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ABSTRACT

Mitochondrial dysfunction in dopaminergic neurons of the substantia nigra (SN) appears to be a key mediating feature of Parkinson’s disease
(PD), a complex neurodegenerative disorder of still unknown etiology. Parkin is an E3 ubiquitin ligase that promotes mitophagy of damaged
depolarized mitochondria while also boosting mitochondrial biogenesis—thereby helping to maintain efficient mitochondrial function. Boosting
Parkin expression in the SN with viral vectors is protective in multiple rodent models of PD. Conversely, homozygosity for inactivating mutations of
Parkin results in early-onset PD. Moderate protein plant-based diets relatively low in certain essential amino acids have the potential to boost Parkin
expression by activating the kinase GCN2, which in turn boosts the expression of ATF4, a factor that drives transcription of the Parkin gene. Protein-
restricted diets also upregulate the expression of PINK1, a protein that binds to the outer membrane of depolarized mitochondria and then recruits
and activates Parkin. This effect of protein restriction is mediated by the downregulation of the kinase activity of mammalian target of rapamycin
complex 1; the latter suppresses PINK1 expression at the transcriptional level. During the 20th century, cultures in East Asia and sub-Sahara Africa
consuming quasi-vegan diets were found to be at notably decreased risk of PD compared with the USA or Europe. It is proposed that such diets may
provide protection from PD by boosting Parkin and PINK1 expression in the SN. Other measures that might be expected to upregulate protective
mitophagy include supplemental N-acetylcysteine (precursor for hydrogen sulfide) and a diet rich in spermidine—a polyamine notably high in
corn. Adv Nutr 2021;12:355–362.
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Introduction
Parkinson’s disease in a nutshell
The second most common neurodegenerative disorder fol-
lowing Alzheimer’s disease, Parkinson’s disease (PD), affects
1–2 per 1000 of the population; its prevalence increases
with age, affecting ∼1% of the population aged above
60 y (1). Males are more often affected than females, with
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a ratio of ∼3:2, and it is less prevalent in those of African
or Asian ancestry. PD is classified as a movement disorder
in which the most prominent signs are bradykinesia, tremor,
rigidity, and postural instability. However, nonmotor symp-
toms such as depression, anxiety, hyposmia, sleep disorders,
cognitive impairments, and constipation are increasingly
gaining attention, and are now included among the clinical
diagnostic supportive criteria (2). They can typically precede
the motoric dysfunctions, sometimes by several years, but the
neuroanatomical pathways responsible for these symptoms
remain to be elucidated (3).

Pathophysiologically, PD is characterized by disruptions
to protein folding attributable to various factors such as mu-
tations, errors in transcription/translation, yet-unidentified
environmental factors, or age-related decline, which leads to
failures in protein quality control (proteostasis) in susceptible
dopaminergic neurons (4). This results in aggregation of
misfolded proteins and their organization into larger de-
posited structures—a hallmark process in neurodegenerative
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conditions in general and in PD in particular. PD is charac-
terized by the presence in the substantia nigra (SN) of Lewy
bodies (LBs), protein aggregates whose primary constituent
is misfolded α-synuclein (ASN), a protein of 140 amino acids.
The accumulation of these protease-resistant ASN-rich LBs is
associated with a marked loss in dopaminergic neurons of the
SN, leading to reduced facilitation of voluntary movements,
manifested as movement abnormality.

Several susceptibility genes and environmental factors are
associated with increased risk of PD. In an umbrella review
of meta-analyses examining environmental influences on
PD risk, the only clearly established associations were with
constipation and physical activity (5). Notably, many other
factors showed suggestive links, including microbial or viral
infections (6–8) and nutritional deficiencies (9). Recently,
food-based strategies for preventing or controlling PD have
been suggested, such as ingestion of phospholipid membrane
precursors and microbiota-directed therapy (10). Vegetarian
or vegan diets have been linked to decreased risk of numerous
chronic conditions, including ischemic heart disease, cardio-
vascular disease, obesity, hyperlipidemia, diabetes, metabolic
syndrome, diverticular disease, cancer, and eye cataract (11–
14). However, the possible impact of such diets on PD risk
has so far received minimal attention.

