve health by increasing energy
expenditure, regulating protein homeostasis, and improving
antioxidant functions and gut microbiota functions (Table 1)
(8–10). Notably, MR as an approach to prolonging lifespan
has been validated extensively in various animal models,
such as Caenorhabditis elegans, Drosophila, yeast, and mice
(11–14). Mechanisms by which MR extends lifespan may
include growth hormone signaling, nutritional factors, and
mitochondrial function (15).

Considering that the intestinal microflora regulates var-
ious crucial metabolic and immune responses of the host

author opinions or point of view. Opinions expressed in Perspective articles are those of the
author and are not attributable to the funder(s) or the sponsor(s) or the publisher, Editor, or
Editorial Board of Advances in Nutrition. Individuals with different positions on the topic of a
Perspective are invited to submit their comments in the form of a Perspectives article or in a
Letter to the Editor.
Abbreviations used: AHL, acyl-homoserine lactone; AI, autoinducer; AI-2, autoinducer-2; CAI-1,
cholerae autoinducer-1; CBS, cystathionine β-synthase catalysis; CGL, cystathionine γ -lyase;
ETEC, enterotoxigenic Escherichia coli; GHRKO, growth hormone knockout; IGF-I, insulin-like
growth factor I; MR, methionine restriction; QS, quorum sensing; ROS, reactive oxygen species;
SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.

Copyright C© The Author(s) on behalf of the American Society for Nutrition 2020. Adv Nutr 2020;11:773–783; doi: https://doi.org/10.1093/advances/nmaa028. 773

mailto:yzgqzhu@yzu.edu.cn
mailto:renwenkai19@126.com
https://doi.org/10.1093/advances/nmaa028


TABLE 1 Influence of methionine supplementation or restriction on physiologic function in different animals1

Animal models
Methionine dosage
compare with control Main findings Reference

Met supplementation
IUGR piglets 30% supplementation Improves intestinal integrity and oxidative status in weaning piglets (16)
Pregnant sows 33% supplementation Increases antioxidant capacity and alters intestinal microbiota of offspring (17)
Broilers 71% supplementation Improves growth performance and breast muscle yield (18)
Infected seabass2 100% supplementation Fosters plasma cortisol levels and promotes immune cells proliferation during

inflammatory insult
(19)

SD hypertensive rats 120% supplementation Enhances aortic constriction but decreases responsiveness to acetylcholine,
bradykinin, and sodium nitroprusside

(20)

Mice 133% supplementation Induces atherosclerosis and increases the aortic lesion area (7)
CSE-deficient mice 400% supplementation Induces acute lethal hepatitis and splenic atrophy (21)

Met restriction
Rats 40% reduction Decreases mitochondrial oxygen radical production and lowers oxidative

damage to proteins and mitochondrial DNA
(22)

Rats 80% reduction Improves epithelial barrier function by inducing altered tight junctional
protein composition

(23)

Mice 80% reduction Increases energy expenditure by 31% and reduces adiposity by 25% (24)
Mice 80% reduction Produces therapeutic responses in colorectal cancer by changing one-carbon

metabolism
(25)

Mice 80% reduction Enhances suppression of hepatic glucose production by insulin; enhances
insulin-dependent Akt phosphorylation in the liver; increases hepatic
expression and circulating FGF-21

(26)

Mice 86% reduction Induces bone marrow fat accretion through the body; decreases cortical bone
tissue density; decreases bone tissue density, bone surface, trabecula, bone
volume, and trabecular thickness

(27)

Mice 86% reduction Modulates renal response and attenuates kidney injury (28)

1Methionine supplementation or restriction is compared with the basal dietary in different animals. CSE, cystathionine γ -lyase; FGF, fibroblast growth factor; IUGR, intrauterine
growth retardation; SD, Sprague-Dawley.
2Photobacterium damselae subsp. Piscicida infection.

