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ABSTRACT

Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic
inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like
peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1
(PI3K/Akt/mTORC1) signaling in enterocytes. 5′-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also
protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions
can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells—effective pre/probiotics, glycine, and
glutamine—as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators—notably berberine
and the butyric acid produced by health-promoting microflora—are also beneficial in this regard, as are soy isoflavones, which function as selective
agonists for ERβ . The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures,
including phycocyanobilin, phase 2–inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional
foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function. Adv
Nutr 2021;12:316–324.
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Introduction
The enterocyte tight junction
The intestinal epithelial monolayer represents the body’s
largest interface with the external environment. It serves
dual opposing functions. It selectively absorbs needed nu-
trients while preventing absorption of detrimental luminal
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components, including antigenic peptides, proinflamma-
tory factors, oxidants, toxins, bacteria, yeasts, parasites,
microbial components or their secreted mobilome, and
various allergens and carcinogens (1). Adjacent intestinal
enterocytes form tight junctions that are an integral part
of the physical intestinal barrier, regulating the paracellular
traffic. The tight junctions represent evolutionarily well-
conserved sealing complexes between adjacent enterocytes.
Also called occluding junctions or zonulae occludentes, they
are composed of a branching network of sealing strands,
acting independently from each other. Each one of them is
composed of a row of transmembrane proteins embedded in
both adjacent enterocytes’ plasma membranes, with extracel-
lular extensions joining one another. There are ≥40 different
proteins in the tight junction complex, each containing both
cytoplasmic domains and transmembranous elongations.
The 3 major ones are occludin, claudins, and junction
adhesion molecule proteins. The parallel strands are attached
to zona occludens-1 (ZO-1), located in the enterocyte’s
cytoplasm, which anchors the strands to the actin component
of the cytoskeleton. Thus, tight junctions are fully integrated
with the cytoskeletons of adjacent enterocytic cells.
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Not surprisingly, the Hippocratic quote “all disease begins
in the gut” is proving to be true. Two millennia later, it
appears that dysfunction of the tight junctions is associated
with numerous pathological conditions. Gastrointestinal
infections, allergic, autoimmune, cancerous, and metabolic
diseases have been linked to increased intestinal permeability
(1–5). Even the elderly’s senescent gut is leaky (6). The
term “leaky gut” refers to the failure of tight junctions
to execute their multiple homeostatic functions. Loss or
impairment of intestinal barrier function owing to a failure
to form or maintain tight junctions can lead to infections, an
increase in systemic and hepatic inflammation reflecting LPS
absorption, and induction of food allergies or autoimmune
disorders. Hence, it is pertinent to examine what safe
nutraceutical measures might be useful for maintaining an
effective intestinal barrier.

Regulation of intestinal tight junctions
Formation of tight junctions requires synthesis and translo-
cation to the enterocyte apical membrane of a range of
proteins, including claudins, occludin, junction adhesion
molecules, and ZO-1, which integrate to form junctional
complexes that, as noted, form tight links to neighboring
enterocytes and are linked via actin to the cell’s actomyosin
cytoskeleton. Signaling mechanisms that can promote tight
junction formation and maintenance have been character-
ized, though the precise details of this induction require
much further clarification. Specifically, as discussed be-
low, the phosphoinositide 3-kinase/Akt/mammalian target
of rapamycin complex 1 (PI3K/Akt/mTORC1) pathway,
5′-AMP-activated protein kinase (AMPK), and estrogen
receptor-β (ERβ) function to promote tight junction for-
mation. In contrast, inflammatory circumstances that ac-
tivate the mitogen-activated protein kinases (MAPKs)—
c-Jun N-terminal kinase (JNK), p38 MAP kinase (p38),
and extracellular signal-related kinases 1 and 2 (ERK1/2)—
and cellular Src (c-Src) tend to promote the disaggregation
of tight junctions. Hence, nutraceuticals that promote the
activity of PI3K, AMPK, or ERβ might be expected to aid
intestinal barrier function whereas, when enterocyte MAPKs
are activated in pathological conditions, nutraceuticals that
inhibit MAPK activation might likewise have a favorable
impact in this regard.