Quasi-vegan diet
Quasi-vegan diets have also been referred to as flexitarian,
meat-reduced, semi- or demi- or partial vegetarian and
reducetarian diets (15, 16). These terms are often used inter-
changeably in the nutritional, clinical, or scientific literature.
Quasi-vegan diets refer to diets that, although primarily
plant-based, may include the occasional consumption of
poultry, fish, eggs, and dairy products—but typically avoid
red meat. The main menu of quasi-vegans includes vegeta-
bles, fruits, whole grains, legumes, seeds, nuts, eggs, and
dairy foods, with occasional poultry and fish (17). The people
who avoid animal products other than fish are called pesco-
vegetarians or pescatarians. Lacto-ovo-vegetarian diets allow
the consumption of dairy products and eggs but avoid
flesh foods. The reasons that people adopt a quasi-vegan
diet include purported health benefits, religious convic-
tions (Hinduism, Buddhism, and Jainism), animal welfare
concerns prompted by inhumane housing and slaughtering
of animals, ecological concerns owing to the high carbon
footprint and extravagant use of limited resources associated
with meat production, and household budgetary concerns
reflecting the relatively high cost of meat. Traditional diets
in some less-wealthy societies have been quasi-vegan simply
owing to the relatively high cost of animal rearing.

Since meat is a rich source of proteins, quasi-vegan
consumers need to take into consideration their daily protein
intake, to ensure that they fulfill the RDA of 0.8 g of protein
per kilogram of weight (18). For those quasi-vegetarians who
avoid meat or fish, adequate protein intakes (10–35% of total
daily calories) can be achieved from numerous sources: green
peas, chickpeas, nuts, beans, quinoa, grains, tempeh and tofu,
leafy greens, sunflower, sesame and poppy seeds, eggs, milk,

and dairy products. Fruits, alcoholic beverages, added oils,
and refined sugars and starches are very low in protein, and
should not be the predominant components of a quasi-vegan
diet. Those eating wholly or primarily plant-based diets need
to supplement with vitamin B-12 and might also be well
advised to supplement with the long-chain ω-3 fatty acids
found in marine fish.

In 2001, McCarty, making note of pertinent ecologic
epidemiology, suggested that the consumption of a quasi-
vegan diet might help to prevent or control PD by slowing
the loss of dopaminergic neurons, and might aid the efficacy
of L-dopa therapy by minimizing the impact of variations
of plasma amino acid concentrations on the blood-brain
barrier transport of L-dopa (19). Notably, the impacts of
quasi-vegan diets on neurodegenerative disease in general,
and PD in particular, have received minimal consideration.
As summarized below, some geoepidemiological data points
to a notably lower age-adjusted risk of PD in societies in
East Asia and sub-Sahara Africa whose traditional diets are
quasi-vegan (20, 21). In the present communication, we are
proposing a mechanism whereby the long-term consumption
of quasi-vegan diets might indeed lessen PD risk.

Mitochondrial dysfunction in PD
Despite the unidentified etiology of sporadic PD, the crucial
pathophysiological place of mitochondrial dysfunction in
this disorder is well established and was recently summa-
rized (22). This is 1 of 3 major cellular pathways that
are affected in PD, the other 2 being proteostasis and
oxidative/nitroxidative stress; but all 3 are interconnected,
reinforcing each other in multiple ways (23). Several en-
dogenous and exogenous factors can inhibit mitochondrial
functional integrity: heavy metals, agricultural pesticides and
herbicides, paraquat, rotenone, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, high concentrations of nitric oxide, the
dopamine metabolite aminochrome, and others have also
been reported. With respect to familial PD, this has been
linked to genetic polymorphisms of a number of genes cod-
ing for proteins that influence mitochondrial structure and
function. These genes include ATP13A2, PINK1, CHCHD2,
LRRK2, SNCA, GBA and also Parkin, a key focus of this
review (24).

