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ABSTRACT

Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex
structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few
decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several
studies have reported that the oxidative stress–lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the
biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism
and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β , and TNF-α, upregulating nuclear factor erythroid 2-related factor
2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical–scavenging action, iron chelation, initiation of
several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective
attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical
analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-
date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and
underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological
disorders. Adv Nutr 2021;12:1211–1238.

Keywords: ellagic acid, natural sources, neuroprotection, bioavailability, metabolism, nanoformulations, molecular targets

Introduction
Neurodegenerative disorders have become a critical health
concern throughout the world and are primarily identified
by continuous destruction of neural cells and tissues as well
as the associated dysfunction of the nervous system with
aging (1). These disorders have diverse etiologies and mostly
affect the peripheral nerves, spinal cord, and brain. The
distinguishing symptoms of these disorders are memory loss,
depression, motor dysfunction, cognitive impairment, and
anxiety. Multiple sclerosis, prion diseases, Parkinson disease
(PD), Alzheimer disease (AD), and Huntington disease
are well-established neuronal disorders (2, 3). Some of the
leading causes of neuronal degeneration are associated with
toxin insults, heredity, metabolism, or attack by infectious
pathogens (4). Previous studies documented that dysfunc-
tion of mitochondria, oxidative stress, neuroinflammation,
and protein misfolding are major factors that account for
neurodegenerative disorders (5). Transcription factors, such
as cAMP-response element binding protein, nuclear factor
erythroid 2-related factor-2 (Nrf2), NF-κB, Wnt/β-catenin,
Janus kinase/signal transducer and activator of transcription,

mitogen-activated protein kinases (MAPKs), and Toll-like
receptor-4, play vital roles in pathophysiological alterations
of neuronal cells (6, 7). Cholinesterase inhibitors, dopamin-
ergic treatments, brain stimulation, and antipsychotic drugs
are frequently used in treating neurodegenerative problems
(8, 9). Additionally, riluzole, CERE120 (an experimental drug
that consists of an adeno-associated virus), nonsteroidal anti-
inflammatory drugs, and caffeine A2A receptor antagonists
have also been suggested to minimize the risk of neurode-
generative complications (10). However, these drugs also
produce several adverse effects with prolonged use. Hence
there is a need to discover and prepare multitarget, safe, and
more potent drugs, especially of a natural origin, for the
management of neurodegenerative disorders (11, 12).

Plant-based natural products are the source for complex
chemical molecules having multiple target sites in the human
body. These molecules have been studied thoroughly for
their diverse medicinal attributes (13). In the past decade,
biological actions, nutritional features, and noteworthy
health and therapeutic benefits of natural products and their
phytoconstituents have been extensively evaluated (14, 15).
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Apart from their efficacy to prevent impairment caused by
oxidative stress and inflammation, natural products have also
been shown to alter multiple signal transduction pathways
via direct actions on enzymes, such as kinases, receptors,
and regulatory proteins (16, 17). Moreover, several herbal
drugs and natural agents, such as Ginkgo biloba, Bacopa
monnieri (brahmi), Celastrus paniculatus, curcumin, galan-
tamine, coffee, and lavender essential oil, are preclinically
as well as clinically tested for a neuroprotective role and
have promising efficacy (18, 19). Ellagitannins (ETs) are
polyphenolic compounds that are plentiful in seeds, fruits,
and nuts. ETs are categorized as hydrolyzable tannins and are
complex derivatives of ellagic acid (EA). EA is a polyphenolic
compound that is present in a wide range of nuts, vegetables,
and fruits, including pomegranates, walnuts, black raspber-
ries, raspberries, almonds, and strawberries (20, 21). It pos-
sesses broad-spectrum physiological activities as confirmed
by in vitro (22, 23), in vivo (24, 25), and clinical studies
(26), including antioxidant, anti-inflammatory, antibacterial,
anticarcinogenic, antiplasmodial, antiviral, hepatoprotective,
antifibrotic, immunomodulatory, and neuroprotective ac-
tivities (27, 28). Berries have been extensively used for
neuroprotective studies because they contain several kinds of
polyphenolic compounds that can work together and have a
synergistic effect in the central nervous system (CNS) (29).

The majority of the presently established pharmacological
attributes of EA depend on its antioxidant activity, which
is primarily governed by its basic structure containing
4 hydroxyl groups that are responsible for scavenging both
superoxide and hydroxyl anion radicals (30). EA has shown
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anti-inflammatory effects by its modulatory action on the
cyclooxygenase (COX) enzyme and production of TNF-
α, IL-1β , and IL-6 in a mouse model (31). Furthermore,
it can improve AD-mediated dementia by suppressing
oxidative and inflammatory cell damage and improving
antioxidant content. EA inhibits cognitive abnormality fol-
lowing traumatic brain injury (TBI) in rats through its anti-
inflammatory and antioxidant properties (32). EA restored
redox homeostasis in several animal models of dementia
by reducing inflammation and oxidative damage as well
as augmenting antioxidant concentrations in the brain (14,
33). Because EA has gained remarkable attention for its
multipurpose therapeutic properties, a systematic review
of its therapeutic features, especially as a neuroprotective
agent, is warranted. Recent studies have revealed the phar-
macological role of EA in countering numerous cellular
abnormalities (26, 34, 35). de Oliveira (36) has provided an
overview of the limited number of neurological studies. In
the present review, an effort has been made to provide up-
to-date, comprehensive, and critical information on natural
sources of EA, its dietary intake, metabolism, and therapeutic
roles in various neurological disorders, and its underlying
mechanisms of action.

Literature Search Strategy and Study Selection
Various mainstream scholarly databases, including PubMed,
ScienceDirect, EBSCOhost, and Scopus, were used for search
and collection of literature. The Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) criteria
suggested for writing systematic reviews (37) was followed.
Articles published in peer-reviewed journals between 1922
and 2020 (up to April) in the English language were
incorporated. Exclusion criteria for the elimination of articles
involved conference abstracts, reports in a non-English
language, letters to editors, and unpublished data. Major
keywords, such as ellagic acid, bioavailability, neurodegen-
erative disorders, brain injury, prevention, pharmacological
effect, metabolism, neuroprotection, and in vivo, in vitro,
and clinical studies were used during the literature survey. A
scheme for literature search and study selection is presented
as Figure 1.

Chemistry of EA
In 1831, Braconnot first discovered a new form of ET and
termed it EA (2,3,7,8-tetrahydroxy[1]-benzopyranol[5,4,3-
cde]benzopyran-5,10-dione). It is an extremely thermostable
molecule (melting point 350◦C) and has a molar mass
of 302.197. It is also moderately soluble in ether, alco-
hol, and water but completely soluble in caustic potash
(38). Structurally, the presence of 4 rings signifies the
lipophilic domain. Representing the hydrophilic domain
are 2 lactones and 4 phenolic groups, which act as elec-
tron acceptors and form hydrogen-bond sides, respectively
(39). EA is a polyphenolic compound present in various
fruits, nuts, and seeds, including raspberries, strawberries,

1212 Gupta et al.

mailto:abishayee@lecom.edu
mailto:abishayee@gmail.com
mailto:akpandey@allduniv.ac.in
mailto:akpandey23@rediffmail.com


Id
en

ti
fic

at
io

n
Sc

re
en

in
g

In
cl

us
io

n
Records identified

via  various 
database  search

(n= 354)

Ellagic acid, natural sources, dietary 
intake, bioavailability, metabolism, brain 

injury, neuroprotection, clinical trail, 
limitations 

Exclusion criteria:  Non-
English language, literature 
reviews, abstracts, letters
and studied not related to 

neuroprotection

El
ig

ib
ili

ty

Records screened
(n= 354)

Full-test articles  
assessed for

eligibility  (n =331)

In vitro (n = 10) 
β-amyloid (n = 2)

D-galactose (n = 1)

Cadmium (n = 1)

Rotenone(n = 1)

All trans retinoic acid (n = 1)

Oxygen-glucose deprivation 
and reoxygenation (n = 1)

Antitumor (n = 2)

Antidepressant (n = 1) 

In vivo (n = 30 )
Chemical induced neurotoxicity (n = 11)

Diabetic neuropathy (n = 3)

Neurodegeneration (n = 3)

Epileptic seizures (n = 2)

Aging disorder (n = 4)

Neuro-regeneration (n = 4)

Antidepressant activity (n = 3)

Studies included in
the  systematic 
review  (n = 257)

Descriptors

Excluded

Methodologically week, 
having limited relevance, 
or limited presentation of 

findings (n = 74) 

Excluded

FIGURE 1 PRISMA flowchart showing the procedure of literature searching and selection with numbers of articles at each stage. PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analysis.

baheda, grapes, pomegranate, walnuts, blackcurrants, camu-
camu, longan seeds, mango, guava, almonds, and green tea
(Table 1) (40–42).