Trophic Impact of Glucagon-Like-Peptide 2 on
Enterocytes is Mediated by Insulin-Like Growth
Factor I and PI3K/Akt/mTORC1 Signaling
A key mediator of protective PI3K/Akt/mTORC1 activation
in enterocytes is the hormone glucagon-like-peptide 2
(GLP-2), produced in response to various signals by special
neuroendocrine L cells in the intestinal mucosa (7–9). GLP-
2 does not act directly on enterocytes, but rather acts
on intestinal subepithelial fibroblasts, which respond by
secreting insulin-like growth factor I (IGF-I) (10). The latter
acts on enterocytes to stimulate the PI3K/Akt/mTORC1
pathway, thereby promoting enterocyte proliferation, inhibit-
ing enterocyte apoptosis, and supporting the formation and

maintenance of tight junctions (7, 11–14). GLP-2 fails to exert
these effects on enterocytes that lack IGF-I receptors, so IGF-
I is an essential mediator of the trophic impact of GLP-2 on
intestinal epithelium (12). The PI3K/Akt/mTORC1signaling
pathway triggered by IGF-I activity on enterocytes can
induce expression at the mRNA and protein level of a range
of proteins required for tight junction formation, including
occludin, claudins, and ZO-1 (15–20). Inhibitors of any of
these 3 kinases block IGF-I–mediated induction of these
proteins.

Pre/Probiotics, Glycine, and Glutamine Can
Promote GLP-2 Secretion
Agents that stimulate L-cell secretion of GLP-2 appear to
be identical to those that stimulate secretion of the better-
studied GLP-1, because these 2 hormones are stored in
the same secretory granules (21). The best-known stim-
ulants of L-cell secretion are SCFAs, primarily butyrate
and propionate, produced by healthful intestinal flora from
inefficiently absorbed carbohydrate or soluble fiber that
reaches the proximal intestine or colon. These SCFAs activate
a Gq-coupled receptor expressed by L cells, free fatty acid
receptor 2 (FFAR2), to provoke a release of endoplasmic
reticulum calcium to the cytoplasm, increasing cytoplasmic
free calcium; this in turn induces secretory granules to merge
with plasma membranes, provoking release of GLP-1, -2, and
other hormones that promote satiety, slow gastric emptying,
and exert protective trophic effects on pancreatic β cells (22,
23). Probiotics are nutraceutical bacterial cultures capable
of promoting a healthful intestinal microflora proficient
at generating SCFAs or lactic acid; the latter is used by
some bacteria as substrate for production of SCFAs (24–28).
Prebiotics are poorly digested carbohydrates, such as inulin,
that can reach the proximal intestine or colon, where they
can serve as substrate for SCFA or lactic acid generation.
Diets rich in soluble fiber or resistant starch can function as
prebiotics.

The amino acids glutamine and glycine also can function
as GLP-2 secretagogues. Glycine activates a chloride channel
in L cells that is strychnine-inhibitable (29). Although this
receptor has a hyperpolarizing impact in many tissues,
L cells concentrate chloride against a gradient; hence, glycine
channel activation in L cells cause chloride to stream
out of these cells, causing a depolarization that induces
calcium uptake through voltage-sensitive calcium channels.
This calcium influx likewise induces secretory granules to
fuse with the plasma membrane, resulting in secretion of
GLP-1 and -2. Because the EC50 for activation of glycine
receptors is similar to plasma glycine concentrations, it
follows that a moderate elevation of plasma glycine achieved
through glycine supplementation could be expected to boost
GLP-2 secretion and thereby promote effective intestinal
barrier function (30, 31). Surprisingly, however, glycine’s
potential to promote intestinal health appears so far to have
received little if any study. When improvement of intestinal
barrier function is desired to counter systemic or hepatic
inflammation, it is pertinent to note that supplemental
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glycine can act via its receptor to exert anti-inflammatory
effects on a range of cell types, and that it also serves as a
substrate for synthesis of the protective cellular antioxidant
glutathione (31, 32).