Polymerized ASN, the hallmark of PD, induces mitochon-
drial dysfunction. By binding to mitochondrial outer mem-
brane proteins such as voltage-dependent anion-selective
channel 1 (VDAC1), translocase of outer membrane (TOM)
40 and TOM20, it mediates mitochondrial dysfunction
(25). Oxidative stress is tightly related to PD mitochon-
drial dysfunction. The accumulation of unfolded ASN in
mitochondria inhibits complex I activity, thereby driving
mitochondrial reactive oxygen species production (26). The
accumulation of iron within the SN enhances oxidative stress
and promotes local ASN aggregation, thereby exacerbating
mitochondrial dysfunction (27).

The mitochondria are extremely dynamic intracellu-
lar organelles; a proper balance between mitochondrial
biogenesis and mitophagy ensures that cells have adequate

356 McCarty and Lerner



numbers of functionally efficient mitochondria. The failure
of mitochondrial quality control mechanisms is an important
contribution to PD development. Dysfunction of the mito-
chondrial electron transport chain plays a central role in the
pathogenesis of PD and is associated with oxidative stress and
alterations to the mitochondrial genome (22).

The role of impaired mitophagy in the genesis of PD
deserves some emphasis. Malfunctions of Parkin that are
inherited (in some familial PD), or acquired, result in
excessive expression of Drp1, which when phosphorylated
and translocated to mitochondria, catalyzes mitochondrial
fission (28). Excessive concentrations of nitric oxide can
cause nitrosylation of Parkin, which suppresses its ubiquitin
ligase activity, boosting Drp1 concentrations, and resulting
in mitochondrial hyperfragmentation (29). It seems that
all of the above PD-associated mitochondrial abnormalities
interact and are crossconnected, hence, establishing the
pathogenic basis of PD synucleinopathy.

Parkin Protects against PD by Preserving
Efficient Mitochondrial Function
Individuals who are homozygous for loss of function of
the E3 ubiquitin ligase Parkin develop early-onset PD (30,
31). This may reflect a key role for Parkin in promoting
mitophagy of depolarized mitochondria, and in stimulating
mitochondrial biogenesis (32, 33). PINK1 binds to the outer
membrane of depolarized mitochondria and recruits Parkin,
which promotes proteasomal degradation of outer mem-
brane proteins that tether mitochondria to other structures,
and mark the outer membrane with polyubiquitin chains
that promote incorporation of mitochondria into developing
autophagosomes (32). Concurrently, Parkin promotes mito-
chondrial biogenesis by inducing proteasomal degradation
of PARIS, a protein that represses the transcription of
PGC1α, a key driver of mitochondrial biogenesis (34).
Nitrosylation of Parkin suppresses its activity, whereas per-
sulfidation boosts it—phenomena thought to contribute to
the pathogenic role of excess nitric oxide, and the protective
role of hydrogen sulfide (H2S), respectively, in PD (35, 36).
The maintenance of efficient mitochondrial bioenergetics
is highly important to dopaminergic neurons in the SN,
as their long, highly arborized axons make over a million
synaptic connections; maintaining the proper function of
these connections imposes a heavy energy burden that can
only be met by rapid mitochondrial ATP generation (37). It is
notable that mutations of other proteins required for efficient
mitophagy—such as PINK1 and LRRK2—have likewise been
linked to early-onset PD (33).

The overexpression of Parkin in the SN via lentiviral
vectors protects mice from PD induced with 6-hydroxy-
dopamine, MTPT, or mutant ASN (38–40). This suggests
that more clinically practical measures for enhancing striatal
Parkin expression might aid prevention or control of PD. The
ATF4 transcription factor has been shown to promote tran-
scription of the Parkin gene (41, 42). The protein expression
of ATF4 is increased when, under certain stress conditions,
eIF2α kinase is activated, leading to phosphorylation of

eIF2α that selectively boosts translation of ATF4 mRNA (43).
Intriguingly, drugs that amplify the activation of this kinase—
salubrinal and guanabenz—have been shown to be protective
in rodent models of PD (44, 45).

