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ABSTRACT

Accumulating evidence indicates that the gut microbiota can promote or inhibit colonic inflammation and carcinogenesis. Promotion of beneficial
gut bacteria is considered a promising strategy to alleviate colonic diseases including colitis and colorectal cancer. Interestingly, dietary polyphenols,
which have been shown to attenuate colitis and inhibit colorectal cancer in animal models and some human studies, appear to reach relatively
high concentrations in the large intestine and to interact with the gut microbial community. This review summarizes the modulatory effects
of polyphenols on the gut microbiota in humans and animals under healthy and diseased conditions including colitis and colitis-associated
colorectal cancer (CAC). Existing human and animal studies indicate that polyphenols and polyphenol-rich whole foods are capable of elevating
butyrate producers and probiotics that alleviate colitis and inhibit CAC, such as Lactobacillus and Bifidobacterium. Studies in colitis and CAC models
indicate that polyphenols decrease opportunistic pathogenic or proinflammatory microbes and counteract disease-induced dysbiosis. Consistently,
polyphenols also change microbial functions, including increasing butyrate formation. Moreover, polyphenol metabolites produced by the gut
microbiota appear to have anticancer and anti-inflammatory activities, protect gut barrier integrity, and mitigate inflammatory conditions in cells
and animal models. Based on these results, we conclude that polyphenol-mediated alteration of microbial composition and functions, together
with polyphenol metabolites produced by the gut microbiota, likely contribute to the protective effects of polyphenols on colitis and CAC. Future
research is needed to validate the causal role of the polyphenol–gut microbiota interaction in polyphenols’ anti-colitis and anti-CAC effects, and to
further elucidate mechanisms underlying such interaction. Adv Nutr 2021;12:546–565.
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Introduction
Colorectal cancer (CRC) is the second-leading cause of
cancer death in men and women combined, accounting
for 8–9% cancer mortality in the United States in 2020
(1). Chronic inflammation contributes to the etiology and
pathogenesis of CRC. Inflammatory bowel diseases (IBDs),
which include Crohn’s disease and ulcerative colitis, signif-
icantly increase the risk of colitis-associated CRC (CAC)
(2, 3). For instance, ulcerative colitis patients are found to
have a 2.4-fold increased risk of CAC occurrence while
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patients with Crohn’s disease develop CAC at a younger age
compared with the healthy population (4). Mechanistically,
IBD patients are exposed to excessive oxidative stress,
which can promote DNA mutation and potentially lead
to activation of oncogenes, disruption of tumor suppressor
genes, and promotion of genomic instability (5, 6). Further,
proinflammatory cytokines or lipid mediators are known to
promote tumor progression via activating proliferative and
antiapoptotic properties of premalignant cells and cancer
cells in the tumor microenvironment (7–9).

Although tremendous effort has been made for devel-
oping effective therapies for CRC, the late-stage cancer has
proven difficult to treat and has a low survival rate (10).
Therefore, there is an urgent need to develop effective and
relatively safe agents to inhibit CRC progression, poten-
tially by attenuating chronic inflammation. To this end,
polyphenols including anthocyanins, curcumins, resveratrol,
and ellagic acid have been extensively studied as potential
chemopreventive agents for CRC. In particular, many studies
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have documented the protective effects of polyphenols on
colitis and CAC in clinically relevant disease models (11).
Curcumin (12, 13) and epigallocatechin gallate (EGCG)
(14, 15) have been shown to have anti-CRC effects in
clinical patients, and resveratrol attenuated inflammation in
ulcerative colitis patients (16).

Dietary polyphenols are produced by plants as part of their
defense system. These compounds are the biggest group of
phytochemicals with >8000 known structures and are rich in
fruits such as berries, grapes, and pomegranates; vegetables
such as broccoli; whole-grain products; and beverages such as
tea, coffee, and wine (17). Structurally, they are characterized
by phenolic moieties and can be roughly classified into
phenolic acids, flavonoids, phenolic amides, and others such
as stilbenes and lignans (18). The phenolic structure enables
polyphenols to donate electrons/hydrogens to scavenge free
radicals and thus possess strong antioxidant property, which
may partially contribute to their antiaging, cardioprotective,
and neuroprotective effects (17). Furthermore, polyphenols
have also been shown to have strong anti-inflammatory and
anticancer properties (19–21). In particular, many polyphe-
nols inhibit NF-κB, a central transcription factor that regu-
lates inflammation, cell growth, and cell survival, and plays
critical roles in IBD and IBD-promoted CRC (22). Some
polyphenols can inhibit the proinflammatory enzymes such
as cyclooxygenase and 5-lipoxygenase, which are recognized
targets for CRC prevention (23). Additionally, polyphenols
such as flavonoids have been shown to modulate signaling
kinases including phosphoinositide 3 kinase, Akt/protein
kinase B (PKB), mitogen-activated protein kinase (MAPK),
tyrosine kinase, and protein kinase C (24). A recent review by
Alam et al. (25) summarized the anti-CRC mechanisms of
polyphenols, including antiproliferation, proapoptosis, and
anti-inflammation activities identified in cell-based studies.

Despite extensive studies showing anti-inflammatory and
anticancer effects of polyphenols in cell and animal models,
whether polyphenols can directly exert these activities in
vivo has been questioned as these compounds are known to
have poor bioavailability (26–28). For instance, polyphenols
have been shown to exhibit anticancer or anti-inflammatory
effects at 10 to >100 μM in cell-based studies (11, 29),
but the concentrations of these compounds are often below
a few micromoles in the plasma or serum of animals and
humans (27, 30–32). Therefore, the observed antioxidant
and anti-inflammatory effects in cells cannot fully explain
the beneficial effects of these compounds manifested in
the whole-body environment (11). Interestingly, emerging
research shows that polyphenols appear to be bioavailable
in the gut and able to modulate the gut microbiota (33–
35). Since the gut microbiota are believed to play regulatory
roles in colitis and CRC development (36, 37), we reason
that polyphenols may alleviate colitis and inhibit cancer
development, at least in part, via interacting with the gut
microbial community. In this review, we summarize recent
literature concerning the modulatory effect of polyphenols
on the gut microbiota, analyze the interaction between
polyphenols and the gut microbiota, and discuss the role of

the gut microbiota in polyphenols’ protective effects on colitis
and CAC. Additionally, we identify knowledge gaps in the
field and propose potential future directions.