EA Content in Food Products and Dietary Intake
Epidemiological evidence has revealed that EA shows
therapeutic action against certain chronic diseases (43).
Table 2 summarizes results of quantitative analyses of the
EA content in various fruits, nuts, and beverages. Wada and
Ou (44) suggested that in all berries except boysenberries
the concentration of free EA was 40–50% of the total EA.
The concentration of total EA ranged from 47 to 90 mg/g
in red raspberries and black raspberries, respectively. The
consumption of EA can exceed the above estimations if
EA-rich foods other than berries (e.g., pomegranate juice
and walnuts) are also present in the regular diet or if EA
is taken as a supplement (45). In honey, EA has been
suggested to be a floral marker for honey production
from the heather plant (46). Free EA and its glycoside
derivatives, including arabinosides, glucosides, rhamnosides,
and the corresponding conjugates of acetyl esters, have
also been found in honey-related food supplements (47).
Various other studies reported that 100 g of raspberries
or a glass of pomegranate juice can provide ≤300 mg

EA, 4 walnuts provide 400 mg, and a strawberry provides
70 mg EA (48). Additionally, it was found that punicalagin
is found predominantly in pomegranate, sanguiin H-6 in
strawberry and raspberry, vescalagin in oak-aged wines and
spirits, and pedunculagin in walnuts. Upon hydrolysis, these
compounds produce EA (Figure 2); however, several other
metabolites can also be produced that are discrete from in-
dividual ETs (i.e., gallagic and tergallagic acid-O-glucoside)
(49, 50).

A survey performed in different geographical regions
throughout the world suggested that citizens of Western Eu-
rope have the highest predictable daily dietary consumption
of EA in both sexes (7.6 mg/d in men and 7.9 mg/d in
women), followed by Americans and Australians (6.7 mg/d
in women, 7.0 mg/d in men) (45, 51). In these regions
strawberries accounted for >60% of the daily intake of
EA. However, the expected consumption of EA was low
(<1 mg/d) in African, Asian, and South American regions,
probably due to inadequate availability of berries (51).
Researchers reported that strawberries provided 0.2–0.3 mg
of EA daily in France because strawberries are one of the
major sources of EA (20). Conclusively, a literature survey
confirmed that no harm from EA and ET intake has been
observed in humans when these compounds are taken as part
of the diet or as nutritional supplements.

Ellagic acid and neuroprotection 1213



TABLE 1 List of plants reported for the presence of ellagic acid and their medicinal properties

Family name Plant name Plant part used Model used Medicinal properties Reference

Apocynaceae Decalepis hamiltonii Roots In vivo Anticancer (52)
Macrosiphonia longiflora Xylopodium Clinical Anti-inflammatory (53)

Juglandaceae Carya illinoinensis Kernels and shells In vivo Toxicological effect and
antioxidant

(54)

Juglans regia Kernels — Not determined (55)
Malvaceae Thespesia lampas Roots In vitro and in vivo Antioxidant and

hepatoprotective
(56)

In vitro and in vivo
Sterculia striata Nut In vitro Antioxidant (57)

Sapindaceae Dimocarpus longan Seeds In vitro Antioxidant and
antimicrobial

(58)

Nephelium lappaceum Husk In vitro Antioxidant (59)
Rosaceae Geum rivale Aerial — Not determined (60)

Rubus parvifolius Whole plant In vivo Hepatoprotective and
antioxidant

(61)

Sanguisorba officinalis In vitro Antiadipogenic (62)
Phyllanthaceae Emblica officinalis Fruits In vitro, in vivo, and

clinical
Antioxidant,

antihepatotoxic,
anti-inflammatory, and
antidiabetic

(63)

Phyllanthus acuminatus Leaves In vitro Antioxidant and cytotoxic (64)
Myrtaceae Myrciaria dubia Fruit In vitro Antioxidant (65)

Psidium friedrichsthalianum Antioxidant and
metabolomic

(66)

Syzygium calophyllifolium Antioxidant and
antibacterial

(67)

Syzygium cumini Antidiabetic and
antioxidant

(68)

Myrciaria floribunda Antioxidant (69)
Eugenia uniflora Leaves In vitro and in vivo Anti-inflammatory,

antioxidant, and
antibacterial

(70)

Myrtus communis — Not determined (71)
Campomanesia

adamantium
Leaves and root In vitro Apoptotic death of

leukemic cells
(72)

Eucalyptus globulus Bark, stem, leaves, and
fruit

In vitro Antioxidant, bioherbicide (73)

Acca sellowiana Fruits, pulp, and peel In vitro Antimicrobial (74)
Euphorbiaceae Chrozophora senegalensis Leaves and stem In vitro and in vivo Cytotoxicity and

antimalarial
(75)

Acalypha hispida In vitro and in vivo Anti-inflammatory and
antioxidant

(76)

Gymnanthes lucida Leaves In vitro Antimicrobial and
cytotoxic

(77)

Euphorbia pekinensis Root In vitro and in vivo Antidiabetic (78)
Euphorbia supina Herb In vitro Antioxidant (79)
Sebastiania chamaelea Whole plant In vitro and in vivo Cytotoxicity and

antimalarial
(75)

Lythraceae Trapa taiwanensis Fruit In vitro and in vivo Antioxidant and
hepatoprotective

(80)

Woodfordia fruticosa Flower In vivo Antiulcer (81)
Lafoensia pacari Leaves In vitro and in vivo Cytotoxicity and

wound-healing
(82)

Lagerstroemia speciosa Leaves and stem In vitro Antiviral (83)
Combretaceae Terminalia chebula Fruit In vitro Antioxidant, antibacterial,

and neuroprotective
(84)

Terminalia bellirica In vitro and in vivo Antioxidant,
hepatoprotective, and
antidiabetic

(85)

(Continued)
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TABLE 1 (Continued)

Family name Plant name Plant part used Model used Medicinal properties Reference

Cistaceae Cistus laurifolius Leaves In vitro and in vivo Antioxidant, prostaglandin
inhibitory, and
antimicrobial

(86)

Lecythidaceae Barringtonia racemosa Leaves and stems In vitro Antioxidant (87)
Bixaceae Cochlospermum angolensis Bark In vitro Antioxidant and

antidepressant
(88)

Fabaceae Delonix elata Stem and bark In vitro and in vivo Antioxidant and
hepatoprotective

(89)

Moraceae Ficus glomerata Fruit and leaf In vitro and in vivo Antioxidant and
gastroprotective

(90)

Gentianaceae Gentiana scabra Rhizome In vitro and in vivo Antioxidant and
hepatoprotective

(91)

Geraniaceae Geranium carolinianum Aerial In vitro Anti-hepatitis B virus (92)
Irvingiaceae Irvingia gabonensis Seed — Not determined (93)
Anacardiaceae Mangifera indica Flower and fruit In vitro Antioxidant and

antiplatelet
(94)

Moringaceae Moringa oleifera Leaves In vitro and clinical Antioxidant, antimicrobial,
and photoprotective
preparations

(95, 96)

Polygonaceae Polygonum chinense Whole plant In vitro Antiviral (97)
Vitaceae Vitis rotundifolia Fruit In vitro Antioxidant (98, 99)
Tamaricaceae Tamarix aphylla Leaves and stem — Not determined (46)
Punicaceae Punica granatum Husk, fruit, and seeds In vitro and in vivo Antioxidant,

anti-inflammatory, and
vasculoprotective

(100, 101)

Absorption, Bioavailability, Metabolism, and
Excretion of EA
EA is found in a variety of ET-rich foods and also formed
during food processing. Previous reports indicated that

TABLE 2 Ellagic acid concentration in fruits, nuts, and beverages

Food item/beverage
Ellagic acid

concentration References

Fresh fruit/nuts, mg/g dry weight
Arctic bramble 0.7–3.2 (102)
Blackberry 0.015–0.022 (20)

11 (103)
Cloudberry 0.56–3.60 (104, 105)
Grapes 0.36–0.91 (102)
Pomegranate 0.35–0.75 (106)
Raspberry 0.51–3.30 (104, 105)
Strawberry 0.25–0.85 (105, 107)
Chestnut 0.0016–0.025 (108)
Pecan 21–86 (109)
Walnut 16 (110)

Fruit jam, mg/g
Raspberry jam 0.76 (111)
Strawberry jam 0.24 (111)

Fruit juice/wines/spirits, mg/100 mL
Muscadine grape juice 0.08–0.84 (112)
Pomegranate juice 570 (113)
Muscadine grape wine 0.2–6.5 (112)
Oak-aged red wine 0.94–5 (25, 114)
Cognac 3.1–5.5 (20)
Whisky (sour mash) 2.38 (103)
Whisky 0.1–0.2 (115)

free EA is relatively less water soluble and precipitates in
juices and liquors, hence its bioavailability is low based
on animal and human studies (116, 117). After initial
absorption in the stomach, ETs quickly undergo methyl
conjugation by catechol O-methyltransferase. The break-
down of ETs starts in the stomach and the breakdown
products can be detected in peripheral blood (118). In
the gastrointestinal tract and at other sites, specifically
in the liver, microbial metabolites of EA and ETs are
again metabolized by phase I (hydroxylation) and phase
II (sulfation, methylation, and glucuronidation) enzymes
to yield more water-soluble metabolites that can be stored
in tissues or eliminated via urine (119). EA can be trans-
formed by the gut microbiota to urolithin-D, urolithin-
C, urolithin-A, and urolithin-B in the intestine; these
then move into the blood circulation via intestinal ep-
ithelial cells as their lipophilicity increases (120) (Figure
3). On the basis of microbial metabolism, individuals
are stratified into 3 urolithin metabotypes: metabotype
A—individuals synthesizing only urolithin-A; metabotype
B—yielding isourolithin-A and/or urolithin-B apart from
urolithin-A; and metabotype 0—unable to synthesize any
urolithin (121).

