
REVIEW

Comparing the Effects of Docosahexaenoic and
Eicosapentaenoic Acids on Inflammation Markers
Using Pairwise and Network Meta-Analyses of
Randomized Controlled Trials
Cécile Vors,1 Janie Allaire,1 Sonia Blanco Mejia,2,3 Tauseef A Khan,2,3 John L Sievenpiper,2,3,4,5,6 and Benoît Lamarche1

1Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Laval University, Quebec City, Canada; 2Department
of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada; 3Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Risk Factor
Modification Center, St. Michael’s Hospital, Toronto, Canada; 4Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada; 5Division of
Endocrinology and Metabolism, St. Michael’s Hospital, Toronto, Canada; and 6Department of Medicine, Faculty of Medicine, University of Toronto, Toronto,
Canada

ABSTRACT

Recent data from randomized clinical trials (RCTs) suggest that DHA may have stronger anti-inflammatory effects than EPA. This body of evidence has
not yet been quantitatively reviewed. The aim of this study was to compare the effect of DHA and EPA on several markers of systemic inflammation
by pairwise and network meta-analyses of RCTs. MEDLINE, EMBASE, and The Cochrane Library were searched through to September 2019. We
included RCTs of ≥7 d on adults regardless of health status that directly compared the effects of DHA with EPA and RCTs of indirect comparisons,
in which the effects of DHA or EPA were compared individually to a control fatty acid. Differences in circulating concentrations of C-reactive protein
(CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and adiponectin were the primary outcome measures. Data were pooled by pairwise
and network meta-analysis and expressed as mean differences (MDs) with 95% CIs. Heterogeneity was assessed (Cochran Q statistic) and quantified
(I2 statistic) in the pairwise meta-analysis. Inconsistency and transitivity were evaluated in the network meta-analysis. The certainty of evidence
was assessed using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Eligibility criteria were met
by 5 RCTs (N = 411) for the pairwise meta-analysis and 20 RCTs (N = 1231) for the network meta-analysis. In the pairwise meta-analysis, DHA and
EPA had similar effects on plasma CRP [MDDHA versus EPA = 0.14 mg/L (95% CI: –0.57, 0.85); I2 = 61%], IL-6 [MDDHA versus EPA = 0.10 pg/mL (–0.15, 0.34);
I2 = 40%], and TNF-α [MDDHA versus EPA = –0.10 pg/mL (–0.37, 0.18); I2 = 40%]. In the network meta-analysis, the effects of DHA and EPA on plasma
CRP [MDDHA versus EPA = –0.33 mg/L (–0.75, 0.10)], IL-6 [MDDHA versus EPA = 0.09 pg/mL (–0.12, 0.30)], and TNF-α [MDDHA versus EPA = –0.02 pg/mL (–0.25,
0.20)] were also similar. DHA and EPA had similar effects on plasma adiponectin in the network meta-analysis. Results from pairwise and network
meta-analyses suggest that supplementation with either DHA or EPA does not differentially modify systemic markers of subclinical inflammation.
Adv Nutr 2021;12:128–140.
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Introduction
Subclinical or chronic inflammation is now indisputably
recognized as a key factor in the development of atheroscle-
rosis and subsequent cardiovascular disease (CVD) (1–
3). Chronic inflammation is characterized by elevated
blood concentrations of acute-phase proteins and cytokines,
including C-reactive protein (CRP), interleukin-6 (IL-6),
and tumor necrosis factor-alpha (TNF-α), and by low
concentrations of plasma anti-inflammatory markers such
as adiponectin (4–6). Systemic inflammation can be atten-
uated through the intake of specific nutrients and foods