Current Status of Knowledge
The gut microbiota, intestinal inflammation, and CRC
Although the exact etiology of IBDs and CAC is not clear,
over the years researchers have identified multiple factors
contributing to the pathogenesis of these diseases, includ-
ing genetic susceptibility (38), immune dysregulation (39),
and barrier dysfunction (40). Additionally, recent evidence
suggests that the interaction between the commensal gut
microbiota and host immune system is also important to
maintaining gut health, and disruption of such interplay may
directly compromise gut health and result in the promotion
of colitis and CAC. Herein we briefly discuss the relation
between the gut microbiota and colitis or CAC, while the
role of the gut microbiota in inflammation-induced cancer
has been comprehensively reviewed by Elinav et al. (36).

IBD- and CAC-associated alteration of the gut micro-
biota.
Studies in humans and animals have revealed potential links
between the gut microbiota and CAC. In particular, patients
with CRC and IBDs have altered gut microbial profile com-
pared with healthy individuals. Specifically, CRC patients
have been reported to have reduced relative abundance of
butyrate producers including Roseburia and Lachnospiraceae
bacterium A2, and increased abundance of Enterococcus,
Escherichia/Shigella, and Streptococcus, which may con-
tain opportunistic pathogen species (41). Additionally, in
Crohn’s disease patients, microbial dysbiosis is characterized
by decreased abundance of Dialister invisus, Clostridium
cluster XIVa, Faecalibacterium prausnitzii, and Bifidobac-
terium adolescentis and increased relative abundance of
Ruminococcus gnavus compared with healthy subjects (42).
In a study of ulcerative colitis patients, researchers found
slightly decreased microbial richness and increased relative
abundance of Actinobacteria and Proteobacteria in patients
compared with their healthy twins (43). Consistent with
these results in humans, research of murine CAC induced
by azoxymethane (AOM) and dextran sulfate sodium (DSS)
showed decreased microbial evenness in the DSS-induced
colitis phase and increased relative abundance of Strepto-
coccus luteciae, Lactobacillus hamster, Bacteroides uniformis,
and Bacteroides ovatus in the carcinogenic phase (44). These
results indicate that IBDs and CAC are associated with
altered gut microbiota.

The interaction between the gut microbiota and colonic
inflammation.
Imbalanced immune responses including chronic inflam-
mation and compromised immune system have been
shown to induce microbial dysbiosis and even promote
the growth of pathogenic bacteria that facilitate tumorige-
nesis. For instance, in the IL-10 knockout mouse model,
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Arthur et al. (45) revealed that intestinal inflammation
changed the gut microbial composition, including the ex-
pansion of Escherichia coli NC101 pks, a genotoxic microbe
that is shown to promote colonic carcinogenesis. Further,
T-bet–deficient mice in the absence of adaptive immunity
[recombination activating gene 2 (RAG2)-/-] are reported to
develop spontaneous ulcerative colitis and significantly mod-
ulate the gut microbiota (46). Interestingly, the altered gut
microbiota were colitogenic and transmitted colitis to T-bet–
intact hosts through fostering litters and co-housing (46).
Similarly, transmissible and colitogenic gut microbiota have
been identified from mice deficient in caspase recruitment
domain family member 9 (CARD9), a susceptibility factor
for IBDs (47). Furthermore, in the 2,4,6-trinitrobenzene
sulfonic acid (TNBS)–induced mouse model of Crohn’s
disease, ablation of proinflammatory TNF alleviated colonic
inflammation and altered microbial composition compared
with wild-type diseased mice (48). In addition, tumor-
associated barrier defects have been shown to increase
translocation of microbes or microbial products into the
circulation, which, in turn, enhances inflammatory response
and fosters cancer development (49). These results indicate
mutual interactions between the gut microbiota and the host
immune system.

The causal role of the gut microbiota in the development
of colitis and CRC.
Recent studies demonstrate the potential causal role of
gut microbiota in colonic inflammation and CAC. For
instance, fecal microbiota transplantation (FMT) of stool
samples from CRC patients is found to promote AOM-
induced high-grade dysplasia, multiplicity of macroscopic
polyps, elevation of cytokines, and immune cell infiltration
in mice compared with those fed stool samples from healthy
volunteers (50). In the AOM-DSS–induced CAC model,
Zackular et al. (51) showed that antibiotic treatment during
the entire tumorigenesis or in the inflammation-mediated
promotion phase diminished tumor burden, whereas an-
tibiotics did not affect tumor development when given
prior to AOM injection and stopped before DSS-induced
colon inflammation. These results strongly indicate that
the cross-talk between commensal bacteria and the host
innate immune system during inflammation is critical for
potentiating tumorigenesis (52). Consistently, Paramsothy et
al. (53) performed an 8-wk FMT with stool samples from
healthy donors to ulcerative colitis patients and observed
significant improvement in steroid-free clinical remission
and response rate in treated patients compared with those
receiving FMT with the placebo controls. These results
support the notion that the gut microbiota modulate colon
inflammation and contribute to the inflammation-promoted
colon tumorigenesis.

In addition to promoting inflammation, the gut mi-
crobiota may facilitate carcinogenesis through expanding
pathogenic microbes or forming mucosal biofilm com-
munities (5, 54). In particular, pathobionts including E.
coli pks+(45), enterotoxigenic Bacteroides fragilis (55), and

Fusobacterium nucleatum (56), which can be boosted
during the inflammation process, have been shown to
promote carcinogenesis by secreting mediators that in-
crease DNA damage, reactive oxygen species production,
cell proliferation, and immune cell recruitment. Interest-
ingly, these pathobionts are enriched in colonic mucosal
biofilms of familial adenomatous polyposis (57) and in
sporadic CRC patients (58). Furthermore, the presence
of mucus-invasive bacterial biofilms is more frequent in
CRC patients, especially those with right-sided tumors,
than healthy individuals (58). These existing biofilms
are associated with enhanced cell proliferation (58) and
polyamine metabolism in the colon tissue (59). Recently,
Tomkovich et al. (60) demonstrated that mucus-invasive
bacterial biofilms from both CRC patients and healthy
participants are carcinogenic in different CRC models in
mice.

