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Preface

While serving as a faculty of statistics for the last 30 years, I have experienced that

the non-statistics faculty and research scholars in different disciplines find it

difficult to use statistical techniques in their research problems. Even if their

theoretical concepts are sound its troublesome for them to use statistical software.

This book provides readers with a greater understanding of a variety of statistical

techniques along with the procedure to use the most popular statistical software

package SPSS.

The book strengthens the intuitive understanding of the material, thereby

increasing the ability to successfully analyze data in the future. It enhances readers

capability in using data analysis techniques to a broader spectrum of research

problems.

The book is intended for the undergraduate and postgraduate courses along with

pre-doctoral and doctoral course work on data analysis, statistics, and/or quantita-

tive methods taught in management and other allied disciplines like psychology,

economics, education, nursing, medical, or other behavioral and social sciences.

This book is equally useful to the advanced researchers in the area of humanities

and behavioural and social sciences in solving their research problems.

The book has been written to provide solutions to the researchers in different

disciplines for using one of the powerful statistical software SPSS. The book will

serve the students as a self-learning text of using SPSS for applying statistical

techniques in their research problems.

In most of the research studies, data are analyzed using multivariate statistics

which poses an additional problem for the beginners. These techniques cannot be

understood without in-depth knowledge of statistical concepts. Further, several

fields in science, engineering, and humanities have developed their own nomencla-

ture assigning different names to the same concepts. Thus, one has to gather

sufficient knowledge and experience in order to analyze their data efficiently.

This book covers most of the statistical techniques including some of the most

powerful multivariate techniques along with their detailed analysis and interpreta-

tion of the SPSS output that are required by the research scholars in different

discipline to achieve their research objectives.
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The USP of this book is that even without having the indepth knowledge of

statistics, one can learn various statistical techniques and their applications on their

own.

Each chapter is self-contained and starts with the topics like Introductory

concepts, application areas, statistical techniques used in the chapter and step-by-

step solved example with SPSS. In each chapter in depth interpretation of SPSS

output has been made to help the readers in understanding the application of

statistical techniques in different situations. Since the SPSS output generated in

different statistical applications are raw and cannot be directly used for reporting

hence model way of writing the results has been shown wherever it is required.

This book focuses on providing readers with the knowledge and skills needed to

carry out research in management, humanities, and social and behavioral sciences

by using SPSS. Looking at the contents and prospects of learning computing skills

using SPSS, this book is a must for every researcher from graduate-level studies

onward. Towards the end of each chapter, short answer questions, multiple-choice

questions, and assignments have been provided as a practice exercise for the readers.

The common mistakes like using two-tailed test for testing one-tailed hypothe-

sis, using the term “level of confidence” for defining level of significance or using

the statement like “accepting the null hypothesis” instead of “not able to reject the

null hypothesis” have been explained extensively in the text so that the readers may

avoid such mistakes during organizing and conducting their research work.

The faculty who uses this book will find it very useful as it presents many

illustrations with either real or simulated data to discuss analytical techniques in

different chapters. Some of the examples cited in the text are from my own and my

colleagues’ research studies.

This book consists of 14 chapters. Chapter 1 deals with the data types, data

cleaning, and procedure to start SPSS on the system. Notations used throughout the

book in using SPSS commands have been explained in this chapter. Chapter 2 deals

with descriptive study. Different situations have been discussed under which such

studies can be undertaken. The procedure of computing various descriptive statis-

tics has been discussed in this chapter. Besides computing procedure through SPSS,

a new approach has been shown towards the end of the second chapter to develop

the profile graph which can be used for comparing different domains of the

populations.

Chapter 3 explains the chi-square and its different applications by means of

solved examples. The step-by-step procedure of computing chi-square using SPSS

has been discussed. Chi-square is the test of significance for association between the

attributes, but it provides comparison of the two groups as well, in case of the

responses being measured on the nominal scale. This fact has been discussed for the

benefit of the readers.

Chapter 4 explains the procedure of computing correlation matrix and partial

correlations using SPSS. The emphasis has been given on how to interpret the

relationships.

In Chapter 5, computing multiple correlations and regression analysis have been

discussed. Both the approaches of regression analysis in SPSS i.e. Stepwise and

Enter methods have been discussed for estimating any measurable phenomenon.
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In Chapter 6, application of t-test in testing the significance of difference

between groups in all the three situations, that is, in one sample, two independent

samples, and two dependent samples, has been discussed in detail. Procedures of

using one-tailed and two-tailed tests have been thoroughly detailed.

Chapter 7 explains the procedure of applying one-way analysis of variance

(ANOVA) with equal and unequal groups for testing the significance of variability

among group means. The graphical approach has been discussed for post hoc

comparisons of means besides using the p-value concept.
In Chapter 8, two-way ANOVA for understanding the causes of variation has

been discussed in detail by means of solved examples using SPSS. The model way

of writing the results has been shown, which the students should note. Procedure for

doing interaction analysis has been discussed in detail by using the SPSS output.

In Chapter 9, the application of ANCOVA to study the role of covariate in

experimental research has been discussed by means of a research example. Students

can find the procedure of analyzing their data much easier after going through this

chapter.

In Chapter 10, cluster analysis technique has been discussed in detail for market

segmentation. The readers will come to know about the situations where cluster

analysis can be used in their research studies. Discussions of all its basic concepts

have been elaborated so that even a non-statistician can also appreciate and use it

for their research data.

Chapter 11 deals with the factor analysis, one of the most widely used multivari-

ate statistical techniques in management research. By going through this chapter,

the readers can understand to study the characteristics of a group of data by means

of few underlying structures instead of a large number of parameters. The proce-

dure of developing the test battery using the factor analysis technique has also been

discussed in detail.

In Chapter 12, we have discussed discriminant analysis and its application in

various research situations. By learning this technique, one can develop classifica-

tory model in classifying a customer into any of the two categories based on their

relevant profile parameters. The technique is very useful in classifying a customer

as good or bad for offering various services in the area of banking and insurance.

Chapter 13 explains the application of logistic regression for probabilistic

classification of cases into one of the two groups. Basics of this technique have

been discussed before explaining the procedure in solving logistic regression with

SPSS. Interpretations of each and every output have been very carefully explained

for easy understanding of the readers.

In Chapter 14, multidimensional scaling has been discussed to find the brand

positioning of different products. This technique is especially useful if the popular-

ity of products is to be compared on different parameters.

At each and every step, care has been taken so that the readers can learn to apply

SPSS and understand minutest possible detail of analysis discussed in this book.

The purpose of this book is to give a brief and clear description of how to apply

variety of statistical analysis using any version of SPSS. We hope that this book will
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provide students and researchers with a self-learning material of using SPSS to

analyze their data.

Students and other readers are welcome to e-mail me their query related to any

portion of the book at vermajp@sancharnet.in, to which timely reply will be sent.

Professor (Statistics) J.P. Verma
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Chapter 1

Data Management

Learning Objectives

After completing this chapter, you should be able to do the following:

• Explain different types of data generated in management research.

• Know the characteristics of variables.

• Learn to remove the outliers from the data by understanding different data

cleaning methods before using in SPSS.

• Understand the difference between primary and secondary data.

• Know the formats used in this book for using different commands,

subcommands, and options used in SPSS.

• Learn to install SPSS package for data analysis.

• Understand the procedure of importing data in other formats into SPSS.

• Prepare the data file for analysis in SPSS.

Introduction

In today’s world of information technology, enormous data is generated in every

organization. These data can help in strategic decision-making process. It is therefore

important to store such data in a warehouse so that effective mining can be done later

for getting answers to many of the management issues. Data warehousing and data

mining are therefore two important disciplines in the present-day scenario. Research

in any discipline is carried out in order to minimize inputs and effectively utilizing the

human resources, production techniques, governing principles, marketing policies,

and advertisement campaigns to maximize outputs in the form of productivity. To be

more specific, one may be interested to identify new forms of resources, devise

organizational systems and practices to motivate culturally diverse set of individuals,

and evaluate the existing organizations so as to make them more productive to the

new demands on them. Besides, there may be any number of other issues like
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effective leadership, skill improvement, risk management, customer relationships,

and guiding the evolution of technology, etc., where the researcher can make an

effective contribution.

A researcher may use varieties of data analysis techniques in solving their

research problems like: How to motivate people for work? How to make a televi-

sion or FM channel more popular? How to enhance the productivity at work?

Which strategy becomes more efficient? How organizational structure promotes

innovation? How to measure training effectiveness? Due to cutthroat competition,

the research issues have grown in number, scope, and complexity over the years.