(7). Among those, long-chain ω-3 PUFAs (LCn–3PUFAs),
mainly EPA and DHA, have raised tremendous interest
for their purported anti-inflammatory effects. DHA and
EPA are naturally present in most seafood, especially fatty
fish, but their cardiometabolic effects have been mainly
demonstrated when consumed in high quantity as sup-
plements (7, 8). Fish oil but also krill and algal oils are
commonly used in many ω-3 fatty acid supplements. Most
randomized controlled trials (RCTs) so far have used a mix
of DHA and EPA in various forms and proportions, as
DHA and EPA occur concomitantly and naturally in food
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and dietary supplements. A meta-analysis of these RCTs
demonstrated the anti-inflammatory effect of LCn–3PUFA
supplementation as evidenced by significant reductions in
plasma CRP, IL-6, and TNF-α concentrations compared with
the control conditions (9). However, several RCTs have tested
the hypothesis that individual LCn–3PUFAs are not equally
effective in modulating markers of inflammation (10–14).
Accordingly, there is increasing evidence from individual
trials that DHA and EPA have distinct effects on systemic
inflammation, as recently reviewed (15). Specifically, the
review indicated that despite greater beneficial effects of DHA
compared with EPA on triglycerides, blood pressure, heart
rate, and vascular function, the differential effect of EPA and
DHA on inflammation markers remained inconclusive. Such
data have not yet formed the basis of a systematic review
and meta-analysis, which are considered the gold standard
of evidence, to inform dietary guidelines. We thus conducted
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a systematic review and meta-analysis of available RCTs to
assess and compare the individual effects of DHA and EPA on
surrogate markers of systemic inflammation, namely plasma
CRP, IL-6, TNF-α, and adiponectin concentrations. As data
from studies having directly compared DHA and EPA are
limited, the “network meta-analysis” approach (16, 17) was
also used to include both direct and indirect comparisons in
the meta-analysis. Thus, the pairwise meta-analysis included
RCTs that compared directly the effects of DHA and EPA
(direct comparisons) on inflammation, whereas the network
meta-analysis included all direct comparison RCTs as well
as RCTs that assessed the effects of DHA or EPA individ-
ually compared with a control oil or fatty acid (indirect
comparisons). To the best of our knowledge, no study has
yet compared the independent effect of DHA and EPA on
systemic inflammation, using both pairwise and network
meta-analysis methodologies. This analysis aimed to answer
the following question: do DHA and EPA have similar effects
on systemic markers of low-grade inflammation?

Methods
Protocol and registration
The present systematic review and meta-analyses have been
conducted according to the Cochrane Handbook for System-
atic Reviews of Interventions (18). Results are reported in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) and The PRISMA
Extension Statement for conducting Network Meta-analyses
(19). The protocol was registered at clinicaltrials.gov as
NCT03520556 but not with the International Prospective
Register of Systematic Reviews (PROSPERO) because the
analysis was proposed and undertaken before 1 July, 2018.

Search strategy and data sources
MEDLINE, EMBASE, and The Cochrane Library were
searched until 27 September, 2019 using the strategy pre-
sented in Supplementary Table 1. Manual searches based on
references of selected studies and reviews were performed to
supplement the electronic search.

Eligibility criteria and study selection
Studies were included in pairwise and/or network meta-
analyses if they met all the following criteria: 1) RCTs that
directly compared the effects of DHA to those of EPA, or
assessed the effects of DHA or EPA individually compared
with a suitable control (i.e., fatty acids other than EPA and
DHA as control); 2) DHA or EPA supplementation with
a minimum proportion of 80% for the LCn–3PUFAs; 3)
minimum intervention period of 7 d; 4) RCTs in adults
(aged 19 y and older); 5) outcomes including plasma
concentration of CRP, IL-6, TNF-α, and adiponectin. The
following studies were excluded: 1) RCTs including neonates,
children, or adolescents; 2) RCTs of acute postprandial effects
only; 3) RCTs based on enteral/parenteral nutrition; 4) co-
intervention (e.g., drug, dietary supplement, diet, or exercise)
not applied in all intervention arms. Unpublished trials
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and literature published in languages other than English or
French were not considered.

Two authors (CV, JA) independently screened titles and
abstracts of studies retrieved using the search strategy to
identify the ones that met the inclusion criteria outlined
above. The same authors (CV, JA) independently assessed the
full text of preselected studies for eligibility. Disagreements
were resolved by consensus and by involvement of another
author (BL) if required.

Data extraction
One author (CV) extracted relevant data from included
studies. The extracted information was verified by a second
author (JA or BL). Relevant data included the following
characteristics: name of first author, title, year of publication,
journal, RCT design (parallel or crossover; single or double-
blind), sample size (randomized, completers; male/female),
study duration, washout duration (for crossover only), health
status (i.e., healthy, normal-weight/obese, metabolic or other
peripheral disease), mean age, mean baseline BMI, mean
waist circumference, specification of DHA and EPA sup-
plementation (dose, proportions in capsules, form, source),
specification of control or placebo (type of fatty acids,
dose), weight loss (yes versus no), primary outcome of the
study, outcomes extracted for the present meta-analyses, data
analysis (intent-to-treat or per-protocol), funding source,
and conflict of interest. Outcome data were also extracted
from each study and included mean differences (± SEM)
between postintervention values (for pairwise meta-analysis)
and mean (± SD) postintervention values (for network meta-
analysis). Study authors were contacted to obtain additional
information and missing outcome data. Six authors provided
additional data (11, 13, 20–23). In the absence of numerical
values for outcome measurements or the inability to contact
study authors, values were extracted from figures using Plot
Digitizer, version 2.6.8 (Free Software Foundation).