Together, the above-cited studies indicate that the gut
microbiota play significant roles in maintaining gut health
and in developing colon inflammation and CRC. Therefore,
modulation of the gut microbiota by chemopreventive
agents may be an effective strategy for controlling col-
itis and inhibiting CAC progression. Specifically, bioac-
tive compounds capable of cultivating a healthy micro-
bial community that prevents or restores dysbiosis should
be useful to maintain gut barrier functions, inhibit the
growth of pathobionts, and alleviate colonic inflammation
and carcinogenesis. In this regard, bioactive polyphenols
are promising candidates. In the subsequent part of this
review, we will discuss the interaction between dietary
polyphenols and the gut microbiota, and how such inter-
action may contribute to attenuating colitis and preventing
CAC.

The effect of polyphenols on the gut microbiota in
healthy humans and animals
Although only a small portion of polyphenols appear to be
absorbed in the upper gastrointestinal tract, up to 90–95%
of consumed polyphenols are estimated to accumulate in the
large intestine where microbes reside (1011–1012 bacteria/g of
intestinal content) (33, 61–63). As a result, it is conceivable
that polyphenols may interact with gut microbes in the
colon. Indeed, polyphenols have been shown to modulate
the gut microbiota in humans and animals. In this part, we
summarize recent intervention studies where the effects of
polyphenols on the gut microbiota have been evaluated in
healthy humans and animals.

The impact of polyphenols on the gut microbiota in
healthy humans.
Recent clinical interventions have revealed that polyphe-
nols are capable of modulating the gut microbiota in
healthy humans, including elevation of potentially benefi-
cial microbes (Table 1). In particular, intervention stud-
ies showed that fecal Bifidobacterium or Lactobacillus or
both genera, compared with baseline, were enhanced as a
result of supplementation of polyphenol-rich whole foods
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or polyphenol extracts including de-alcoholized red wine
(64), polyphenol-rich green tea (66, 70), and blueberry
drink (67). Further, healthy volunteers consuming 494
mg/d cocoa-derived flavanol drinks had increased fecal
Bifidobacterium and Lactobacillus compared with those
consuming 23 mg/d cocoa-derived flavanol drinks (65).
Interestingly, in some studies, the increase in Lactobacillus
or Bifidobacterium was reported to be inversely associated
with the concentration of cholesterol or C-reactive protein,
an inflammation marker (64, 65). Consistent with these
intervention studies, the elevation of these 2 microbial genera
was also observed in ex vivo experiments where fresh feces
from healthy volunteers were cultivated with polyphenol
extracts from dates (71), grape seeds (72), and sorghum bran
(73).

In addition to specific bacterial taxa, a few studies exam-
ined the impact of polyphenol consumption on microbial
metabolism and functions. For instance, in a controlled-
feeding crossover study, researchers found that polyphenols
from freeze-dried cranberry powder reversed the animal
diet–induced increase in secondary bile acids and decrease in
short-chain fatty acids (SCFAs) in feces (69). It is important to
note that the increase in secondary bile acids and/or decrease
in SCFAs are believed to be risk factors for CRC development
(74, 75). In another study, using phylogenetic investigation
of communities by reconstruction of unobserved states
(PICRUSt) analysis of the 16S ribosomal RNA (rRNA)
sequencing in fecal samples, Yuan et al. (70) reported that
consumption of green tea was associated with decreased
microbial genes encoding inflammation-associated pathways
including LPS biosynthesis.

Despite relatively consistent modulatory effects by
polyphenols on the gut microbiota in healthy humans
(Table 1), Eid et al. (68) did not detect microbial changes
in a clinical trial where healthy free-living subjects were
given palm date as supplements for 3 wk. However, these
researchers observed an increase in Bifidobacterium
by polyphenol-rich palm date extract in the ex vivo
incubation study (71). The discrepancy between ex vivo
and in vivo results may result from confounding factors
in the whole food such as dietary fibers. Indeed, when
dividing volunteers into high- and low-fiber consumers,
these investigators identified increased Bifidobacterium
and Lactobacillus/Enterococcus counts in the low-fiber
consumers. Additionally, this study used potentially biased
and low-resolution techniques to detect gut microbes such
as fluorescence in situ hybridization, qPCR, and denaturing
gradient gel electrophoresis. With these approaches,
researchers might overlook the response of potentially
important microbes with relatively low abundances.

The impact of polyphenols on the gut microbiota in
healthy animals.
Consistent with clinical studies, animal studies also showed
the increase in beneficial microbes including Lactobacillus
and Bifidobacterium in response to polyphenol supplemen-
tation (Table 2). Specifically, supplementation of resveratrol

(76), curcumin (77), hesperidin (78), anthocyanin-rich
blackcurrant extracts (79, 80), water-soluble blueberry ex-
tracts (81), and aqueous extract of berry peels (82) increased
the abundance of Lactobacillus and/or Bifidobacterium in the
cecal or fecal contents in mice. However, supplementation
of lowbush wild blueberry powder in male rats for 6 wk
showed a decrease in relative abundance of Lactobacillus in
the proximal colon contents (83).

In addition to the changes in specific taxa, researchers
have evaluated the impact of polyphenols on the richness
and evenness (ɑ-diversity) of gut bacteria and overall gut
microbial composition (beta-diversity). For example, supple-
mentation of 0.5% curcumin was found to prevent the age-
related reduction in gut microbial richness and maintained
high ɑ-diversity until 30 wk of age, but did not change
beta-diversity (77). The same increase in ɑ-diversity without
affecting beta-diversity was also observed with supplementa-
tion of 0.025% resveratrol (84). In contrast, supplementation
of resveratrol at 300 mg/kg body weight significantly changed
microbial composition compared with control diets (85).
Further, supplementation of green tea polyphenol (GTP)
(86) significantly differentiated microbial composition from
the controls. Interestingly, supplementation of GTP at 0.5%
increased ɑ-diversity but at 1.5% decreased ɑ-diversity in
female rats (86). These dose-dependent effects are not
understood but may result from stronger promotion of
specific gut microbes by the higher dosage of polyphenols,
which consequently reduce the ɑ-diversity.