In contrast, glutamine, which is a key substrate for
enterocyte energy metabolism in addition to acting as a
secretagogue for GLP-2, is well known to aid intestinal health
(33, 34). Indeed, it is commonly employed as an adjuvant
to cancer chemotherapy or radiotherapy to minimize their
toxic impact on the intestinal tract (35). The mechanism
whereby glutamine evokes secretory granule release in L cells
involves both an influx of calcium and a boost in cAMP
concentrations (35, 36). Uptake of glutamine by L cells is
required for this response, which is not mediated by Gq and
is still inadequately characterized.

Berberine and SCFA-Induced AMPK Activity
Promotes Tight Junction Formation
The favorable impact of AMPK activation on intestinal
barrier function is well established, and is mediated at least
in part by increased expression of caudal type homeobox 2
(Cdx2), a master transcription factor driving differentiation
of intestinal enterocytes (37–40). This increased expression
reflects increased transcription of the CDX2 gene, though
how AMPK promotes this is still unclear. An additional
effect of AMPK favorable to tight junction maintenance is
its ability to confer an inhibitory phosphorylation (Ser815)
on myosin light chain kinase (MLCK) (41). This prevents
the latter from phosphorylating myosin light chain 2 (MLC-
2). Tight junctions are linked to actomyosin rings that form
part of the cellular cytoskeleton; activating phosphorylation
of MLC-2 causes a contraction of these rings, which can cause
dissociation of tight junctions (42). Hence, AMPK activity
helps to maintain cellular actomyosin in a relatively relaxed
condition, favorable to the maintenance of tight junctions.
Modulation of the contractile state of actomyosin rings is
a key mechanism whereby various measures promote the
maintenance or the dissociation of tight junctions (42).

The diabetic drug metformin is believed to exert its
favorable impact on glycemic control via activation of
AMPK (43–45). The nutraceutical berberine, a compound
found in various Chinese medicinal herbs, can likewise
activate AMPK and is widely employed for diabetes man-
agement in China (46–48). Not surprisingly, both met-
formin and berberine are reported to have favorable effects
on the intestinal barrier and tight junction maintenance
(49–54).

The SCFA butyrate likewise can activate AMPK in
enterocytes (55). This effect is mediated by store-operated
calcium entry (how butyrate provokes this remains unclear);
this increase in cytosolic calcium activates calmodulin-
activated kinase kinase β , which then confers an activating
phosphorylation on AMPK (55). Hence, pre/probiotics and
fiber-rich diets can also help to maintain the intesti-
nal barrier via butyrate-mediated activation of AMPK in
enterocytes.

Soy Isoflavones Aid Intestinal Barrier Function
Via ERβ
Colonic epithelium expresses the β but not the α isoform
of ER. This is suspected to mediate the favorable impact
of postmenopausal hormone replacement on colorectal
cancer risk (56, 57). ERβ activity also promotes an effective
intestinal barrier and aids tight junction formation (58).
Intestinal ERβ expression tends to be decreased in patients
with inflammatory bowel disease, and in rodent models of
this disorder. Exposure of enterocyte cell cultures to estrogen
or to specific agonists for ERβ has been reported to boost
epithelial barrier function in vitro—an effect that is blocked
by coincubation with an estrogen receptor antagonist (59–
61). Conversely, ovariectomy adversely affects intestinal
barrier function (62). How ERβ achieves this protective
effect remains unclear, but increased expression of occludin
at the mRNA and protein level plays a part in this effect
(59, 61).