(29–31), the gut microbiota also affects the lifespan. For
example, polysaccharide colanic acid (a polysaccharide
metabolite secreted by multiple enterobacteria species) in-
creases the lifespan of the host by regulating mitochondrial
dynamics and unfolded protein responses (32). Although
Lactobacillus plantarum promotes lifespan, the overgrowth
of L. plantarum shortens lifespan in flies through a complex
mechanism involving lactic acid secretion and production of
reactive oxygen species (ROS) (33). Therefore, the preser-
vation of commensal microbiota homeostasis is pivotal for
preventing age-associated pathologies and even expanding
the lifespan of the host. Bacterial infection is one of the
threats to intestinal microbiota homeostasis and is also the
pathogeny of some age-associated diseases, such as diarrheal
diseases, lower respiratory infections, and pneumococcal
meningitis (34). Bacterial quorum sensing (QS) is necessary
for the expression of virulence genes during infection,
and QS inhibition has been considered as a potential
antivirulence strategy. S-adenosylmethionine (SAM), a me-
thionine metabolite, is the essential precursor of several
QS signaling molecules, such as acyl-homoserine lactones
(AHLs), autoinducer-2 (AI-2), and cholerae autoinducer-
1 (CAI-1) (35). Thus, MR may extend lifespan by in-
hibiting the bacterial QS system. In this perspective, we
try to summarize the mechanism of MR-induced lifespan
extension, with special emphasis on antioxidative capacity
and insulin/insulin-like growth factor I (IGF-I) signaling.

More importantly, we propose a mechanism involving the
inhibition of the bacterial QS system for MR-induced lifespan
extension.

Widely Accepted Mechanisms of MR-Induced
Lifespan Extension
As early as the last century, investigations on aging reversal
and lifespan prolongation received a great deal of attention.
In fact, a recent report indicated that the heritability of
longevity (h2) is only 16%, which is considerably lower
than expected (36). Apart from genetic factors, dietary
and environmental factors seem to play important roles in
lifespan control. In particular, dietary MR prolongs lifespan,
possibly through promoting proteostasis balance, reducing
oxidative damage, and modulating mitochondrial activity
(37–39), but there still exist some challenges to be elucidated
in these theories. Therefore, the exact mechanism by which
MR modulates lifespan remains to be well studied, and in this
paper, we examine the information on the recent progress in
MR-induced lifespan prolongation.

MR Postpones Senility by Reducing Oxidative Stress
Free radicals accumulate in mitochondria as a function of
time, resulting in the irreversible damage of various cellular
biomolecules (e.g., unsaturated fatty acids, proteins, and
nucleic acids), cellular senescence, and age-related diseases
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FIGURE 1 Diagrams of MR-induced oxidation resistance. Reduced intake of methionine in the diet reduces glutathione biosynthesis, and
GSH deprivation promotes the phosphorylation of PERK. Activated PERK represses the reassociation of NRF2/KEAP1 complexes to induce
transport of the NRF2 protein into the nucleus, where NRF2 preferentially combines with the small MAF protein to bind to the ARE and
activate the expression of genes for multiple antioxidant enzymes, like NQO1, CAT, HO-1, GSTs, and GCL. GSH deprivation also induces ARE
activity to enhance the NRF2 transcriptional response. In addition to activating the expression of NRF2, phosphorylated PERK triggers the
α-subunit of EIF2, which further activates ATF4 and the downstream antioxidative genes. Moreover, MR treatment lowers mitochondrial
ROS production by affecting complexes I and III, which are principal sites of mitochondrial ROS production on the mitochondrial
membrane, converting O2 to the strong oxidizing superoxide (O2

-•). The lines show the interactions between the players, with arrows
indicating activation and hammerheads indicating repression. AARE, amino acid–responsive element; ARE, antioxidant response element;
ATF4, activating transcription factor 4; CAT, catalase; EIF2-α, α-subunit of eukaryotic initiation factor 2; GCL, glutamate-cysteine ligase; GSH,
glutathione; GST, glutathione S transferase; HO-1, heme oxygenase-1; KEAP1, Kelch-like ECH-associated protein 1; MAF, small Maf protein;
MR, methionine restriction; NQO1, NAD(P)H quinone oxidoreductase 1; NRF2, nuclear respiratory factor 2; PERK, protein kinase R–like
endoplasmic reticulum kinase; Q, ubiquinone; ROS, reactive oxygen species.

