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ABSTRACT

Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with
anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive
pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX
against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the
underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2–related
factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase–signal transducers and activators of
transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in
this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials
have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies
are required to examine the health benefits of ASX with respect to lung diseases. Adv Nutr 2021;12:850–864.
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Introduction
Astaxanthin (ASX; 3,3′-dihydroxy-β ,β ′-carotene-4,4′-
dione; Figure 1) is a naturally occurring red–orange
oxycarotenoid pigment primarily found in marine organisms
such as crustaceans, algae, shrimp, and salmon (1). In 1938, it
was discovered for the first time in lobsters and was initially
employed in aquaculture for the pigmentation. Later, in
1987, ASX was approved by the FDA as a food colorant in
animal and fish feed. The European Commission considers
natural ASX a food dye (2). In Japan, ASX is deposited
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in egg yolks by feeding laying hens Phaffia rhodozyma, a
carotenoid-producing fermentative red yeast.

According to the European Food Safety Authority, the
current acceptable daily intake of ASX is 0.034 mg·kg−1·d−1,
which is equivalent to 2.38 mg·d−1 in a 70-kg human
(3, 4). In 2011, the FDA allowed the usage of ASX at a
concentration up to 12 mg per daily serving (5). However,
it is important to note that these are suggested upper safe
levels of use, not dietary guidelines. Also, these dietary
guidelines are for a healthy population. There is a lack
of information on the recommended daily intake dosages
for individuals with certain conditions or people who have
lower efficiencies in absorbing carotenoids. As a dietary
supplement for humans and animals, ASX is obtained mainly
from seafood or extracted from Haematococcus pluvialis
(freshwater, unicellular microalga) (6). Due to technological
developments in mass producing ASX by culturing H.
pluvialis, a large amount of ASX is now available from natural
sources (7).

Multiple in vivo studies have reported that ASX can
protect the brain, eyes, salivary glands, skeletal muscle, liver,
kidney, and lungs from oxidative stress (8–12). In rats fed
H. pluvialis, ASX showed even better bioavailability than
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FIGURE 1 Metabolism of astaxanthin. Astaxanthin can be cleaved at C9 = C10 to (rac)-3-hydroxy-4-oxo-7,8-dihydro-β-ionone, which
can be subsequently oxidized to (rac)-3-hydroxy-4-oxo-β-ionone (13).

β-carotene and lutein (10). Importantly, ASX is the only
known ketocarotenoid that can be transported to the brain
by transcytosis through the blood–brain barrier (14). Thus,
this evidence further supports that ASX can be distributed
throughout the body and may display systemic effects. ASX
presents higher antioxidative properties based on its unique
molecular structure: It contains hydroxyl group and keto
moieties on each ionone ring (Figure 1), which contributes
to donating the electrons and reacting with free radicals
to convert them to more stable products, leading to the
termination of free radical chain reactions (14, 15). In fact,
in an in vitro setting, the antioxidant activity of ASX is
65 times more powerful than vitamin C; 55 times stronger
than β-carotene; 10 times more potent than canthaxanthin,
zeaxanthin, and lutein; and 100 times more effective than
α-tocopherol (16). According to Davinelli et al. (17), the
first comprehensive human study that investigated the
efficacy of ASX in mitigating oxidative stress was performed
by Park et al. in which participants who received 2 or
8 mg ASX for 8 wk had significantly lower 8-hydroxy-2′-
deoxyguanosine (a DNA damage biomarker), higher total
T and B cell subpopulations, and elevated natural killer cell
cytotoxic activity compared with the control group (18). In
a recent study, a continuous ASX supplementation (4 mg/d)
for 4 wk substantially decreased plasma concentrations of
malondialdehyde (a marker of oxidative stress), indicating
that ASX is capable of decreasing systemic oxidative stress
(19). Based on the previously mentioned reports, ASX has
promising applications in nutrition and human health, and it
may act as a potent compound in protecting against a wide
range of diseases.

The bioavailability of ASX in human beings was reported
previously (20, 21). In subjects without ASX supplemen-
tation, circulating ASX concentrations were nondetectable
(20, 21). However, after consuming a single dose of 40 mg
ASX, the plasma ASX concentration of 32 male subjects
(average body weight: 81.5 kg) increased to ∼190 μg/L (20).
In another study, a single dose of ASX oral administration
(100 mg, 168 μM) in 3 male volunteers (body weight:
90–100 kg) resulted in a substantial increase of plasma
ASX concentration, reaching ∼120 mg/L in 6.7 h (21).
Nevertheless, it is important to note that the subjects received
ASX as nutrient supplements in both studies.