Risk of bias assessment
Two authors (CV, BL) independently assessed risk of bias of
each study included in this work using the Cochrane Risk of
Bias Tool (18). The following categories of bias were assessed:
random sequence generation, allocation concealment, blind-
ing, incomplete outcome data, selective outcome reporting,
and other bias. Trials were considered at: 1) high risk of bias
if ≥3 out of a maximum of 6 items were rated as “high risk,”
2) low risk of bias if ≥4 out of a maximum of 6 items were
rated as “low risk” and a maximum of 1 item rated with a high
risk of bias, and 3) moderate/unclear risk of bias for all other
studies (24). Disagreements were resolved by consensus. Risk
of bias for network meta-analysis also included assessment
of transitivity. To evaluate the assumption of transitivity, we
compared the distribution of the potential effect modifiers
(BMI, age, study duration, percent male, DHA dose, EPA
dose) across the available direct comparisons.

Outcomes
There were 4 prespecified outcomes in the present study: 1)
plasma CRP (mg/L), 2) plasma IL-6 (pg/mL), 3) plasma TNF-
α (pg/mL), and 4) plasma adiponectin (mg/L). The pairwise
meta-analysis was performed for the first 3 outcomes because
only 1 pairwise comparison was available for adiponectin.
The network meta-analysis was conducted for the 4 out-
comes.

Data synthesis and analysis
We used standard Cochrane methods for pairwise meta-
analysis and augmented this evidence using network meta-
analysis methods. The latter compare multiple treatments
simultaneously in a single analysis by combining direct
and indirect evidence within a network of studies. Direct
evidence refers to the existing comparison of 2 interventions
to each other within a study (e.g., A compared with B).
Indirect evidence refers to the evidence obtained through
1 or more common comparators (e.g., in the absence of
studies that directly compare A and B, direct evidence of A
compared with C, and B compared with C can be used to
provide indirect evidence about A compared with B). The
combination of direct and indirect evidence is called mixed
evidence.

Pairwise meta-analysis.
Data were managed and analyzed with the use of Review
Manager (RevMan) version 5.3.2 (The Nordic Cochrane
Centre, The Cochrane Collaboration) for the pairwise meta-
analysis. The generic inverse variance method with random-
effects models was used to synthesize the overall effect
estimate of DHA and EPA on plasma CRP, IL-6, and TNF-
α. DerSimonian and Laird random-effects models were used
even in the absence of statistically significant between-study
heterogeneity, as they yield more conservative summary
effect estimates in the presence of residual heterogeneity (25,
26). For each outcome, mean differences (MDs) between
DHA and EPA were extracted for each pairwise compar-
ison when provided in the publications. If not provided,
postintervention values after each treatment (DHA and EPA)
in each study were used to calculate MDs between the 2
treatments. MDs were calculated by subtracting means of
postintervention values and SEs were calculated from the
available data and statistics using published formulas (25).
When only medians and IQRs were available, means were
estimated from median values using the new method of
Luo et al. (27) and SDs were estimated from IQR using
the method described by Wan et al. (28). The SEs were
then calculated from SD values using Cochrane Formulas
(25). Paired analyses were applied to all crossover trials with
the use of a conservative correlation coefficient of 0.5 in
determining the missing variance data of crossover trials
(29). For studies with multiple interventions (e.g., different
doses of DHA or EPA) or controls, we did not combine
groups but split the “shared” group into 2 or more groups
with sample size divided between groups, and included 2 or
more comparisons as proposed in the Cochrane Handbook
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to overcome unit-of-analysis error (18). The pooled estimates
are expressed and presented as MDs with 95% CIs. Interstudy
heterogeneity was assessed with the Cochran Q statistic and
quantified by the I2 statistic, where I2 ≥50% at P <0.10
was considered as substantial heterogeneity. Sources of
heterogeneity were explored through sensitivity analyses. To
determine the particular influence of any single study on
the results, each trial comparison was individually removed
from the pairwise meta-analysis and the overall effect size
and heterogeneity were recalculated. We did not perform a
priori subgroup analyses nor investigated publication bias, as
there were fewer than 10 direct comparisons available for the
analyses of each outcome in the pairwise meta-analysis (25).

Network meta-analysis.
Data for the network meta-analysis were managed and
analyzed with the use of STATA/SE version 13 (StataCorp).
We performed a frequentist network meta-analysis using a
multivariate meta-analysis model and the “network” suite of
commands available in STATA (30). For each inflammation
outcome, postintervention values after each treatment in
each study (DHA versus control and EPA versus control)
were extracted and used to calculate MDs between DHA
and EPA directly in STATA. Random-effects network meta-
analysis was used for plasma CRP, IL-6, and TNF-α. We
used the fixed option for adiponectin data, as there was no
source of heterogeneity. Network diagrams were performed
for each inflammation outcome to show the interactions
among the studies included in the network meta-analysis
and to illustrate the available direct comparisons between
treatments (30). We checked the consistency in the data
using both local and global approaches in STATA. We applied
the loop-specific and the side-splitting approaches as local
methods to evaluate the presence of statistical inconsistency.
The loop-specific approach looks at the inconsistency in each
closed loop in the network (31) whereas the side-splitting
approach detects comparisons for which direct estimates
disagree with indirect evidence from the entire network
(32). The global approach tests for overall inconsistency
from all possible sources in the whole network simul-
taneously using a design-by-treatment interaction model
(33). If inconsistency was suggested, sensitivity analyses
were performed to explore the sources of heterogeneity.
Publication bias was assessed in the network meta-analysis
through generation of comparison-adjusted funnel plots that
were visually inspected for asymmetry, but only when 10 trial
comparisons or more were available for a specific outcome.
Box plots representing the distributions of the potential
effect modifiers (transitivity analyses) were obtained using
GraphPad Prism version 7.0c for Mac OS X (GraphPad
Software).