(e.g., hypertension, atherosclerosis, and Alzheimer disease)
(40, 41). Therefore, strategies to neutralize or scavenge
mitochondrial free radicals may postpone senility and extend
lifespan. It has been hypothesized that MR-induced lifespan
prolongation is due to attenuated oxidative stress. MR
is one of the robust nutritional interventions to mitigate
oxidative stress in mammals and birds through promoting
the expression of antioxidative genes and inhibiting the
production of mitochondrial ROS (Figure 1) (42–54). In
the MR condition, although higher resistance to oxidative
stress is observed in long-lived mammals, there is a lack of
direct evidence to demonstrate that resistance to oxidative
stress accounts for lifespan prolongation. In addition, the
contribution of mitochondrial ROS production to lifespan
control needs further clarification. Elevated mitochondrial
ROS seems to be beneficial to lifespan prolongation due
to the elevated ROS responsible for intrinsic apoptosis,
which is crucial for lifespan prolongation in C. elegans (55).
The site of mitochondrial ROS production also determines

its effects on the lifespan of Drosophila based on the
discovery that ROS produced through complex I, rather
than complex II or III, rescues oxidative stress–induced
pathogenesis, and extends the lifespan of Drosophila (56).
As most evidence about MR-induced lifespan prolongation
through attenuation of oxidative stress is from invertebrates,
more investigations should be conducted to test this hy-
pothesis in mammals and other long-lived animals. If the
attenuation of oxidative stress accounts for MR-induced
lifespan prolongation, other antioxidative measures (such
as antioxidant supplementation) should also be beneficial
for longevity. However, dietary supplementation of multiple
antioxidants, such as vitamin C and vitamin E, has little
effect on lifespan extension (57). Collectively, it is chal-
lenging for us to conclude that MR-induced longevity is
mediated through the attenuation of oxidative stress. Thus,
it remains to be determined through well-designed investi-
gations if MR extends lifespan through attenuating oxidative
stress.
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MR Extends Lifespan by Regulating Insulin/IGF-I Cell
Signaling
Inhibition of IGF-I signaling plays a positive role in lifespan
extension in C. elegans, Drosophila, mice, and humans (58,
59). The possible mechanism involves increased resistance
to organismic stressors and tumors (60). Inhibition of
insulin/IGF-I signaling, such as mutations in insulin/IGF-I
signaling and lowering circulating concentrations of insulin
and IGF-I, can extend both the maximum and average
lifespan in mammals and invertebrates, despite there being
differences in insulin/IGF-I signaling between them (61–65).
MR-treated mice have lower concentrations of insulin and
IGF-I in plasma, as well as extended maximum and average
lifespans (66–68). Similarly, mice with dysfunctional IGF-I
synthesis [growth hormone knockout (GHRKO) and Ames
dwarf mice] were found to exhibit a longer median lifespan
(24% and 69%, respectively) than normal mice with adequate
methionine intake (150% of methionine requirements) (69).
However, there was no difference in median and maximal
lifespan between the Ames dwarf or GHRKO mice and
their wild-type counterparts when fed a severely methionine-
deficient diet (20% of normal requirements) (69). Although
these compelling results suggest that severe MR is highly
correlated with insulin/IGF-I signaling in lifespan prolon-
gation, a limitation of the study is that the author failed to
explore the lifespan of GHRKO and Ames dwarf mice with
a basal diet (100% of methionine requirements). In addition,
the mechanism through which MR modulates insulin/IGF-
I signaling needs to be elucidated in further investigations.
In fact, dysfunctional IGF-I synthesis in mice enhances the
methionine metabolism and modulates the related enzyme
activity (70, 71); thus, MR regulates insulin/IGF-I signaling,
possibly via the alteration of methionine metabolism.