The examination of Iberian pig samples (plasma and
urine) suggested that urolithin-A glucuronide and sulfate
were the major metabolites, along with urolithin-C whereas
urolithin-B glucuronides and sulfates were minor metabo-
lites. Additionally, the dimethyl ether glucuronide of EA was
also a noteworthy metabolite. An enterohepatic recirculation
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FIGURE 2 Sanguiin H-6 is typical of strawberry and raspberry, pedunculagin of walnuts, punicalagin of pomegranate, and vescalagin of
oak wine. All of them release ellagic acid upon hydrolysis in the gastrointestinal tract.

was clearly observed in the Iberian pig. Analysis of gall
bladder and bile suggested that tetrahydroxy-urolithin was
absorbed in the first segment of the gut and was identified
in hepatocytes, where it was conjugated and eliminated with
the bile to the small intestine (122). In Iberian pigs urolithin
metabolites were stored only in the gall bladder and the
urinary bladder, where they attained high concentrations;
however, they were not stored in any of the tested tissues,
such as kidney, muscle, heart, adipose tissue, and liver
(122).

Urolithin-A is stored in colon, prostate, and intestinal
tissues, whereas urolithin-A glucuronide is chiefly found in
kidney and liver tissues of the mouse (123). Metabolites
derived from EA, primarily urolithin-A and urolithin-B,
are eliminated by urine. The urinary elimination of EA
and EA-O-glucuronide is <1% of intake in the case of
humans (124). Additionally, urolithin-A is the chief EA
metabolite identified in the feces of humans and pigs
(125). Recently, Selma et al. (126) suggested that the
monocultured bacteria Gordonibacter urolithinfaciens and G.
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FIGURE 3 Ellagic acid metabolism by gut microbiota in humans and animals produces several metabolites (urolithin-A, urolithin-B,
urolithin-C, and urolithin-D). These urolithins are further largely absorbed by the intestinal cells and glucuronidated.

pamelaeae account for the breakdown of EA to produce
luteic acid, urolithin-M-5, urolithin-M-6, and urolithin-
C.

In a pharmacokinetic study, EA was observed at a
maximum concentration in plasma (Cmax) 1 h postingestion
of 180 mL pomegranate juice (containing 318 mg ETs and
25 mg EA) in a human volunteer. The Cmax was 32 ng/mL
(0.1 μM), and the EA was excreted within 4 h from
the circulatory system (127). In another study conducted
in Spain, 6 healthy volunteers were provided with 1 L
of pomegranate juice (4.4 g punicalagins and no free
EA). Despite the much higher dose, no EA was observed
in plasma in the 4-h period following the juice intake
(113).

Preclinical Evidence for Neuroprotective Roles
of EA
EA and EA-enriched products, including Ellagic Active
tablets (Source Naturals, Santa Cruz, CA, USA), Ellagic Acid
Capsules (Biotech Nutritions, Novi, MI, USA), and PomActiv
(H&B Wellness, Chandigarh, India), are widely consumed
as nutritional supplements owing to their health-promoting
activities (128). Previous studies reported that EA substan-
tially prevented the action of acetylcholinesterase (AChE)
and hence upregulated cognitive potential through acetyl-
choline (88, 104). EA modulated the brain monoaminergic
and GABAergic transmission pathways that have healing
actions on memory and learning in experimental models of
depression. Moreover, the stimulation of noradrenergic and
serotonergic transmission in the brain is correlated with the
antidepressant property of EA (129). The therapeutic efficacy
of EA on various neurological complications or disorders
and its in vitro and in vivo importance are discussed
below.

Neurodegenerative Disorders Caused by
Biological Processes
β-Amyloid-induced AD
The neuropathological hallmarks of AD are the accumu-
lation of extracellular “senile plaques,” which are derived
from β-amyloid (Aβ) fibrils, and intracellular “neurofibril-
lary tangles,” which contain hyperphosphorylated tau (τ )
protein. Selective inhibition of Aβ oligomer offers a prime
target for AD treatment. Rojanathammanee et al. (105)
reported that EA (10 μM/L) alone or with punicalagin
(10 μM/L) effectively prevented the Aβ-mediated TNF-α
secretion and nuclear factor of activated T cells in cultured
primary murine cortical microglia (Table 3). Feng et al. (130)
demonstrated in vitro the effects of EA (100 and 300 μM)
on Aβ42 aggregation, formation of β-sheets, Aβ oligomer
concentrations, and cytotoxicity of Aβ42 in 5H-SY5Y neu-
roblastoma cells. The results revealed that both methylene
blue and EA strengthen a noncovalent interaction within β-
sheet structures and promote fibril assembly kinetics (130).
Additionally, the fluorescence emission of thioflavin T (ThT)
is shifted when ThT binds to β-sheet structures and is
extensively used to measure Aβ fibril concentration. EA
(0.1–0.4 mM) substantially prevented the ThT fluorescence
of Aβ fibrils, showing suppressed binding of ThT to the
fibrils by EA action. Moreover, EA prevented neurotoxicity
by stimulating Aβ42 aggregation into fibrils with remarkable
oligomer deficiency by conjugating with Aβ , aromatic
stacking, or hydrophobic forces to stimulate fibrilization
(107).

EA and aging
Aging is a physiological process and is related to broad-
spectrum chronic disorders, like atherosclerosis, cancer,
retinopathy, and PD. Oxidative impairment triggered by
reactive oxygen species (ROS) plays a critical role in aging
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TABLE 3 In vitro neuroprotective role of ellagic acid against various types of stressors1

Stressor Experimental model EA concentration Observations References

Aβ Primary murine cortical
microglia

10 μM/L Inhibited microglial activation via attenuation of
TNF-α, and NFAT activity

(105)

SH-SY5Y cells 2 mg/mL Prevented Aβ neurotoxicity by promoting Aβ

aggregation into fibrils with significant
oligomer loss

(130)

0.1–0.4 mM Suppressed proinflammatory and disease
aggravation markers

(107)

D-gal SH-SY5Y cells 0.01–10μM Increased cell proliferation and GSH
concentration, while decreasing concentrations
of ROS, MDA, TNF-α, β-GAL, and AGEs

(131)

ATRA and TPA SH-SY5Y cells 30–100 μM EA induced cell detachment, decreased cell
viability, and induced apoptosis

(132)

50 μM EA decreased cell detachment, loss of viability,
and activation of apoptosis

(133)

Cadmium Rat primary astrocytes 30 μM Decreased ROS production and astrocyte cell
death

(134)

Rotenone PC12 pheochromocytoma 10 μM Decreased ROS and RNS production, PARP1,
HSP70, and α-synuclein aggregation

(135)

OGD/R Primary culture of rat
cortical neurons

10 and 30μg/mL Decreased the number of apoptotic/necrotic cells,
and remedied the decrease in the ratio of
Bcl-2/Bax expression

(136)

Tumor Human glioblastoma and
rat glioma cell line

5.5 mg or 10 mg Chitosan-EA composite films induced the
accumulation of the tumor suppressor protein
p53 and increased caspase-3 activation, which
preceded induction of apoptosis

(95)

5.5 mg or 10 mg EA induced apoptosis in cancer cells as well as
suppressing angiogenesis in dose-dependent
manner

(94)

Antidepressant AChE, BuChE, and MAO-A EA exhibited appreciable MAO-A inhibition
activity compared with cholinesterase inhibitors

(88)

1Aβ , β-amyloid; AChE, acetylcholinesterase; AGE, advanced glycation end-product; ATRA, all-trans retinoic acid; BuChE, butyrylcholinesterase; D-gal, D-galactose; EA, ellagic acid;
GSH, reduced glutathione; HSP70, heat shock protein 70; MAO-A, monoamine oxidase A; MDA, malondialdehyde; NFAT, nuclear factor of activated T-cells; OGD/R, oxygen-glucose
deprivation and reoxygenation; PARP, poly(ADP-ribose) polymerase; RNS, reactive nitrogen species; ROS, reactive oxygen species; TPA, 12-O-tetradecanoylphorbol-13-acetate;
β-GAL, β-galactose.

(137). Excessive ROS have a damaging impact on humans,
such as increasing membrane lipid peroxidation (LPO),
damaging DNA, and initiating apoptosis, ultimately leading
to cellular damage (138). Chen et al. (139) demonstrated the
antioxidative, anti-inflammatory, and antiapoptotic effects
of EA on d-galactose (d-gal)-induced aging in rats. The
brain contains the most complex tissue of all organs of the
body and requires large amounts of oxygen and energy to
maintain its normal activities; however, only small amounts
of antioxidative enzymes are present within it (140, 141).
Results of this study revealed that subcutaneous injection of
d-gal caused a significant decrease in antioxidant enzyme ac-
tivities of catalase (CAT), GPx, superoxide dismutase (SOD),
and total antioxidant capacity (TAC), and an increased
malondialdehyde (MDA) concentration. Interestingly, the
antioxidant enzyme activities were effectively increased by
EA supplementation (50 mg/kg), which also significantly
reduced the production of MDA in the brain (139). Among
the cytokines, TNF-α, IL-6, and IL-1β are essential in the
development and progression of oxidative stress because they
are associated with ROS. The concentrations of these inflam-
matory cytokines were significantly lower in rats receiving

EA. These results indicate that EA also has a strong anti-
inflammatory efficacy in d-gal-induced aging in rats. Bcl-2
plays a key role during inhibition of apoptosis; it is a known
factor in cell aging, and its overexpression can effectively
prevent the apoptosis induced by hydrogen peroxide, free
radicals, and microbial contamination (114). Meanwhile,
the main function of Bax is to accelerate apoptosis and,
together with Bcl-2, regulate cell apoptosis. EA intervention
significantly downregulates the expression of Bcl-2 and
Bax proteins and upregulates the expression of caspase-3
(139).