Due to availability of computer software for advanced data analysis, researcher has

become more eager to solve many of these complex issues.

The purpose of data analysis is to study the characteristics of sample data for

approximating it to the population characteristics. Drawing conclusion about the

population on the basis of sample would be valid only if the sample is true

representative of the population. This can be ensured by using the proper sampling

technique. However, large sample need not necessarily improves the efficiency in

findings. It is not the quantity but the quality of the sample that matters.

Data generated in management research may be analyzed by using different

kinds of statistical techniques. These techniques differ as per the nature of the study

which can be classified into any of the five categories; descriptive study, analytical

study, inductive study, inferential study and applied study. Choosing statistical

technique in data analysis depends upon nature of the problem. It is therefore

important to know the situation under which these techniques are used.

Descriptive study is used if an organization or a group of objects needs to be

studied about its different characteristics. In such studies, we usually tabulate and

compile the data in a meaningful manner so that the statistics like mean, variance,

standard error, coefficient of variance, range, skewness, kurtosis, percentiles, etc.,

can be computed in different groups.

Analytical studies are used for studying the functional relationships among

variables. Statistics like product moment correlation, partial and multiple

correlations are used in such study. Consider a study where it is required to explore

the parameters on which the sale depends. One may like to find correlation between

sales data and independent variables like incentives, salesman’s IQ, number of

marketing hours, and advertisement campaigns. Here, correlation between the sales

data and other parameters may be investigated for their significance. Thus, in all

those situations where relationships are investigated between the performance

parameter and other independent parameters, analytical studies are used.

Inductive studies are those studies which are used to estimate some phenomenon

of an individual or of an object on the basis of the sample data. Here, the

phenomenon which we estimate does not exist at the time of estimation. One may

estimate company’s performance in the next 3 years on the basis of some of its

present parameters like EPS, P/E ratio, cash reserves, demands, and production

capacity.

In inferential study, inferences are drawn about the population parameters on the

basis of sample data. Regression analysis is being used in such studies. The difference
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between inferential and inductive studies is that the phenomenon which we infer on

the basis of the sample exists in the inferential studies, whereas it is yet to occur in the

inductive studies. Thus, assessing satisfaction level in an organization on the basis of

a sample of employees may be the problem of inferential statistics.

Finally, applied studies refers to those studies which are used in solving the

problems of real life. The statistical methods such as times series analysis, index

numbers, quality control, and sample survey are included in this class of analysis.

Types of Data

Depending upon the data types, two broad categories of statistical techniques are

used for data analysis. For instance, parametric tests are used if the data are metric,

whereas in case of nonmetric data, nonparametric tests are used. It is therefore

important to know in advance the types of data which are generated in management

research.

Data can be classified in two categories, that is, metric and nonmetric. Metric and

nonmetric data are also known as quantitative and qualitative data, respectively.

Metric data is analyzed using parametric tests such as t, F, Z, and correlation coeffi-

cient, whereas nonparametric tests such as sign test, median test, chi-square test,

Mann-Whitney test, and Kruskal-Wallis test are used in analyzing nonmetric data.

Certain assumptions about the data and form of the distribution need to be satisfied

in using parametric tests. Parametric tests are more powerful in comparison to that of

nonparametric tests, provided required assumptions are satisfied. On the other hand,

nonparametric tests are more flexible and easy to use. Very few assumptions need to

be satisfied before using these tests. Nonparametric tests are also known as

distribution-free tests.

Let us understand the characteristics of different types of metric and nonmetric

data generated in research. Metric data is further classified into interval and ratio

data. On the other hand, nonmetric data is classified into nominal and ordinal. The

details of these four types of data are discussed below under two broad categories,

namely, metric data and nonmetric data, and are shown in Fig. 1.1.

Metric Data

Data is said to be metric if it is measured at least on interval scale. Metric data are

always associated with a scale measure, and, therefore, it is also known as scale data

or quantitative data. Metric data can be measured on two different types of scale,

that is, interval and ratio.
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Interval Data

The interval data is measured along a scale where each position is equidistant from

one another. In this scale, the distance between two pairs is equivalent in some way.

In interval data, doubling principle breaks down as there is no zero on the scale. For

instance, the 6 marks given to an individual on the basis of his IQ do not explain that

his nature is twice as good as the person with 3 marks. Thus, interval variables

measured on an interval scale have values in which differences are uniform and

meaningful, but ratios are not. Interval data may be obtained if the parameters of job

satisfaction or level of frustration is rated on scale 1–10.

Ratio Data

The data on ratio scale has a meaningful zero value and has an equidistant measure

(i.e., the difference between 30 and 40 is the same as the difference between 60 and

70). For example, 60 marks obtained on a test are twice of 30. This is so because

zero can be measured on ratio scale. Ratio data can be multiplied and divided

because of an equidistant measure and doubling principle. Observations that we

measure or count are usually ratio data. Examples of ratio data are height, weight,

sales data, stock price, advance tax, etc.

Nonmetric Data

Nonmetric data is a categorical measurement and is expressed not in terms of

numbers but rather by means of a natural language description. It is often known

as “categorical” data. Examples of such data are like employee’s category ¼
“executive,” department ¼ “production,” etc. These data can be measured on two

different scales, that is, nominal and ordinal.

Data Type

Metric data Non-metric data

Interval Ratio Nominal Ordinal

Fig. 1.1 Types of data and their classification
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Nominal Data

Nominal data is a categorical variable. These variables result from a selection in

categories. Examples might be employee’s status, industry types, subject speciali-

zation, race, etc. Data obtained on nominal scale is in terms of frequency. In SPSS,1

nominal data is represented as “nominal.”

Ordinal Data

Variables on the ordinal scale are also known as categorical variables, but here the

categories are ordered. The order of items is often defined by assigning numbers to

them to show their relative position. Categorical variables that assess performance

(good, average, poor, etc.) are ordinal variables. Similarly, attitudes (strongly agree,

agree, undecided, disagree, and strongly disagree) are also ordinal variables. On the

basis of the order of an ordinal variable, we may not know which value is the best or

worst on the measured phenomenon. Moreover, the distance between ordered

categories is also not measureable. No arithmetic can be done with the ordinal

data as they show sequence only. Data obtained on ordinal scale is in terms of ranks.

Ordinal data is denoted as “ordinal” in SPSS.

Important Definitions

Variable

A variable is a phenomenon that changes from time to time, place to place, and

individual to individual. Examples of variable are salary, scores in CAT examina-

tion, height, weight, etc. The variables can further be divided into discrete and

continuous. Discrete variables are those variables which can assume value from a

limited set of numbers. Examples of such variables are number of persons in a

department, number of retail outlets, number of bolts in a box, etc. On the other

hand, continuous variables can be defined as those variables that can take any value
within a range. Examples of such variables are height, weight, distance, etc.

1 SPSS, Inc. is an IBM company which was acquired by IBM in October, 2009.
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Attribute

An attribute can be defined as a qualitative characteristic that takes sub-values of a

variable, such as “male” and “female,” “student” and “teacher,” and married and

unmarried.

Mutually Exclusive Attributes

Attributes are said to be mutually exclusive if they cannot occur at the same time.

Thus, in a survey, a person can choose only one option from a list of alternatives (as

opposed to selecting as many that might apply). Similarly in choosing the gender,

one can either choose male or female.

Independent Variable

Any variable that can be manipulated by the researcher is known as independent

variable. In planning a research experiment, to see the effect of low, medium, and

high advertisement cost on sales performance, advertisement cost is an independent

variable as the researcher can manipulate it.

Dependent Variable

A variable is said to be dependent if it changes as a result of change in the

independent variable. In investigating the impact on sales performance by the

change in advertisement cost, the sales performance is a dependent variable,

whereas advertisement cost is an independent variable. In fact, a variable may be

a dependent variable in one study and independent variable in some other study.

Extraneous Variable

Any additional variable that may provide alternative explanations or cast doubt on

conclusions in an experimental study is known as extraneous variable. If the effect

of three different teaching methods on the student’s performance is to be compared,

then the IQ of the students may be termed as extraneous variable as it might affect

the learning efficiency during experimentation if the IQs are not same in all the

groups.
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The Sources of Research Data

In designing a research experiment, one needs to specify the kind of data required

and how to obtain it. The researcher may obtain the data from the reliable source if

it is available. But if the required data is not available from any source, it may

be collected by the researcher themselves. Several agencies collect data for some

specified purposes and make them available for the other researchers to draw

other meaningful conclusions as per their plan of study. Even some of the

commercial agencies provide the real-time data to the users with cost. The data

so obtained from other sources are referred as secondary data, whereas the data

collected by the researchers themselves are known as primary data. We shall now

discuss other features of these data in the following sections:

Primary Data

The data obtained during study by the researchers themselves or with the help

of their colleagues, subordinates, or field investigators are known as primary data.

