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ABSTRACT

The gut microbiota plays a relevant role in determining an individual’s health status, and the diet is a major factor in modulating the composition
and function of gut microbiota. Gluten constitutes an essential dietary component in Western societies and is the environmental trigger of celiac
disease. The presence/absence of gluten in the diet can change the diversity and proportions of the microbial communities constituting the gut
microbiota. There is an intimate relation between gluten metabolism and celiac disease pathophysiology and gut microbiota; their interrelation
defines intestinal health and homeostasis. Environmental factors modify the intestinal microbiota and, in turn, its changes modulate the mucosal
and immune responses. Current evidence from studies of young and adult patients with celiac disease increasingly supports that dysbiosis (i.e.,
compositional and functional alterations of the gut microbiome) is present in celiac disease, but to what extent this is a cause or consequence of
the disease and whether the different intestinal diseases (celiac disease, ulcerative colitis, Crohn disease) have specific change patterns is not yet
clear. The use of bacterial-origin enzymes that help completion of gluten digestion is of interest because of the potential application as coadjuvant
in the current treatment of celiac disease. In this narrative review, we address the current knowledge on the complex interaction between gluten
digestion and metabolism, celiac disease, and the intestinal microbiota. Adv Nutr 2020;11:160–174.
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Introduction
The way human diseases develop has considerably changed
over the last century. In the new global scenario immuno-
logical conditions have increased, mediated either by allergic
or autoimmune mechanisms (1–3). Because genetics cannot
explain these changes, new factors have been added into
the discussion, and the influence of environmental factors
on the human microbiota has become a relevant issue. It
is well known that individuals who develop celiac disease
carry specific risk genes, but their presence alone is not
enough to develop the disease; environmental factors are also
required to trigger the disease. The intestinal microbiota is
one such factor (4). Microbiota can be referred to as the group
of micro-organisms inhabiting the human body in the oral
cavity, nasal passages, skin, intestine, and urogenital tract
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(5). The gastrointestinal microbiota plays a relevant role in
determining the health status of an individual throughout
life, especially those individuals suffering from diseases with
treatment consisting mainly of restrictive diets (6, 7).

The diet greatly influences the gut microbiota compo-
sition and function, and, in turn, the intestinal microbiota
modulates immunological homeostasis and metabolic regu-
lation (8–10). Microbiota alterations lead to dysbiosis, char-
acterized by modifications of the constituting communities
(11), mainly affecting the diversity and proportions among its
various constituents. Recent studies have consistently shown
that altered microbiota (i.e., dysbiosis) associates with some
chronic bowel diseases, all of which are related to immune
homeostasis disruption and autoimmune manifestations. For
example, in the gastrointestinal tract (GIT), changes in
microbiota are reported in celiac disease, ulcerative colitis,
and Crohn disease, with the changes mainly being seen in
diversity and proportion of the main components Firmicutes,
Bacteroidetes, and Actinobacteria (see next paragraphs).
However, the evidence available to date is unclear and fails
to discriminate between these diseases (4, 12).
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Celiac disease is an autoimmune pathology, triggered by
gluten, affecting the small intestine in genetically susceptible
individuals, with broad clinical manifestations derived from
multiple contributing factors (13). At present, dietary gluten
is described as the main environmental factor involved in
celiac disease pathogenesis. The high proline content of
the gluten protein hampers its digestion by human gastro-
intestinal enzymes, which lack prolyl endopeptidase activity
(14). Incomplete gluten digestion leads to the presence
of immunogenic peptides that interact with the intestinal
epithelium and mucosa (14). Current research points to a
dysbiotic pattern in patients with celiac disease, but results
are still somewhat controversial. Several studies show an
imbalance in the microbiota composition when patients with
celiac disease are compared to healthy individuals (15–17),
but other reports show no such differences (18, 19). One
should keep in mind that most of these studies have analyzed
the colon microbiota, whereas only few have focused on the
small intestine, which is where relevant events for this disease
take place (18, 20, 21). Gluten is an essential component
of diets in Western societies (22) and is intimately involved
in celiac disease pathophysiology. Currently available data
show that gluten is able to modify the intestinal microbiota,
and it has become relevant to understand the relation
and interaction between gut microbiota and gluten. In this
narrative review, we will review the existing knowledge
on the complex interactions between gluten digestion and
metabolism, the intestinal microbiota and celiac disease,
excluding a detailed description of the immune system
involvement in these issues.