Parkin Expression Can be Boosted by Dietary
Restriction of Essential Amino Acids
GCN2 is a kinase that very selectively phosphorylates and
thereby activates eIF2α kinase (46). GCN2, in turn, functions
as a detector of essential amino acid deficiency; uncharged
tRNAs that accumulate when cellular concentrations of
1 or more essential amino acids are low can bind to and
directly activate GCN2 (46–48). Protein-restricted diets in
mice lead to an increase in hepatic eIF2α phosphorylation
and a marked increase in hepatic production of fibroblast
growth factor-21 (FGF21), whose transcription is driven by
ATF4; this effect is absent in GCN2 knockout mice (49).
Upregulation of FGF21, by reducing the responsiveness of
hepatocytes to growth hormone, may be responsible for the
decrease in hepatic IGF-I production associated with low-
protein diets (50, 51). Protein-restricted diets in humans have
likewise been shown to increase plasma FGF21 and decrease
plasma insulin-like growth factor (IGF-I) (49, 51). A recent
cross-sectional study found that plasma concentrations of
FGF21 tend to be about 3-fold higher in vegans than in
omnivores (P < 0.01) (52). Vegan diets of modest protein
content tend to be relatively low in certain essential amino
acids, notably methionine and lysine (53, 54). Furthermore,
vegans are known to have relatively low plasma IGF-I
concentrations (54, 55).

Low-Protein Diets Also Promote Efficient
Mitophagy by Downregulating Mammalian
Target of Rapamycin Complex 1 Activity
Amino acid status regulates not only GCN2 activity, but
also that of the crucial regulatory kinase mammalian target
of rapamycin complex 1 (mTORC1). Increased cellular
concentrations of leucine, arginine, and of the methionine
metabolite S-adenosylmethionine boost mTORC1 activity by
suppressing mechanisms that turn off this activity (56–62).
Crucially, mTORC1 acts to inhibit the expression of PINK1
at the transcriptional level; this effect might be mediated,
in part, by transcriptional repression of FOXO1a, which
binds to the promoter of the PINK1 gene and promotes
its transcription (63–65). Since PINK1 is required for the
recruitment of Parkin to damaged depolarized mitochondria,
mTORC1 functions to suppress mitophagy (63–65). Con-
versely, low-protein diets can be expected to boost mitophagy
by the concurrent activation of GCN2 and deactivation of
mTORC1. As might be expected, certain genetic variants of
PINK1 have been linked to autosomal recessive early-onset
PD (66).

Quasi-Vegan Diets Have Been Associated with
Lower Parkinson’s Risk
During the 20th century, epidemiological analyses found that
age-adjusted PD rates in Europe and the Americas tended
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to relatively uniform, whereas those in sub-Sahara Africa,
rural China, and Japan tended to be notably lower (18, 20,
21). Investigations conducted by Schoenberg and colleagues
comparing the age-adjusted prevalence of PD in the USA,
rural China, and Nigeria found that this prevalence was
notably lower in the latter 2 (67). Although more recent
studies suggest that the prevalence of PD in black Americans
is lower than that of whites or Asians, Schoenberg’s door-to-
door community-based studies, using identical assessment
methods, found that age-adjusted PD prevalence was 5 times
higher among blacks in Mississippi than those in Nigeria (67–
70). These observations suggest that environmental factors
may be largely responsible for the observed discrepancies
in risk. Although black Americans often carry genes of
non-African origin, it seems unlikely that this alone could
account for disparities in PD risk of this magnitude. It is
notable that the traditional diets of the low-risk areas tend
to be relatively low in protein and are quasi-vegan. We,
therefore, suggest that the relatively low risk of PD observed
in sub-Saharan Africanand East Asian cultures may reflect,
in part, a modest intake of protein and essential amino acids.
This could be expected to decrease PD risk by upregulating
the striatal production of Parkin via increased GCN2 and
ATF4 activity, and by upregulating PINK1 synthesis via
the downregulation of mTORC1 activity—thereby boosting
mitophagy. We do not rule out the possibility that a lower
daily calorie intake, increased physical activity, or other
factors might also contribute to lower PD risk in these
cultures.