Asthma is a common chronic respiratory disease due to
chronic inflammation of the lower respiratory tract, affecting
300 million people worldwide. The prevalence of asthma
in children and adults rises by 50% every decade globally,
especially in developing regions (22). Researchers found that
people with a medical history of asthma had a markedly
higher risk of other chronic lung diseases later in life.
For example, compared with healthy controls, people with
asthma were 17 times more likely to acquire emphysema
and had a 12.5 times higher risk of acquiring chronic
obstructive pulmonary disease (COPD) (23). COPD is a lung
disease characterized by obstruction of lung airflow that is
usually associated with an enhanced chronic inflammatory
response in airways (24). As one of the lung conditions
included in COPD, emphysema is a progressive lung disease
caused by the enlargement of airspaces distal to the terminal
bronchioles accompanied by compressed lung parenchyma
(25). Notably, COPD is the third leading cause of death
globally; the current prevalence of COPD is ∼10% (26).
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COPD and emphysema can predispose patients to lung
cancer (25, 27), the leading cause of global cancer according
to a 2019 report from WHO (28). Lung fibrosis, a disease
characterized by excess deposition of extracellular matrix by
myofibroblasts, is another potent risk factor for lung cancer.
Lung fibrosis patients have a 20% higher risk of developing
lung cancer (29), and it takes only 2–4 y for this disease
to proceed to end-stage respiratory insufficiency and death
once symptoms occur (30). However, no current nutritional
intervention has demonstrated efficacy in mitigating the
aforementioned lung diseases.

In recent years, we have gained considerable knowledge
of the biological effects of ASX, particularly its efficacy in
alleviating chronic noncommunicable diseases. One example
is its effect on multiple signaling pathways in cancer. Because
the potent antioxidative efficacy of ASX has attracted growing
interest and attention in recent years, much evidence has
accumulated with regard to ASX treatment in alleviating
lung diseases. Based on this background information, in this
review we summarize the effects of ASX on lung diseases such
as asthma, COPD and emphysema, acute lung injury (ALI),
lung fibrosis, and cancer. We also highlight the potential
underlying mechanisms of ASX in mediating its beneficial
effects against these diseases. The details of the publications
that reported the efficacy of ASX against lung diseases are
summarized in Table 1 (in vitro studies) and Table 2 (in vivo
studies).

ASX and Lung Diseases
Asthma
Asthma is a disease of the lungs in which the airways become
blocked or narrowed, causing breathing difficulty, coughing,
wheezing, and shortness of breath. Asthma progression can
be affected by a combination of immunological, genetic,
and environmental interactions. The onset of asthma is
linked to increased pulmonary inflammation, which is
characterized by infiltration of the airway wall with a variety
of inflammatory cells mostly driven by activating T helper
type 2 (Th2)-type lymphocytes, mast cells, and eosinophils
(31).

Three in vivo studies investigated the efficacy of ASX
supplementation in mitigating asthma. Two of these studies
demonstrated that ochratoxin-induced lung damage and
asthma were alleviated by the supplementation of ASX at
a dosage of ≥5 mg/kg body weight (BW), in addition to
observing decreased inflammatory cell infiltration in the
lung (32, 33). In particular, Hwang et al. (32) demonstrated
that the oral administration of ASX (5, 10, and 50 mg/kg
BW) was capable of inhibiting ochratoxin-mediated respi-
ratory system resistance, elastance, Newtonian resistance,
tissue damping and tissue elastance in the lung, as well
as reducing mucus production and lung fibrosis. These
data provided strong evidence that ASX supplementation
could alleviate the pathogenesis, progression, and symptoms
of asthma. In addition to ASX alone, a combination of
ASX (10 mg/kg), vitamin C (200 mg/kg), and ginkgo

biloba leaf extract (10 mg/kg) significantly reduced asthma-
associated inflammation in asthmatic guinea pigs (34). These
researchers also found that compared with the control group,
the ASX-fed animals had a significantly lower pulmonary
content of cyclic nucleotides, which are second messengers
in airway smooth muscle cells that decrease contractility and
relax the airways, leading to decreased severity of asthma
(35). The antiasthmatic effect of the combined remedies
exceeded that of the single ASX compound and was even
comparable with ibuprofen, a widely used nonsteroidal anti-
inflammatory drug in asthma treatment (34). Previously,
multiple studies reported that the combination of various
nutrients exerted more potent anti-inflammatory and anti-
antioxidant effects than a single nutrient (36, 37). The supe-
rior efficacy of the combined remedies against asthma might
be due to the synergistic effects of the phytochemicals and
vitamins.

COPD and emphysema
Two in vivo studies showed the efficacy of ASX supple-
mentation against COPD and emphysema. The effect of a
12-wk ASX supplementation against cigarette smoke–
induced COPD has been demonstrated in an animal model
in which mice fed ASX developed less severe emphysema
(8). These findings are in line with those of another study
in which 9-d ASX supplementation at a dosage of 10 and
20 mg/kg BW inhibited cigarette smoke–induced COPD in
mice (38). Furthermore, both studies reported decreased
amounts of IL-6, TNF-α, and reactive oxygen species
in the bronchoalveolar lavage fluid (BALF), suggesting
an anti-inflammatory role of ASX (8, 38). Roflumilast
(ROF) is a prescription medicine used in the treatment of
COPD. Intriguingly, the effects against emphysema and
inflammation were comparable between 20 mg/kg BW
ASX and 10 mg/kg BW ROF (38), indicating that ASX may
be used as a dietary strategy to mitigate emphysema and
smoke-induced COPD.

ALI
ALI is a disorder of acute inflammation characterized by
the disruption of lung endothelial and epithelial barriers
(39). Multiple factors, including lung infection, aspiration,
sepsis, multiple trauma, and shock, contribute to the onset
of ALI, leading to alveolar–capillary membrane injury, lung
inflammation, and increased pulmonary permeability edema
(39).