Current Status of Knowledge
Gluten
Gluten in the world.
Cereals are the most important crops worldwide, represent-
ing a total of ∼2000 million tons of grain per year (23); 70%
of the cereals consumed by the world population are wheat,
corn, and rice (23). Wheat is one of the most widespread
crops; its harvest accounts for ∼600 million tons over often
large geographical areas (24). Because wheat is a hexaploid
species and some of the genes coding for gluten proteins
originate from duplicate loci, 1 variety of wheat may contain
several hundred different gluten proteins (25).

Wheat farming dates back to the beginning of human
agriculture ca. 10,000 years ago, in the great belt of Southeast
Asia (Turkey, Palestine, Lebanon, and northern Iraq), where
a wide variety of wild cereals, including the currently used
wheat and barley (26), spontaneously appeared. Today, gluten
consumption is estimated to be 10–20 g per person per day
in Western societies (24); such high consumption facilitates
identification of individuals who cannot tolerate it.

Gluten proteins.
Core wheat grain contains 8–15% protein, of which 10–15%
is albumin/globulin and 85–90% gluten (24, 27). Gluten is
a complex mixture of hundreds of different proteins, mainly

gliadin and glutenin, collectively called prolamins. They
are water-insoluble proteins, extractable in aqueous ethanol,
and characterized by high glutamine (38%) and proline
residues (20%) (27) grouped in polyglutamine sequences or
glutamine/proline sequences. The polyglutamine sequences
are located in the C-terminal domain of gliadin, while the
repetitive glutamine/proline regions are in the protein central
area (28). Gluten proteins can be classified into subgroups
according to their sulfur content and molecular weight, but
their different primary structures also classify them into
α-, β-, γ -, and ω-gliadins (29). Gluten proteins are connected
by strong covalent and noncovalent unions, which, together
with the structure and interactions of the different proteins,
provide the unique properties of gluten (30). One of its most
relevant characteristics is its ability to retain air in the protein
matrix (31), which facilitates and improves bread production.

Gluten digestion.
Digestion of gluten proteins begins in the oral cavity where
proteases of bacterial origin are described to hydrolyze
tripeptides, which frequently appear among the gluten
prolamins resistant to human enzymes (32). Some studies
describe microbial enzymes isolated from the dental plaque,
which are highly active and can potentially neutralize
gluten peptide epitopes. The substantial fraction of glu-
tamine and proline residues (27) has a fundamental role in
protecting peptides against proteolytic degradation, where
these proline-glutamine-rich epitopes are especially resistant
to enzymatic processing (14). The main bacterial strains
described as related to this gluten metabolism are Rothia,
Staphylococcus epidermidis, Streptococcus pneumoniae, Strep-
tococcus mitis, and Bifidobacterium (33, 34) (Figure 1).

Most protein digestion begins in the stomach, where
pepsin acts by generating large peptides, leaving gluten pro-
teins incompletely digested (14, 35). This partial hydrolysis
of gluten proteins means that high-molecular-weight gluten
polypeptides reach the duodenum (36, 37). As a result, quite
large peptides with immunogenic sequences (such as the 57–
89 peptide and 33-mer peptide in α-gliadin) (38) spend a
long time in the intestinal lumen, increasing the opportunity
of contact with the gut epithelium. Overall, the 33-mer
peptide in α-gliadin contains 6 copies of 3 different epitopes
(PYPQPQLPY, PQPQLYPQ, PFPPQPQLPY) to which most
patients with celiac disease react (36, 39) with the activation
of the immune cascade leading to the inflammatory response
(35, 36).