Conceivably, vegan diets might also confer protection
from PD owing to a decreased content of fat-soluble
chemical contaminants that tend to accumulate in animal
fat—some of which are potentially toxic to dopaminer-
gic neurons (71–73). Moreover, whole-food plant-based
diets tend to be rich in phytochemicals, many of which
have phase 2-inductive activity, increasing the expression
of various antioxidant enzymes and boosting glutathione
synthesis (71, 74, 75). Prospective epidemiology has linked
increased dietary flavonoid intakes to a lower risk of PD
(75).

The impact of protein restriction on animal models of
PD appears to have received little study. Protein-restricted or
plant-based diets have been studied clinically in short-term
studies as a strategy for improving the response to levodopa
therapy – as postprandial increases in plasma branched-
chain amino acids competitively inhibit the transport of
levodopa through the blood-brain barrier—but not as a
measure for preventing or slowing the progression of PD
(76–78). A handful of anecdotal reports in journals or the
internet are consistent with the possibility that plant-based
diets might slow PD progression (19, 79). It would be of
interest to determine how low-protein diets or diets restricted
in single essential amino acids influence Parkin and PINK1
expression in the striatum of rodents, and whether such diets
might be protective in rodent PD models.

Adjunctive Measures for Upregulating
Mitophagy—Spermidine and Dietary Corn
Upregulation of mitophagy may be viewed as a key strategy
for the prevention of PD. Both autophagy and mitophagy
can be promoted by various measures, which prevent the
lysine acetylation of certain proteins that are key mediators
of autophagy. In particular, agents that prevent or reverse
the activity of the histone acetylase EP300—dubbed “caloric
restriction mimetics”—have been shown to have this effect
(80–85). Of particular interest in this regard is the polyamine
spermidine, which competitively inhibits the binding of
EP300 to its substrate acetyl-CoA (85). Dietary spermidine
is well absorbed, and spermidine-enriched diets have been
shown to promote both autophagy and mitophagy in rats
and other organisms (86–89). Moreover, the administration
of spermidine has been shown to protect rats from rotenone-
induced PD, and nematodes and fruit flies from a Parkin-
sonian syndrome induced by ASN overexpression (90, 91).
The cerebrospinal fluid concentrations of spermidine in PD
patients were found to be lower than those of controls (92).
Commercial spermidine nutraceuticals are not yet available,
but certain foods are relatively rich in this compound.
The food which stands out most in this regard is corn;
a cup (250 g) of canned corn contains about 60 mg of
spermidine (whereas the median daily intake of spermidine
in American postmenopausal women has been estimated
to be ∼10 mg) (93, 94). A search for correlations between
corn consumption and PD risk revealed a Japanese study
in which corn-raising regions in Japan were found to be at
decreased risk of PD (95, 96). Perhaps a vegan diet high
in corn might be of particular merit for PD protection;
the notably low tryptophan and lysine content of the chief
corn protein, zein, may aid GCN2 activation in such diets
(97). Consistent with a role for autophagy/mitophagy in the
promotion of lifespan/health span, dietary spermidine intake
has been found to correlate inversely with total mortality in
a prospective epidemiological investigation (98, 99).

Although it is an amino acid, cysteine may upregulate
mitophagy by serving as a substrate for the production of
H2S (100). Via persulfidation, this boosts the activity of
USP8, a deubiquitinase that aids mitophagy by removing
K6-linked polyubiquitin chains from Parkin; for reasons
that remain unclear, the self-induced polyubiquitination of
Parkin hinders mitophagy (101, 102). Furthermore, as noted
above, persulfidation of Parkin itself boosts its catalytic
activity (36). H2S can also promote both autophagy and
mitophagy by activating AMP-activated kinase (AMPK) via
calmodulin-activated kinase kinase-β ; how H2S activates the
latter has not been determined (103, 104). AMPK promotes
macroautophagy by conferring inhibitory phosphorylation
on mTORC1 as well as activating phosphorylation on
ULK1, a key initial mediator in the initial formation of
autophagosomes (105, 106). Not surprisingly, supplemental
N-acetylcysteine has been found to be protective in rodent
models of PD (107, 108).
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However, increased dietary cysteine also has the po-
tential to decrease mitophagy by diminishing the need
for mitophagy. Cysteine is the rate-limiting substrate for
glutathione synthesis; intramitochondrial glutathione pro-
vides antioxidant protection for the mitochondrial respi-
ratory chain, and hence may tend to prevent the decline
in mitochondrial potential that triggers mitophagy (109).
Glutathione concentrations in the SN of PD patients have
been found to be low relative to control concentrations (110,
111). Especially in the elderly, in whom tissue concentrations
of both cysteine and glutathione tend to decline, supple-
mentation of low-protein diets with N-acetylcysteine may be
advisable, for the promotion of both glutathione and H2S
synthesis (112, 113).