The primary data is obtained by the researcher in a situation where relevant data

is not available from the reliable sources or such data do not exist with any of

the agency or if the study is an experimental study where specific treatments are

required to be given in the experiment. The primary data is much more reliable

because of the fact that the investigator himself is involved in data collection and

hence can ensure the correctness of the data. Different methods can be used to collect

the primary data by the researcher. These methods are explained below:

By Observation

The data in this method is obtained by observation. One can ensure the quality of

data as the investigator himself observes real situation and records the data.

For example, to assess the quality of any product, one can see as to how the

articles are prepared by the particular process. In an experimental study, the

performance of the subjects, their behavior, and other temperaments can be

noted after they have undergone a treatment. The drawback of this method is

that sometimes it becomes very frustrating for the investigator to be present all

the time for collecting the data. Further, if an experiment involves the human

being, then the subjects may become conscious in the presence of an investigator,

due to which performance may be affected which will ultimately result in

inaccurate data.
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Through Surveys

This is the most widely used method of data collection in the area of management,

psychology, market research, and other behavioral studies. The researcher must try

to motivate respondents by explaining them the purpose of the survey and impact of

their responses on the results of the study. The questionnaire must be short and must

hide the identity of respondents. Further, the respondent may be provided reason-

able incentives as per the availability of the budget. For instance, a pen, a pencil, or

a notepad with print statements like “With best Compliments from. . .” or “With

Thanks. . .,” “Go Green,” “Save Environment” may be provided before seeking

their opinion on the questionnaire. You can print your organization name or your

name as well if you are an independent researcher. The first two slogans may

promote your company as well, whereas the other two convey the social message to

the respondents. The investigator must ensure the authenticity of the collected data

by means of cross-checking some of the sampled information.

From Interviews

The data collected through the direct interview allows the investigator to go for in-

depth questioning and follow-up questions. The method is slow and costly and

forces an individual to be away from the job during the time of interview. During

the interview, the respondent may provide the wrong information if certain sensi-

tive issues are touched upon, and the respondent may like to avoid it on the premise

that it might suffer their reputation. For instance, if the respondent’s salary is very

low and the questions are asked about his salary, it is more likely that you end up

with the wrong information. Similarly in asking the question, as to how much you

invest on sports for your children in a year, you might get wrong information due to

the false ego of respondent.

Through Logs

The data obtained through the logs maintained by the organizations may be used as

primary data. Fault logs, error logs, complaint logs, and transaction logs may be

used to extract the required data for the study. Such data provide valuable findings

about system performance over time under different conditions if used well, as they

are empirical data and obtained from the objective data sources.

Primary data can be considered to be reliable because you know how it was

collected and what was done to it. It is something like cooking yourself. You know

what went into it.
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Secondary Data

Instead of data obtained by the investigator himself if it is obtained from some other

sources, it is termed as secondary data. Usually, companies collect the data for some

specific purpose, and after that, they publish it for the use of the researchers to draw

some meaningful conclusions as per their requirements. Many government

agencies allow their real-time data to the researchers for using in their research

study. For instance, census data collected by the National Sample Surveys Organi-

zation may be used by the researchers for getting several demographic and socio-

economic information. Government departments and universities maintain their

open-source data and allow the researchers to use it. Nowadays, many commercial

agencies collect the data in different fields and make it available to the researchers

with nominal cost.

The secondary data may be obtained from many sources; some of them are listed

below:

• Government ministries through national informatics center

• Government departments

• Universities

• Thesis and research reports

• Open-source data

• Commercial organization

Care must be taken to ensure the reliability of the agency from which the data is

obtained. One must ensure to take an approval of the concerned department,

agency, organization, universities, or individuals for using their data. Due acknowl-

edgment must be shown in their research report for using their data. Further, data

source must be mentioned while using the data obtained from secondary sources.

In making comparison between primary and secondary data, one may conclude

that primary data is expensive and difficult to acquire, but it is more reliable.

Secondary data is cheap and easy to collect but must be used with caution.

Data Cleaning

Before preparing the data file for analysis, it is important to organize the data on

paper first. There are more chances that the data set may contain error or outlier.

And if it is so, the results obtained may be erroneous. Analysts tend to waste lot of

time in drawing the valid conclusions if data is erroneous. Thus, it is utmost

important that the data must be cleaned before analysis. If data is clean, the analysis

is straightforward and valid conclusions may be drawn.
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In data cleaning, the invalid data is detected first and then it is corrected. Some of

the common sources of errors are as follows:

• Typing errors in data entry

• Not applicable option or blank options are coded as “0”

• Data for one variable column is entered under the adjacent column

• Coding errors

• Data collection errors

Detection of Errors

The wrongly fed data can be detected by means of descriptive statistics computed

by SPSS. Following approaches may be useful in this regard.

Using Minimum and Maximum Scores

By looking to the minimum and maximum scores of each variable in descriptive

statistics, one can identify the error, if any, by knowing the acceptable limits of

minimum and maximum scores of each variable. For instance, if the maximum

score for the variable showing percentage of marks is 650, one must think of some

typographical error while feeding the data as percentage of marks cannot be more

than 100%.

Using Frequencies

Frequencies of each score obtained in descriptive statistics may be used to identify

the “dirty” data among the entered variables. For instance, most of the biometric

data are normally distributed, and, therefore, if any variable shows large frequency

for any values, it must be checked for any systematic error.

Using Mean and Standard Deviation

Normally, the value of standard deviation is less than the mean except in case of

certain distribution like negative binomial. Thus, if the standard deviation for any of

the variables like age, height, or IQ is more than their mean, it can only be if some

of the values of these variables are outliers. Such entries can easily be identified and

removed.

Logic Checks

Errors in data may also be detected by observing as to whether the responses are

logical or not? For example, one would expect to see 100% of responses, not 110%.

Similarly, if a question is asked to a female employee as to whether they have
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availed maternity leave so far or not and if the reply is marked “yes” but you notice

that the respondent is coded as male, such logical errors can be spotted out by

looking to the values of the categorical variable. Logical approach should be used

judiciously to avoid the embarrassing situation in reporting the finding like 10% of

the men in the sample had availed the maternity leave during the last 10 years.

Typographical Conventions Used in This Book

Throughout the book, certain convention has been followed in writing commands

by means of symbol, bold words, italic words, and words in quotes to signify the

special meaning. Readers should note these conventions for easy understanding of

commands used in different chapters of this book.

Start ⟹ All

Programs

Denotes a menu command, which means choosing the command All

Program from the Start menu. Similarly Analyze ⟹ Correlate ⟹
Partial means open the Analyze menu, then open the Correlate

submenu, and finally choose Partial.

Regression Any word written in bold refers to the main command of any window in the

SPSS package.

Prod_Data Any word or combination of words written in italics form during explaining

SPSS is referred as variable.

“Name” Any word or combination of words written in quotes refers to the

subcommand.

‘Scale’ Any word written in single quote refers to one of the option under

subcommand.

Continue This refers to the end of selection of commands in a window and will take

you to the next level of options in any computation.

OK This refers to the end of selecting all the options required for any particular

analysis. After pressing the OK invariably, SPSS will lead you to the

output window.

How to Start SPSS

This book has been written by referring to the IBM SPSS Statistics 20.0 version;

however, in all the previous versions of SPSS, procedure of computing is more or

less similar.

The SPSS needs to be activated on your computer before entering the data. This

can be done by clicking the left button of the mouse on SPSS tag by going through

the SPSS directory in the Start and All Programs option (if the SPSS directory has

been created in the Programs file). Using the following command sequence, SPSS

can be activated on your computer system:
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Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 19

If you use the above-mentioned command sequence, the screen shall look like

Fig. 1.2.

After clicking the tag SPSS, you will get the following screen to prepare the data

file or open the existing data file.

If you are entering the data for new problem and the file is to be created for the

first time, check the following option in the above-mentioned window:

And if the existing file is to be opened or edited, select the following option in

the window:

Fig. 1.2 Commands for starting SPSS on your computer
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Click OK to get the screen to define the variables in the Variable View. Details

of preparing data file are shown below.

Preparing Data File

The procedure of preparing the data file shall be explained by means of the data

shown in Table 1.1.