Some studies explored the influence of polyphenols on gut
microbial metabolism using metagenomic-based microbial
functional predictions. For instance, long-term supplemen-
tation of GTP dose-dependently increased genes responsible
for energy production and conversion (86). These modifi-
cations were accompanied by the increase in relative abun-
dance of the phylum Bacteroidetes that possesses microbes
capable of degrading resistant biopolymers (87). Moreover,
supplementation of lowbush wild blueberries caused a 20%
increase in the abundance of gene orthologs responsible
for xenobiotic degradation and metabolism in male rats,
including pathways of benzoate degradation, glycosamino-
glycan degradation, and isoleucine/valine degradation (83).
Further, supplementation of lowbush wild blueberries led
to an 8-fold reduction in the number of genes assigned to
bacterial invasion of epithelial cells compared with controls
(83), which is consistent with the observation that blueberry
husks inhibited DSS-induced microbial translocation (88).
Overall, these data from animal studies are consistent with
those observed in humans (70, 69).

Effects of polyphenol supplementation on the gut
microbiota under diseased conditions including colitis
and CAC
Many studies have documented the protective effects of
polyphenols on colitis and CAC in clinically relevant disease
models (11). In this section, we focus on the studies that
evaluate the impact of polyphenols on the gut microbiota
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under diseased conditions, including colitis and CAC. In-
flammation in the colon may cause outgrowth of pathogenic
bacteria and induce microbial dysbiosis. As discussed earlier,
some gut microbiota can play causal roles in the exacerbation
of colitis and colon cancer, and consequently, gut microbial
disturbance has been proposed as one of the promoters
for colon carcinogenesis (36). Therefore, alleviating colitis
symptoms by modulating gut microbiota or increasing
the production of beneficial microbial metabolites is likely
important for controlling colitis and chemoprevention of
CAC (90).

Effects of polyphenols on the gut microbiota in the colitis
models.

Many studies have documented polyphenols’ modulatory
effects on the gut microbiota in various experimental colitis
models (Table 3). In the DSS-induced colitis model in
rodents, resveratrol supplementation was found to increase
fecal counts of potentially beneficial microbes including
Lactobacillus and Bifidobacterium and decrease potentially
pathogenic bacteria including E. coli and Enterobacteria
compared with controls (76, 84). Interestingly, in the
TNBS-induced colitis model, resveratrol restored the colitis-
associated decrease in Akkermansia muciniphila and Ru-
minococcus gnavus (89), which are a mucin degrader (91, 92)
and associated with Crohn disease (93), respectively. Resver-
atrol treatment also reversed the TNBS-caused increase in
Bacteroides acidifaciens (89). Moreover, supplementation of
nanoparticle curcumin increased the abundance of Clostrid-
ium cluster IV and XIVa compared with the control group
in the DSS-induced colitis mice (94), and these microbes
are known to contain butyrate producers (95). In a T-cell–
dependent colitis model induced by the adoptive transfer
of naive T cells into Rag1-deficient mice (Rag1-/-mice),
quercetin supplementation decreased the relative abundance
of the potentially pathogenic microbe E. coli (96). In addition,
supplementation of grape seed extract increased the relative
abundance of Bacteroides and Lactobacillus and decreased
the relative abundance of F. prausnitzii in IL10-/-mice
(97). Supplementation of polyphenol-containing whole food
including Aronia berry, blueberry, and broccoli resulted in
significant changes in specific microbes in the colitis-induced
mice (98, 99).

In addition to documenting the changes in specific
microbes, researchers have also reported the modula-
tion of the microbial community, including ɑ- and beta-
diversity, in response to polyphenol supplementation in
murine colitis models (Table 3). For example, in the DSS-
induced colitis models, administration of salvianolic acid
A (100) and chlorogenic acid (101) induced significant
separation of gut microbial composition among healthy
control, colitis control, and polyphenol-supplemented colitis
animals. Further, salvianolic acid A mitigated the colitis-
induced decline in ɑ-diversity (100). The same salvage of
ɑ-diversity has been observed as a result of supplement-
ing quercetin aglycones/monoglycosides (102), resveratrol
(84), polyphenol-rich Aronia berry (99), and salvianolic

acid B (103) in murine colitis models. In contrast to the
increase in ɑ-diversity, chlorogenic acid supplementation
ameliorated experimental colitis and decreased ɑ-diversity
compared with disease controls (101). Interestingly, the
supplementation of chlorogenic acid markedly elevated
Akkermansia, which is a recently identified mucin degrader
and believed to have positive impacts on gut health (91,
92). Therefore, the substantial increase in this potentially
beneficial microbe likely contributes to the uneven dis-
tribution of bacterial species that resulted in reduced ɑ-
diversity (101). These observations suggest that the nature
of the gut microbial alteration (e.g., expansion of a specific
bacterium) may be more relevant to determining health
outcomes than the overall changes in diversity measurements
per se.

Since gut microbiota are considered a collective functional
domain, it is critical to evaluate how polyphenols have
impacts on the microbial functions besides the modulation of
the microbial composition (104). To this end, quercetin has
been shown to reduce colitis-induced bacterial penetration
into the basolateral surface of colonic epithelial cells (96). A
polyphenol-rich broccoli diet decreased translocation of total
bacteria to the mesenteric lymph nodes in a mouse model
of IBD (98). Moreover, supplementation of nanoparticle
curcumin and resveratrol increased fecal/cecal butyrate
concentration (89, 94), and salvianolic acid B elevated serum
SCFAs in mice with colitis (103). These results indicate that
polyphenol-mediated modulation of gut microbial functions,
including suppression of epithelial invasion and increase in
SCFA production, may contribute to the mitigation of colitis
by these compounds (36, 105).

The effect of polyphenols on the gut microbiota in
experimental CAC models.
Many studies that investigated the effect of polyphenols on
CAC development were carried out in the AOM-DSS model,
which resembles histopathological and molecular profiles of
CAC in humans (106). Briefly, AOM, a pre-carcinogen, is
metabolized in the liver and consequently becomes an active
mutagen that induces cancer-driving genetic mutations in
the colon epithelial cells (107). Meanwhile, DSS induces
colon inflammation that promotes colonic tumorigenesis via
disrupting the gut barrier and forming fusible nanoparticles
with medium-chain length fatty acids (108). In addition to
the AOM-DSS model, IL-10 knockout (IL10-/-) mice coupled
with AOM injection are also used to mimic CAC as IL-10 is
a key anti-inflammatory regulator for IBD (109).