Three in vivo studies reported the potential efficacy
of ASX against the progression of ALI (33, 40, 41). One
study showed that feeding mice 60 mg/kg BW ASX for
14 d significantly increased the overall survival rate in
mice with cecal ligation and puncture (40). Also, ASX
treatment significantly decreased pathological change in ALI,
pulmonary apoptosis, and total cell and neutrophils in BALF
(40). These results were in agreement with those of another
study in which mice given 100 mg/kg BW ASX developed less
severe ALI, less inflammatory cell infiltration, and decreased
lung cell apoptosis compared with their counterparts fed a
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regular chow diet (33). In another study, researchers fed mice
100 mg/kg BW ASX for 1 wk, followed by 5 mg/kg BW
LPS to induce ALI; they found that ASX supplementation
substantially inhibited the occurrence of ALI and lung
edema and reduced pulmonary congestion, inflammatory
cell infiltration, alveolar wall thickening, and interstitial
edema (41). High plasma or pulmonary concentrations of
proinflammatory cytokines TNF-α, IL-1β , IL-6, IL-8, and IL-
18 are reliable biomarkers for predicting reduced morbidity
and mortality in ALI patients (49). Interestingly, all 3 studies
reported decreased IL-6, IL-1β , and TNF-α concentrations
and inhibited myeloperoxidase activity in BALF or lung
tissues of the ASX-treated mice compared with mice that
did not receive ASX treatment. In summary, these preclinical
studies revealed that ASX supplementation may protect
against the onset of ALI.

Lung fibrosis
Two in vivo studies investigated the effect of ASX on
lung fibrosis and found that ASX supplementation at 0.5–
2 mg/kg BW significantly decreased lung parenchymal
distortion, alveolar thickness, and pulmonary edema in rats
with bleomycin administration (42, 44). They also reported
that compared with no ASX supplementation, ASX feeding
(0.5–2 mg/kg BW) resulted in pronounced attenuation in
collagen deposition, decreased hydroxyproline, and reduced
α-smooth muscle actin (SMA) in the lungs of rats (42,
44). α-SMA+ is a specific marker for myofibroblasts, which
contribute to producing collagen (44).

Further exploration of the effect of ASX on myofibroblasts
showed that ASX treatment at 8–128 μM induced cell
apoptosis in the lungs, which was concordant with the data
that ASX (18 and 24 μM) promoted the apoptotic rate of
transforming growth factor-β1–induced A549 and MRC-5
cells (42, 44). One of the driving forces behind fibrosis is
the epithelial–mesenchymal transition (EMT), a process in
which epithelial cells lose epithelial proteins (50). Among
these proteins, E-cadherin is well studied due to its capability
of strengthening tight junctions and maintaining cell–cell ad-
hesion (50). During the progression of fibrosis, the epithelial
cells may transfer to a more mesenchymal phenotype because
the onset of fibrosis requires mesenchymal markers such as
vimentin and fibronectin, which are proteins that contribute
to the formation of extracellular matrix (50). Interestingly,
in MRC-5 and A549 cells, treatment with ASX led to the
upregulation of E-cadherin and downregulation of vimentin
(42). The efficacy of ASX on promoting E-cadherin was also
validated in rats with bleomycin-induced lung fibrosis (42).
Thus, based on the previously discussed reports, ASX may
be a potent compound in ameliorating lung fibrosis mainly
by inducing the apoptosis of myofibroblasts and inhibiting
EMT in lung tissues.

Lung cancer
Non–small cell lung cancer (NSCLC) accounts for the most
lung cancer–related deaths (51). To our knowledge, no

studies have shown the efficacy of ASX against NSCLC or
other primary lung cancers in vivo.

In vitro, ASX treatment at 2.5–20 μM reduced the viability
of NSCLC cells, including A549, H1650, H1703, and H1975,
in a dose-dependent manner (47, 46, 45, 48). In A549 cells,
ASX treatment at 20–100 μM enhanced cell apoptosis and
decreased cell proliferation (45). In addition, ASX treatment
at 20 μM inhibited the growth of A549 and H1975 cells
by enhancing the cytotoxicity of the compounds that have
demonstrated clinical activity (48). Erlotinib (Tarceva) is a
selective epidermal growth factor receptor(EGFR) tyrosine
kinase inhibitor prescribed for patients with NSCLC. ASX
treatment at 2.5 μM synergistically enhanced cytotoxicity
and cell growth inhibition of erlotinib (2.5 and 5 μM) in
NSCLC cells, which were associated with the downregula-
tion of xeroderma pigmentosum complementation group C
(XPC) protein expression (48). Pemetrexed is one of the most
frequently prescribed chemotherapeutic agents for advanced
nonsquamous NSCLC treatment (52). In H1650 and H1703
cells, a combination of pemetrexed (5–20 μM) and ASX (10–
20 μM) led to synergistic enhanced cytotoxicity and cell
growth inhibition in these cells. Interestingly, ASX treatment
alone (10–20 μM) or in combination with pemetrexed (5 μM
ASX + 10–20 μM pemetrexed) significantly decreased
the activation of thymidylate synthase (TS) (47), whose
overexpression caused resistance to the antitumor effect of
pemetrexed (53). Chemoresistant carcinomas exhibit high
levels of Rad51 expression, which plays a critical role in
homologous recombination (54). In A549 and H1703 cells,
ASX treatment (2.5–10 μM) significantly decreased Rad51
expression (46). Moreover, the combination of ASX (20
μM) and mitomycin C (MMC) (2.5–10 μM), an antitumor
antibiotic widely used in clinical NSCLC chemotherapy,
substantially inhibited Rad51 expression and further en-
hanced MMC-induced cytotoxicity (46). The findings of
these in vitro studies suggest that ASX may improve the
effectiveness of standard lung cancer treatments. However,
there is a paucity of in vivo studies demonstrating the role
of ASX in ameliorating lung cancer, with the exception
of 1 study that reported the antimetastatic efficacy of
ASX by suppressing metastasis of colon cancer cells into
the lung and decreased matrix metallopeptidase 2 protein
expression in the lung (55). Therefore, in vivo and human
studies are warranted to verify the anti-NSCLC efficacy of
ASX.