d-gal is a reducing sugar present in many foods, such
as honey, beets, cheese, yoghurt, butter, milk, kiwi fruit,
soy sauce, plums, dry figs, cherries, and celery. In classical
galactosemia, the normal concentration of d-gal in the
human blood is >10 mg/dL. For a healthy adult the maximal
recommended daily dose is 50 g d-gal, and most of it can
be eliminated from the body within ∼8 h after ingestion
(142). Excessive administration of d-gal could contribute to
generation of ROS through oxidative metabolism of d-gal
as well as through glycation end-products (143). During the
process of aging, a higher concentration of d-gal accumulates
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in the body and associates with the amines of proteins
and peptides. This can produce advanced glycation end-
products (AGEs), which bind to the receptor of advanced
glycation end-products (RAGE). It has been reported that
AGEs cause inflammation and oxidative stress through
RAGE (144). Rahimi et al. (131) evaluated the effect of EA
(0.01–10 μM) on aging by analyzing inflammation (TNF-α),
cell proliferation, MDA, intracellular ROS, β-galactosidase
(β-gal), reduced glutathione (GSH), and AGE concen-
trations in neuroblastoma cells (SH-SY5Y). During d-gal
metabolism, higher amounts of d-gal can produce AGEs and
ROS, which cause neurotoxicity by promoting neurogenesis
suppression, neuronal apoptosis, and inflammatory response
(145, 146). d-gal remarkably enhanced AGE concentrations
via nonenzymatic glycation, oxidative stress activation, and
alteration of inflammatory cytokine concentrations. The SH-
SY5Y cells co-cultured with EA (0.01–10 μM) improved
the AGE concentration in d-gal-induced aging (131). β-
gal contributes to the breakdown of β-galactose–containing
compounds like sphingolipids and lactose. A separate group
of researchers presented β-gal as a critical marker for
analyzing the process of aging in both in vitro and in
vivo models (147, 148). Further, d-gal–induced SH-SY5Y
cells showed a remarkable decline in cell proliferation,
GSH concentration, and SOD activity, along with increased
ROS and MDA concentrations (144). Following d-gal–
induced aging, EA increased the concentrations of GSH
and promoted cell proliferation, as well as reducing the
concentrations of AGEs, ROS, β-gal, MDA, and TNF-α.
Results also suggested that EA might act by modulating
signaling pathways through the involvement of both heme
oxygenase 1 (HO-1) and peroxisome proliferator-activated
receptor-γ activation (131).

Fjaeraa and Nanberg (132) reported that EA (30–100 μM)
lowered the viability of SH-SY5Y human neuroblastoma
cells. It arrested cell cycle progression in all-trans retinoic
acid (ATRA)–treated SH-SY5Y cells in a concentration-
dependent manner. Additionally, EA increased the number
of detached cells although co-treatment of EA with ATRA
did not promote such parameters. EA activity in reducing
numbers of adherent cells and growing cell detachment
was much higher compared with ATRA. EA together with
ATRA led to a more effective diminution in SH-SY5Y cell
viability when compared with ATRA or EA individually.
EA accelerated apoptosis in SH-SY5Y cells, as confirmed
by a terminal deoxynucleotidyl transferase nick end label-
ing assay. Surprisingly, EA did not affect the number of
ATRA-differentiated SH-SY5Y cells. EA produced only an
insignificant reduction in viability of ATRA-differentiated
cells. Therefore, the impact of EA on neuroblastoma cells
is probably reliant on their differentiation state (132).
Alfredsson et al. (133) investigated whether phorbol ester
12-O-tetradecanoylphorbol-13-acetate alters the sensitivity
to EA in neuronal differentiation in SH-SY5Y neuroblastoma
cells. Their findings revealed that differentiation diminished
the sensitivity to EA (50 μM) with respect to cell detachment,

loss of viability, and initiation of apoptosis. Differentiation-
associated upregulation of integrin expression and Bcl-2
protein are probable protective mechanisms. The curative ac-
tion was phenotype-specific and most prominent in ATRA-
differentiated cultures (133).

S-Nitrosylation of protein disulfide isomerase and PD
The housekeeping chaperone protein disulfide isomerase
(PDI) is usually involved in protein maturation and hence
controls traffic flow in the cell (149). Post-mortems have
shown that PDI (housekeeping chaperone) undergoes S-
nitrosylation (SNO) of its catalytic cysteines in reaction to ni-
trosative stress in the brains of patients with PD (150). Kabiraj
et al. (135) explored whether EA would prevent SNO of
PDI in PC12 cells (a murine catecholaminergic cell line). EA
(10 μM) mitigated peroxynitrite (ONOO−) and protected
PC12 cells from rotenone-triggered cell death. EA also low-
ered the rotenone-induced ROS and reactive nitrogen species
generation in these cells. The researchers suggested that
EA inhibited rotenone-mediated apoptosis and endoplasmic
reticulum stress by downregulating heat shock protein 70
and poly(ADP-ribose) polymerase-1 cleavage. EA was also
capable of decreasing the concentrations of synphilin-1
and S-nitrosylation of protein disulfide isomerase (SNO-
PDI; an index of nitrosative stress) and aggregation of α-
synuclein. Accordingly, EA action suppressed the production
of α-synuclein–synphilin-1 Lewy body–like inclusions in
that experimental model, suggesting a capability to defend
dopaminergic cells from hallmarks of PD by inhibiting SNO-
PDI production and aggregation of protein and its accu-
mulation within neuronal cells. It would also be beneficial
to explore the function of EA in differentiated PC12 cells
because of molecular discrepancies that can increase due
to cellular differentiation, as recommended by other inves-
tigators (151, 152). Moreover, previously it was stated that
EA derivatives (3,3′-di-O-methylellagic acid and 3,3′-di-O-
methyl ellagic acid-4-O-β-d-xylopyranoside) were capable
of promoting neuronal differentiation in epidermal growth
factor–responsive neural stem cells (153). Nevertheless,
further information is required to reveal the mechanisms
by which EA promotes protection in these neuron-like cells.
Assessment of neurotrophin metabolism (like expression and
secretion) and signaling pathways involved in neuroprotec-
tion can be studied further.

Ischemic stroke reperfusion/hypoperfusion
Ischemic stroke is the most common cause of severe
morbidity and the second leading cause of death in developed
countries (154). Nearly one-third of patients affected by an
acute ischemic stroke develop early neurological deteriora-
tion or neuropathy, which is related to enhanced mortality
and long-term functional disability (155). Although a degree
of spontaneous recovery of lost functions takes place in some
stroke patients, the majority never regain full functional
independence and ultimately suffer from a reduced quality
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of life (156). A group of researchers evaluated the neuropro-
tective mechanism of EA in ischemic stroke. In an oxygen-
glucose deprivation and reoxygenation model in cultured
cortical neurons, it was found that EA (10 and 30 μg/mL)
appreciably increased survival rates, reduced the number of
apoptotic/necrotic cells, and increased the ratio of Bcl-2/Bax
expression (136).

EA treatment in a photothrombotic cerebral ischemia
model significantly reduced infarct volumes, and increased
the number of Bcl-2–positive neurons and the ratio of Bcl-
2/Bax expression in the semidarkness zone near the brain is-
chemic focus, and remedied neurological deficit scores in rats
(157). Nejad et al. (158) reported that ischemia-reperfusion
reduced blood pressure (BP) and augmented heart rate in
rats whereas EA (100 mg/kg) pretreatment enhanced BP
and decreased heart rate in the ischemic rats. Furthermore,
the electrocardiogram indicated that ischemia shortened the
QRS and PR intervals. Conversely, EA-treated rats showed
improved QRS voltage and enhanced PR interval compared
with the ischemic group. In another study, Maryam and
Khadijeh (159) demonstrated the neuroprotective effect
of EA (50 mg/kg) on brain oxidative stress indices after
permanent bilateral common carotid artery occlusion or
ischemia/hypoperfusion in rats. Cerebral ischemia caused
ROS overproduction and ultimately activated the pathways
leading to cellular death in vulnerable areas of the brain (160).
The outcome of this study indicated that EA appreciably
reduced the MDA and thiol concentrations in hippocampus
(HPC) tissue in the ischemia group, which was correlated
with its antioxidant efficacy.

Antitumor effect of EA
Glioblastoma is the most common type of malignant tumor
of the nervous system reported in humans. Kim et al.
(161) studied the chitosan/β-glycerophosphate (Ch/β-GP)
thermosensitive gel to transport EA as an approach to
manage brain cancer. Previously, chitosan had been used
to sustain drug release to the target sites (162). The EA-
containing Ch/β-GP gel (5.5 mg or 10 mg EA) remarkably
diminished the viability of human glioblastoma (U87) and
rat glioma cell lines (C6) in a time- and concentration-
dependent manner. The mechanisms of these effects were
not explored by the researchers but they suggested that
they could include both extrinsic and intrinsic pathways
of apoptosis. In a separate in vitro study, Kim et al. (163)
demonstrated that EA/Ch biomaterial suppressed glioma
growth by upregulation of p53 (C6 cells) and activation
of caspase-3 in both U87 and C6 cell lines. EA/Ch also
diminished angiogenesis in an experimental model using
human umbilical vein endothelial cells. Furthermore, Fourier
transform infrared spectra suggested that protonation of
phosphate groups in the Ch gel–forming solution occurred
with the rise in temperature that triggers gelation. Thus, the
Ch/EA combined film is a very curative technique to suppress
tumor growth by promoting apoptotic cell death.