In SPSS, before entering data, all the variables need to be defined in the

Variable View. Once Type in data option is selected in the screen shown in

Fig. 1.3, click the Variable View. This will allow you to define all the variables

in the SPSS. The blank screen shall look like Fig. 1.4.

Now you are ready for defining the variables row wise.

Defining Variables and Their Properties Under Different Columns

Column 1: In first column, short name of the variables are defined. The variable

name should essentially start with an alphabet and may use under-

score and numerals in between, without any gap. There should be no

space between any two characters of the variable name. Further,

variable name should not be started with numerals or any special

character.

Column 2: Under the column heading “Type,” format of the variable (numeric or

nonnumeric) and the number of digits before and after decimal are

defined. This can be done by double-clicking the concerned cell. The

screen shall look like Fig. 1.5.

Table 1.1 FDI inflows and

trade (in percent) in different

states

S.N. FDI Exports inflows Imports Trade

1 4.92 4.03 3.12 3.49

2 0.07 4.03 3.12 3.49

3 0.00 1.11 2.69 2.04

4 5.13 17.11 27.24 23.07

5 11.14 13.43 11.24 12.14

6 0.48 1.14 3.41 2.47

7 0.30 2.18 1.60 1.84

8 29.34 20.56 18.68 19.45

9 0.57 1.84 1.16 1.44

10 0.03 1.90 1.03 1.39

11 8.63 5.24 9.24 7.59

12 0.00 3.88 6.51 5.43

13 2.20 7.66 1.57 4.08

14 2.37 4.04 4.76 4.46

15 34.01 14.53 3.35 7.95

16 0.81 1.00 1.03 1.02
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Column 3: Under the column heading “Width,” number of digits a variable can

have may be altered.

Column 4: In this column, number of decimal a variable can have may be altered.

Column 5: Under the column heading “Label,” full name of the variable can be

defined. The user can take advantage of this facility to write the

expanded name of the variable the way one feels like.

Fig. 1.3 Screen showing the option for creating/opening file

Fig. 1.4 Blank format for defining the variables in SPSS
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Column 6: Under the column heading “Values,” the coding of the variable may

be defined by double clicking the cell. Sometimes, the variable is of

classificatory in nature. For example, if there is a choice of choosing

any one of the following four departments for training

(a) Production

(b) Marketing

(c) Human resource

(d) Public relation

then these departments can be coded as 1 ¼ production, 2 ¼ market-

ing, 3¼ human resource, and 4¼ public relation. While entering data

into the computer, these codes are entered, as per the response of a

particular subject. SPSS window showing the option for entering code

has been shown in Fig. 1.6.

Column 7: In survey study, it is quite likely that for certain questions the respon-

dent does not reply, which creates the problem of missing value. Such

missing value can be defined under column heading “Missing.”

Column 8: Under the heading “Columns,” width of the column space where data

is typed in Data View is defined.

Column 9: Under the column heading “Align,” the alignment of data while

feeding may be defined as left, right, or center.

Column 10: Under the column heading “Measure,” the variable type may be

defined as scale, ordinal, or nominal.

Fig. 1.5 Option showing defining of variable as numeric or nonnumeric
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Defining Variables for the Data in Table 1.1

1. Write short name of all the five variables as States, FDI_Inf, Export, Import, and
Trade under the column heading “Name.”

2. Under the column heading “Label,” full name of these variables may be defined

as FDI Inflows, Export Data, Import Data, and Trade Data. One can take liberty
of defining some more detailed name of these variables as well.

3. Use default entries in rest of the columns.

After defining variables in the variable view, the screen shall look like Fig. 1.7.

Entering the Data

After defining all the five variables in the Variable View, click Data View on the

left bottom of the screen to open the format for entering the data. For each variable,

data can be entered column wise. After entering the data, the screen will look like

Fig. 1.8. Save the data file in the desired location before further processing.

After preparing the data file, one may use different types of statistical analysis

available under the tag Analyze in the SPSS package. Different types of statistical

analyses have been discussed in different chapters of the book along with their

interpretations. Methods of data entry are different in certain applications; for

Fig. 1.6 Screen showing how to define the code for the different labels of the variable
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instance, readers are advised to note carefully the way data is entered for the

application in Example 6.2 in Chap. 6. Relevant details have been discussed in

that chapter.

Importing Data in SPSS

In SPSS, data can be imported from ASCII as well as Excel file. The procedure of

importing these two types of data files has been discussed in the following sections.

Fig. 1.8 Screen showing entered data for all the variables in the data view

Fig. 1.7 Variables along with their characteristics for the data shown in Table 1.1
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Importing Data from an ASCII File

In ASCII file, data for each variable may be separated by a space, tab, comma, or

some other character. The Text Import Wizard in SPSS facilitates you to import

data from an ASCII file format. Consider the following set of data in ASCII file

saved on the desktop by the file name Business data:

File name: Business data

S.N. FDI Exports inflows Imports Trade

1 4.92 4.03 3.12 3.49

2 0.07 4.03 3.12 3.49

3 0.00 1.11 2.69 2.04

4 5.13 17.11 27.24 23.07

5 11.14 13.43 11.24 12.14

The sequence of commands is as follows:

1. For importing the required ASCII file into SPSS, follow the below-mentioned

sequence of commands in Data View.

File�> Open�>Data�> Businessdata

– Choose “Text” as the “File Type” if your ASCII file has the .txt extension.

Otherwise, choose the option “All files.”

– After selecting the file that you want to import, click Open as shown in

Fig. 1.9.

2. After choosing the ASCII file from the saved location in Fig. 1.9, the Text Import

Wizard will pop up automatically as shown in Fig. 1.10 that will take you for

further option in importing the file. Take the following steps:

– If your file does not match a predefined format, which is usually not, so click

Next.

3. After clicking the Next option above, you will get the screen as shown in

Fig. 1.11. Take the following steps:

– Define delimiter and check the option “Delimited” as the data in the file is

separated by either space or comma.

– If variable names are written in the first row of your data file, check the header

row option as “Yes,” otherwise “No.” In this, the option “Yes” will be

selected because variable names have been written in the first row of the

data file. Click Next.

4. After clicking the option Next, you will get the screen as shown in Fig. 1.12.

Enter the line number where the first case of your data begins. If there is no
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Fig. 1.10 Import text wizard for opening an ASCII file in SPSS

Fig. 1.9 Selecting an ASCII file saved as text file for importing in SPSS



Fig. 1.11 Defining option for delimiter and header row

Fig. 1.12 Defining option for beginning line of data and number of cases to be selected



variable name in the first line of the data file, line 1 is selected; otherwise, line

2 may be selected as the data starts from line 2 in the data file. Take the following

steps:

– Check the option “Each line represents a case.” Normally in your data file,

each line represents a case.

– Check the option “All of the cases.” Usually, you import all the cases from the

file. Other option may be tried if only few cases are imported from the file.

Click Next to get the screen as shown in Fig. 1.13.

5. In Fig. 1.13, delimiters of the data file (probably comma or space) are set:

– Check the delimiters as “Coma” as the data is separated by comma. Other

delimiters may be selected if used in the data file.

– Check the “Double quote” as text qualifier. Other options may be checked if

the variables are flanked other than double quote.

– On the basis of the options chosen by you, SPSS formats the file in the small

screen in the bottom. There you can check if everything is set correctly. Click

Next when everything is ok to get the screen as shown in Fig. 1.14.

Fig. 1.13 Defining option for delimiters and text qualifier
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6. In Fig. 1.14, you can define the specifications for the variables, but you may just

ignore it if you have already defined your variables or want to do it later. Click

Next to get the screen as shown in Fig. 1.15.

7. In Fig. 1.15, select all the default options and ensure that your actual data file has

been shown in the window or not. Once your data is shown in the window, click

Finish. This will import your file successfully in SPSS.

Importing Data File from Excel Format

The data prepared in Excel file can be imported in SPSS by simple command. While

importing Excel data file, one must ensure that it is not open. The sequence of

commands for importing Excel data file is as follows:

1. File�> Open�> Data�> requiredfile

– Choose “Excel” as the File Type if your ASCII file has the .xls extension.

Otherwise, choose the option “All files.”

– After selecting the file that you want to import, click Open as shown in

Fig. 1.16.

Fig. 1.14 Defining specifications for the variables
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2. After choosing the required Excel file from the saved location in Fig. 1.16, you

will get the pop screen called “Opening Excel Data Source” as shown in

Fig. 1.17. Take the following steps:

– Check the option “Read variable names from the first row of data” if you are

using the header row in the data file.

– Select the right worksheet from which you want to import the data. The

screen will show you all the worksheets of the file containing data. If you

have data only in the first worksheet, leave this option as it is.