Molecular Mechanisms Underlying ASX
Suppression of Lung Diseases
The nuclear factor erythroid 2–related factor/heme
oxygenase-1 pathway
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a basic
region leucine zipper protein and a critical transcription
factor in the regulation of cellular redox balance and
phase II detoxification responses in mammals (56). Under
endogenous and exogenous stresses, Nrf2 can be released
from the inhibitor protein Kelch-like ECH-associated protein

856 Cheng and Eroglu



1 (Keap1) and translocated into the nucleus to mediate
activation of antioxidant genes (57).

The activation of the Nrf2 signaling pathway is known
to be a primary mechanism in the defense against oxidative
stress, especially in the lung (58, 59). Application of Nrf2-
deficient mice identified an extensive range of protective roles
for Nrf2 against the pathogenesis of pulmonary emphysema
(58, 59). Heme oxygenase-1 (HO-1), one of the genes
regulated through Nrf2, functions as a cytoprotective enzyme
(56). Several studies have shown that HO-1 serves as a
protective mediator in cigarette smoke–induced lung cell
injury and COPD, whereas HO-1 deficiency leads to systemic
inflammation (56, 60).

ASX exerts its antioxidative effects by activating the Nrf2
–antioxidant response element (ARE) signaling pathway (11,
61–63). One in vitro study showed that when rat lung
epithelial–T-antigen negative cells were exposed to hydrogen
peroxide, Nrf2 was mildly activated as an adaptive response
to the elevated oxidative stress, but the degree of Nrf2 activa-
tion was insufficient to restore the cells from apoptosis (43).
However, ASX treatment at 8 μM significantly increased Nrf2
expression in the cells pretreated with hydrogen peroxide,
and such increase was accompanied by elevated superoxide
dismutase (SOD) and catalase activities, suggesting that
ASX may ameliorate pulmonary oxidative stress partly by
activating Nrf2 (43).

In addition, 3 in vivo studies showed that ASX inhibited
the development of COPD or ALI through upregulating
HO-1 expression, which was mediated by activating Nrf2
(8, 33, 38) and decreasing Keap1 protein expression (33).
Furthermore, Nian et al. (38) showed elevated phospho-
rylation of Nrf2 with ASX treatment (10 and 20 mg/kg
BW) in mice. Nrf2 can be phosphorylated at multiple sites.
For example, 5′-AMP–activated protein kinase (AMPK)
phosphorylates Nrf2 at the Ser558 residue in the canonical
nuclear export signal, which, in conjunction with decreased
glycogen synthase kinase 3β stability, leads to the inter-
cellular translocation of Nrf2 from cytoplasm to nucleus
for ARE-mediated gene expression (64). Protein kinase C
(PKC) phosphorylates Nrf2 at Ser40, which promotes its
intercellular translocation to the nucleus, further improving
the antioxidant capability of Nrf2 (65). Finally, mitogen-
activated protein kinases (MAPKs) phosphorylate Nrf2 at
multiple sites, but direct phosphorylation of Nrf2 by MAPKs
has limited contribution in modulating Nrf2 activity (66).
Among these possible pathways, we highlight the AMPK–
Nrf2 signaling pathway because evidence shows that ASX
is capable of activating AMPK in vivo (67), whereas no
studies have reported the effect of ASX in regulating PKC
activity. We propose that ASX might ameliorate COPD and
emphysema by activating the AMPK–Nrf2–HO-1 pathway
(Figure 2).