Studies have documented the impact of polyphenols
on the gut microbiota in the CAC models (Table 4).
Supplementation of isoliquirtigenin, a flavonoid extracted
from traditional Chinese medicine licorice, increased the
relative abundance of potentially beneficial microbes in-
cluding Butyricicoccus, Clostridium, and Ruminococcus and
decreased the relative abundance of IBD-associated bacteria
including Escherichia, Enterococcus, and Helicobacteraceae,
compared with the control group in the CAC mice (110).
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Importantly, the microbial composition of isoliquirtigenin-
supplemented CAC mice was similar to that of healthy
mice at the end of the 18-wk study. Similarly, 13-wk
supplementation of EGCG increased the relative abundance
of probiotics such as Lactobacillus, Bifidobacterium, and
Ruminococcus compared with the CAC control mice (111).
Like isoliquirtigenin, there was no significant difference in
the relative abundance of the compared microbes between
the healthy control and EGCG-supplemented CAC mice,
except for Lactobacillus. Consistent with these studies,
Chen et al. (112) observed greater gut microbial similarity
between the healthy controls and the CAC mice that
were supplemented with anthocyanin extracted from black
raspberry than the CAC mice fed the control diet. In this
study, supplementation of anthocyanin from black raspberry
reversed AOM-DSS–caused decrease in beneficial microbes
such as Eubacterium rectale, F. prausnitzii, and Lactobacillus,
while it counteracted AOM-DSS–increased pathogenic mi-
crobes such as Campylobacter and Helicobacter pylori (112).
Furthermore, supplementing anthocyanin-rich sausage also
reduced the relative abundance of a proinflammatory mi-
crobe named Bilophila wadsworthia (113) in the CAC
mice compared with the non-anthocyanin control (114). In
contrast to the DSS model, AOM-DSS treatment increased ɑ-
diversity, which was reversed by polyphenol supplementation
(110, 111).

Similar to the beneficial effects observed in the AOM-
DSS models, supplementation of curcumin was found
to reduce tumor burden and caused favorable changes in
gut microbiota in AOM-injected IL-10-/- mice (77). In
this study, the gut microbial composition in curcumin-
supplemented CAC mice was similar to that in healthy
controls at the order level and showed increased relative
abundance of Lactobacillus compared with the CAC controls.
In the subsequent analysis with PICRUSt, the researchers
found that the microbes in curcumin-supplemented, CAC-
induced mice had a decreased relative abundance of genes
involved in bacterial chemotaxis, motility protein synthesis,
and arachidonic acid metabolism compared with the CAC
mice fed the control diet.

To sum up, the above-cited studies indicate that polyphe-
nols appear to restore colitis- or CAC-induced changes in gut
microbes, including counteracting disease-induced decrease
in probiotics and increase in potential pathogenic bacteria.
As a result, polyphenol-supplemented animals often possess
the microbial profiles resembling healthy control animals,
indicating that polyphenols provide resistance to colitis- or
CAC-induced dysbiosis.

Mechanisms underlying the interaction between
polyphenols and the gut microbiota
While research in humans and animals indicates that
polyphenols can selectively enhance specific gut microbes,
the mechanisms underlying these modulatory effects are not
well understood. Existing evidence suggests that polyphe-
nols likely modulate gut microbes through their mutual
interactions. On the one hand, polyphenols may affect

the growth of bacteria via inhibiting nucleotide synthesis,
chelating metabolically essential metal ions, interacting with
cell membrane components, or facilitating electron transfer,
which is critical to bacterial energy metabolism. On the other
hand, gut microbes can catabolize polyphenols, which may,
in turn, modulate the microbial community.

Polyphenols regulate the growth of gut bacteria via
various distinct mechanisms.
Polyphenols are known to have antibacterial properties,
which are their originally recognized functions in the plant’s
defense system. Several studies have revealed polyphenols’
antibacterial activities using representative gut microbes
including common intestinal pathogens (115–118). For
instance, resveratrol at 1.56 μg/mL (6.8 μM) has been shown
to inhibit biofilm formation of Fusobacterium nucleatum
under anaerobic conditions (119). It is noteworthy that F.
nucleatum, a commensal-turned pathogenic bacterium, has
been reported to be elevated in the colonic biopsies of
IBD patients (120) and is believed to promote colorectal
carcinogenesis (121, 122). Moreover, polyphenols appear to
selectively inhibit bacterial growth, probably because specific
microbes possess distinct metabolism. For instance, tannic
acid, under the anaerobic condition, inhibited the growth
of intestinal bacteria such as Clostridium clostridiiforme, E.
coli American Type Culture Collection (ATCC) 25,922 and
Enterobacter cloacae ATCC 13,047, whereas Bifidobacterium
infantis and Lactobacillus acidophilus remained unaffected
(117). Since tannic acid is a strong chelator of iron, the inhi-
bition of bacterial growth by this polyphenol is likely rooted
in its deprivation of iron needed for bacterial metabolism,
whereas neither Bifidobacterium infantis nor Lactobacillus
acidophilus requires iron for growth (117). Additionally,
although further validation is needed, mechanisms that were
identified under aerobic conditions may also be applied
to polyphenols’ anti-growth effects on anaerobes (123),
including disruption of bacterial quorum sensing (124, 125),
a universal communication pathway that also exists among
gut microbes (126), inhibition of bacterial DNA and RNA
synthesis (33, 127, 128), disruption of membrane function
and permeability (129–131), or interference of bacterial
biofilm formation (132, 133).

In contrast to antibacterial activities, polyphenols can
promote the growth of gut bacteria via facilitating ex-
tracellular electron transfer (EET) or general anaerobic
respiration in microbes. In the colon, flavin is believed to
act as electron shuttles in the EET system to boost the
growth of the intestinal anaerobes by accepting electrons
from microbes and donating them to extracellular electron
acceptors such as metal ions (134, 135). Like flavin, many
natural polyphenols, in particular flavonoids with ortho-
dihydroxyl groups on the B ring, possess such reversible
redox behavior based on cyclic voltammetry scanning (136).
Importantly, the gene orthologs responsible for EET are
present in multiple intestinal microbes such as Clostridium
perfringens, Enterococcus faecalis, Streptococcus dysgalactiae,
Lactococcus spp., and Lactobacillus spp., making EET a
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possible target for polyphenols in the intestinal environment.
Furthermore, besides serving as potential electron shuttles
for EET, polyphenols can chelate redox-active metal ions
such as iron and copper, which could be utilized in EET and
therefore indirectly affect the growth of EET-based microbes
(137). Alternatively, polyphenols with double bonds on
the side chain, such as caffeic acids, may act as terminal
electron acceptors to accelerate anaerobic respiration (138).
To sum up, polyphenols can selectively affect the metabolism
of individual microbes, which consequently modulates the
microbial composition.