Antidepressant activity of EA
Depression is the most common condition that develops after
TBI and usually occurs due to an alteration in monoamin-
ergic functions (164). Several drugs recommended for the
management of depression are inhibitors of monoamine
oxidase A (MAO-A); these exert therapeutic action by
enhancing synaptic monoamine concentrations (165) and
also by controlling hydrogen peroxide overproduction (an
end-product of the deamination reaction catalyzed by MAO-
A) (166). In fact, most prescribed antidepressant drugs
directly affect serotonin turnover in the brain (167), in-
hibit serotonin reuptake, and interact with serotonin (5-
hydroxytryptamine) 5-HT1 and 5-HT2 receptors (168). The
in vitro antidepressant efficacy of EA was evaluated by AChE,
butyrylcholinesterase (BuChE), and MAO-A inhibition as-
says. Observations revealed that EA showed appreciable
MAO-A inhibitory activity (EC50 = 1.6 μg/mL). However,
even at the highest concentration tested (250 mg/mL), EA
exhibited 16.0% and 23.8% of BuChE and AChE inhibition,
respectively (88). Girish et al. (129) evaluated the acute
and chronic antidepressant activity of EA using a forced
swimming test (FST) and tail suspension test (TST) in mice.
During this study, EA showed a dose-dependent (20, 50, and
100 mg/kg) reduction in the duration of immobility time,
which was comparable to that observed with the marketed
antidepressant drug fluoxetine, a selective serotonin reuptake
inhibitor. Pretreatment with p-chlorophenylalanine (PCPA)
prevented the anti-immobility effect induced by EA in the
FST, suggesting the involvement of the serotonergic system
in the antidepressant-like effect of EA (129). Furthermore,
repeated administration of antidepressants increased the
number and responsiveness of α-1 receptors in the rat
brain, thus increasing the release of noradrenaline at certain
synapses (169, 170). The decrease in immobility time elicited
by EA was reversed by pretreatment of mice with prazosin
(an α-1 adrenoceptor blocker) and yohimbine (an α-2
adrenoceptor blocker), indicating the involvement of these
receptors in the antidepressant-like action of EA in the FST
(129). The exact mechanism by which EA modulates the
monoaminergic system is unclear. It might inhibit the MAO
enzymes and cause an increase in the amount of monoamines
stored and released from the nerve terminals, thus increasing
monoaminergic activity (171).

Bedel et al. (172) demonstrated that sertraline (an
antidepressant drug) and EA did not alter the impulsive
locomotor behavior of mice. EA exhibited a significant
reduction in immobility time in the TST. EA (2.5 mg/kg)
appreciably reduced immobility time compared with other
test concentrations (1 and 5 mg/kg) in the FST. EA treat-
ment enhanced the hippocampal brain-derived neurotrophic
factor (BDNF) concentration. Moreover, the antidepressant-
like activity of EA appears to be facilitated by an enhanced
concentration of BDNF in mouse HPC (172). In a separate
study, the antianxiety-like property of acute and chronic
administration of EA was evaluated by an elevated plus-maze
(EPM) test in mice. This assay provided an excellent tool
for analyzing benzodiazepine/γ -aminobutyric acid (GABA)

1220 Gupta et al.



and glutamate-related compounds (173). The anxiolytic-like
effect of EA (at 25 mg/kg) was observed in the elevated
plus-maze test, suggesting the absence of tolerance to this
effect after chronic administration. However, lower (6 and
12.5 mg/kg) and higher concentrations (50 and 100 mg/kg) of
EA did not exhibit a significant anxiolytic effect. It is possible
that EA could be acting at additional sites that could mask
or block its anxiolytic-like actions at high doses (173). The
anxiolytic property noticed with EA treatment (25 mg/kg)
was antagonized by pretreatment with flumazenil (a benzo-
diazepine site antagonist) and picrotoxin (a noncompetitive
GABAA receptor antagonist) but not with pindolol (a β-
adrenoceptor blocker/5-HT1A/1B receptor antagonist) or
PCPA (a serotonin synthesis inhibitor). Pretreatment with
picrotoxin completely blocked the actions of EA, but not
those of diazepam. It was suggested that EA could interact
with a GABAA receptor to mediate its anxiolytic-like actions
(173).

EA and epileptic seizures
Epileptic seizures are associated with high energy formation
and consumption. These changes are related to raised oxida-
tive stress due to overproduction of free radicals, predomi-
nantly from the mitochondria (174). Picrotoxin is a GABAA-
receptor antagonist that produces seizures by inhibiting the
chloride ion channels associated with GABAA receptors.
Pentylenetetrazol (PTZ) triggered seizures by inhibiting
GABAA receptors and preventing chloride ion influx, pro-
moting activation of excitatory neurons and the development
of seizures (175). Administration of EA (20 and 40 mg/kg)
appreciably reversed both the PTZ- and picrotoxin-triggered
convulsions and the reduction of GABA concentrations in
the brain. Therefore, EA displayed noteworthy antiepileptic
activity, probably by enhancing brain GABA concentrations
in mice (176). El-Missiry et al. (177) demonstrated that
EA coated in calcium-alginate nanoparticles (Ca2+-EA-ALG
NPs) displayed more curative anticonvulsant and neuro-
protective potential than unencapsulated EA (50 mg/kg)
against PTZ-mediated brain impairment and convulsions in
mice. In PTZ-abused mice, Ca2+-EA-ALG NPs significantly
ameliorated oxidative stress, as demonstrated by decreased
4-hydroxynonenal concentrations and augmented GSH con-
tent, with a rise in the activities of glutathione reductase and
glutathione peroxidase (GPx) in the brain. Homocysteine is
an endogenous glutamate receptor agonist that provokes the
intraneuronal fibrillar conformation of Aβ , thus triggering
neurodegeneration (178). Ca2+-EA-ALG NPs normalized
the upsurge in homocysteine and Aβ in plasma and brains
and protected GABA activity, probably by augmentation of
GABAergic neurotransmission. A combination of oxidative
stress and mitochondrial membrane destabilization leads
to the discharge of cytochrome c (cyt c) and activation of
apoptotic proteins. These activities are evaluated through
the upregulation of cyt c, Bax, caspase-3, and caspase-
9 with suppressed antiapoptotic protein Bcl-2 expression
in PTZ-harmed mice brain. EA might act as an inhibitor
of caspase, protecting DNA from damage and the release

of apoptosis-inducing factors because of its antioxidant
capacity. Additionally, histopathological analysis suggested
that Ca2+-EA-ALG NPs decreased PTZ-induced morpho-
logical alterations and degeneration in hippocampal tissue
(177).

EA and diabetic neuropathy
Diabetic encephalopathy and neuropathy are serious health
concerns in humans associated with diabetes mellitus
(179). These complications occur because of the metabolic
repercussions of abnormal glucose regulation, particularly
sorbitol accumulation, enhanced glycosylated protein con-
centrations, and oxidative/antioxidative imbalance within
the nerve tissues and ultimately in the brain. Additionally,
diabetes-associated oxidative stress can lead to apoptosis
in nervous tissues (180). Uzar et al. (181) explored the
therapeutic attributes of EA in sciatic nerve tissues and in
the brain of diabetic rats by analyzing the TAC, CAT, and
paraoxonase (PON-1) activities, oxidative stress index, total
oxidant status (TOS) and NO and MDA concentrations.
NO overproduction leads to the formation of peroxynitrite
with superoxide anions that result in oxidative injury to the
brain and sciatic nerve tissues. PON-1 is related to HDL and
is found to decrease the susceptibility of LDL to LPO. EA
(50 mg/kg) administration in diabetic rats exerts a notable
decrease in TOS, NO, and MDA formation in sciatic tissues
and brain. The decline in NO concentrations caused by EA
could elucidate its role in the prevention of inducible nitric
oxide synthase (iNOS) expression (157). Moreover, it has
been noted that EA exhibited protection against oxidized
LDL-mediated atherogenic signaling by prevention of ROS
production (182).

Kumar and Bansal (183) demonstrated the role of phos-
phoinositide 3-kinase (PI3K) and endothelial nitric oxide
synthase (eNOS) actions in the prevention of streptozotocin
(STZ)-mediated memory dysfunction in rats by EA. They
performed EPM and Morris water maze tests and quantified
the oxidative stress markers in the brain (GSH, SOD, CAT,
and lipid peroxides), nitrite, AChE, lactate dehydrogenase
(LDH), TNF-α, and PI3K-eNOS. Previous studies reported
that STZ-activated insulin resistance and decline in cerebral
blood circulation are congruous with loss of eNOS and
PI3K signaling (184, 185). Furthermore, excessive lipid
peroxidation and decreased concentrations of antioxidant
enzymes (CAT, SOD, and GSH) in brain altered the neuronal
coordination and cognitive proficiency (186, 187). Moreover,
TNF-α production by astrocytes and reactive microglia in
response to immunogenic brain injury (e.g., STZ, TBI, or
Aβ) is a distinctive hallmark of the AD-affected brain (188).
STZ, a derivative of nitrosourea, is metabolized to NO,
which stimulates the activity of iNOS (183) and reduces
the expression and action of eNOS by PI3K dysfunction
(189). Administration of EA (35 mg/kg) attenuated the
thiobarbituric acid-reactive substances and prevented the
reduction of TNF-α, CAT, GSH, and SOD activity in diabetic
rats. EA suppressed the STZ-mediated abnormal upsurge of
nitrite content and downregulated eNOS concentration in rat
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brain. Oxidative stress compromises the neuronal integrity
that is quantified by measurement of LDH activity within the
brain. EA treatment attenuated the elevated LDH activity and
concomitant neurodegeneration in diabetic rats (183).