Broader Health Ramifications of Mitophagy
Upregulation
A more general thesis that might be derived from these
considerations is that vegan diets of modest protein content
may help to minimize oxidative stress of mitochondrial
origin by upregulating mitophagy. Hence, such diets may be
protective in the range of disorders in which mitochondrial
oxidative stress plays a pathogenic role—PD being a notable
case in point. Intriguingly, Parkin can protect the heart from
ischemia-reperfusion damage by promoting ubiquitination
and degradation of cyclophilin-D; the latter is required
for the formation of mitochondrial permeability transition
pores, which precipitates cardiomyocyte necrosis during
cardiac ischemia-reperfusion injury (114). Moreover, stud-
ies employing the phosphatase inhibitor salubrinal, which
upregulates the phosphorylation of eIF2α, find that this
drug provides protection in cardiac and cerebral ischemia-
reperfusion, cardiac hypertrophy, hypoxic pulmonary hyper-
tension, and brain trauma (115–123); the extent to which
ATF4 and/or Parkin contribute to these benefits remains
to be evaluated. In any case, these results suggest that
moderately protein vegan diets, via activation of GCN2 and
consequent phosphorylation of eIF2α, may be protective in
these syndromes.

ATF4 also promotes transcription of the gene coding
for nrf2, the mediator of phase 2 induction of cyto-
protective/antioxidant enzymes—suggesting an additional
mechanism whereby low-protein vegan diets may aid control
of oxidative stress (124, 125). Indeed, a low-protein diet has
been shown to increase the expression of nrf2 mRNA in
the monocytes of patients with chronic renal disease (126).
This effect could be expected to interact synergistically with
the administration of clinically effective phase 2-inductive
nutraceuticals, such as lipoic or ferulic acids (127, 128).

Conclusions
Efficient mitochondrial function is of great importance for
the proper function and survival of dopaminergic neurons
of the SN, which, owing to their vastly ramified neural
connections, have an extremely high requirement for mi-
tochondrially generated ATP. A failure of well-coordinated
mitophagy and compensatory mitochondrial biogenesis in

these neurons during the evolution of PD results in the
accumulation of mitochondria that are dysfunctional, hy-
perfragmented, and a major source of oxidative stress. The
proteins Parkin and PINK1 are key mediators of mitophagy
and mitochondrial biogenesis, and upregulation of their
expression is notably protective in rodent models of PD.
Diets relatively low in protein and certain essential amino
acids tend to boost the activity of GCN2—leading to
an ATF4-dependent transcriptional upregulation of Parkin
expression—and a decline in mTORC1 activity, resulting in
enhanced transcription of the gene coding for PINK1. These
phenomena may rationalize, at least in part, epidemiology
pointing to relatively low age-adjusted risk of PD in African
and East Asian populations whose traditional diets have been
quasi-vegan. The influence of quantity and quality of dietary
protein on SN expression of Parkin/PINK1 in rodents, and on
PD risk in rodent models of PD, should be examined. Other
dietary measures that upregulate mitophagy/autophagy, such
as increased dietary spermidine, may also have potential
for PD prevention; further epidemiology should evaluate a
possible correlation between dietary spermidine content—or
corn consumption—and PD risk.
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