The favorable impact of ERβ activity on intestinal
permeability is not solely of interest to women, insofar as
soy isoflavones, in free unconjugated plasma concentrations
achievable with feasible intakes of dietary soy products
or soy isoflavone supplements, can stimulate ERβ activity
while minimally impacting ERα (63). Genistein acts directly
as an ERβ agonist, whereas daidzein can be converted
by the gut bacteria of some individuals to S-equol, a
compound that likewise acts as a selective ERβ agonist
at physiological concentrations (64–66). Consistent with
these findings, soy isoflavone administration has been found
to promote a healthy intestinal barrier in rodent studies
(67, 68).

Antioxidants Can Aid Tight Junction
Maintenance by Downregulating MAPK Activity
In many cell culture or rodent models of intestinal bar-
rier breakdown, activation of MAPKs—JNK2, p38, and/or
ERK1/2—has been shown to play a mediating role; the
tyrosine kinase c-Src also disrupts tight junctions (69–
79). p38 and ERK1/2 do so, in part, by increasing ex-
pression of MLCK; p38 accomplishes this by conferring
an activating phosphorylation on the transcription factor
activating transcription factor 2 (ATF2), whereas ERK1/2
does so by phosphorylating and activating the transcrip-
tion factor ETS-like 1 (Elk-1) (80, 81). In addition, these
kinases suppress the activity of myosin light chain phos-
phatase, further upregulating activating phosphorylation of
MLC-2 (82).

The impact of JNK2 could largely reflect its ability to
enable autoactivation of c-Src by conferring a threonine
phosphorylation on it (69). c-Src activity is capable of break-
ing down tight junctions through tyrosine phosphorylation
of occludin and ZO-1; these phosphorylations prevent the
association of occludin and ZO-1, such that tight junctions
cannot form or be maintained (83).

Oxidant stress impedes tight junction formation, and this
could in large part reflect upregulated activity of MAPKs and
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FIGURE 1 Nutraceutical strategies for promoting tight junction formation in enterocytes. Nutraceuticals are highlighted in bold. AMPK,
5′-AMP-activated protein kinase; ERK, extracellular signal-regulated kinase; ERβ , estrogen receptor-β ; GLP-2, glucagon-like-peptide-2;
HO-1, heme oxygenase-1; IGF-I, insulin-like growth factor I; JNK, c-Jun N-terminal kinase; NAC, N-acetylcysteine; Nrf2, nuclear factor
erythroid 2-related factor 2; p38, p38 MAP kinase; PCB, phycocyanobilin; PI3/Akt/mTORC1, phosphoinositde 3-kinase/Akt/mammalian
target of rapamycin complex 1.

c-Src (84–89). Hydrogen peroxide reversibly inhibits dual-
specificity phosphatases that deactivate the MAPKs (90–93).
It can also promote activation of JNK and p38 MAPKs by
oxidizing thioredoxin and thereby dis-inhibiting the kinase
apoptosis signal-regulating kinase 1 (ASK1), which functions
as a MAPKKK upstream from both JNK and p38 (94–
97). Hydrogen peroxide can also assist the formation of
signaling complexes upstream from JNK/p38 activation in
certain proinflammatory signaling pathways (98, 99). And
hydrogen peroxide also promotes c-Src activation, in part via
JNK2 activation as described above (100–103). Hence, nu-
traceuticals that can suppress oxidant production, promote
catabolism of hydrogen peroxide, or reverse the sulfhydryl-
oxidizing effects of hydrogen peroxide on signaling proteins,
have potential for supporting intestinal barrier function in
the context of inflammation.

The oxidant stress that can impair tight junction for-
mation and maintenance in enterocytes often stems from
NAD(P)H oxidase complexes (89, 104–106). The uncon-
jugated bilirubin generated by heme oxygenase–mediated
catabolism of heme functions as a direct inhibitor of
such complexes (107–111). Unconjugated bilirubin has been
found to improve intestinal barrier function in a rat model
of ulcerative colitis, and to alleviate the loss of barrier