Grading of the evidence
The certainty of evidence was assessed for each outcome
independently by 2 authors (CV, BL) as “very low,” “low,”
“moderate,” or “high” using the GRADE (Grading of Rec-
ommendations Assessment, Development, and Evaluation)

approach. Evidence from RCTs received by default a grade
of “high” certainty and was then downgraded on the
basis of prespecified criteria related to risk of bias (weight
of trials shows evidence of serious risk of bias by the
Cochrane Risk of Bias Tool), inconsistency (unexplained
substantial heterogeneity, I2 ≥50%, P <0.10), indirectness
(presence of factors that limit the generalizability of the
results), imprecision [95% CIs for pooled effect estimates
cross a prespecified minimally important difference (MID)],
and publication bias (evidence of small-study effects). The
GRADE approach was also used to evaluate the certainty
of evidence from the network meta-analysis according to
the new procedure described by Brignardello-Petersen et
al. (34). Briefly, this approach considers rating the certainty
of all contributing evidence (direct, indirect, and network)
for each pairwise comparison in the network meta-analysis.
Intransitivity and incoherence were considered in addition
to conventional criteria (risks of bias, inconsistency, impreci-
sion, indirectness, and publication bias).

Results
Search results
The search strategy identified 3354 articles, of which 387 were
reviewed in full and 20 were included in the final analysis
(Figure 1) (10–14, 20–23, 35–45). Only 5 trials compared
DHA and EPA directly with data on markers of inflammation
as clinical outcomes (10–14). These were included in the
pairwise meta-analysis. All 20 trials were included in the
network meta-analysis combining the direct and indirect
comparisons of DHA and EPA.

Trial characteristics
Characteristics of RCTs included are summarized in Table 1.
From the 20 RCTs, 17 were parallel-arm trials (10–13, 20–23,
36–42, 44, 45) and 3 had a crossover design (14, 35, 43). Of the
20 RCTs, 10 trials were conducted in North America (USA,
Canada) (12–14, 20, 22, 23, 35, 39, 40, 45), 6 in Europe (Spain,
UK) (21, 37, 38, 41, 43, 44), 2 in Oceania (Australia) (10, 36),
and 2 in Asia (Iran) (11, 42). The duration of the RCTs ranged
between 4 and 48 wk. Generally, participants were middle-
aged and overweight. The age of study participants included
in these studies ranged from 19.3 to 61.5 y. Baseline BMI
was between 21.3 and 35 kg/m2. Eleven RCTs (55%) were
conducted in healthy individuals (12, 13, 20, 21, 23, 37, 39–
41, 43, 44). There was a relatively equal distribution of men
and women across trials. Fourteen RCTs (70%) assessed the
effect of DHA on inflammation outcomes (10–14, 20, 22, 23,
35, 37, 38, 42, 43, 45), 11 RCTs (55%) assessed the effect of
EPA on inflammation outcomes (10–14, 21, 36, 39–41, 44),
and 5 RCTs (25%) reported the effects of both DHA and EPA
(10–14). One RCT did not indicate the given dose of DHA
(37); for all other RCTs, the median dose was 2000 mg/d
for DHA (range: 465–4000 mg/d) and 1869 mg/d for EPA
(range 627–3840 mg/d). Of the 14 RCTs on DHA, 5 used
DHA from algae (13, 20, 22, 23, 43), 4 from fish oil (10, 14,
42, 45), 1 from enzyme synthesis (38), and the remaining
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Articles identified: 3354
MEDLINE: 832 
EMBASE: 1585 
The Cochrane Library: 920 
Manual searches: 17 

Screened for eligibility: 2145   

Duplicates removed: 1209 

Excluded on the basis of title and 
abstract: 1758
Acute or short-term study (< 7 d): 37
Inappropriate mix of DHA and EPA or 
inappropriate co-intervention: 303
Not in adults: 65
No or unsuitable control: 182
Inappropriate outcome: 16
Animal or in vitro study: 194
No DHA or EPA intervention: 218
Parenteral/enteral nutrition: 8
Nonrandomized: 14
Observational study: 523
Review or editorial: 47
Meta-analysis/systematic review: 15
Abstract or conference: 133
Not in English or French: 3