Gut microbiota extensively metabolize polyphenols and
this interaction may, in turn, change microbial composi-
tion and metabolism.
Accumulating research has shown that the gut microbiota
can extensively metabolize polyphenols. In the food matrix,
polyphenols are often in glycosylated forms, which limits
their initial intestinal absorption (139). These polyphenol
glycosides can be hydrolyzed into free polyphenols via small
intestinal β-glucosidase (140) or microbial enzymes such as
α-rhamnosidase, β-glucosidase, and β-glucuronidase (141).
Once deconjugated, free polyphenols can be readily metabo-
lized by gut microbes and undergo catabolism into phenolic
acids (141). The catabolic reactions include ester hydrolysis,
ring-cleavage by microbial decarboxylase, demethylation by
microbial demethylase, and reduction by microbial dehy-
droxylase or hydrogenase (34, 142). The resultant metabolites
may be excreted into feces or absorbed for further colonocyte
and liver metabolism. Representative metabolites of polyphe-
nols by gut microbes include urolithin, equol, and hesperitin,
which are metabolized from ellagitannins, isoflavones, and
flavanones, respectively (34).

In addition to the formation of polyphenol catabolites,
the interaction of polyphenols and the gut microbiota

also results in enhanced production of SCFAs or their
precursors. Such interaction has been observed via in
vitro incubation of polyphenols with fecal samples (143,
144) and as a result of in vivo polyphenol supplemen-
tation (145–147). For instance, under in vitro settings,
formation of SCFAs was observed to be accompanied
with increased polyphenol catabolites and elevation of
potential SCFAs producers including F. prausnitzii and
cluster XIVa Clostridiales (144) as well as microbes that
aid with SCFA production such as Bifidobacterium (143,
144). Interestingly, Parkar et al. (143) showed that the
growth of Bifidobacterium was stimulated by polyphenol
catabolites in the fermenta, but not by the original polyphe-
nols. Therefore, polyphenols or their microbiota-produced
metabolites may enrich SCFA producers to make SCFAs
from sugar molecules in the culturing media. In addition,
under the whole-body environment, polyphenols including
EGCG have been shown to inhibit α-amylase in the upper
gastrointestinal tract, which likely results in an increase in
fermentable substrates from the undigested starch. Conse-
quently, the increased substrates become available to colonic
SCFA producers, which enhances SCFA production (148,
149).

In summary, although the mechanism underlying
polyphenols’ impact on gut microbes is not fully understood,
the interaction of the 2 parties is essential for the mutual
modulatory effects; specifically, polyphenols, which can
reach relatively high concentrations in the gut, may
selectively influence bacterial growth, while the process
of gut microbe–involved metabolism of polyphenols
may, in turn, change the microbial composition. This
mutual interaction results in breaking down polyphenols
to various metabolites, modulating the gut microbiota,
and increasing the production of SCFAs (Figure
1).

FIGURE 1 Roles of the polyphenol–gut microbiota interaction in polyphenols’ protective effects against colitis and colitis-associated
colorectal cancer. The interaction between polyphenols and the gut microbiota can modulate gut microbial composition and functions.
Specifically, polyphenols may promote butyrate producers and suppress pathogenic bacteria, which may lead to the increase in SCFAs
and suppression of epithelial invasiveness, respectively. Additionally, gut microbes metabolize polyphenols into absorbable metabolites,
which have been shown to have anticancer and anti-inflammatory activities and provide protection of gut barrier functions. These
activities contribute to polyphenols’ disease-alleviation effects in animals and humans. MAPK, mitogen-activated protein kinase.

Polyphenols, gut microbiota, and colonic inflammation 557



Roles of the polyphenol–gut microbiota interaction in
polyphenols’ anti-colitis and anti-CAC effect
The mutual interaction between gut microbiota and polyphe-
nols likely plays key roles in polyphenols’ protective effects
on colitis and CAC, as summarized in Figure 1. On
the one hand, polyphenols can alter the composition and
functions of gut microbiota, which may improve gut health.
On the other hand, the metabolites generated via gut
microbiota–mediated catabolism of polyphenols can offer
anticancer and anti-inflammatory effects, protect gut barrier
integrity, and therefore play significant roles in anti-colitis
and anti-CAC actions.

The role of polyphenols’ modulation of the gut microbiota
in the mitigation of colitis and prevention of CAC.
Based on the above-cited literature, polyphenol supplemen-
tation appears to be capable of increasing the level of known
probiotics under both healthy and diseased conditions,
including Lactobacillus and Bifidobacterium (64–67, 70–
73, 76–84, 111, 112), the emerging probiotic Akkermansia
(89, 101, 100), and potential butyrate producers such as
F. prausnitzii, E. rectale (112), Clostridium cluster IV and
XIVa (94), and Butyricicoccus (110). Further, polyphenols
can reduce some opportunistic pathogens and proinflam-
matory microbes such as E. coli (76, 96, 98) and B.
wadsworthia (114). Indeed, there is ample evidence showing
that Lactobacillus (lactic acid bacteria) and Bifidobacterium
attenuate colitis and inhibit the development of CRC
including CAC. In particular, several lactic acid bacteria
have been shown to inhibit CRC by inducing cancer cell
apoptosis, anticancer immune response, and epigenetic
modification of tumor suppressor genes (150). Jacouton
et al. (151) found that Lactobacillus casei BL23 inhibited
CAC development, reduced colonic IL-22 concentration,
and increased caspase-7, -9, and Bik expression to promote
apoptosis in the AOM-DSS–induced CAC model in mice.
Moreover, Mizuno et al. (152) demonstrated that co-cultured
Lactobacillus species including L. casei inhibits the growth
of potentially pathogenic E. coli in vitro. With regard to
Bifidobacterium spp., multiple clinical trials and animal
studies have demonstrated their anti-colitis effects in the
form of fermented milk products (153), synbiotics (154, 155),
or single strains (156), while their anti-CAC effects were
observed in animal models either alone (157) or mixed with
other Lactobacillus strains (158, 159). Interestingly, there
appears to be cross-feeding between lactic acid bacteria
and butyrate producers, as the latter microbes utilize lactate
produced by the former bacteria to produce butyrate, which
is known to inhibit colon cancer development (160). These
results, together with the observation that polyphenol sup-
plementation promotes these “beneficial” microbes, strongly
suggest that polyphenols likely have prebiotic activities
contributing to polyphenols’ anti-colitis and anti-CAC ac-
tions.