MR may inhibit insulin/IGF-I signaling through the
generation of hydrogen sulfide (H2S), which decreases
insulin and IGF-I production (72). Endogenous H2S is
synthesized by the catalysis of cystathionine γ -lyase (CGL)
and cystathionine β-synthase catalysis (CBS) in the liver
(Figure 2A). MR increases the enzymatic activities of CGL
and CBS via the amino acid deprivation/integrated stress
response pathway, leading to the production of hepatic
H2S (73, 74). In pancreatic β cells, endogenous H2S in-
hibits insulin secretion by suppressing intracellular glucose
metabolism and ATP production (75). H2S also decreases the
concentrations of IGF-I and thyroxine (T4) in the blood (76).
Therefore, H2S likely mediates the inhibitory effect of MR on
insulin/IGF-I cell signaling (Figure 3). However, MR extends
the chronological lifespan of wild-type yeast, but it has little
effect on the sulfate assimilation-related gene mutant (H2S
production deficiency) (77). Although this finding by Choi
et al. queries the favorable effects of MR on longevity via
H2S production, it is noteworthy that such results arose
from a yeast model–based study without endogenous H2S
able to regulate the insulin/IGF-I signaling while considering
mammals with an endogenous H2S effect. This suggests that
MR induces lifespan extension in yeast through a signaling-
independent mechanism different from H2S or H2S-related

insulin/IGF-I. Studies and analyses of insulin/IGF-I signaling
in the sulfate assimilation-related gene mutant without H2S
production are needed to determine the correlations between
H2S production and insulin/IGF-I signaling in yeast-based
experiments.

Inhibition of insulin/IGF-I signaling is another potential
mechanism of MR-induced lifespan extension in mam-
mals; however, some research challenges this hypothesis.
For instance, mutation of insulin receptors in peripheral
tissues fails to prolong the murine lifespan (78). A possible
explanation is that insulin signaling affects lifespan in a
tissue-specific manner, such as a neuron-specific manner.

Perspective: MR May Prolong Lifespan by
Modulating Intestinal Bacterial QS
There is increasing evidence for additional mechanisms
whereby the intestinal microbiota manages the host lifespan.
Modulation of the intestinal microbiota by caloric restriction
reduces the antigen load to the host and is positively
correlated with lifespan in animals (79). Although there have
been few investigations on MR and the intestinal microbiota,
MR may have a favorable regulatory effect on the profile of
the intestinal microbiota (80). MR contributes to intestinal
microbiota homeostasis, possibly by modulating the bacterial
QS system by reducing the concentrations of methionine and
SAM.

Methionine is transformed into SAM by the methionine
adenosyltransferase (MAT) with ATP, and SAM is subse-
quently processed into S-adenosylhomocysteine (SAH) and
decarboxylated SAM (dcSAM) to participate in cysteine and
polyamine synthesis, respectively (Figure 2A). Methionine
is the only synthetic precursor for SAM, and >80% of
methionine in the liver is used to synthesize SAM (81).
Dietary MR reduces the levels of SAM as well as the SAM
to SAH ratio in the liver of mice, especially in young
mice (72, 82, 83), which contributes to maintaining the
free methionine concentration for protein synthesis. These
observations demonstrate that, apart from limiting systemic
SAM levels, MR also changes the metabolic pathway of
SAM, which tends to favor the transmethylation pathway
(84).

MR has a major influence on intestinal health, such
as improving epithelial barrier function and suppressing
the development of intestinal tumors (23, 85), whereas the
influence of MR on the intestinal microbiota is not well
known. SAM is the essential synthetic precursor in the
biosynthesis of QS signal molecules, AHLs, AI-2, and CAI-
1 (86) (Figure 2B), which coordinates bacterial activities in
high-cell-density environments. QS regulates the expression
of multiple genes and thereby controls bacterial behaviors,
such as bioluminescence, motility, biofilm formation, viru-
lence, and antibiotic production (Table 2). To achieve these
behaviors, bacteria sense the signaling molecules autoinduc-
ers (AIs) released by other bacteria through membrane and
cytoplasmic receptors.