The main protein digestion occurs in the upper part of
the small intestine through the pancreatic enzymes (trypsin,
chymotrypsin, carboxypeptidase A, carboxypeptidase B, and
elastase). The resulting digestion products then get in contact
with the brush border enzymes, generating dipeptides,
tripeptides, and amino acids that are easily absorbed by
the enterocytes (40). A proportion of gluten prolamins
are resistant to pancreatic and brush border enzymes in
vitro (37). However, in the intestinal epithelium, some
of the enzymes (e.g., dipeptidyl peptidase IV, dipeptidyl
carboxypeptidase 1, and aminopeptidase N) can partially
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FIGURE 1 Digestion of gluten and food proteins. The digestion of food proteins, a fundamental substrate for human nutrition, is a
metabolic process that takes place initially at the level of the stomach, where pepsin (a digestive endopeptidase) acts by promoting
degradation of the original protein in polypeptides and amino acids. Then, these components follow further digestion at the level of the
small intestine, where the digestion of food proteins is particularly important. It is here that enzymes from the pancreas, the striated
border, and also some cytoplasmic enzymes, continue to digest dietary proteins up to tripeptides, dipeptides, and amino acids, and to
optimize the absorption of proteins. The gluten protein shows peculiarities in its amino acid structure. Its amino acid content is composed
of an important fraction of glutamine and proline residues, which have a fundamental role in protection of peptides against human
proteolytic degradation. Proline-glutamine-rich epitopes are exceptionally resistant to enzymatic processing. Therefore, incompletely
digested gluten protein and resulting peptides accumulate in the gastrointestinal tract. These protein fractions have antigenic capacity
and can trigger autoimmune processes as characteristic of celiac disease. They can also become a substrate for bacteria that are part of
the commensal or opportunistic microbiota at the oral or intestinal level, an interaction that can promote or reduce the antigenicity of
these peptides. This figure was produced using “Servier Medical Art” from https://smart.servier.com.

hydrolyze peptides with proline residues. Some of these
relatively large peptides rich in proline and glutamine will
cause the toxic effect that contributes to the inflammatory
processes in susceptible (celiac) individuals (14, 36).

Gluten and celiac disease.
The mechanism through which gluten triggers the onset
of celiac disease is not fully understood. The appearance
of mucosal lesions in the small intestine typically found in
celiac disease requires the involvement of both innate and
adaptive immune responses. Although such a relation is
yet to be completely clarified, the presence of specific risk
alleles is a necessary condition for the disease to appear
(41). The gluten-derived proline-rich gliadin peptides pass
through the intestinal epithelium and reach the lamina
propria, where tissue transglutaminase 2 deamidates the
peptide and exposes new epitopes; this conformational
change dramatically increases the affinity for the human
leukocyte antigen (HLA)-DQ2 and HLA-DQ8 of the human
antigen presenting cells (42), amplifying the T cell response.

In turn, this leads to T cell activation (instead of regula-
tory T lymphocyte appearance) (43) and proinflammatory
interleukins such as IFN-γ , IL-15, and others are released,
contributing to enhance the inflammatory cascade and to the
further activation of cytotoxic intraepithelial lymphocytes
(44, 45). The mechanisms through which antibodies are
made against tissue transglutaminase 2 and gliadin are
still unclear. It is also unclear how the specific antibody
isotype (mainly IgA and IgG) is decided. The passage of
these antibodies (or antigens) to the bloodstream provides
a possible explanation for the appearance of extraintestinal
manifestations in patients with celiac disease and gluten-
sensitive individuals, including the central nervous system,
such as ataxia, peripheral neuropathy, and migraine among
others (46).

Damage by gluten.
There is no definitive evidence that proves what amount of
gluten harms patients with celiac disease. The international
consensus applies 3, 5, 10, or 20 mg/kg gluten as cutoff
values for processed “gluten-free” foods. Many countries
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accept that products containing <10 mg gluten are unlikely
to cause significant histological abnormalities (47). Although
unproven, in daily life most patients accept that a total
daily intake <50 mg gluten is safe (48). However, the
values reported for a tolerable daily gluten intake greatly
vary: while some patients tolerate an average of 34–36 mg
gluten/d, others who consumed ca. 10 mg/d develop mucosal
abnormalities (47). In 2011, the FDA conducted a Health
Hazard Assessment for Gluten Exposure. After analyzing all
available evidence (49), they concluded that the tolerable
daily gluten intake was 0.4 mg and 0.015 mg gluten/d
for adverse morphological and clinical effects, respectively.
Recently, Leffler et al. (50) showed that a gluten challenge
with 3 g or 7.5 g gluten ingested over a 14-d period was
sufficient to induce detectable histological and serological
changes in patients with celiac disease. Patients may react to
different immunogenic peptides (51) and gluten content may
differ among foods, which could explain at least part of the
variable results reported.

Gut microbiota
The collective genome of the microbiota in humans is
called the microbiome. It includes bacteria, viruses, ar-
chaea, eukaryotes, and protozoa that live in several sites
of the human body (52). From birth, the gastrointestinal
microbiota contributes to development of normal bowel
functions. The microbiota participates in harvesting energy
(53) and promoting maturation of the immune system (54,
55), strengthening gut integrity, and shaping the intestinal
epithelium (56).