In addition to its enhancing effect on probiotics, animal
studies have revealed that polyphenol supplementation re-
verses disease-associated changes in the gut microbial profile.

Thus, the gut microbial composition in polyphenol-treated
disease animals often resembles that in healthy ones (77, 110–
112). These results indicate that polyphenols can stabilize the
gut microbial community and make it resistant to disease-
caused dysbiosis.

Additionally, polyphenol consumption leads to functional
changes in microbial metabolism, which is relevant to the
attenuation of the diseases. For instance, polyphenols have
been shown to increase energy production and conversion
(86), elevate production of SCFAs (69, 82) and beta-
glucosidase activity (80), and decrease epithelial invasion
(83) and secondary bile acid production (69, 161) as well as
toxins secreted by pathogenic bacteria (162).

Anticancer effects of polyphenol metabolites generated by
the gut microbiota.
Since gut microbiota substantially metabolize polyphenols,
studies have been conducted to investigate the potential anti-
cancer effects of gut microbe–mediated polyphenol metabo-
lites. Specifically, Wang et al. (163) identified baicalein as
a major metabolite of baicalin from Scutellaria baicalensis
extract and showed that, compared with the parental com-
pound, baicalein exhibited enhanced antiproliferation and
proapoptotic effects, and increased cell cycle arrest at S phase
in colon cancer cells. Consistently, baicalein more strongly
inhibited tumor growth than baicalin in a xenograft nude
mouse model (163). Similarly, metabolites of ellagitannin
and ellagic acid by gut microbes decreased the number and
size of colonospheres formed by Caco-2 cells and primary
colon tumor cells (164), inhibited cancer cell proliferation
and induced cell cycle arrest at the G2M and S phase (165).
Moreover, 8-prenylnaringenin, a microbial metabolite of
isoxanthohumol, has been shown to inhibit colon cancer
cell growth, and reduce H2O2-induced DNA damage and
cell invasiveness (166). In addition, metabolites of quercetin
from 7 bacteria strains showed dose-dependent antiprolif-
eration effects on HCT-116 cells (167). Interestingly, the
quercetin metabolites generated from different bacteria
strains showed differential antiproliferation potency, suggest-
ing potentially distinct polyphenol metabolites produced by
different microbes. Additionally, 3,4-dihydroxyphenylacetic
acid and 3-(3,4-dihydroxyphenyl)-propionic acid, which are
microbe-produced metabolites of quercetin and chloro-
genic acid, respectively, decreased cyclooxygenase-2 ex-
pression and modulated CumOOH-induced DNA dam-
age in colon adenoma cells (168). These results indicate
that polyphenol metabolites produced by the gut micro-
biota may directly contribute to polyphenols’ anticancer
effects.

However, not all microbially made polyphenol
metabolites showed superior anticancer effects compared
with the original compounds. For instance, after in vitro
fermentation, antiproliferation effectiveness of palm
date polyphenol-rich extract decreased by >2 fold in
Caco-2 cells (71). Although the nature of the reduction
remained unknown, it might result from the reduction in
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originally active compounds or the formation of inactive
metabolites.

Regardless of the positive or negative impact of metabo-
lites on cancer compared with the parental compounds, the
above-mentioned studies strongly suggest that analyses of
polyphenol metabolites, together with microbiota alteration
and disease outcomes, are needed to understand the role
of polyphenols in their modulation of gut microbes and
anticancer mechanisms.

Anti-inflammatory activities and protective effects on gut
barrier integrity by polyphenol metabolites synthesized by
the gut microbiota.
Some polyphenol metabolites have been shown to have
anti-inflammatory activities in vitro and in vivo. For
instance, 3,4-dihydroxyphenylpropionic acid (hydrocaffeic
acid), which is a major gut microbe–producing metabolite
of caffeic acid and chlorogenic acid in the colon, has
been shown to inhibit LPS-stimulated TNF-α, IL-1β , and
IL-6 in peripheral blood mononuclear cells isolated from
healthy volunteers (169). In another study, Larrosa et
al. (170) reported that hydrocaffeic acid attenuated DSS-
induced colitis and cytokines including TNF-α, IL-1β ,
and IL-8 in rats. Further, these investigators showed that
hydrocaffeic acid and other polyphenol metabolites, such
as dihydroxyphenyl acetic and hydroferulic acid, effectively
inhibited IL-1β–stimulated prostaglandin E2 (PGE2) in
CCD-18 colon fibroblasts. Furthermore, ferulaldehyde, a
water-soluble microbial degradation product of polyphenols
and having high concentrations in human urine after red
wine and chocolate consumption (171, 172), was reported to
prolong the survival and attenuate inflammatory response in
a murine LPS-induced septic shock model (173). In addition,
Tucsek et al. (174) demonstrated that ferulaldehyde sup-
pressed LPS-induced reactive oxygen and nitrogen species
and activation of NF-κB via blocking MAPK pathways in
macrophages.

Emerging evidence shows that polyphenol metabolites
may be protective to gut barrier functions. Urolithin A
(UroA), a major microbe-producing metabolite of polyphe-
nolics from berries and pomegranate fruits, has been shown
to have anti-inflammatory, antioxidative, and antiaging activ-
ities (175). Recently, Singh et al. (176) reported that UroA and
its analogue protected gut barrier functions by upregulation
of epithelial tight junction proteins such as zona occludens
1 (ZO-1), occluding, and claudin 4 in colon epithelial
cells. Mechanistic studies indicate that the increase in tight
junction proteins was through activation of aryl hydrocarbon
receptor (AhR) and nuclear erythroid 2-related factor 2
(Nrf2)–dependent pathways (176). Consistently, treatment
with UroA and its analogue attenuated TNBS-induced colitis
and gut barrier dysfunction, and inhibited proinflammatory
cytokines in mice (176). These data therefore provide
direct evidence that microbial polyphenol metabolites pro-
tect gut barrier integrity, in addition to anti-inflammatory
effects.