The NF-κB signaling pathway
NF-κB is a ubiquitous nuclear transcription factor that
plays a crucial role in various physiological processes, such
as mediating inflammatory and immune responses and

FIGURE 2 A model for the suggested pathways of astaxanthin
inhibiting lung diseases by activating the Nrf2–HO1 pathway.
Astaxanthin phosphorylates AMPK, which then phosphorylates
Nrf2 at the Ser550 residue, accompanied by GSK3β inhibition,
leading to nuclear accumulation of Nrf2 for the transactivation of
ARE-driven genes, including HO-1. These changes result in
inhibited oxidative damage and alleviated COPD, emphysema, and
lung fibrosis. AMPK, 5′-AMP–activated protein kinase; ARE,
antioxidant response element; COPD, chronic obstructive
pulmonary disease; GSK3β , glycogen synthase kinase 3β ; HO-1,
heme oxygenase-1; Keap1, Kelch-like ECH-associated protein 1;
Nrf2, nuclear factor erythroid 2–related factor 2.

governing the expression of genes related to cell survival,
proliferation, and differentiation (68). Oxidative stress can
induce the activation of the inhibitor of NF-κB (IκB) kinase
β-dependent NF-κB pathway (69). Once activated, NF-
κB promotes pulmonary inflammation and cancer mainly
through mediating the secretion of inflammatory cytokines,
including TNF-α, IL-1, and IL-6, and the CXC chemokine
(69, 70). Indeed, overexpression of NF-κB was widely
observed in tumor samples from patients with both NSCLC
and small cell lung cancer (69), and it was associated with
cancer progression, metastasis, and poor prognosis (71).
Moreover, chemotherapy and cytotoxic treatments for cancer
may enhance the expression and signaling of NF-κB, which
in turn suppresses the anticancer and apoptotic potential of
the chemotherapeutic reagents and causes drug resistance
(72).

A large body of evidence indicates that ASX supple-
mentation can inhibit NF-κB signaling as reported in both
in vitro and in vivo studies (73–76). ASX treatment has
shown efficacy in attenuating oral cancer (75) and colon
cancer (77, 78) by blocking the NF-κB signaling pathway.
In this review, we summarize 2 in vivo studies showing that
ASX supplementation at 5 and 50 mg/kg BW, respectively,
decreased the protein expression of NF-κB–p65, which is a
subunit of the NF-κB transcription complex (33, 40). NF-κB
inhibitor α (IκB-α) acts as a key negative feedback regulator
of NF-κB through its ability to block the intercellular
translocation of NF-κB from cytoplasm to nucleus (79).
Interestingly, ASX supplementation (5 and 100 mg/kg BW)
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FIGURE 3 The suggested pathways of ASX blocking the MAPK signaling pathway. ASX suppresses the phosphorylation of ERK1/2, JNK,
and p38 MAPK pathways. JNK dephosphorylation results in decreased Bcl2 expression. Dephosphorylated p38 MAPK leads to a decrease
in p53 and BAX concentrations as well as XPC concentrations, which enhances sensitivity to erlotinib treatment for NSCLC. Altogether,
ASX regulates cell proliferation, division, differentiation, cell cycle arrest, apoptosis, and inflammation via inhibition of the MAPK signaling
pathway. Eventually, ASX can inhibit lung fibrosis, chronic lung inflammation, ALI, and NSCLC. ALI, acute lung injury; ASX, astaxanthin; BAX,
Bcl-2–associated X; ERK, extracellular signal-regulated kinase; JNK, Jun amino-terminal kinase; MAPK, mitogen-activated protein kinase;
MAPKK, MAPK kinase; MEK, meiotic chromosome axis–associated kinase; MKK, mitogen-activated protein kinase kinase; NSCLC, non–small
cell lung cancer; XPC, xeroderma pigmentosum complementation group C.

increased IκB-α protein expression in rodents by inhibiting
its degradation (41), indicating that the inhibitory effect of
ASX on NF-κB expression may be exerted via regulating IκB-
α stability.

Consistently, in vitro, ASX treatment at a dosage of 10–
200 μM significantly decreased LPS-induced NF-κB–p65
protein concentration in the nuclei of mouse primary peri-
toneal macrophages, which was associated with decreased
apoptotic cells and decreased TNF-α and IL-6 secretion (41).

MAPK signaling pathway
MAPKs are serine and threonine kinases in crucial signal
transduction pathways that regulate cell proliferation, cell
differentiation, and cell death in humans (80). MAPKs can be
classified into 3 major subgroups in mammals: extracellular
signal-regulated kinases (ERKs), Jun amino-terminal kinases
(JNKs), and p38 MAPK (80).

ERK1/2 signaling pathway.
ERK1 and ERK2 are the major ERK family members that
consist mainly of a kinase domain. The ERK1/2 module
responds preferentially to growth factors, differentiation
stimuli, and mitogens to regulate cell growth and differ-
entiation (81, 82). The activation of ERK1/2 is induced
by a particular MAPK kinase (MAPKK). The MAPKKs
of ERK1/2 are meiotic chromosome axis–associated kinase
1 (MEK1) and MEK2, which are dual-specificity protein

kinases that mediate the phosphorylation of tyrosine and
threonine in ERK1 and ERK2, leading to increased cell
proliferation and migration (83, 84). It has been shown
that the concentrations of ERK1/2 are elevated in NSCLC
tissues compared with those in the corresponding normal
surrounding lung tissues (85), and the amount of phospho-
ERK1/2 is an independent prognostic factor for poor overall
survival in NSCLC patients (86).

In mice, ASX showed substantial efficacy in inhibiting
ERK1/2 activation in the chronic lung inflammation model
(100 mg/kg BW ASX), as well as the ALI model (5 mg/kg BW
ASX) (41).