The GIT is one of the largest interfaces (250–400 m2)
between the human host, the environment, and body
antigens (57). Throughout human life, a total of nearly 60
tons of food passes through the GIT, with an enormous
number of environmental micro-organisms thriving in the
gut: this poses a great challenge for the maintenance of
intestinal integrity (58). Historically, the number of micro-
organisms inhabiting the GIT was estimated at 1014, which
represents 10 times more bacterial cells than the human cell
content and 100 times more genomic content (microbiome)
than the human genome (59, 60). However, a recent review
has changed this view by estimating the proportion of human
cells to bacteria at a ratio of 1:1 (61). Some authors have
proposed that the whole host cells together with those of the
micro-organisms that inhabit the gut should be referred to as
a “super-organism” (60, 62).

Under physiological conditions, a symbiotic relation
between the microbiota and the host has been widely de-
scribed (63, 64). The immunological and metabolically active
microbial organisms maintain a symbiotic tolerance relation
with their host, remaining relatively constant throughout life
(65). The gut microbiota is composed mainly of bacteria from
3 major phyla: Firmicutes, Bacteroidetes, and Actinobacteria
(66). This diverse and complex microbiome functionally
collaborates with the host genome, contributing to regulate
its physiology (67). The host-bacterial symbiotic interaction
is fundamental to human health (68). The co-metabolism

between the host’s systems and microbiota, with the same
bacteria controlling the digestive system and the brain, is
a recently cradled concept (64), which helps to understand
the gut–brain axis (69). Disruption in the microbiota
equilibrium (e.g., because of inflammatory conditions or
use of antibiotics) alters the host’s general homeostasis (70),
leads to dysbiosis, and potentially to some intestinal and
extraintestinal diseases (71–73).

Gluten and microbiota
Gluten effects on the intestinal mucosa and microbiota.
The effects of gluten on the diet of mammals were investi-
gated in gluten-sensitive juvenile macaques (74): when di-
etary gluten was introduced, the animals developed chronic
diarrhea, had elevated IgA and IgG plasma antigliadin,
and marked villous blunting, crypt hyperplasia, and in-
creased intraepithelial lymphocytosis in duodenal biopsies.
Clinical, histological, and serological changes returned to
basal figures after feeding a gluten-free diet (GFD); after
re-introduction of gluten, they altered again (74). In a
second study and using the same gluten-sensitive juvenile
macaque model, when dietary gluten was consumed by
gluten-sensitive animals, a reduction of the gut microbial
α-diversity was observed, mainly in the Firmicutes phylum
(P = 0.02) (75). After re-introduction of the customary
GFD, evaluation at days 14, 28, 42, and 70 showed the
restoration of the gut microbiome composition to that
observed in normal healthy control individuals. Interestingly,
the messenger RNA and claudin-1 protein expression,
which is a validated tight junction protein, was significantly
downregulated in the jejunal epithelium of gluten-sensitive
macaques (75).

Gluten and duodenal and colonic microbiota.
In humans, the duodenal microbiota and gluten metabolism
are associated (76) (Figure 1). Specific patterns of gliadin
degradation in duodenal biopsies of patients with celiac
disease have been described, suggesting that particular
microbes may be responsible for some of the proteolytic
activity observed (77). Despite lower microbial diversity in
the small intestine, the high luminal concentration of gluten
proteins promotes proteolytic bacteria proliferation (78). The
currently high intake of gluten in Western societies allows the
presence of abundant gluten peptides in the small intestine,
and those peptides become a substrate to different duodenal
bacteria that contribute to dysbiosis in patients with celiac
disease (77).

Once in the large intestine, partially digested gluten
peptides get in contact with an extensive and diverse
microbiota, in which different proteolytic bacteria are found.
The genetic diversity of the microbiota of the large intestine
produces different biochemical pathways, which differ from
those found in the host, allowing digestion of gluten
peptides resistant to human digestive enzymes (79). For
example, Bifidobacterium and Bacteroides fragilis, which can
hydrolyze gluten peptides, have been described in patients
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with celiac disease and also evaluated in animal models (80–
82). Nevertheless, the partially digested gluten found in fecal
samples from patients with celiac disease and healthy subjects
shows that at least part of the dietary gluten passes through
the digestive tract and is excreted in feces (83).