– If you want to use only a portion of data from the file, define the fields in

“Range” option like A3:E8. This means that the data from the A3 row till

column E8 shall be selected.

– Press Continue to get the Excel file opened in SPSS.

Fig. 1.15 Option for saving the format
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Fig. 1.16 Selecting an Excel file for importing in SPSS

Fig. 1.17 Option for defining the range of data in Excel sheet to be imported in SPSS
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Exercise

Short-Answer Questions

Note: Write the answer to each of the questions in not more than 200 words.

Q.1. What do you mean by inductive and inferential statistics? What is the differ-

ence between them? Explain by means of example.

Q.2. What do you mean by metric and nonmetric data? Discuss them by means of

example.

Q.3. Under what situation analytical studies should be conducted? Discuss a situa-

tion where it can be used.

Q.4. What do you mean by mutually exclusive and independent attributes? Give

two examples where the attributes are not mutually exclusive.

Q.5. What is an extraneous variable? How it affects the findings of an experiment?

Suggest remedies for eliminating its effects.

Q.6. While feeding the data in SPSS, what are the possible mistakes that a user

might commit?

Q.7. Explain in brief as to how an error can be identified in data feeding.

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. Given the following statements,

I. Parametric tests do not assume anything about the form of the distribution.

II. Nonparametric tests are simple to use.

III. Parametric tests are the most powerful if their assumptions are satisfied.

IV. Nonparametric tests are based upon the assumption of normality.

choose the correct statements from the above-listed ones.

(a) (I) and (II)

(b) (I) and (III)

(c) (II) and (III)

(d) (III) and (IV)

2. If the respondents were required to rate themselves on emotional strength on a

9-point scale, what type of data would be generated?

(a) Ratio

(b) Interval

(c) Nominal

(d) Ordinal
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3. The variable measured on which of the following scales are termed as

categorical.

(a) Ratio and interval

(b) Interval and ordinal

(c) Interval and nominal

(d) Ordinal and nominal

4. In tossing an unbiased coin, one can get the following events:

E1: getting a head, E2: getting a tail. Choose the correct statement.

(a) E1 and E2 are independent.

(b) E1 and E2 are mutually exclusive.

(c) E1 and E2 are not equally likely.

(d) E1 and E2 are independent and mutually exclusive.

5. While creating a new data file in SPSS, which option should be used?

(a) Type in data

(b) Open an existing data source

(c) Open another type of file

(d) None

6. Identify valid name of the variable.

(a) SalesData

(b) Cust No

(c) Outlet “ Center”

(d) Sales-Data

7. While defining the types of the variable under the heading “Measure” in SPSS,

what are the valid options out of the following?

(i) Interval (ii) Scale

(iii) Nominal (iv) Ordinal

(a) (i),(ii), and (iii)

(b) (i),(ii), and (iv)

(c) (i),(iii), and (iv)

(d) (ii),(iii), and (iv)

8. For analyzing the data, the commands are selected while being in the

(a) Variable View

(b) Data View

(c) Data and Variable View

(d) Neither in Data nor in Variable View
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9. Runs scored in a cricket match is

(a) Interval data

(b) Ratio data

(c) Nominal data

(d) Ordinal data

10. In an experiment, effect of three types of incentives on satisfaction level has to

be seen on the subjects. Choose the correct statement.

(a) Incentive is a dependent variable, and satisfaction level is an independent

variable.

(b) Incentive is an independent variable, and satisfaction level is a dependent

variable.

(c) Incentive and satisfaction level are independent variables.

(d) Incentive and satisfaction level both are dependent variables.

Answers to Multiple-Choice Questions

Q.1 c Q.2 b

Q.3 d Q.4 b

Q.5 a Q.6 a

Q.7 d Q.8 b

Q.9 b Q.10 b
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Chapter 2

Descriptive Analysis

Learning Objectives

After completing this chapter, you should be able to do the following:

• Learn the importance of descriptive studies.

• Know the various statistics used in descriptive studies.

• Understand the situations in management research for undertaking a descriptive

study.

• Describe and interpret various descriptive statistics.

• Learn the procedure of computing descriptive statistics using SPSS.

• Know the procedure of developing the profile chart of a product or organization.

• Discuss the findings in the outputs generated by the SPSS in a descriptive study.

Introduction

Descriptive studies are carried out to understand the profile of any organization that

follows certain common practice. For example, one may like to know or be able to

describe the characteristics of an organization that implement flexible working

timing or that have a certain working culture. Descriptive studies may be

undertaken to describe the characteristics of a group of employees in an organiza-

tion. The purpose of descriptive studies is to prepare a profile or to describe

interesting phenomena from an individual or an organizational point of view.

Although descriptive studies can identify sales pattern over a period of time or in

different geographical locations but cannot ascertain the causal factors. These

studies are often very useful for developing further research hypotheses for testing.

Descriptive research may include case studies, cross-sectional studies, or longitu-

dinal investigations.

Different statistics are computed in descriptive studies to describe the nature of data.

These statistics computed from the sample provide summary of various measures.

Descriptive statistics are usually computed in all most every experimental research

J.P. Verma, Data Analysis in Management with SPSS Software,
DOI 10.1007/978-81-322-0786-3_2, # Springer India 2013
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study. The primary goal in a descriptive study is to describe the sample at any specific

point of time without trying to make inferences or causal statements. Normally, there

are three primary reasons to conduct such studies:

1. To understand an organization by knowing its system

2. To help in need assessment and planning resource allocation

3. To identify areas of further research

Descriptive studies help in identifying patterns and relationships that might

otherwise go unnoticed.

A descriptive study may be undertaken to ascertain and be able to describe the

characteristics of variables of interest, in a given situation. For instance, a study of

an organization in terms of percentage of employee in different age categories, their

job satisfaction level, motivation level, gender composition, and salary structure

can be considered as descriptive study. Quite frequently descriptive studies are

undertaken in organizations to understand the characteristics of a group or

employees such as age, educational level, job status, and length of service in

different departments.

Descriptive studies may also be undertaken to know the characteristics of all

those organizations that operate in the same sector. For example, one may try to

describe the production policy, sales criteria, or advertisement campaign in phar-

macy companies. Thus, the goal of descriptive study is to offer the researcher a

profile or to describe relevant aspects of the phenomena of interest in an organiza-

tion, industry, or a domain of population. In many cases, such information may be

vital before considering certain corrective steps.

In a typical profile study, we compute various descriptive statistics like mean,

standard deviation, coefficient of variation, range, skewness, and kurtosis. These

descriptive statistics explain different features of the data. For instance, mean

explains an average value of the measurement, whereas standard deviation

describes variation of the scores around their mean value; the coefficient of varia-

tion provides relative variability of scores; range gives the maximum variation;

skewness explains the symmetricity; and kurtosis describes the variation in the

data set.

In descriptive studies, one tries to obtain information regarding current status of

different phenomena. Purpose of such study is to describe “What exists?” with

respect to situational variables.

In descriptive research, the statement of problem needs to be defined first and

then identification of information is planned. Once the objectives of the study are

identified, method of data collection is planned to obtain an unbiased sample, and

therefore, it is important to define the population domain clearly. Further, an

optimum sample size should be selected for the study as it enhances the efficiency

in estimating population characteristics.

Once the data is collected, it should be compiled in a meaningful manner for

further processing and reporting. The nature of each variable can be studied by

looking to the values of different descriptive statistics. If purpose of the study is
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analytical as well, then these data may further be analyzed for testing different

formulated hypotheses.

On the basis of descriptive statistics and graphical pictures of the parameters,

different kinds of generalizations and predictions can be made. While conducting

descriptive studies, one gets an insight to identify the future scope of the related

research studies.

Measures of Central Tendency

Researchers are often interested in defining a value that best describes some

characteristics of the population. Often, this characteristic is a measure of central

tendency. A measure of central tendency is a single score that attempts to describe a

set of data by identifying the central position within that set of data. The three most

common measures of central tendency are the mean, the median, and the mode.

Measures of central tendency are also known as central location. Perhaps, you are

more familiar with the mean (also known as average) as the measure of central

tendency, but there are others, such as the median and the mode, which are

appropriate in some specific situations.

The mean, median, and mode are all valid measures of central tendency, but,

under different conditions, some measures of central tendency become more appro-

priate than other. In the following sections, we will look at the various features of

mean, median, and mode and the conditions under which they are most appropriate

to be used.

Mean

The mean is the most widely used and popular measure of central tendency. It is

also termed as average. It gives an idea as to how an average score looks like.