Assessed for full review: 387

Excluded after full review: 367 
Abstract or conference or letter: 54
Inappropriate mix of DHA and EPA or 
inappropriate co-intervention: 202
Not in adults: 2
No DHA or EPA intervention: 8
Nonrandomized: 6
Observational study: 1
Unavailable information/article: 17
Parenteral/Enteral nutrition: 14
Review or protocol: 2
No or unsuitable control: 34
Inappropriate outcome: 21
Not in English or French: 6

Articles included in meta-analyses: 20
Pairwise meta-analysis: 5 
Network meta-analysis: 20

FIGURE 1 Summary of the search and selection process of the studies comparing the effect of DHA and EPA on inflammation markers in
adults.

trials did not report the source of DHA. Of the 11 RCTs on
EPA, 7 used EPA from fish oil (10, 14, 21, 36, 39, 40, 44), 1
from yeast (13), and the remaining trials did not report the
information. Of the 9 RCTs that reported the form of DHA
and EPA, 6 used a triglyceride formulation (13, 14, 21, 36, 38,

43), 2 provided the supplements in the form of ethyl esters
(10, 41), and 1 used DHA as monoglycerides (45). Olive oil or
oleic acid was the most frequently used control in the studies
(>50% RCTs). CRP was investigated in 14 RCTs (70%)
(10–14, 20, 22, 23, 35, 36, 38, 42–44), IL-6 was investigated
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in 17 RCTs (85%) (10, 13, 14, 20–23, 35–41, 43, 44), TNF-α
was investigated in 11 RCTs (47%) (10, 13, 14, 22, 23, 36–
41), and adiponectin was investigated in 2 RCTs (10%) (14,
35). Subclinical inflammation was specified as the primary
outcome in 6 trials (30%) (11, 14, 22, 39, 40, 42). The majority
of trials (85%) performed a per-protocol analysis of data;
an intent-to-treat analysis of the results was used in only 3
trials (13, 20, 39). Nine RCTs received funding from public
agencies (14, 22, 36–41, 44), 3 from private partners (20, 21,
43), 4 from both public and private sources (12, 13, 23, 35),
2 received no funding (11, 45), and the information was not
reported for 2 RCTs (39, 42).

Network diagrams
Figure 2 shows the network diagrams for plasma CRP, IL-6,
TNF-α, and adiponectin of all available direct comparisons
between pairs of interventions (DHA compared with EPA,
DHA compared with control, and EPA compared with
control) used in the network meta-analysis. The largest
number of RCTs assessed the impact of DHA on plasma
CRP and IL-6 compared with olive oil as a control (n = 8),
whereas the same number of RCTs (n = 5) compared the
effects of EPA and DHA to olive oil on plasma TNF-α.
The contribution plots showing the percentage of statistical
contribution coming from direct and indirect evidence for
each direct comparison in the network for CRP, IL-6, and
TNF-α are presented as Supplementary Figures 1, 2, and
3, respectively. The NMA estimate for the comparison of
interest DHA compared with EPA is informed by the direct
comparison DHA versus EPA with a contribution of around
40% for CRP and IL-6 compared with 70% for TNF-α.

Risk of bias
Supplementary Figure 4 shows the individual Cochrane risk
of bias assessments for all 20 RCTs included in this work. Of
the 20 RCTs included in the network meta-analysis, 11 (55%)
were judged to be at low risk of bias (12–14, 35, 36, 38–40, 42–
44), 9 had a moderate/unclear risk of bias (10, 11, 20–23, 37,
41, 45), and none were classified as being at high risk of bias.
Of the 5 RCTs included in the pairwise meta-analysis, 3 trials
were judged to be at low risk of bias (12–14) and the others
were classified as having a moderate/unclear risk of bias
(10, 11).

Supplementary Figures 5 and 6 show the risk of bias
proportions for RCTs included specifically in the pairwise
meta-analysis and the network meta-analysis, respectively.
Among RCTs included in the pairwise meta-analysis, 100%
indicated a low risk of bias for blinding selective reporting
and other bias, 0% for allocation concealment, 75% for
incomplete outcome data, and 50% for random sequence
generation (Supplementary Figure 5). With regard to the
network meta-analysis, 35% of all RCTs indicated a low risk
of bias for random-sequence generation, 30% for allocation
concealment, 90% for blinding, 55% for incomplete outcome
data, 65% for selective reporting, and 100% for “other bias”
(Supplementary Figure 6). High risks of bias were found
for incomplete outcome data and for selective outcome

reporting for 2 distinct RCTs (41, 45) (Supplementary
Figure 6).