The main bacteria involved in the gluten metabolism be-
long to the Firmicutes phylum, mainly the Lactobacillus genus
followed by Streptococcus, Staphylococcus, and Clostridium
(84). The large variety of bacteria that are able to hydrolyze
gluten proteins and peptides, present in the human intestine,
raises a promising opportunity for searching alternative new
treatments for celiac disease (84). Herrán et al. (76) charac-
terized the microbes possibly involved in gluten hydrolysis
in the small intestine of healthy volunteers and patients with
celiac disease, evaluating in duodenal mucosa-associated
microbiota: 114 bacterial strains were isolated belonging
to 32 species, 85 of such strains growing in a gluten-
containing medium as the sole source of nitrogen, 31 having
extracellular proteolytic activity digesting gluten proteins,
and 27 having peptidolytic activity against the 33-mer
peptide (76). The study of these bacteria and their enzymes
is relevant because 1) it would help to understand their
involvement in celiac disease, revealing whether intestinal
dysbiosis occurs before the onset of the disease or whether
the gluten load promotes altered colonization leading to the
appearance of the disease in susceptible individuals; 2) it may
establish such bacteria and enzymes as a potential coadjuvant
of treatment by consumption of a GFD, as collaborating in
digestion of gluten when involuntarily consumed.

Gluten metabolized by opportunistic pathogens and
commensal duodenal bacteria has also been investigated
in animal models (80, 85). In murine models, bacterial
colonization resulted in different patterns of gluten degrada-
tion in the small intestine (85). Interestingly, Pseudomonas
aeruginosa, an opportunistic pathogen commonly found in
patients with celiac disease, showed elastase activity, which
resulted in peptides with enhanced translocation through the
murine intestinal barrier (86). Gluten peptides modified by
Pseudomonas aeruginosa were able to activate the gluten-
specific T cells of patients with celiac disease (86). Lactobacil-
lus spp. obtained from the duodenum of healthy individuals
without celiac disease (control individuals) collaborated in
the degradation of gluten peptides, which could reduce
their immunogenicity (86). Thus, the bacteria of the small
intestine show different metabolic patterns to handle gluten
in vivo, which can increase or decrease the immunogenicity
of gluten peptides. Such microbial-gluten-host interactions
can modulate the autoimmune risk in genetically susceptible
individuals and may be at the basis of the reported dysbiosis
found in celiac disease (86). Caminero et al. (87) have
recently demonstrated that the duodenal biopsies of patients
with celiac disease consuming a gluten-containing diet have
greater proteolytic activity against gluten peptides than those
from healthy control individuals, a finding that has been
correlated with the abundance of Proteobacteria, including
Pseudomonas. The same authors have also shown that in
mice expressing risk genes for celiac disease, Pseudomonas

aeruginosa elastase synergized with gluten to induce more
severe inflammation, which was associated with a moderate
reduction of villi height, thus suggesting that proteases
expressed by opportunistic pathogens influence the host
immune responses, which are relevant to the development
of food sensitivities. In patients with celiac disease, these
microbial changes potentially represent a trigger for the
disease or consequences, as derived from intestinal damage
or malabsorption (87).

Oral microbiome.
Little consideration has been paid to the oral microbiome
in terms of celiac disease until recently. However, it has
been identified that the oral microbiome of patients with
celiac disease or refractory celiac disease, this being a
severe complication of the disease often associated with T
cell lymphoma (88), differs from that of healthy subjects.
Higher numbers of Lactobacilli may be responsible for the
observed greater gluten degradation in patients with celiac
disease (89). Oral microbe-derived enzyme activity was
found to be elevated in patients with celiac disease, an
interesting observation because it possibly influences gluten
processing and the presentation of immunogenic gluten
epitopes to the immune system once it reaches the small
intestine (89). However, the mechanisms explaining the role
of oral and gut microbiomes in celiac disease are unclear
(Figure 1).

Microbiota and Dysbiosis in Celiac Disease
Several research groups have investigated the gut micro-
biota composition in celiac disease (3, 76–78). In general,
changes in the number of bacterial species, their diversity,
and proportions are described in celiac disease and other
inflammatory bowel diseases. Decreased numbers of bacteria
with anti-inflammatory capacity and increased bacteria
with inflammatory capacity are reported in patients with
inflammatory bowel diseases, when compared to healthy
individuals (90, 91). The most consistent changes are a
reduction in the diversity of gut microbiota and changes in
the abundance of Firmicutes/Bacteroidetes. For brevity, our
discussion does not include GIT diseases other than celiac
disease. The results achieved in child and adult patients with
celiac disease are summarized in Table 1.