For instance, one might be interested to know that on an average how much is the

sale of items per day on the basis of monthly sales figure. The mean is a good

measure of central tendency for symmetric distributions but may be misleading in

case of skewed distribution. The mean can be computed with both discrete and

continuous data. The mean is obtained by dividing the sum of all scores by the

number of scores in the data set.

If X1, X2, . . ., Xn are the n scores in the data set, then the sample mean, usually

denoted by �X (pronounced X bar), is

�X ¼ X1 þ X2 þ ::::Xn

n
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This formula is usually written by using the Greek capital letter
P

, pronounced

“sigma,” which means “sum of. . .”:

�X ¼ 1

n

X
X (2.1)

In statistics, sample mean and population mean are represented in different

manner, although the formulas for their computations are same. To show that we

are calculating the population mean and not the sample mean, we use the Greek

lower case letter “mu,” denoted as m:

m ¼ 1

n

X
X

The mean is the model of your data set and explains that on an average, the data

set tends to concentrate toward it. You may notice that the mean is not often one of

the actual values that you have observed in your data set.

Computation of Mean with Grouped Data

If X1, X2, X3, . . ., Xn are n scores with f1, f2, f3, . . ., fn frequencies respectively in the
data set, then the mean is computed as

�X ¼
P

fiXiP
fi

¼
P

fiXi

n
(2.2)

whereP
f iXi is the total of all the scores.

In case the data is arranged in class interval format, the X will be the midpoint of

the class interval. Let us see how to explain the data shown in the class interval form

in Table 2.1. The first class interval shows that the ten articles are in the price range

of Rs. 1–50 and that of six articles are in the range of Rs. 51–100 and so on. Here,

the exact price of each article is not known because they have been grouped

together. Thus, in case of grouped data, the scores lose its own identity. This

becomes problematic as it is difficult to add the scores because their magnitudes

are not known. In order to overcome this problem, an assumption is made while

computing mean and standard deviation from the grouped data. It is assumed that

the frequency is concentrated at the midpoint of the class interval. By assuming so,

the identity of each and every score can be regained; this helps us to compute the

sum of all the scores which is required for computing mean and standard deviation.

But by taking this assumption, it is quite likely that the scores may be either

underestimated or overestimated. For instance, in Table 2.1, if all the ten items
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would have had prices in the range of Rs. 1–50 but due to assumption they are

assumed to have prices as Rs. 25.5, a negative error may be created which is added

in the computation of mean. But it may be quite likely that the prices of other six

items may be on the higher side, say Rs. 90, whereas they are assumed to have the

price as 75.5 which creates the positive error. Thus, these positive and negative

errors add up to zero in the computation of mean.

In Table 2.1,
P

fX represents the sum of all the scores, and therefore,

�X ¼
P

fiXi

n
¼ 2914

28
¼ 104:07

Effect of Change of Origin and Scale on Mean

If the magnitude of data is large, it may be reduced by using the simple

transformation

D ¼ X � A

i

where “A” and “i” are origin and scale, respectively. Thus, any score which is

subtracted from all the scores in the data set is termed as origin, and any score by

which all the scores are divided is known as scale. The choice of origin and scale is

up to the researcher, but the only criterion which one should always keep in mind is

that the very purpose of using the transformation is to simplify the data and

computation.

Let us see what is the effect of change of origin and scale on the computation of

mean? If all the X scores are transformed into D by using the above-mentioned

transformation, then taking summation on both sides,

P
D ¼P X�A

i

� �
) P

X � Að Þ ¼ i�PD

Table 2.1 Frequency distribution of articles price

Class interval (price range in Rs.) Frequency (f) Midpoint (X) fX

1–50 10 25.5 255

51–100 6 75.5 453

101–150 4 125.5 502

151–200 4 175.5 702

201–250 2 225.5 451

251–300 2 275.5 551P
f ¼ n ¼ 28

P
fX ¼ 2914
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Dividing both side by n,

P
X � Að Þ
n

¼ i�PD

n

) 1

n

X
X � nA

n
¼ i� 1

n

X
D

) �X ¼ Aþ i� �D

Thus, we have seen that if all the scores X are transformed intoD by changing the

origin and scales as A and i, respectively, then the original mean can be obtained

by multiplying the new mean �D by the scale i and adding the origin value into it.

Thus, it may be concluded that the mean is not independent of change of origin and

scale.

Computation of Mean with Deviation Method

In case of grouped data, the mean can be computed by transforming the scores so

obtained by taking the midpoint of the class intervals. Consider the data shown in

Table 2.1 once again. After computing the midpoint of the class intervals, let us

transform the scores by changing the origin and scale as 175.5 and 50, respectively.

Usually, origin (A) is taken as the midpoint of the middlemost class interval, and the

scale (i) is taken as the width of the class interval. The origin A is also known as

assumed mean (Table 2.2).

Here, width of the class interval ¼ i ¼ 50 and assumed mean A ¼ 175.5

Since we know that

X ¼ Aþ i� D ¼ Aþ i� 1

n

X
fD

) �X ¼ 175:5þ 50� 1

28
� ð�40Þ

¼ 175:5� 71:43 ¼ 104:07

Table 2.2 Showing computation for mean

Class interval

(price range in Rs.) Frequency (f) Midpoint (X) D ¼ X�175:5
50

fD

1–50 10 25.5 �3 �30

51–100 6 75.5 �2 �12

101–150 4 125.5 �1 �4

151–200 4 175.5 0 0

201–250 2 225.5 1 2

251–300 2 275.5 2 4P
f ¼ n ¼ 28

P
fD ¼ �40
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In computing the mean, the factor i� 1 n=ð ÞP fD can be considered as the

correction factor. If the assumed mean is taken higher than the actual mean, the

correction factor shall be negative, and, if it is taken as lower than the actual mean,

the correction factor will become positive. One may take assume mean as the

midpoint of the even lowest or highest class interval. But in that case, the magnitude

of the correction factor shall be higher and the very purpose of simplifying the

computation process shall be defeated. Thus, the correct strategy is to take the

midpoint of the middlemost class interval as the assumed mean. However, in case

the number of class intervals is even, midpoint of any of the two middle class

intervals may be taken as the assumed mean.

Properties of Mean

1. The mean is the most reliable measure of central tendency as it is computed by

using all the data in the data set.

2. Mean is more stable than any other measures of central tendency because its

standard error is least in comparison to median and mode. It simply means that if

you compute mean of different samples that are drawn from the same popula-

tion, then the fluctuation among these means shall be least in comparison to that

of other measures of central tendencies like median and mode.

3. If �X1 and �X2 are the means of the two groups computed from the two sets of

values n1 and n2, then the combined mean �Xis given by the following formula:

�X ¼ n1 �X1 þ n2 �X2

n1 þ n2

4. The sum of the deviation of a set of values from their arithmetic mean is always

0. In other words,

X
X � �Xð Þ ¼ 0

To prove this, expand left-hand side of this expression

X
X � �Xð Þ ¼

X
X �

X
�X

¼ N �X � N �X ¼ 0

5. The mean is highly affected by the outliers.

6. In the absence of even one observation, it is impossible to compute the mean

correctly.

7. In case of open-ended class interval, the mean cannot be computed.
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Median

Median is the middlemost score in the data set arranged in order of magnitude. It is

a positional average and is not affected by the extreme scores. If X1, X2, . . ., Xn are

the n scores in a data set arranged in the ascending or descending order, then its

median is obtained by

Md ¼ N þ 1

2

� �th

score (2.4)

One should note that nþ 1ð Þ=2 is not the median, but the score lying in that

position is the median. Consider the weight of the following ten subjects: 56, 45, 53,

41, 48, 53, 52, 65, 38, 42.

After arranging the scores

S.N.: 1 2 3 4 5 6 7 8 9 10

Weight: 38 41 42 45 48 52 53 53 56 65

Here, n ¼ 10.

Thus, Md ¼ 10þ1
2

� �th ¼ 5:5thscore ¼ 48þ52ð Þ
2

¼ 50

In case of odd number of scores you will get a single score lying in the middle,

but in case of even number of scores, the middlemost score is obtained by taking the

average of the two middle scores as in that case there are two middle scores.

Median is used in case the effect of extreme scores needs to be avoided. For

example, consider the marks of the students in a college as shown below:

Student: 1 2 3 4 5 6 7 8 9 10

Marks: 35 40 30 32 35 39 33 32 91 93

The mean score for these ten students is 46. However, the raw data suggests that

this mean value might not be the best way to accurately reflect the typical perfor-

mance of a student, as most students have marks in between 30 and 40. Here, the

mean is being skewed by the two large scores. Therefore, in this situation, median

gives better estimate of average instead of mean. Thus, in a situation where the

effect of extreme scores needs to be avoided, median should be preferred over

mean. In case the data is normally distributed, the values of mean, median, and

mode are same. Moreover, they all represent the most typical value in the data set.