The intestines of mammals harbor an extremely high
density of intestinal bacteria, and the concentration and
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FIGURE 2 SAM metabolism and the synthesis of AI-2 and AHL. (A) Pathways of SAM metabolism through participation in the synthesis of
cysteine and polyamines. (B) Methionine cycle and synthesis of AI-2 and AHL. In gram-negative bacteria, LuxI-type synthase catalyzes the
biosynthesis of AHLs through bonding the lactone moiety with a particular acyl chain, which is derived from SAM and acyl-ACP,
respectively. In this process, acyl-ACP is not the specific acyl chain donor because AHLs can also be synthesized from isovaleryl-CoA and
SAM in the catalysis of BjaI (the LuxI homolog). Notably, no other lactone moiety sources, except SAM, are known to participate in the
synthesis of AHLs. Similarly, AI-2 biosynthesis involves a series of enzymatic reactions in both gram-positive and gram-negative bacteria.
SAM first generates the toxic intermediate SAH via the transmethylation pathway, and then SAH is hydrolyzed into SRH in the presence of
Pfs; finally, SRH is converted into homocysteine and AI-2 in the catalysis of LuxS. The red letters represent the required enzymes in the
pathway. acyl-ACP, acyl-acyl carrier protein; AHL, acyl-homoserine lactone; AI-2, autoinducer-2; CBS, cystathionine β-synthase catalysis;
CGL, cystathionine γ -lyase; dcSAM, decarboxylated S-adenosylmethionine; HCY, homocysteine; H2S, hydrogen sulfide; LuxI, acyl
homoserine lactone synthase; LuxS, S-ribosylhomocysteine lyase; MAT, methionine adenosyltransferase; MS, methionine synthase; MTA,
5′-methylthioadenosine; MT, methyl transferase; ODC, ornithine decarboxylase; Pfs, S-adenosylhomocysteine nucleosidase; SAH,
S-adenosylhomocysteine; SAHH, S-adenosylhomocysteine hydrolase; SAM, S-adenosylmethionine; SAMD, S-adenosylmethionine
decarboxylase; SPDS, spermidine synthase; SPMS, spermine synthase; SRH, S-ribosylhomocysteine; X-CH3, methylated products.

diversity of the QS signal molecules could be much higher
than in any other ecosystem. Quorum sensing controls
nearly 10% of gene expression in certain pathogens (87).
For instance, the AHL and AI-2 signal molecules control

bacterial bioluminescence and virulence factor secretion
(e.g., extracellular toxins and metalloproteases) in Vibrio
harveyi by activating the target gene luxCDABE (88, 89).
In enterohemorrhagic Escherichia coli, AHLs and AI-2 also
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FIGURE 3 MR inhibits insulin/IGF-I cell signaling via the production of H2S. In the liver, MR increases the endogenous production of H2S
by increasing cystathionine γ -lyase and cystathionine β-synthase catalysis activities. Subsequently, H2S reduces the hepatic production of
IGF-I, which may be partly responsible for the reduced circulating concentrations of T4. H2S also decreases the secretion of IGF-I by
suppressing glucose metabolism in insulin-secreting β cells. The lines show the interactions among the players, with green arrows
indicating activation and red hammerheads indicating repression. H2S, hydrogen sulfide; IGF-I, insulin-like growth factor I; MR, methionine
restriction; T4, thyroxine.

affect the acid resistance of bacteria and the formation of
attaching and effacing (A/E) lesions (90). Hence, disruption
of bacterial QS signaling (also called quorum quenching)
by inhibiting the synthesis of the QS signal, degrading QS
signals, inhibiting QS signal diffusion, and blocking the
binding of QS signals and receptor proteins is an effective

therapeutic approach for combating bacterial infections
(91, 92).