In children with active celiac disease (patients consuming
a GFD and a group of control children), Nadal et al. (20)
showed in intestinal mucosal-associated microbiota that
the proportions of total and gram-negative bacteria were
significantly higher in the active celiac disease group and
that the ratio of Lactobacillus-Bifidobacterium to Bacteroides-
Escherichia coli was significantly reduced. Bacteroides and
E. coli groups were more abundant in patients with active
celiac disease than in control individuals, while such bacterial
groups were not different between control individuals and
symptom-free patients consuming a GFD (20). These authors
speculated that the increased frequency of gram-negative
and potentially proinflammatory bacteria in the duodenal
microbiota of children with celiac disease might be related to
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the pathological process of the disease (20). Another study
on children, assessing the gut Bifidobacteria composition
reported that the total numbers of Bifidobacterium and B.
longum species in feces and duodenal biopsies were lower in
patients with active and nonactive celiac disease compared
with control children (93). Bifidobacteria catenulatum also
presented lower numbers in biopsies, whereas fecal B.
dentium was higher in patients with nonactive celiac disease
than in control individuals (93). The authors have suggested
that the microbial indicators (i.e., the ratio between the
fecal cell densities of lactic acid bacteria and the amounts
of specific metabolites such as ethyl acetate, octyl-acetate,
glutamine, and SCFA) could be a characteristic signature of
celiac disease. Another report on children during and after
the Swedish celiac disease outbreak showed that rod-shaped
bacteria constituted a significant fraction of the proximal
small-intestine mucosal microbiota (94). The presence of
these bacterial groups conferred a 4-fold increased risk for
celiac disease in children aged <2 y (94, 106).

In studies of children, other authors have reported that the
Bacteroides diversity was smaller in duodenal biopsy samples
of active and treated patients with celiac disease than in those
from healthy control individuals, whereas Bifidobacterium
diversity was higher in both groups of patients with celiac dis-
ease (81). Bacteroides dorei, Bifidobacterium adolescentis, and
Bifidobacterium animalis subsp. lactis were more prevalent
in patients with active celiac disease than in treated patients
and control individuals (81). In turn, lactic acid bacteria were
more prevalent in patients with treated celiac disease and
control individuals than in patients with active celiac disease,
suggesting that in patients with celiac disease the bacterial
populations differ both in diversity and species composition
(81).

Caminero et al. (101) analyzed the metabolic activity of
intestinal bacteria associated with gluten intake in patients
with celiac disease, their first-degree relatives (FDRs), and
healthy individuals. The results were analyzed for fecal
peptidase activity against the 33-mer peptide. The patients
with celiac disease showed differences in fecal glutenase
activity, fecal tryptic activity, SCFA, and fecal gluten content
when compared to healthy volunteers. Alterations were
identified in specific groups of bacteria that metabolize
gluten, such as Clostridium and Lactobacillus. In FDRs,
the indicators for SCFA and fecal tryptic activity and fecal
glutenase activity were similar to those of patients compared
to healthy volunteers (101). Other studies reported that
Proteobacteria, and not Firmicutes, is the most abundant
phylum in duodenal biopsy samples among patients with
celiac disease, with the Neisseria genus being the most
represented (107). Regardless of the exact extent to which
intestinal dysbiosis is present in celiac disease, the available
evidence shows that dysbiosis induced by dietary gluten in
duodenal mucosa-associated bacteria is not easily restored
after a GFD (98); in fact, a GFD itself can significantly alter
the intestinal bacterial populations (6).

Wacklin et al. (99) evaluated the relation between the
presence of an abnormal intestinal (duodenal biopsies)

microbiota and the presence of persisting gastrointestinal
symptoms in patients with celiac disease consuming a GFD.
Treated patients with symptoms showed reduced microbial
richness, and they were colonized by different duodenal
microbiota, with a high relative abundance of Proteobac-
teria, but low abundance of Bacteroidetes and Firmicutes.
This study suggested that dysbiosis is associated with the
persistence of gastrointestinal symptoms in treated patients,
even when they strictly adhere to a GFD (99). If this is further
confirmed, restoring a normal microbiota appears to be
another attractive possibility for complementing treatment
for celiac disease.