However, as the data becomes skewed, the mean loses its ability to provide the best

central location as the mean is being dragged in the direction of skew. In that case,

the median best retains this position and is not influenced much by the skewed

values. As a rule of thumb if the data is non-normal, then it is customary to use the

median instead of the mean.
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Computation of Median for Grouped Data

While computing the median for grouped data, it is assumed that the frequencies are

equally distributed in the class interval. This assumption is also used in computing

the quartile deviation because median and quartile deviation both are nonparamet-

ric statistics and depend upon positional score. In case of grouped data, the median

is computed by the following formula:

Md ¼ jj þ
n
2
� F

f m
� i (2.5)

where

|| : lower limit of the median class

n : total of all the frequencies

F : cumulative frequency of the class just lower than the median class

fm : frequency of the median class

i : width of the class interval

The computation of the median shall be shown by means of an example.

Consider the marks in mathematics obtained by the students as shown in Table 2.3.

In computing median, first of all we need to find the median class. Median class

is the one in which the median is supposed to lie. To obtain the median class, we

compute n/2 and then we look for this value in the column of cumulative frequency.

The class interval for which the cumulative frequency includes the value n/2 is

taken as median class.

Here, n ¼ 70

and therefore, n
2
¼ 70

2
¼ 35

Now, we look for 35 in the column of cumulative frequency. You can see that

the class interval 31–35 has a cumulative frequency 48 which includes the value

n/2 ¼ 35. Thus, 31–35 is the median class. After deciding the median class, the

median can be computed by using the formula (2.5).

Here, || ¼ Lower limit of the median class ¼ 30.5

fm ¼ Frequency of the median class ¼ 20

F ¼ Cumulative frequency of the class just lower than the median class ¼ 28

i ¼ Width of the class interval ¼ 5

Substituting these values in the formula (2.5),

Md ¼ jj þ
n
2
� F

f m
� i

¼ 30:5þ 35� 28

20
� 5 ¼ 30:50þ 1:75 ¼ 32:25

In computing the lower limit of the median class, 0.5 has been subtracted from

the lower limit because the class interval is discrete. Any value which is equal or
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greater than 30.5 shall fall in the class interval 31–35, and that is why actual lower

limit is taken as 30.5 instead of 31. But in case of continuous class intervals, lower

limit of the class interval is the actual lower limit, and we do not subtract 0.5 from it.

In case of continuous class interval, it is further assumed that the upper limit is

excluded from the class interval. This make the class intervals mutually exclusive.

In Table 2.3, the lowest class interval is truncated, and therefore, its midpoint

can be computed; hence, the mean can not be computed in this situation. Thus, if the

class intervals are truncated at one or both the ends, median is the best choice as a

measure of central tendency.

Mode

Mode can be defined as the score that occurs most frequently in a set of data. If the

scores are plotted, then the mode is represented by the highest bar in a bar chart or

histogram. Therefore, mode can be considered as the most popular option in the set

of responses. Usually, mode is computed for categorical data where we wish to

know as to which the most common category is. The advantage of mode is that it is

not affected by the extreme scores (outliers). Sometime, there could be two scores

having equal or nearly equal frequencies in the data set. In that case, the data set will

have two modes and the distribution shall be known as bimodal. Thus, on the basis

of the number of modes, the distribution of the scores may be unimodal, bimodal, or

multimodal. Consider the following data set: 2, 5, 4, 7, 6, 3, 7, 8, 7, 9, 1, 7. Here, the

score 7 is being repeated maximum number of times; hence, the mode of this data

set is 7.

The mode can be used in variety of situations. For example, if a pizza shop

sells 12 different varieties of pizzas, the mode would represent the most popular

pizza. Mode may be computed to know as to which of the text book is more popular

Table 2.3 Frequency distribution of marks in mathematics

Class interval

(marks range) Frequency (f)
Cumulative

frequency (F)

10 or less 2 2

11–15 4 6

16–20 5 11

21–25 6 17

26–30 11 28

31–35 20 48

36–40 15 63

41–45 4 67

46–50 3 70P
f ¼ n ¼ 70

F

fm

Median class
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than others, and accordingly, the publisher would print more copy of that book

instead of printing equal number of all books.

Similarly, it is important for the manufacturer to produce more of the most

popular shoes because manufacturing different shoes in equal numbers would cause

a shortage of some shoes and an oversupply of others. Other applications of the

mode may be to find the most popular brand of soft drink or biscuits to take the

manufacturing decision accordingly.

Drawbacks of Mode

1. Computing mode becomes problematic if the data set consists of continuous

data, as we are more likely not to have any one value that is more frequent than

the other. For example, consider measuring 40 persons’ height (to the nearest

1 cm). It will be very unlikely that any two or more people will have the same

height. This is why the mode is very rarely used with continuous data.

2. Mode need not necessarily be unique. There may be more than one mode present

in the data set. In that case, it is difficult to interpret and compare the mode.

3. If no value in the data set is repeated, then every score is a mode which is useless.

Computation of Mode for Grouped Data

In computing the mode with grouped data first of all one needs to identify the modal

class. The class interval, for which the frequency is maximum, is taken as modal

class. The frequency of the modal class is denoted by f0, and that of frequencies

before and after the modal class are represented by f1 and f2, respectively. Once
these frequencies are identified, they can be used to compute the value of the mode.

The formula for computing mode with the grouped data is given by

M0 ¼ jj þ fm � f1

2fm � f1 � f2
� i (2.6)

where

|| : lower limit of the modal class

fm : frequency of the modal class

f1 : frequency of the class just lower than the modal class

f2 : frequency of the class just higher than the modal class

i : width of the class interval

Table 2.4 shows the distribution of age of bank employees. Let us compute the

value of mode in order to find as to what is the most frequent age of employees in

the bank.

Since the maximum frequency is 50 for the class interval 26–30, hence this will

be the modal class here.
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Now, || ¼ lower limit of the modal class ¼ 25.5

fm : frequency of the modal class ¼ 50

f1 : frequency of the class just lower than the modal class ¼ 25

f2 : frequency of the class just higher than the modal class ¼ 10

i : width of the class interval ¼ 5

After substituting these values in the formula (2.6), we get

M0 ¼ jj þ fm � f1

2fm � f1 � f2
� i

¼ 25:5þ 50� 25

2� 50� 25� 10
� 5

¼ 25:5þ 1:92 ¼ 27:42

Thus, one may conclude that mostly employees in the bank are of around

27 years of age.

Summary of When to Use the Mean, Median, and Mode

Following summary table shows the suitability of different measures of central

tendency for different types of data.

Nature of variable Suitable measure of central tendency

Nominal data (categorical) Mode

Ordinal data Median

Interval/ratio (symmetrical or nearly symmetrical) Mean

Interval/ratio (skewed) Median

Table 2.4 Frequency distribution of age

Class interval C.I. Frequency (f)

21–25 25

26–30 50

31–35 10

36–40 5

41–45 4

46–50 2
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Measures of Variability

Variability refers to the extent of scores that vary from each other. The data set is

said to have high variability when it contains values which are considerably higher

and lower than the mean value. The terms variability, dispersion, and spread are all

synonyms and refer as to how much the distribution is spread out. Measure of

central tendency refers to the central location in the data set, but the central location

itself is not sufficient to define the characteristics of the data set. It may happen that

the two data sets are similar in their central location but might differ in their

variability. Thus, measure of central tendency and measure of variability both are

required to describe the nature of the data correctly. There are four measures of

variability that are frequently used, the range: interquartile range, variance, and

standard deviation. In the following paragraphs, we will look at each of these four

measures of variability in more detail.

The Range

The range is the crudest measure of variability and is obtained by subtracting the

lowest score from the highest score in the data set. It is rarely used because it is

based on only two extreme scores. The range is simple to compute and is useful

when it is required to evaluate the whole of a data set. The range is useful in

showing the maximum spread within a data set. It can be used to compare the spread

between similar data sets.

Using range becomes problematic if one of the extreme score is exceptionally

high or low (referred to as outlier). In that case, the range so computed may not

represent the true variability within the data set. Consider a situation where scores

obtained by the students on a test were recorded and the minimum and maximum

scores were 25 and 72, respectively. If a particular student did not appear in the

exam due to some reason and his score was posted as zero, then the range becomes

72(72–0) instead of 47(72–25). Thus, in the presence of an outlier, the range

provides the wrong picture about the variability within the data set. To overcome

the problem of outlier in a data set, the interquartile range is often calculated instead

of the range.