Jha et al. (107) explored the therapeutic effect of EA in
STZ-associated sporadic Alzheimer disease (SAD) in the
context of altered biochemical and behavioral features in
rats. They analyzed the effects of STZ upon the whole HPC,
that is, the cornus ammonis-1 (CA-1), CA-2, and CA-3,
dentate gyrus (DG), and entorhinal cortex. STZ-induced
SAD displayed a pathological resemblance to human SAD,
particularly with regard to oxidative damage, cholinergic ab-
normality, neuroinflammation, neural death, and cognitive
impairments. The role of EA in the inhibition of proinflam-
matory and disease augmentation markers was assessed by
quantifying glial fibrillary acidic protein (GFAP), whereas
enhancement of synaptic connectivity was investigated via
quantification of synaptophysin. Findings suggested that EA
(50 mg/kg) treatment suppressed STZ-triggered SAD and
its related biochemical irregularities in rats. EA reduced
oxidative stress status, proinflammatory markers (i.e., GFAP
and C-reactive protein), AChE concentration, and Aβ

plaque concentration. Additionally, a higher concentration of
synaptophysin showed recovered synaptic connectivity, and
integral neural construction demonstrated the neuroprotec-
tive role of EA. Moreover, behavioral analysis using maze
paradigms showed declined locomotor behavior, unbalanced
spontaneous changes, reduced memory score, and elevated
memory errors in SAD rats. EA medication normalized
these SAD-triggered irregular behavioral features in rats
(107). These findings provide a clear picture that EA-rich
supplements might act as a tonic for the brain or have
an enormous therapeutic potential for neurodegenerative
disorders and memory deficits.

TBI
TBI causes sickness and mortality throughout the world. It
occurs in 2 stages: primarily, through the destruction of the
brain tissue and blood vessels, which stimulates complex
physiological processes including cellular and molecular
events; and secondarily, through the processes that occur
hours to days after TBI, which lead to further alteration of
neurons and axons (190, 191). A variety of studies reported
that TBI causes permanent physical, cognitive, social, and
functional impairments along with chronic pain disorders
(192). Mild TBI is the most easily identified form, which
is responsible for ∼80% of total cases. Falls and deliberate
self-harm are the main causes of all TBI-associated deaths
(33%) and hospitalizations (52%) (193). Farbood et al. (194)
evaluated the therapeutic potential of EA for cognitive
impairments, long-term potentiation (LTP) deficits in the
HPC, and brain inflammation triggered by diffuse TBI in rats.
They evaluated the concentrations of IL-1β and IL-6, and
blood–brain barrier (BBB) permeability in the rat. TBI causes
notable deficits in passive avoidance memory, which has been
associated with a remarkable decline in hippocampal LTP,
as well as reduced BBB permeability with an upsurge in

concentrations of IL-1β and IL-6 in brain tissue. Previous
studies suggested that IL-6 and IL-1β are involved in the
cellular and molecular mechanisms of learning and memory
(194, 195). Further, IL-6 caused a noteworthy decline in
expression of LTP, which affects hippocampal synaptic
plasticity (196). IL-1β acts as a neuromodulator in the HPC
(197), and the maintenance of LTP in the HPC relies on
it (198, 199). A separate group of researchers found that
3 events altering the magnitude of LTP can be influenced
by IL-1β : the function of N-methyl-d-aspartate receptors,
glutamate release modulation, and calcium channel influx
(200). Administration of EA (100 mg/kg) before TBI
induction preserved the hippocampal LTP due to a marked
reduction in IL-1β and IL-6 content of the brain. Moreover,
EA pretreatment decreased concentrations of IL-1β and IL-6
toward normal concentrations in the brain (194).

Mashhadizadeh et al. (201) demonstrated the therapeutic
attributes of EA for HPC electrophysiology deficits, memory,
and higher concentration of TNF-α in TBI. They analyzed
BBB permeability, passive avoidance task data, hippocampal
LTP, and TNF-α concentration in brain tissues. Various
studies described that TNF-α has both homeostatic as well
as pathophysiological functions in the CNS (202, 203). The
homeostatic action of TNF-α controls vital physiological
activities, including learning and memory (204, 205), synap-
tic plasticity (206, 207), and astrocyte-triggered synaptic
strengthening (208). During the pathological condition,
TNF-α is produced in higher amounts by microglia and
astrocytes, which take part in the neuroinflammatory re-
sponse related to a wide range of neurological disorders
(209, 210). Further, the growth of the HPC is regulated by
TNF-α (211), possibly via activation of tumor necrosis factor
receptor 2, which does not lead to caspase-3 activation, but
is known to transduce the trophic effect of TNF-α (212). It
has been observed that at pathophysiological concentrations
TNF-α prevented LTP initiation in the CA1 and DG areas
of the rat HPC (213, 214). EA treatment (100 mg/kg)
appreciably restored TBI-mediated behavioral aberrations
(impaired passive avoidance memory), and restored the field
excitatory postsynaptic potential slope and population spike
amplitude in TBI rats. Moreover, EA re-established the BBB
activity along with the restoration of TNF-α, which could
explain the effects of EA on astrocyte enhancement due to
its anti-inflammatory actions (202).

Chemical Agent–Induced Neurodegenerative
Disorders
Cadmium-induced oxidative stress
Cadmium ions (Cd2+) are extensively used in a large number
of industrial sectors and are well-known carcinogens that
lead to the development of various types of tumors in
humans (215). Cd2+-mediated injury of astrocytes appar-
ently resulted from GSH depletion (216). Astrocytes are the
most abundant of glial cells that perform several functions
in the CNS. They maintain ionic and neurotransmitter
homeostasis, regulate synaptic transmission, provide energy
substrates to neurons, and trigger neurogenesis (176). Yang
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et al. (134) reported that treatment with EA (30 μM)
appreciably suppressed ROS formation and astrocytic cell
death due to Cd2+ exposure in rats.

Doxorubicin-induced neurotoxicity
Previous studies reported that prolonged administration of
doxorubicin (DOX) causes neurotoxicity and leads to the de-
velopment of neuropsychiatric disorders, such as depression
and impaired cognition function (217–219). DOX-triggered
free radical formation in brain tissue enhanced LPO and
challenged the antioxidant defense system, thus confirming
the pro-oxidative effect of DOX (219, 220). Furthermore,
DOX-mediated overproduction of superoxide anions could
stimulate circulating concentrations of TNF-α, which can
directly cross the BBB. Increased production of superoxide
anions can also stimulate glial cells to trigger the formation
of other proinflammatory cytokines, including NF-κB, IL-1,
IL-6, and iNOS, which exacerbate the oxidative stress and
neural apoptosis (221, 222). Rizk et al. (223) demonstrated
that co-administration of EA (10 mg/kg) along with DOX
suppressed brain MDA, reduced TNF-α and caspase-3
concentrations, and improved the GSH concentration in
rats (Table 4). Additionally, EA prevented PGE2 action and
suppressed the production of COX-2, and thus reduced TNF-
α concentration. Further, EA elevated brain monoamines,
which supports its antidepressant-like activity, which is
facilitated by an interaction of EA with the noradrenergic
and serotonergic systems (223). Other studies revealed that
the radical-scavenging mechanism of EA might be associated
with the direct scavenging action on both hydroxyl anions
and superoxide anions, as well as indirect action through the
induction of antioxidant enzymes in rats (224, 225).

Sodium arsenite/arsenic–induced neurotoxicity
Arsenic is an environmental neurotoxin that is ubiquitous
due to its natural existence and anthropogenic sources. Slow
nerve conduction velocity and sensory and motor dysfunc-
tions have also been documented in populations exposed to
arsenic (195, 196). It can cross the BBB and accumulate in the
brain tissue, which further leads to the development of neu-
robehavioral abnormalities (226, 227). Furthermore, sodium
arsenite (SA) induces substantial neurotoxicity as confirmed
by increased oxidative stress parameters, namely protein
carbonylation (PCO), MDA, and nitric oxide concentrations
along with a decline in GPx, GSH, and TAC concentrations in
the brain tissue. Goudarzi et al. (228) observed that exposure
of rat brain to SA caused neurotoxicity and adversely altered
GSH content, GPx activity, and TAC, MDA, TNF-α, PCO, ni-
tric oxide, and IL-1β concentrations. EA treatment improved
the biochemical profile and gave rise to both morphological
and functional modifications of the rat brain. Another study
suggested that EA induced γ -glutamylcysteine synthetase
activity and regulated intracellular GSH concentration in
mouse brain tissue (229).

Firdaus et al. (230) determined the therapeutic efficacy
of EA in arsenic-mediated neurotoxicity associated with
mitochondrial dysfunction and inflammation in the HPC of
rats. Their observations indicated that EA (20 and 40 mg/kg)

restored the alteration in mitochondrial membrane potential
in arsenic-treated rats in a dose-dependent manner, which
could be attributed to its antioxidant activity, probably by a
direct action on the mitochondrial membrane redox status.
Further, there was enhanced ROS control of the expression
of proinflammatory cytokines by stimulation of MAPK
and protein kinase C, as confirmed by enhanced mRNA
abundances of proinflammatory markers (IL-1β , IFN-γ ,
and TNF-α) and protein synthesis of IFN-γ and TNF-α in
arsenic-insulted rats. Co-administration of EA upregulated
Bcl-2 mRNA expression, decreased DNA fragmentation,
downregulated caspase-3 activity, and decreased mRNA
expression of IL-1β , IFN-γ , TNF-α, and Bax in arsenic-
exposed rats in a dose-dependent manner (230).