In H1650 and H1703 cells, ASX treatment at 5–20 μM
significantly decreased the phosphorylation of ERK1/2 and
MEK1/2, which resulted in decreased protein expression of
TS by inducing ubiquitin-26S proteasome-mediated prote-
olysis (47). A high concentration of TS is associated with
poor prognosis in NSCLC patients after lung resection (87)
and impaired response to the antifolate drug neoadjuvant
pemetrexed chemotherapy (88). Thus, it is possible that ASX
may enhance the cytotoxic effects of pemetrexed against
NSCLC by suppressing ERK1/2 activation. One previous
study also showed that TS protein expression was induced in
a MEK1/2–ERK1/2–dependent manner in NSCLC cell lines
(89). ASX is a promising natural compound against ALI, lung
inflammation, and lung cancer via modulation of the MAPK
signaling pathway (Figure 3).
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JNK and p38 MAPK signaling pathway.
JNKs (with JNK1, JNK2, and JNK3 isoforms) belong to the
MAPK family and play a central role in stress signaling
pathways. JNK and p38 MAPKs are able to orchestrate
cellular responses to various stresses such as oxidative stress,
DNA damage, ionizing radiation, inflammation, and growth
factors (90, 91). The phosphorylation of JNK and p38
MAPKs induces the transcription of multiple downstream
molecules, such as B cell lymphoma/leukemia-2 (bcl-2),
cyclin D1, Bcl-2-associated X (Bax), and p53, which are
involved in regulating cell growth, differentiation, survival,
and apoptosis (90). Notably, the expression of JNK and
p38 MAPK pathway components is often altered in human
tumors and cancer cell lines (91). Preclinical evidence sug-
gests that JNK enzyme function is required for crucial steps
in the process of lung remodeling and pulmonary fibrosis
(92), ALI (93, 94), and lung cancer (95, 96). Interestingly,
ASX treatment has been shown to significantly reduce JNK
phosphorylation and activation in cells stimulated by UVB
radiation, TNF-α, cobalt, dextran sulfate sodium, and insulin
[reviewed by Kim and Kim (97)]. In addition, ASX can
regulate autophagy through JNK and p38 MAPK pathways
(97).

In vivo, ASX supplementation (20 mg/kg BW) for 7 d
significantly decreased LPS-induced phosphorylation of p38
and JNK, resulting in alleviated chronic lung inflammation
and ALI (41). In another study, ASX treatment significantly
suppressed the pulmonary protein expression of Bcl-2 and
enhanced p53 protein expression (42). This was consistent
with the in vitro data that ASX treatment inhibited cell pro-
liferation by enhancing cell apoptosis, mediated by inducing
p53 and reducing Bcl-2 proteins (42, 45). In contrast, in A549
and H1975 cells, ASX treatment at a dosage of 20 μM en-
hanced phospho-p38 MAPK protein concentrations and the
phosphorylation of mitogen-activated protein kinase kinase
(MKK) 3/6, which is the MAPKK of p38 MAPK, leading to
decreased NSCLC cell survival (48). Such discrepancies may
be due to different experimental settings (in vivo compared
with in vitro) or study designs (LPS induction compared
with no stimulation). ASX (20 μM) enhanced erlotinib
cytotoxicity toward NSCLC cells and inhibited the expression
of XPC in a time- and dose-dependent manner, which
improved the sensitivity of NSCLC cells to erlotinib (48).
Taken together, ASX showed beneficial efficacy in alleviating
lung fibrosis, chronic lung inflammation, ALI, and NSCLC
in preclinical studies by modulating the MAPK signaling
pathway (Figure 3).

Janus kinase–signal transducers and activators of
transcription-3 signaling
The Janus kinase–signal transducers and activators of
transcription-3 (JAK/STAT-3) signaling pathway is a
pleiotropic cascade that can transduce a multitude of signals
that regulate immunity, cell apoptosis, cell proliferation,
and tumorigenesis in humans (98). In mammals, the
JAK family comprises 4 members: JAK-1, JAK-2, JAK-
3, and Tyk-2. The activated JAKs can phosphorylate

additional targets, such as STATs (98, 99). STAT-3 is a
latent transcription factor that is predominantly localized
in cytoplasm (99). It functions through transmitting signals
from the cell surface to the nucleus to promote oxidative
phosphorylation and mitochondrial membrane permeability
(99). Aberrant activation of JAK/STAT-3 signaling can lead
to the development of multiple lung diseases, including lung
cancer (100), lung fibrosis (101), ALI (102), and chronic lung
inflammatory diseases (103).

Kowshik et al. (104) reported that in male Syrian hamsters,
ASX supplementation at 15 mg/kg BW exerted anticancer
actions through inhibiting the phosphorylation of STAT-
3, subsequently decreasing its nuclear translocation. These
events were associated with ameliorated oral cancer severity
in rodents, indicating that ASX is capable of inhibiting tumor
development and progression by modulating the JAK/STAT-
3 signaling pathway.