The strategies that suppress the production of AIs include
inhibition of AI synthase and restrictions on levels of
synthetic substrates, although most studies have focused on
inactivation of AI synthase. Sinefungin, a methyltransferase

TABLE 2 The role of QS in the virulence expression of pathogenic bacteria1

Bacteria
Gram
stain QS signal molecule Function Reference

Staphylococcus aureus G+ AIP Expression of hemolysins, enterotoxins, exfoliating toxins, enzymes, and
surface proteins

(93, 94)

Streptococcus
pneumoniae

G+ CSP, BlpC Uptake and recombination of exogenous DNA, formation of biofilms, and lysis
of competitive bacteria

(95)

Pseudomonas aeruginosa G− AHLs (OC12-HSL, C4-HSL) Expression of genes involved in the production of rhamnolipids and
components of the type III secretion system

(96, 97)

Agrobacterium
tumefaciens

G− AHL (OC8-HSL) Dissemination of the Ti plasmid by horizontal transfer (98)

Chromobacterium
violaceum

G− AHL (C6-HSL) Bacterial aggregation, biofilm formation, swarming, production of pigment
violacein, and alkaline exoprotease activity

(99)

Burkholderia glumae G− AHL (C8-HSL) Expression of flagellar biosynthesis genes and control of virulence, motility,
and protein secretion

(100)

Escherichia coli G− AHL, AI-2, AI-3, NE, Epi Control of acid resistance and formation of A/E lesions (90)
Vibrio harveyi G− CAI-1, AHL, AI-2 Expression of virulence factors involved in biofilm formation, type III secretion,

and production of chitinase A
(101, 102)

Yersinia
pseudotuberculosis

G− AHLs (C6-HSL, C8-HSL) Control cellular aggregation/flocculation and swimming motility (103, 104)

Salmonella typhimurium G− AI-2, AI-3, NE, Epi Control of SPI-1 (invF, sicA, sopB, sopE) and flagellar (fliC, fliD) gene transcription (105)
1A/E, attaching and effacing; AHL, acyl-homoserine lactone; AIP, autoinducing peptide; AI-2, autoinducer 2; AI-3, autoinducer 3; BlpC, bacteriocin-like peptide QS signals; CAI-1,
cholerae autoinducer-1; CSP, competence-stimulating peptide; C4-HSL, N-butyryl homoserine lactone; C6-HSL, N-hexanoyl-L-homoserine lactone; C8-HSL,
N–octanoyl–l–homoserine lactone; Epi, epinephrine; G− , gram-negative bacteria; G+ , gram-positive bacteria; NE, norepinephrine; OC8-HSL, N-3-oxo-octanoyl-homoserine
lactone; OC12-HSL, N-3-oxo-dodecanoyl-L-homoserine lactone; QS, quorum sensing; SPI-1, Salmonella pathogenicity island 1.
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FIGURE 4 MR protection of the intestine from invasion by pathogenic bacteria. (A) When methionine is limited, the intestinal
commensal microbiota and pathogenic microbiota utilize SAM to synthetize AHLs and AI-2 signaling molecules. Once the amounts of
AHLs and AI-2 reach the threshold concentrations, they trigger the expression of a series of genes involved in bacterial bioluminescence,
motility, biofilm formation, virulence, and antibiotic production via a complex regulatory cascade, eventually resulting in colonization of
the intestine by pathogenic bacteria. (B) In the MR condition, the synthesis of AHLs and AI-2 is limited due to the deficiency in dietary
methionine. Thus, the low abundances of AHLs and AI-2 fail to activate the expression of the bacterial behavior-related genes, which
suppresses colonization of the intestine by pathogenic bacteria. AHL, acyl-homoserine lactone; AI-2, autoinducer 2; LuxI, acyl homoserine
lactone synthase; LuxS, S-ribosylhomocysteine lyase; MR, methionine restriction; Mts, methyl transferases; Pfs, S-adenosylhomocysteine
nucleosidase; SAM, S-adenosylmethionine.