Acrylamide-induced neurotoxicity
Tobacco smoke is a leading cause of acrylamide (ACR)
exposure, which can lead to central and peripheral neurotox-
icity (231). ACR decreased hindlimb grip strength, reduced
locomotor activity, and enhanced heel splay in rats (232).
Moreover, it exerted a negative impact on the growth and
development of hippocampal neurons in juvenile rats (233).
Goudarzi et al. (234) studied the curative efficacy of EA
against ACR-mediated neurotoxicity in rats and suggested
that treatment with EA (30 mg/kg) improved the locomotor
discrepancies and muscle weakness within a limited range
via anti-inflammatory activity (234). EA also restored the
concentrations of cellular antioxidants in brain tissue and
demonstrated that ACR toxicity targeted the antioxidant en-
zymes, whereas EA re-established the redox equilibrium by
augmenting the antioxidant property (234). ACR triggered
oxidative stress and upregulated the inflammatory responses
by excessive production of inflammatory factors, including
IL-1β and TNF-α (235, 236). EA suppressed the upsurge
of TNF-α and IL-1β in rat brains exposed to ACR and
prevented neurotoxicity (234).

Cuprizone-induced neurotoxicity
Cuprizone (bis-cyclohexanone-oxalyldihydrazone; Cup) is
a copper-based chelating agent and is commonly used to
study the factors involved in myelin loss and oligodendrocyte
(OLG) death (237). Cup alters the normal metabolism
of OLG and causes primary OLG dystrophy rather than
autoimmunity (238). Sanadgol et al. (239) studied the
effect of EA in Cup-induced specific apoptosis in OLGs
along with key neuroimmune mediators like IL-11, IL-17,
and CXCL12 during harmful demyelination in mice. The
CXCL12 chemokine performs a vital role in the maturation
of both the right and left hemispheres of the adult brain.
CXCL12 binds to its receptor (Cxcr4) on the surface of
the OLG precursor cell and triggers its maturation and
differentiation processes (240). Cup upregulates the expres-
sion of CXCL12 and is frequently accompanied by reactive
microgliosis and monocyte infiltration into the damaged
site. Overexpression of IL-11 can restrict the Cup-mediated
demyelination process by reducing microgliosis and OLG
cell death, and promoting spontaneous repair (241). EA
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administration (40 and 80 mg/kg) triggered the expression
of IL-11, controlled OLG loss, and avoided the consequent
demyelination. Although EA did not noticeably alter the
CXCL12 concentration in the corpus callosum region, it
did notably decrease monocyte infiltration and microgliosis.
Also, EA reduced IL-17 expression and lymphocyte transmi-
gration across the BBB, at mRNA and protein levels. During
EA treatment, remarkable reduction of IL-17 concentrations
was observed with the maintenance of BBB integrity and
inhibition of microglial movement (241).

Tetrachlorodibenzo-p-dioxin–induced neurotoxicity
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a notorious
environmental pollutant that accumulates in the brain (250).
TCDD binds with the aryl hydrocarbon receptor and forms
a complex that subsequently translocates into the nucleus
and alters regulation of numerous genes, which can lead to
various biochemical changes (251, 252). A study on brain
region specificity of TCDD-triggered oxidative stress showed
marked formation of ROS and LPO in the HPC and cerebral
cortex but not in the brainstem or cerebellum of rats (253).
Hassoun et al. (242) studied the neuroprotective potential of
EA against TCDD-mediated oxidative stress in the cerebral
cortex, HPC, cerebellum, and brainstem regions of rat brain
by analyzing superoxide anion, LPO, and DNA single-strand
breaks (SSBs). EA (1 mg/kg) reduced the concentration of
superoxide anions, LPO, and SSBs. The binding of EA to
DNA, which prevents the interaction of the TCDD-receptor
complex with the nucleus, might be a possible reason for
its neuroprotective activity. A further study performed by
Hassoun et al. (243) revealed that co-treatment of EA
(50 mg/kg) with TCDD for 3 mo did not show marked
alteration in CAT and SOD activities in cerebral cortex, HPC,
cerebellum, or brainstem regions of the rat brain, whereas
an appreciable rise in GSH and GPx concentrations was
observed in all 4 regions (254, 255).

Carbon tetrachloride–induced brain injury
Neuronal and hepatic tissues rapidly take up and metab-
olize carbon tetrachloride (CCl4) into highly toxic ROS-
like trichloromethyl (•CCl3) and trichloromethyl peroxy
(•OOCCl3) radicals (256, 257). Brain tissues are presumed
to be more prone to LPO caused by ROS, which leads to
accumulation of PUFAs in the neuronal membranes (258,
259). Aslan et al. (244) validated the neuroprotective role of
EA (10 mg/kg) in CCl4-induced brain injury in rats using
apoptotic, inflammatory, and antioxidant markers, such as
TNF-α, NF-κB, COX-2, Nrf2, caspase-3, vascular endothelial
growth factor, Bcl-2, MDA, CAT, and GSH. Amplified TNF-
α expression is associated with numerous pathological con-
ditions including AD, cancer, and inflammatory responses
(260). Co-administration of EA restored the concentration
of various biomarkers, suggesting neuroprotective attributes
(244).

Scopolamine- and diazepam-induced cognitive
impairments
Cognitive impairment is a condition when an individual
experiences difficulty in learning new things, memorizing,
focusing, or decision-making that affects their everyday life.
It can range from mild to severe (261). Scopolamine is
commonly used to treat motion sickness and postoperative
nausea and vomiting, whereas diazepam is used to treat
anxiety, alcohol withdrawal, and seizures. Prolonged treat-
ment with these drugs can lead to memory loss. Mansouri
et al. (245) studied the efficacy of EA as a memory booster
in rats and mice to counter scopolamine- and diazepam-
induced cognitive impairments. They observed that EA (10,
30, and 100 mg/kg) pretreatment produced a noteworthy
drop in the latency times in a retention trial of the EPM and
passive avoidance tests. Moreover, in mice, long-term intake
of EA reinstated diazepam-mediated damage of memory
retention in an EPM task. In normal mice and rats, EA
did not cause any alteration in the acquisition/retention of
memory. Furthermore, the investigators observed that the
radical scavenging activity is one of the characteristic features
of EA which is accountable for its cognitive impairment
activity. This suggests that EA can suppress the memory
impairment caused by scopolamine and or diazepam, but it
is not a true memory booster (245).

6-Hydroxydopamine-induced PD
PD is described as an age-related neurodegenerative dis-
order that develops due to progressive death of striatum-
projecting dopaminergic neurons in the substantia nigra
pars compacta (SNc). This results in various types of
movement insufficiency, such as slowed motion, resting
tremor, impaired gait functioning, muscle stiffness, and
postural instability (262). Although the etiology of PD is
not fully described, it is assumed that some factors that
trigger oxidative imbalance, such as genetic susceptibility,
free radical production, mitochondrial dysfunction, brain
aging, and environmental toxins, play a role (263). Most
notably, the oxidation of dopamine produces ROS, and this
uncontrolled formation of ROS leads to oxidative stress and
neuronal death. Pathogenesis of PD has also been linked to
dietary habits, where deficiency of antioxidant components,
such as vitamins (A, C, E, and niacin) and selenium, were
shown to increase the risk of PD (264). 6-Hydroxydopamine
(6-OHDA) exerts a neurotoxic effect primarily because of
its oxidation by monoamine oxidase or molecular oxygen in
the brain. This, in turn, produces intracellular hydrogen per-
oxide, which can be converted into more reactive hydroxyl
radicals. Additionally, this hydrogen peroxide reduces GSH
and SOD activity and elevates MDA concentrations, and
the production of superoxide free radicals causes neuronal
damage (265). Another study demonstrated that injection of
6-OHDA into the medial forebrain bundle (MFB) enhanced
contralateral apomorphine-induced rotation and could exert
a neurotoxic effect by impairing the nigrostriatal pathway,
leading to enhanced contralateral rotations (266).
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Farbood et al. (246) studied the neuroprotective potential
of EA by analyzing motor activity via stride-length and
cylinder tests as well as estimating IL-1β and TNF-α
concentrations in both striatum and HPC tissues in 6-
OHDA–induced MFB-lesioned rat brains. Their findings
indicated that EA (50 mg/kg) significantly lowered the IL-1β

and TNF-α concentrations in the striatum and HPC tissue
and restored the increased contralateral rotation. Moreover,
EA improved the cerebral antioxidant defense system that
reduces oxidative stress and hence exerts a neuroprotective
action against 6-OHDA–mediated neural oxidative damage.
Further examination by Sarkaki et al. (247) revealed that
EA (50 mg/kg) administration appreciably restored the con-
centration of MDA and elevated GPx and SOD activities in
both striatum and HPC tissues in a 6-OHDA–induced PD rat
model. In MFB-lesioned rats, the electroencephalographic
(EEG) γ and β powers were remarkably reduced. However,
EA treatment significantly increased EEG γ and β frequency
band powers (247). These observations could provide an
experimental base for the use of EA in the treatment and
prevention of free radical–associated neural impairment in
PD.