Transitivity analyses showed minor differences among
studies for subjects’ characteristics (i.e., BMI, age, percent
male) and RCTs’ characteristics (i.e., study duration, DHA
dose, EPA dose) (Supplementary Figure 7).

Inconsistency
For comparisons in the network meta-analysis, the side-
splitting approach suggested no significant inconsistency for
plasma CRP, IL-6, and TNF-α (Supplementary Tables 2,
3, and 4). The loop-specific approach identified 3 loops
for CRP, IL-6, and TNF-α without statistical inconsistency
(Supplementary Table 5). Due to the lack of available data
on adiponectin specifically, we were not able to conduct the
loop-specific nor the side-splitting approaches for this out-
come. The design-by-treatment model showed no significant
inconsistency for plasma CRP (P = 0.79), IL-6 (P = 0.93),
TNF-α (P = 0.85), and adiponectin (P = 0.98).

Inflammation outcomes
Figure 3 summarizes the pooled estimates of plasma CRP,
IL-6, TNF-α, and adiponectin for the comparison of DHA
compared with EPA from both pairwise and network meta-
analyses. The main results of the pairwise meta-analysis
are presented as forest plots for CRP, IL-6, and TNF-α in
Supplementary Figures 8, 9, and 10. The main results of
the network meta-analysis are presented as interval plots
for CRP, IL-6, TNF-α, and adiponectin in Supplementary
Figures 11–14. Sensitivity analyses were not performed in
the network meta-analysis as no inconsistency was observed
for all comparisons.

Plasma CRP.
Pairwise meta-analysis of direct comparisons of the effects of
DHA and EPA revealed no significant difference on plasma
CRP (MDDHA versus EPA = 0.14 mg/L; 95% CI: –0.57, 0.85
mg/L; P = 0.70), with evidence of significant heterogeneity
(I2 = 61%, PHeterogeneity = 0.02). Removal of Mori et al.
2003 (10) explained all of the heterogeneity [I2 = 0%,
PHeterogeneity = 0.82; new MDDHA versus EPA = –0.26 mg/L (95%
CI: –0.54, 0.02 mg/L), P = 0.07; Supplementary Table 6].
Network meta-analysis of all direct and indirect comparisons
of DHA and EPA also suggested comparable effects of the 2
modalities on plasma CRP [MDDHA versus EPA = –0.33 mg/L
(–0.75, 0.10 mg/L); –12.8%].

Plasma IL-6.
Pairwise meta-analysis of direct comparisons of DHA and
EPA showed no significant difference in their effects on
plasma IL-6 (MDDHA versus EPA = 0.10 pg/mL; 95% CI: –0.15,
0.34 pg/mL; P = 0.44) without evidence of heterogeneity
(I2 = 40%, PHeterogeneity = 0.17). Network meta-analysis of all
direct and indirect comparisons of DHA and EPA also sug-
gested similar effects on plasma IL-6 [MDDHA versus EPA = 0.09
pg/mL (–0.12, 0.30 pg/mL); +4.6%].
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A B

C D

FIGURE 2 Network diagrams from network meta-analysis comparing the effect of DHA and EPA in adults on plasma CRP (Panel A), IL-6
(Panel B), TNF-α (Panel C), and adiponectin (Panel D). The size of the nodes is proportional to the number of participants and the thickness
of the lines is proportional to the number of studies available for a particular comparison. CRP: C-reactive protein; oil mixture: mix of palm,
olive, soy, canola, and coco butter oils.

Plasma TNF-α.
Pairwise meta-analysis of direct comparisons of the effects of
DHA and EPA revealed no significant difference on plasma
TNF-α (MDDHA versus EPA = –0.10 pg/mL; 95% CI: –0.37,

0.18 pg/mL; P = 0.49) without evidence of heterogeneity
(I2 = 40%, PHeterogeneity = 0.17). Similar results were obtained
in the network meta-analysis [MDDHA versus EPA for TNF-α =
–0.02 pg/mL (–0.25, 0.20 pg/mL); –0.8%].

FIGURE 3 Summary plot of pooled effect estimates from the pairwise and network meta-analyses comparing the effect of DHA and EPA
on inflammation outcomes in adults. Pooled effect estimates from the pairwise meta-analysis are expressed as standardized mean
differences, represented by diamonds and 95% CIs by the line through the diamond, and were estimated with the use of a generic inverse
variance random-effect model. Interstudy heterogeneity was detected with the use of the Cochran’s Q statistic and quantified with the
use of the I2 statistic. Mean differences (MDs, 95% CI) for the inflammation outcomes as estimated from the network meta-analysis for the
comparison of DHA compared with EPA are also presented. CRP: C-reactive protein; MD, mean difference; SMD, standardized mean
difference.
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Plasma adiponectin.
The only trial that directly compared the effects of DHA
and EPA on plasma adiponectin showed a greater in-
crease with DHA than with EPA (MDDHA versus EPA = 0.30
mg/L; 95% CI: 0.10, 0.50 mg/L; P = 0.003). However,
DHA and EPA had similar effects on plasma adiponectin
[MDDHA versus EPA = 0.29 pg/mL (–1.08, 1.66 mg/L); +4.1%]
according to the network meta-analysis.