inhibitor that suppresses transmethylation, decreases AI-2
production and downregulates the expression of luxS, pfs,
and speE in Streptococcus pneumoniae, thereby inhibiting
biofilm growth and colonization in vivo (106). Sinefungin
also inhibits the methionine cycle of S. pneumoniae, which
may alter the bacterial metabolites, biofilm formation, acid
tolerance, and lactic acid production (107). Whether sinefun-
gin treatment inhibits the biofilm growth and colonization
by inhibiting AI-2 production or by inhibiting methionine
metabolism remains to be determined. Several analogs of
SAM, such as butyryl-SAM and sinefungin, inhibit LuxI-
type synthase activity and decrease AHL production (108).
Mechanistically, SAM serves as the essential precursor for the
synthesis of AHLs and AI-2; therefore, SAM concentrations
may directly influence the production of AHLs and AI-2.
However, the quorum-quenching approach through target-
ing the SAM concentration has not been well investigated;
we could consider that SAM is the crucial metabolic inter-
mediate involved in transmethylation in mammals and pan-
inhibition with a nonspecific approach, likely resulting in
uncontrollable manifestations in the experimental animals.
As MR is the available dietary intervention that decreases
hepatic SAM production without adverse effects, MR is a
potential quorum-quenching strategy to prevent pathogenic
bacterial invasion.

Enteric bacterial infections trigger intestinal microbiota
dysbiosis, intestinal inflammation, and cancer. For example,
enterotoxigenic Escherichia coli (ETEC) infections increase
the abundance of γ -aminobutyric acid (GABA)–producing

bacteria to promote the expression of IL-17 and evoke intesti-
nal chronic inflammatory disease through mechanistic target
of rapamycin complex 1 (mTORC1) signaling (109, 110).
In addition, various enteric bacterial infections (e.g., ETEC,
Salmonella enteritidis, and Shigella flexneri) disrupt the
intestinal barrier to increase intestinal permeability, thereby
enabling the bacterial products (antigens) to enter the
bloodstream to induce systemic inflammation. Long-term
exposure to inflammation is adverse to health maintenance
and lifespan prolongation because the chronic inflammatory
status leads to macrophage dysfunction, oxidative stress, and
inexorable tissue injury, which accelerates cellular senescence
and metabolic syndrome (111). Consequently, the prevention
of enteric bacterial invasion and maintenance of homeostasis
of the intestinal microbiota are crucial for lifespan extension.

Based on the above analysis, we propose that dietary
MR could protect the host intestine and even the whole
body from pathogenic bacteria invasion because MR is an
effective strategy for QS inhibition (Figure 4) that maintains
the homeostasis of the intestinal microbiota and attenuates
systemic inflammation. Hence, it is conceivable that MR-
induced intestinal protection is also a possible mechanism of
lifespan extension.

Conclusions
Despite MR having been shown to extend the lifespan of
multiple species, the precise mechanism involved in this
process has not been elucidated because the lifespan is
controlled by numerous factors. Currently, the attenuation of
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oxidative stress and inhibition of insulin/IGF-I signaling are
the widely accepted mechanisms responsible for MR-induced
lifespan extension. In addition, we propose that dietary
MR is beneficial for preventing enteric pathogen invasion
and maintaining homeostasis of the intestinal microbiota
by inhibiting pathogenic QS, thereby preventing chronic
inflammation and postponing senility.

QS also serves as a communication system for stabilizing
commensal bacterial populations. For example, to overcome
ammonia-mediated alkaline toxicity, Burkholderia bacteria
produce oxalate in a QS-dependent manner to neutralize
the alkaline metabolites (112). Additionally, manipulation
of AI-2 contributes to the alleviation of antibiotic-induced
intestinal microbiota dysbiosis, which is accomplished by
favoring the expansion of Firmicutes bacteria and reducing
Bacteroidetes bacteria (113). Therefore, another specific
question is whether MR-induced quorum quenching af-
fects the composition of intestinal commensal microbes.
Unfortunately, due to the presence of multiple QS signals
in the mammalian intestine, current knowledge about the
influences of quorum quenching on the intestinal microbiota
is restricted. Hence, the open questions include the following:
1) whether MR affects the concentrations of QS signal
molecules (AHLs and AI-2), 2) whether MR affects the
intestinal microbiota through quorum quenching, and 3)
whether QS plays critical roles in MR-induced lifespan
extension.
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