functions associated with bile duct ligation (112, 113).
The biliverdin metabolite phycocyanobilin (PCB), which
within cells is reduced by biliverdin reductase activity to
the bilirubin homolog phycocyanorubin, can mimic the
inhibitory impact of bilirubin on NAD(P)H oxidase activity
(114–116). PCB functions as a light-harvesting chromophore
in cyanobacteria (such as the food and nutraceutical spir-
ulina) and certain blue-green algae; its ability to inhibit
NAD(P)H oxidase activity could rationalize many of the
antioxidant/anti-inflammatory effects of spirulina ingestion
(or of phycocyanin, the spirulina protein to which PCB is
covalently bound) in rodent studies (114, 117–119). Hence,
spirulina or PCB-enriched spirulina extracts could have
clinical potential for supporting intestinal barrier function
in certain inflammatory circumstances in which NAD(P)H
oxidase is activated in enterocytes. Spirulina feeding has been
reported to help preserve the intestinal barrier in rats fed a
high-fat diet (120).

Clinically useful phase 2–inducing nutraceuticals, such
as lipoic or ferulic acids, can promote induction of heme
oxygenase-1, and hence inhibit NAD(P)H oxidase activity
via intracellular bilirubin generation (121–125). Moreover,
they can also induce peroxidases, which catabolize hydrogen
peroxide, induce thioredoxin and thioredoxin reductase,
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which function to suppress ASK1 activation, and also help
to reverse the hydrogen peroxide–induced oxidation of pro-
tein sulfhydryl groups via induction of γ -glutamylcysteine
synthase, rate-limiting for glutathione synthesis (126–128).
Concurrent supplementation with N-acetylcysteine (NAC)
can aid the latter mechanism, because cysteine is a rate-
limiting substrate for glutathione synthesis (129). Consistent
with these considerations, lipoic and ferulic acids as well
as NAC have shown favorable effects on intestinal barrier
function in experimental studies (130–136). With respect to
ferulic acid, it has a poorly understood anti-inflammatory
effect that might enable it to suppress JNK/p38 MAPK
activity in some circumstances (137–139). Hence, it is
proposed that PCB (or spirulina), phase 2 inducers, and
NAC can collaborate in suppressing the adverse impact of
oxidant stress on tight junction formation and intestinal
permeability.

A Nutraceutical Program for Promoting
Intestinal Barrier Function
Figure 1 depicts suggested mechanisms whereby the nu-
traceuticals glutamine, glycine, berberine, soy isoflavones,
PCB, phase 2 inducers (e.g., lipoic or ferulic acids), NAC,
and pre- and probiotics could be expected to aid tight
junction formation and maintenance in enterocytes, thereby
supporting intestinal barrier function. Functional foods or
complex supplementation programs incorporating several of
these agents can be envisioned as aids to intestinal health.

Conclusions
A failure of intestinal barrier function reflecting inefficient
formation or maintenance of the tight junctions linking ente-
rocytes can lead to unregulated absorption of bacteria, yeast,
parasites, bacterial toxins, and intact proteins or peptides
derived from food or microbes. Such a failure can lead
to infections and systemic and hepatic inflammation, and
is suspected to trigger allergic and autoimmune disorders.
Hence, promoting effective intestinal barrier function is
an important goal for preventive medicine. An analysis of
the enterocyte signaling mechanisms that either promote
or oppose effective tight junction function—notably the
PI3K/Akt/mTORC1 axis, AMPK, ERβ , the MAPKs, and
c-Src—enables us to pinpoint certain nutraceutical and
dietary measures that could be expected to aid intestinal
barrier function. In particular, effective pre- and probiotics,
the amino acids glycine, glutamine, and cysteine (provided as
NAC), the herbal compound berberine, soy isoflavones, the
spirulina antioxidant PCB, and phase 2–inducing nutrients
or phytochemicals such as lipoic acid or ferulic acid, appear
to have practical potential in this regard.

It should also be noted that those measures that protect
the intestinal barrier by boosting L-cell secretion of GLP-2
could also be expected to boost production of GLP-1, and
thereby aid effective β-cell function while acting in multiple
other ways to promote leanness and metabolic, vascular, and
neurological health (140–144).
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