In this review, we highlight reports that ASX showed
anticancer activities in rat hepatocellular carcinoma cells
(39 μM) and lung cancer cells (20, 40, 60, 80, and 100 μM) by
inhibiting the phosphorylation of JAK1 and its downstream
target, STAT-3, subsequently downregulating bcl-2, B cell
lymphoma–extra large, the proto-oncogene protein c-myc,
and Bax (45, 105). The effects of ASX on JAK/STAT-3, or
other isoforms of JAK/STAT, such as JAK-1/3–STAT-6 and
JAK-1/2–STAT-1/3/5 (106), warrant further investigation.

Phosphoinositide 3-kinase/Akt pathway
The phosphoinositide 3-kinase (PI3K)/Akt pathway is an
intracellular signaling pathway linking oncogenes and var-
ious receptor classes to many aspects of cell growth and
survival, both in physiological and in pathological con-
ditions (107). PI3Ks are activated by receptor tyrosine
kinases and convert phosphatidylinositol-4,5-bisphosphate
to phosphatidylinositol-3,4,5-trisphosphate, followed by re-
cruitment of the Ser–Thr kinase, Akt kinase, to the plasma
membrane, where activated Akt elicits a wide range of
downstream signaling events (108). The PI3K/Akt pathway is
generally activated in NSCLC (109). It plays an essential role
in promoting oncogenesis in lung cancer and mediating re-
sistance to EGFR tyrosine kinase inhibitors (109). Therefore,
therapy targeting this axis warrants further study. Indeed, a
study reported that ASX supplementation at 15 mg/kg BW
could prevent cancer hallmarks by suppressing the PI3K/Akt
pathway, which was associated with inhibited NF-κB and
STAT-3 signaling pathways in SCC131 and SCC4 oral cancer
cells (in vitro), as well as in the hamster buccal pouch
carcinogenesis model (in vivo) (104).

In NSCLC cells, ASX treatment at doses of 2.5–20 μM
significantly decreased the phosphorylation of Akt at Ser473
in a dose-dependent manner, which was associated with a
decreased transcription level of Rad51(46). Rad51 is essential
in the initiation and progression of carcinogenesis by pro-
moting cancer cell survival (84), and it confers radiotherapy
resistance, reduced survival, and poor prognosis in breast
cancer, cervical cancer, and NSCLC (110, 111). Rad51 was
further decreased in cells with a combined treatment of ASX
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FIGURE 4 The suggested molecular mechanisms of action for ASX in the prevention of lung diseases. ASX activates the Nrf–HO-1
pathway to inhibit emphysema and COPD and asthma development. ASX suppresses the NF-κB, MAPK, JAK/STAT-3, PI3K/Akt pathways.
ASX downregulates Th1-mediated immune responses to alleviate asthma. ASX inhibits acute lung injury through its effect on the NF-κB
and JAK/STAT-3 pathways; alleviates lung fibrosis by suppressing the NF-κB and MAPK pathways and NSCLC by ASX supplementation via
the inhibited MAPK and PI3K/Akt pathways. ASX, astaxanthin; COPD, chronic obstructive pulmonary disease; JAK/STAT-3, Janus
kinase–signal transducers and activators of transcription-3; MAPK, mitogen-activated protein kinase; Nrf-HO1, nuclear respiratory
factor-2/heme oxygenase 1; NSCLC, non–small cell lung cancer; PI3K, phosphoinositide 3-kinase; Th1, T helper type 1.

(20 μM) and PI3K inhibitors (46). MMC is an antitumor
antibiotic that is widely used in clinical NSCLC chemother-
apy. It was reported that a combination of ASX (2.5 or
5 μM) and MMC (2.5–10 μM) showed synergistic efficacy
in decreasing cell growth in NSCLC cells, accompanied by
reduced concentrations of AKT phosphorylation and Rad51
protein expression (46), thus highlighting the possibility of
applying ASX in the mitigation of lung cancer by targeting
the PI3K/AST pathway.

Immune response
CD4+ cells can be divided into T helper type 1 (Th1) and T
helper type 2 (Th2) cell subsets. Compared with Th1 cells,
a larger number of Th2 cells are found in the airways of
patients with asthma (32). IL-4, IL-5, and IL-13 cytokines
are the predominant cytokines secreted from Th2 cell subsets
and play a key role in driving the disease pathology in
asthma patients (112). Among these cytokines, IL-4 has long
been recognized as a critical pro-inflammatory cytokine in
the differentiation of CD4+ cells to Th2 lymphocytes and
is essential for allergic sensitization and IgE isotype switch
(113). The biology of IL-13 resembles that of IL-4 and is
crucial for eosinophil survival (112, 114, 115). Conversely,
administration of the pro-Th1 cell cytokine IL-12 produces
IFN-γ , which alleviated asthmatic conditions (116).

In vitro, direct administration of ASX at 300 nM induced
cell proliferation and enhanced LPS-induced IFN-γ produc-
tion in lymphocytes, although ASX treatment did not show
an apparent effect on IFN-γ production in primary cultured
lymphocytes (117).