Small-study effects
Supplementary Figure 15 shows the comparison-adjusted
funnel plots including all studies of the network meta-
analysis for plasma CRP, IL-6, and TNF-α. There was no
visual evidence of funnel-plot asymmetry for CRP and
TNF-α (Supplementary Figure 15A–C). The funnel plot
for IL-6 appears to be slightly asymmetric (Supplementary
Figure 15B), due mainly to 1 comparison (DHA versus olive
oil). Publication bias could not be assessed for adiponectin
in the network meta-analysis due to the limited number
of RCTs available (<10). Likewise, publication bias was
not assessed in the pairwise meta-analysis, as all out-
comes had fewer than 10 trial comparisons available for
analyses.

GRADE assessment
The certainty of evidence assessment for the pairwise
meta-analysis directly comparing the effect of DHA and
EPA on markers of systemic inflammation is shown in
Supplementary Table 7. The certainty of evidence was
rated high for IL-6 and TNF-α and moderate for CRP
owing to downgrades for serious imprecision. With regard
to network meta-analysis, the certainty of network evidence
for CRP (Supplementary Table 8), IL-6 (Supplementary
Table 9), and TNF-α (Supplementary Table 10) was rated
as moderate for most of the pairwise comparisons. Serious
imprecision for most of the comparisons drove judgments
of moderate quality of evidence. There was no incoherence
between direct and indirect evidence for the comparison
of interest DHA versus EPA regarding plasma CRP and
IL-6. Regarding TNF-α, incoherence was observed for the
comparison DHA versus EPA but the direct evidence was
of moderate quality and contributed more than the indirect
evidence to the network evidence. It was not possible to
generate the direct and indirect estimates with the side-
splitting approach due to lack of available data. Also,
publication bias could not be assessed due to lack of power
for assessing funnel plot asymmetry and small-study effects
(<10 trial comparisons). Putting aside those concerns, the
certainty of evidence was not downgraded with respect
to study limitations, indirectness, or inconsistency. The
certainty of estimates comparing the effects of DHA and EPA
on plasma adiponectin was considered low only due to very
serious imprecision.

Discussion
The present work is the first to quantitatively evaluate the
differential effect of EPA and DHA on 4 inflammation mark-
ers using both pairwise and network meta-analysis method-
ologies. This work is important because these inflammation-
related cardiometabolic risk factors have all been associated
etiologically to the risk of CVD. Results suggest that DHA
and EPA have similar effects on CRP, IL-6, TNF-α, and
adiponectin. Assessment of overall data heterogeneity and
quality reveals no major limitations in the interpretation of
such results.

The few meta-analyses that have assessed the impact of
LCn–3PUFAs in general on markers of inflammation have
yielded inconsistent results. Although some meta-analyses
of RCTs have shown no effect of LCn–3PUFAs on plasma
CRP concentrations (46, 47), others have shown an anti-
inflammatory effect of LCn–3PUFA on plasma CRP (9, 48)
and IL-6 and TNF-α concentrations (9). As emphasized
earlier, most of the RCTs included in these meta-analyses
have either used a mix of EPA and DHA in various forms
and proportions or have investigated only 1 of the 2 LCn–
3PUFAs. The assumption that DHA and EPA trigger different
anti-inflammatory responses has been proposed based on
data from several in vitro studies (49, 50), but limited clinical
evidence supports this claim.

Innes and Calder recently published a systematic re-
view on the differential effects of DHA and EPA on
cardiometabolic risk factors (15). Their qualitative analysis
of the available data from RCTs revealed inconsistent results
regarding the potentially greater anti-inflammatory effects of
DHA compared with EPA. Data from these various RCTs
were not quantitatively analyzed in this authoritative review.
A recent meta-analysis of 20 RCTs was conducted to assess
the individual effects of EPA and DHA on blood pressure
and inflammatory factors (51). This was, to the best of
our knowledge, the first meta-analysis on the topic but
issues pertaining to the methodological approach used by
the authors need to be addressed. The authors concluded,
based on their analysis of the available data, that EPA and
DHA have similar effects on CRP concentration, whereas
limited evidence on circulating IL-6 and TNF-α did not
allow them to draw conclusions. However, they assessed
the effects of DHA and of EPA independent of each other
and compared summary estimates of the effect of DHA
to that of the effect of EPA to assess whether both LCn–
3PUFAs have similar or different effects on subclinical
inflammation markers. Comparing and drawing inferences
about comparative effectiveness from different summary
estimates in studies that have not directly compared against
each other is of questionable validity and has been strongly
discouraged (18). To assess the question of whether EPA and
DHA have similar or differential effects on inflammatory
factors, it is best to either use studies that have compared
these interventions directly, or to use a network meta-analysis
approach, through which 2 interventions can be compared
indirectly via a common comparator. Here, we were able to
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fill this gap by comparing the effect of EPA and DHA on
markers of subclinical inflammation using all data available
and a rigorous methodological approach. The calculation of
summary estimates in our study also took into account data
from the control treatment in each RCT, which make the
results more rigorous. We stress that the present study does
not address whether DHA or EPA have a significant anti-
inflammatory effect on their own.