To sum up, polyphenol-mediated resistance to disease-
associated microbial dysbiosis, expansion of potential ben-
eficial microbes, and inhibition of pathogenic microbes
likely play significant roles in the attenuation of colonic
inflammation and maintaining gut barrier integrity. Addi-
tionally, polyphenol catabolites and SCFAs as a result of the
polyphenol–microbiota interaction may mitigate colitis via
anti-inflammation and protection of barrier functions, and
inhibit the development of colonic carcinogenesis through
various anticancer mechanisms. Together, the polyphenol–
gut microbiota interaction may contribute to polyphenols’
protective effects against colitis and CAC (Figure 1).

Knowledge gaps in the understanding of the role of gut
microbial modulation in polyphenols’ health
benefits—challenges and opportunities
Despite existing evidence suggesting the prebiotic role of
polyphenols in maintaining gut health, little research has
been conducted to establish the causative link between
polyphenols’ modulation of microbiota and disease-
alleviation effects. In particular, polyphenols are known
to have anticancer and anti-inflammatory effects, which
may lead to the mitigation of colitis and prevention of
colitis-caused dysbiosis. In other words, modulation of gut
microbes may be a consequence, rather than a cause, of
polyphenol-mediated beneficial effects. To address whether
the polyphenol–gut microbiota interaction is critical to
this compound-mediated protection against diseases, an
effective approach is to test polyphenols’ impact on diseases
in germ-free animals or in conventional animals treated
with pan-antibiotics that deplete gut bacteria. The lack of or
weakening of protective effects in animals without the gut
microbiota will support a critical role of the polyphenol–
gut microbiota interaction in disease prevention (177).
Moreover, FMT may be used to examine the potential
impact of modulated gut microbiota on polyphenol-
mediated disease prevention (178, 179). Recently, in the
TNBS-induced colitis model, Alrafas et al. (89) observed that
transferring fecal materials from resveratrol-fed and colitis-
induced mice, rather than those from control diet–fed colitis
mice, ameliorated colitis symptoms in gut bacteria–depleted
mice. Although this observation supports the causality of
resveratrol-changed gut microbes in anti-colitis activities, the
results are somewhat confounded with FMT using feces from
resveratrol-fed diseased mice. Further research is needed to
test the anti-colitis effects of fecal samples from resveratrol-
fed healthy mice. In addition, utilization of polyphenols
as prebiotics may be another approach to validate key
microbes responsible for alleviation of diseases (180) and
the causal role of the polyphenol–gut microbiota interaction
in attenuation of colitis and CAC. In these studies, gene
knockout or other molecular approaches may be applied to
elucidate in-depth mechanisms underlying polyphenol–
gut microbiota interactions at the molecular level
(181, 182).

In addition to the necessity of establishing a causative
role of polyphenol–gut microbiota interactions in protection
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against diseases, research using cutting-edge technologies is
needed to overcome current challenges in gut microbiota
analyses to further understand the role of the gut microbiota
in polyphenol-mediated health benefits. First, polyphenol-
altered gut microbes have often been identified at the
genus, family, and phylum level. The lack of taxonomic
determination of microbes at the species or strain level
hinders accurate interpretation of microbial functions and
therefore health outcomes. This concern is underscored by
the observation that different strains of Lactococcus lactis are
found to show varied ability to inhibit CAC development
(183). Nevertheless, with the recent advances in microbiome
analysis (184), it is foreseeable that rigorous identification of
species or strains will be achieved through optimized maker
gene amplification methods (185), and advanced algorithms
for sequencing error correction (186) and taxonomic clas-
sification (187). Second, even with accurate classification of
a microbe’s identity, it may still be difficult to determine
its function in vivo. This is because individual microbes
may acquire new functions through horizontal gene transfer
among each other (188), and may carry out specific functions
under unique host conditions, such as the E. coli pks
strain, which promotes colon carcinogenesis only under
inflammatory conditions (45). Further, the gut microbial
community has developed functional redundancy to improve
resilience and resistance to environmental perturbations
(189). As a result, alteration of the microbial profile does
not necessarily mean functional changes in the community.
Indeed, realization of functional redundancy and adaptive
changes in gut microbiota has urged researchers to shift focus
to the functional analysis of gut microbes, including targeted
microbial functional outcomes such as SCFA production (89,
94, 103), host response to bacterial translocation such as
LPS in the circulation (190, 191), exploratory metagenomic
predictions (83, 86), and extensive metabolomic analyses of
polyphenols and microbial metabolites. Finally, to translate
the observations in animal models to clinical use in humans,
it is important to consider differences in gut bacterial compo-
sitions between animals and humans (192, 193). Fortunately,
despite the low percentage of shared genes between mouse
and human gut microbiota, the mouse gut microbiome is
functionally similar to its human counterparts (194). In the
future, investigation of shared microbial functional outcomes
between animals and humans and utilization of humanized
animals inoculated with human gut microbiota may help
obtain clinically relevant data for the translation of basic
discovery to humans (195, 196).

Conclusions
Existing evidence indicates that polyphenols can elevate
probiotics capable of alleviating colitis and inhibiting CAC,
decrease opportunistic pathogenic or proinflammatory mi-
crobes, reverse disease-induced dysbiosis, and change mi-
crobial functions such as increasing butyrate formation.
Polyphenol metabolites produced by the gut microbiota have
anticancer and anti-inflammatory activities and are protec-
tive to gut barrier integrity. Future research is needed to

establish causation between polyphenols’ disease-preventive
effects and modulation of the gut microbiota in germ-
free mice or with an FMT approach. The polyphenol–
gut microbiota interaction should be further delineated by
performing microbial functional analysis with metabolomic,
transcriptomic, and proteomic approaches (197). Ultimately,
these different lines of research should achieve the goal
of personalized nutrition and precision medicine (198),
such as designing specific polyphenol–microbe synbiotics
or adjustment of polyphenol consumption based on the
individual’s microbial profile and baseline physiological
status for optimal disease alleviation.
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