Using an ovalbumin-induced asthma mouse model,
Hwang et al. (32) found that oral administration of ASX
(5, 10, and 50 mg/kg BW) significantly decreased IL-4
and IL-5 concentrations and promoted IFN-γ in BALF,
compared with mice without ASX supplementation. In
addition, they observed reduced total IgE, IgG1, ovalbumin-
specific IgG1, IgG2a, and ovalbumin-specific IgG2a in

the ASX-supplemented mice compared with their coun-
terparts without ASX administration. Such effects led to
suppressed lung inflammation, lung fibrosis, and caspase-
1 and caspase-3 expression, suggesting that ASX may have
therapeutic potential for alleviating asthma by inhibiting
Th2-mediated cytokines while enhancing Th1-mediated
cytokines. However, whether ASX is capable of regulating
CD4+ cell differentiation and which subset the CD4+

cells differentiate into under stimulation by ASX remain
enigmatic.

Conclusions
We reviewed experimental evidence showing the health ben-
efits of ASX in alleviating asthma, COPD, and emphysema;
ALI, lung fibrosis, and lung cancer. The potential beneficial
effects of ASX were mediated by inhibiting the activation of
the Nrf–HO-1 pathway, NF-κB signaling, MAPK signaling,
JAK/STAT-3 signaling, and the PI3K/Akt pathway. ASX
also exerts its efficacy against lung diseases by modulating
the immune response, particularly reducing Th1 cytokines
(Figure 4).

In the in vivo studies included in this review, animals
were given ASX supplementation at a dosage between 0.5
and 50 mg/kg BW (8, 32, 33, 34, 38, 40, 41, 42, 44, 105).
This is equivalent to a 60-kg man consuming ASX at a
dosage between 0.065 and 6.5 mg/kg BW (118). Based on
European consumption data of the proposed food categories,
the mean and 95th percentile of daily intakes of ASX were
0.106 and 0.256 mg/kg BW, respectively (3). We are aware
that the dosages of ASX used in high-dose groups exceed
the daily intake of ASX by ∼20-fold. However, even at low
dosage that is within physiological relevance, the studies
found that ASX significantly alleviated lung fibrosis (42, 44,
105) and improved the mitochondrial morphology as well as
SOD and catalase activities in the animals (105). In addition,
none of the studies reported genotoxicity or hepatotoxicity
with ASX supplementation at high doses, indicating that
ASX has the potential to be applied as a safe dietary
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supplement or medical compound to alleviate pulmonary
diseases.

One major limitation of this review is the usage of
supraphysiologic concentrations of ASX in cell-based assays.
As mentioned previously, an acute dose of 100 mg ASX
supplementation in male volunteers (90–100 kg BW) resulted
in circulating concentrations of ASX reaching a maximum of
120 μg/L (21). This is equivalent to 0.4 μ ASX treatment in
the cells with 2 mL media. Notably, such concentration is far
higher than allowed by the European Food Safety Authority
or the FDA. However, in cell-based studies, the lung cells
were treated with ASX at a dosage of 2.5–200 μM, which
is ≥5-fold more than reported concentrations of ASX in
humans supplemented with a high dose of ASX. Note that
in subjects without ASX supplementation, circulating ASX
concentrations were nondetectable. Also, like other dietary
carotenoids, the absorption efficiency of ASX can be quite
poor from whole foods in humans. Therefore, more studies
need to be carried out with ASX treatment at a dosage within
physiological relevance.

Although there is accumulating evidence that ASX is a
potent antioxidant against numerous lung diseases, these
studies have been performed exclusively in cells and animals,
which lack generalizability to humans. However, preclinical
studies have historically been implemented in discovering
compounds or drugs that can be used to treat diseases.
Therefore, despite lacking clinical evidence, the studies
included in this review provide important information for the
exploration of novel therapeutic approaches for ameliorating
asthma, COPD and emphysema, ALI, lung fibrosis, and lung
cancer.

This review poses several new research questions about
the effects of ASX in lung disease studies. First, future studies
should investigate the efficacy of ASX-enriched foods, such
as algae and krill. It has been shown in vitro that krill oil
has anticancer properties by inhibiting cancer cell growth
and inducing cancer cell apoptosis (119). One study reviewed
the anticancer properties of microalgal species and reported
their capability of inducing the arrest of cell growth (120).
It will be interesting to investigate whether consuming ASX-
enriched foods may lead to amelioration in various lung
diseases. Another topic of interest lies in exploring the
effects of biological metabolites of ASX. As a non–provitamin
A xanthophyll carotenoid, ASX cannot be cleaved at the
central C15=C15′ double bond by β-carotene oxygenase
1 enzyme into retinol. However, it can be cleaved at the
C9 position, yielding its polar metabolites, (rac)-3-hydroxy-
4-oxo-7,8-dihydro-β-ionone and (rac)-3-hydroxy-4-oxo-β-
ionone (13), as shown in rat hepatocytes (Figure 1). Several
studies have shown that the metabolites of carotenoids
may display more potent anticancer efficacy compared with
their parent compounds (121, 122). Therefore, one can
hypothesize that the cleavage products from ASX might
impose equally strong, or even more potent, efficacy in lung
diseases. Also, because the human body as an integrated
whole is a highly dynamic system, another future direction
is to investigate how ASX may affect systemic and lung

diseases by regulating the cross-talk between the lung and
other tissues. Finally, future in vitro and in vivo studies need
to include an ASX dosage within physiological relevance.
Also, clinical trials are warranted to investigate whether ASX
could be given as a supplement to protect against pulmonary
diseases.
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