The combined approach of pairwise and network
methodologies is a strength of the present study, as are
the inclusion of a larger number of studies using the
network approach, the inclusion of 4 outcomes (CRP, IL-
6, TNF-α, and adiponectin), the risk of bias assessment
including transitivity analyses for the network meta-analysis,
heterogeneity and inconsistency testing, sensitivity analyses,
and judgment of the overall certainty of evidence. Although
the evidence from pairwise meta-analysis is limited, the
network approach included data from 20 RCTs, thus yielding
a much larger sample size and stronger statistical power
for the pooled effects being compared. A majority of the
trials (11 out of 20) were rated as having a low risk of
bias. Relying on RCTs lowered the risk of selection bias
due to randomization, and all studies had a double-blind
design, thereby decreasing the risk of performance bias. No
inconsistency was observed in the network meta-analysis
and the only substantial heterogeneity observed for CRP
in the pairwise analysis was explained by the removal of 1
study, indicating the overall stability and homogeneity of
the results. Accordingly, transitivity analyses did not reveal
important effect modifiers, indicating relative stability across
RCTs. The certainty of evidence was rated mainly high
or moderate in both meta-analyses for plasma CRP, IL-6,
and TNF-α. Only a small number of RCTs reported the
effect of DHA and EPA on adiponectin concentrations, and
results on that outcome need to be analyzed with caution
because of the high degree of imprecision. Although our
search strategy may have missed studies due to exclusion of
those reported in languages other than English or French,
this risk is low as we have used a highly rigorous search
process as proposed in meta-analysis guidelines. Most of
the RCTs included in both meta-analyses did not report
information about allocation concealment, which seems to
be often confounded with blinding among studies. Despite
that, the majority of studies were graded as being at “low
risk” of bias. Different doses (≤ ≈4g/d) and durations (4 to
48 wk) of EPA and DHA supplementation were used in the
RCTs included in the present review. Half of the included
RCTs were conducted among healthy individuals whereas
the other half included participants with metabolic disorders
or health problems. The possibility that dose, study duration,
and health conditions of participants may have modified the
response of inflammation markers to DHA and EPA cannot
be excluded but the limited number of RCTs and participants
included in this review did not allow us to conduct rigorous
sensitivity analyses based on these factors.

The present work suggests that DHA and EPA have
comparable effects on markers of systemic inflammation.

From a prevention perspective, EPA and DHA have always
been considered to have comparable health benefits and
dosing recommendations usually describe a combination of
the 2, without differentiation. There is an increasing range
of supplements available to help individuals with a typically
low fish intake achieve the recommended dietary intake in
LCn–3PUFAs. A large proportion of the existing research has
thus been conducted using mixed LCn–3PUFAs due to the
availability of combined EPA and DHA products. However,
the development of separation and purification technologies
in recent years has allowed research on the biological effects
of purified EPA and DHA. To date, 2 major large intervention
trials have been conducted to study the cardioprotective
effects of EPA supplements provided as highly purified
ethyl esters (52, 53): the Japan EPA lipid intervention study
(JELIS) and the Reduction of Cardiovascular Events with
Icosapent Ethyl—Intervention Trial (REDUCE-IT). JELIS
included 18,645 patients with a plasma cholesterol ≥6.5
mmol/L randomly assigned to receive either 1.8 g/d of
EPA daily with statin or statin alone for 5 y. REDUCE-IT
included 8179 patients on statin therapy randomly assigned
to receive daily either 4 g of EPA or placebo (mineral
oil) for 5 y. Both studies showed significant 20% to 30%
reductions in the risk of major coronary events (52) and
in cardiovascular death, heart attacks, and stroke (53).
Interestingly, the observed cardiovascular risk reduction
with EPA supplementation was not explained by changes
in plasma lipid concentrations in both studies, suggesting
benefits on other key processes involved in atherogenesis,
including inflammation. Future research should examine
how supplementing high-risk populations with DHA alone
modifies the risk of CVD.
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