Dolatshahi et al. (248) examined the activity of EA
(50 mg/kg) in the treatment of hyperalgesia and cognitive
deficiency in 6-OHDA–insulted rats. Analgesia was evalu-
ated by hot-plate and tail-flick tests; the passive avoidance
task was analyzed by a shuttle box apparatus to record the
initial and step-through latency. A Morris water maze test
evaluated the spatial cognition ability, which determined
the path length, escape latency time, swimming speed, and
time spent in the target quadrant (267). Outcomes revealed
that EA improved hyperalgesia in such a way that the
pain sensation threshold was increased in both tail-flick
and hot-plate tests. Additionally, administration of EA to
lesioned rats diminished the 6-OHDA–mediated injury of
the dopaminergic system, which can be proposed as a healing
effect (248). These findings strongly support that EA has
therapeutic potential in the management of cognitive and
nociceptive deficiencies in PD.

In another study of a 6-OHDA–induced rat model of
PD, Baluchnejadmojarad et al. (249) demonstrated that EA
(50 mg/kg) diminished apomorphine-mediated rotational
bias and reduced the latency to initiate and the total time in
the narrow beam task. This advantageous effect was partially
abrogated following intracerebroventricular microinjection
of estrogen receptor-β (ERβ) antagonist. ERβ receptors are
commonly found in hippocampal and cortical regions in
rodents and their activation could employ a neuroprotec-
tive action (268). EA suppressed striatal MDA, ROS, and
DNA damage, and enhanced the concentrations of MAO-
B, Nrf2, and HO-1. In the nigrostriatal system, damage of
tyrosine hydroxylase-positive neurons in the SNc following
6-OHDA reduced synthesis of dopamine (269). EA pre-
vented tyrosine hydroxylase–positive neuron loss within the
SNc. Furthermore, a markedly higher striatal concentration
of MAO-B in 6-OHDA–lesioned rats was noticed; MAO-B is
responsible for metabolizing dopamine in the brain. It was

found that EA pretreatment significantly reduced MAO-B.
Additionally, EA has a therapeutic action against 6-OHDA–
induced oxidative stress via activation and mobilization of
the Nrf2 pathway and enhanced HO-1 expression that could
exert neuroprotection against oxidative injury in the neural
cells (Figure 4) (249).

Formulation Strategies To Increase EA
Bioavailability
Numerous agents developed as dietary supplements suffer
from poor solubility in aqueous media (270, 271), which
can considerably limit their bioavailability. Even though EA
exhibits appreciable therapeutic attributes, it has solubility
problems and has been categorized under the biopharma-
ceutical classification system as a class IV substance with
low solubility (<10 mg/mL in phosphate buffer, pH 7.4)
and low permeability (0.13 × 10−6) (272). EA also has
poor stability at a physiological pH of 7.4 (273, 274).
To resolve these limitations, several approaches for oral
consumption, comprising micro- and nanoparticles, self-
emulsifying systems, solid dispersions, inclusion complexes,
and polymorphs, have been evaluated (275). El-Missiry et
al. (177) observed that Ca2+-EA-ALG NPs were superior to
free EA in ameliorating increased IL-6 and TNF-α in mouse
brain. The chitosan gels containing EA (1% w/v) significantly
reduced viability of U87 and C6 cells (196). The chitosan/EA
composite films were enzymatically degradable and exhibited
a sustained slow release of EA. These materials could
inhibit cancer cell growth in a concentration-dependent
manner by inducing apoptosis of cancer cells as well as
suppressing angiogenesis (198). Other researchers examined
the bioactivity and bioavailability of poly(ε-caprolactone)
(PCL)–formulated EA nanoparticles (EA-NPs) and free
EA in New Zealand rabbits. Encapsulation in PCL NPs
protected the entrapped EA from proteolytic breakdown and
allowed a selective intracellular targeting by a “nanocitose”
uptake mechanism that could have bypassed the discharging
carriers (protein transporters). Free EA (50 mg/kg) was
measured only for ≤12 h with a peak concentration (Cmax)
of ∼0.159 μg/mL at 0.65 h after the oral administration.
However, a similar concentration of EA-NPs extended the
plasma concentration for ≥48 h. The observed increase
in cellular uptake of EA entrapped in EA-NPs indicated
that this nanoformulation is protecting the drug, therefore
camouflaging the NPs from the efflux transporters (276).

Furthermore, mixtures of EA and polyvinylpyrroli-
done (PVP), hydrophobic carboxymethyl cellulose acetate
butyrate (CMCAB), or hydrophilic hydroxypropylmethyl
cellulose acetate succinate (HPMCAS) at different weight
ratios (1:9 and 1:3), prepared in acetone:ethanol (1:4 v/v) so-
lution, were spray-dried with yields of 50–60%. Amorphous
solid dispersions (ASDs) from very hydrophobic cellulose
acetate adipate propionate (CAAdP) were instead prepared
by the co-precipitation method (277). EA was amorphous
≤25% w/w in solid dispersions with PVP and HPMCAS, and
≤10% with CMCAB and CAAdP. Accordingly, EA-PVP and
EA-HPMCAS attained the highest solution concentrations
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FIGURE 4 Neuroprotective effect of EA against 6-OHDA–induced neuropathy and diabetic encephalopathy. 6-OHDA, by the process of
auto-oxidation, enhances oxidative stress in brain cells and consequently decreases ATP formation, which in turn leads to free radical
production. EA inhibits the overproduction of free radicals and reduces the levels of MDA and hydroxyl radicals as well as DNA damage
with an increase in GSH, SOD, and tyrosine hydroxylase concentrations in the brain. EA also upregulates the Nrf2 signaling pathway. In
diabetic complications, EA reduces oxidative stress and oxidation of lipid membranes, but increases the cellular antioxidant response
(enhances SOD, CAT, and GSH activities). EA also alters signaling pathways associated with diabetes, such as Akt pathways. Akt, protein
kinase B; CAT, catalase; EA, ellagic acid, eNOS, endothelial nitric oxide synthase; GSH, reduced glutathione; HO-1, heme oxygenase-1; IRS1,
insulin receptor substrate 1; Keap1, Kelch-like ECH-associated protein 1; MDA, malondialdehyde; Nrf2, nuclear factor erythroid 2-related
factor 2; PDK1, 3-phosphoinositide-dependent kinase 1; PI3K, phosphatidylinositol-3 kinase; PIP2, phosphatidylinositol 4,5-bisphosphate;
PKC, protein kinase C; PTEN, phosphatase and tensin homolog; SOD, superoxide dismutase; STZ, streptozotocin; 6-OHDA,
6-hydroxydopamine.

of 1500 and 280 μg/mL, respectively. In a stability study,
pure EA exhibited a degradation degree by lactone ring
opening of 20%, whereas lower values—16% for CMCAB,
14% for CAAdP, 6% for PVP, and just 5% for HPMCAS—
were reported in the ASD samples. The dissolution rate was
significantly higher with PVP and HPMCAS ASDs, whereas
from CAAdP or CMCAB ASDs it was very slow and did not
achieve adequate EA concentration at pH 6.8. As predicted,
under acidic conditions EA release from PVP was quite fast,
whereas from cellulose esters it was minimal. However, this
advantage was nullified by crystallization of a large amount of
the EA released from PVP (277). Because the 1:9 ASD with
HPMCAS effectively stabilized EA against crystallization
and degradation, the researchers concluded that this could
be considered the most promising formulation. Several

drug delivery systems have been developed to increase the
bioavailability of EA, such as polymer-based nanoparticles,
human BSA-EA complexes encapsulated into thermosensi-
tive liposomes, complexes with cyclodextrins, encapsulation
within niosomes and nanosized metalla cages, molecular
dispersion within dendrimers, and EA-encapsulations (278).

Limitations, Future Prospects, and Conclusion
The available literature on EA has revealed that it is a
natural dietary agent present in a broad spectrum of natural
products and has potential to prevent or treat numerous
diseases including neurological disorders. Undoubtedly, EA
has positive impacts on antioxidant and anti-inflammatory
mediators, reduces lipid peroxidation, and scavenges free
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FIGURE 5 An overview of various neuroprotective attributes of ellagic acid.

radicals. Based on various in vitro and in vivo results, EA
acts as a strong neuroprotective agent against different types
of stressors, chemically induced neurotoxicity, neurodegen-
eration, epileptic seizures, aging, ischemic strokes, TBI,
neural tumors, and diabetic neuropathy (Figure 5). EA also
possesses therapeutic potential against AD and PD associated
with neural injury, and has been suggested to repair motor
damage and recover electrophysiological functions in rats.
These activities can all be characterized by decrease of the
neuroinflammatory biomarkers, such as TNF-α and IL-1β ,
as well as protection of the brain from free radical–induced
damage. These findings suggest that EA has the capability
for memory reinstatement in the management of dementia
and other cognitive impairments. The low absorption from
the gut could limit EA bioavailability and thereby affect
its clinical efficacy. To overcome these challenges, several
delivery systems and preparations have been developed
to enhance its bioavailability. These approaches include
EA-phospholipid complexes, polymer-based nanoparticles,
nanomedicine (thermosensitive liposomes), and nano-sized
metalla cages. Additionally, the comparatively limited clinical
studies, with diversified protocols and relatively few subjects,
indicate a key challenge for establishing the actual efficacy
of EA as a promising medicinal agent. To overcome these
issues, more pharmacokinetic studies, specifically in humans,
are needed before the full therapeutic potential of EA is
realized. To date, information regarding the pharmacological
properties of EA in the context of neuroprotection is very
limited; hence it is essential to explore the mechanisms
of action of EA and to perform additional preclinical
experiments.
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