It is well known that genetic factors confer susceptibility
for the appearance of celiac disease, but they cannot fully
explain the disease. Olivares et al. (108) investigated whether
the HLA genotype is an independent factor influencing the
early gut microbiota composition. In a cohort of healthy
newborns, divided into high-risk HLA-DQ2 carriers or
low-risk non-HLA-DQ2/8 carriers for celiac disease, the
authors described in fecal samples significantly greater
proportions of Firmicutes and Proteobacteria and lowered
proportions of Actinobacteria in the high-risk group, in-
dependently of gluten ingestion. High-risk infants also
showed a negative correlation in Bifidobacterium species
and several genera of Proteobacteria (Escherichia/Shigella)
and Firmicutes (Clostridium), raising the hypothesis that the
specific genotype of the host may select the first intestinal col-
onizers, thus contributing to confer the risk of celiac disease
(108). On evaluating the intestinal microbiota composition
and functional profile in patients with celiac disease and
nonceliac gluten sensitivity (NCGS), the genus Actinobacillus
in duodenal biopsies and the Ruminococcaceae family in
fecal samples were higher in patients with NCGS, while
Novispirillum was higher in the duodenum of patients with
celiac disease (104). An interesting finding was a difference
in the increased abundance of duodenal Pseudomonas after
4 wk consuming a GFD in the NCGS group. The increase
in abundance of Pseudomonas strains with gluten-degrading
capability is relevant in NCGS and represents additional
data on the relation between the gut microbiota and gluten-
related disorders (104). A recent report (105) investigated
the microbiome composition of both the small intestine and
entire intestine in a subset of patients with celiac disease,
FDRs, and control individuals, in duodenal biopsies and
fecal samples. Duodenal microbiota of patients with celiac
disease showed a higher abundance of amplicon sequence
variant (ASV) for Megasphaera and Helicobacter compared
to the FDRs, and the fecal microbiota from patients with
celiac disease and FDRs showed reduced abundance of
ASVs classified as Akkermansia and Dorea, when compared
with that from control individuals. The predicted functional
metagenome showed lower capacity for gluten degradation
in fecal microbiota of patients with celiac disease compared
to FDRs and control groups. The authors concluded that
it is necessary to study the functional capacities of specific
bacteria in healthy individuals, at-risk FDRs, and patients
(105).
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Participation of the intestinal microbiota in celiac disease
is a relevant point because it opens up opportunities
for searching for new therapies. Improving dysbiosis and
modulating the composition of the intestinal flora has po-
tential as a probiotic-based therapy with bacteria producing
specific protease inhibitors that interfere with the bacterial
glutenasic activities. Therapeutic options based on enzymes
of microbial origin that could completely digest gluten in
the GIT should be investigated, as they could significantly
improve management of celiac disease and patients’ quality
of life.

Conclusions and Perspectives
Gluten is an essential dietary component in Western so-
cieties. Gluten consumption has greatly increased during
the last century, coinciding with a considerable increase in
prevalence of celiac disease. Gluten peptides exert specific
effects on the intestinal mucosa, causing celiac disease in
genetically susceptible individuals. Although our under-
standing of the proteolytic process and pathway followed
by the gliadin-derived peptides that trigger the disease has
significantly improved, many aspects of the pathways leading
to the disease and its progression remain unclear. HLA-
DQ genotype is a well-known factor that modulates the
risk of developing celiac disease in susceptible individuals.
Current evidence suggests that these genes participate in
determining the intestinal microbiota composition in the
host.

Gluten metabolism, pathophysiology of celiac disease, and
gut microbiota are intimately related, with their interrelations
defining intestinal health and homeostasis. Environmental
factors modify the intestinal microbiota, and, in turn,
changes in the microbiota count, diversity, and proportions
of its constituents modulate mucosal and immune responses.
Current evidence on patients with celiac disease increasingly
supports that dysbiosis is present in celiac disease, but to what
extent this is a cause or consequence of it and whether the
different intestinal diseases have specific patterns of change
is still unclear. Factors other than gluten may modulate
the intestinal microbiota in celiac disease, but this requires
clarification.

Knowledge has greatly improved but is still insufficient
to define to what extent increased consumption of gluten,
changes in the immune system (that increasingly respond
towards allergy or autoimmunity instead of tolerance),
and changes of the intestinal microbiota/dysbiosis (when
diversity is owed to changes and/or dietary habits or is
genetically determined) interact and trigger the appearance
of celiac disease.
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