The Interquartile Range

The interquartile range is a measure that indicates the maximum variability of the

central 50% of values within the data set. The interquartile range can further be

divided into quarters by identifying the upper and lower quartiles. The lower

quartile (Q1) is equivalent to the 25th percentile in the data set which is arranged

in order of magnitude, whereas the upper quartile (Q3) is equivalent to the 75th
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percentile. Thus, Q1 is a point below which 25% scores lie, and Q3 refers to a score

below which 75% scores lie. Since the median is a score below which 50% scores

lie, hence, the upper quartile lies halfway between the median and the highest value

in the data set, whereas the lower quartile lies halfway between the median and the

lowest value in the data set. The interquartile range is computed by subtracting the

lower quartile from the upper quartile and is given by

Q ¼ Q3 � Q1 (2.7)

The interquartile range provides a better picture of the overall data set by

ignoring the outliers. Just like range, interquartile range also depends upon the

two values. Statistically, the standard deviation is more powerful measure of

variability as it is computed with all the values in the data set.

The Standard Deviation

The standard deviation is the most widely used measure of variability, the value of

which depends upon how closely the scores cluster around the mean value. It can be

computed only for interval or ratio data. The standard deviation is the square root of

the average squared deviation of the scores from its mean value and is represented

by s(termed as sigma):

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
X � mð Þ2

r

After simplification,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
X2 �

P
X

N

� �2
s

(2.8)

where m is the population mean. The terms is used for population standard deviation,
whereas S is used for sample standard deviation. The population standard deviation s
can be estimated from the sample data by the following formula:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
X � �Xð Þ2

r

After simplifying,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
X2 �

P
Xð Þ2

nðn� 1Þ

s
(2.9)
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If X1, X2, X3, . . ., Xn are the n scores with f1, f2, f3,. . ., fn frequencies respectively
the data set, then the standard deviation shall be given as

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
f X � �Xð Þ2

r

After simplification,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
fX2 �

P
fXð Þ2

nðn� 1Þ

s
(2.10)

where �X refers to the sample mean. The standard deviation measures the aggregate

variation of every value within a data set from the mean. It is the most robust and

widely used measure of variability because it takes into account every score in the

data set.

When the scores in a data set are tightly bunched together, the standard deviation

is small. When the scores are widely apart, the standard deviation will be relatively

large. The standard deviation is usually presented in conjunction with the mean and

is measured in the same units.

Computation of Standard Deviation with Raw Data

The sample standard deviation of a series of scores can be computed by using the

formula (2.9). Following are the data on memory retention test obtained on 10

individuals. The scores are the number of items recollected by individuals

(Table 2.5).

Table 2.5 Computation for

standard deviation
(X) (X2)

4 16

5 25

3 09

2 04

6 36

8 64

4 16

5 25

6 36

4 16P
X ¼ 47

P
X2 ¼ 247
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Here n ¼ 10,
P

X ¼ 47, and
P

X2 ¼ 247.

Substituting these values in the formula (2.9),

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
X2 �

P
Xð Þ2

nðn� 1Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

10� 1
� 247� 47ð Þ2

10� 9

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:44� 24:54

p
¼ 1:7

Thus, the standard deviation of the test scores on memory retention is 1.7.

Looking to this value of standard deviation, no conclusion can be drawn as to

whether the variation is less or more. It is so because standard deviation is

considered to be the absolute variability. This problem can be solved by computing

coefficient of variability. It will be discussed later in this chapter

Effect of Change of Origin and Scale on Standard Deviation

Let us see what happens to the standard deviation if the origin and scale of the

scores are changed in the data set. Let the scores transformed by using the following

transformation:

D ¼ X � A

i

) X ¼ Aþ i� D

where “A” is origin and “i” is the scale. One can choose any value of origin, but the
value of scale is usually the width of the class interval.

Taking summation on both side and dividing both sides by n, we get

�X ¼ Aþ i� �D

(This has been proved above in (2.3))

SX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
f X � �Xð Þ2

r

Since X � �X ¼ Aþ iD� Aþ i �Dð Þ ¼ i D� �Dð Þ
Substituting the value of X � �X, we get

SX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
i2f D� D
� �2r

¼ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
f D� D
� �2r

) SX ¼ i� SD (2.11)

44 2 Descriptive Analysis



Thus, it may be concluded that the standard deviation is free from change of

origin but is affected by the change scale.

Let us compute the standard deviation for the data shown in Table 2.1. Consider

the same data in Table 2.6 once again. After computing the midpoints of the class

intervals, let us transform the scores by taking the origin and scale as 175.5 and 50,

respectively. Usually, origin (A) is taken as the midpoint of the middlemost class

interval, and the scale (h) is taken as the width of the class interval. The origin A is

also known as assumed mean.

Here, width of the class interval ¼ h ¼ 50 and assumed mean A ¼ 175.5.

From the equation (2.11), SX ¼ i� SD ¼ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

P
f D� D
� �2q

After simplification,

SX ¼ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
fD2 �

P
fDð Þ2

nðn� 1Þ

s

Substituting the values of n,
P

fD and
P

fD2, we get

SX ¼50�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

28� 1
� 128� �40ð Þ2

28� 27

s

¼80:93

Variance

The variance is the square of standard deviation. It can be defined as the average of

the squared deviations of scores from their mean value. It also measures variation of

Table 2.6 Computation of standard deviation

Class interval

(price range in Rs.) Frequency (f) Midpoint (X) D ¼ X�175:5
50

fD fD2

1–50 10 25.5 �3 �30 90

51–100 6 75.5 �2 �12 24

101–150 4 125.5 �1 �4 4

151–200 4 175.5 0 0 0

201–250 2 225.5 1 2 2

251–300 2 275.5 2 4 8

n ¼ 28 �40 128
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the scores in the distribution. It shows the magnitude of variation among the scores

around its mean value. In other words, it measures the consistency of data. Higher

variance indicates more heterogeneity, whereas lower variance represents more

homogeneity in the data.

Like standard deviation, it also measures the variability of scores that are

measured in interval or ratio scale. The variance is usually represented by s2and
is computed as

s2 ¼ 1

N

X
X � mð Þ2 (2.12)

The variance can be estimated from the sample by using the following formula:

s2 ¼ 1

n� 1

X
X � �Xð Þ2

¼ 1

n� 1

X
X2 �

P
Xð Þ2

nðn� 1Þ

Remark Population mean and population standard deviation are represented by m
and s, respectively, whereas sample mean and sample standard deviation are

represented by �Xand S, respectively.

The Index of Qualitative Variation

Measures of variability like range, standard deviation, or variance are computed for

interval or ratio data. What if the data is in nominal form? In social research, one

may encounter many situations where it is required to measure the variability of the

data based on nominal scale. For example, one may like to find the variability of

ethnic population in a city, variation in the responses on different monuments,

variability in the liking of different sports in an institution, etc. In all these

situations, an index of qualitative variation (IQV) may be computed by the follow-

ing formula to find the magnitude of variability:

IQV ¼ K 1002 �PP2
� �
1002ðK � 1Þ (2.13)

where

K ¼ The number of categories

SP2 ¼ Sum of squared percentages of frequencies in all the groups
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The IQV is based on the ratio of the total number of differences in the distribution

to the maximum number of possible differences within the same distribution. This

IQV can vary from 0.00 to 1.00. When all the cases are in one category, there is no

variation and the IQV is 0.00. On the other hand, if all the cases are equally

distributed across the categories, there is maximum variation and the IQV is 1.00.

To show the computation process, consider an example where the number of

students belonging to different communities were recorded as shown in Table 2.7

Here, we have K ¼ number of categories ¼ 5:

IQV ¼ K 1002 �PP2
� �
1002ðK � 1Þ

¼ 5� 1002 � 5; 018:34
� �
1002 � 5� 1ð Þ ¼ 24; 908:3

40; 000

¼ 0:62

By looking to the formula (2.13), you can see that the IQV is partially a

function of the number of categories. Here, we used five categories of

communities. Had we used more number of categories, the IQV would have

been quite less, and, on the other hand, if the number of categories would have

been less than the value of IQV, it would have been higher than what

we are getting.

Standard Error

If we draw n samples from the same population and compute their means, then these

means will not be the same but will differ with each other. The variation among these

means is referred as the standard error of mean. Thus, the standard error of any

statistic is the standard deviation of that statistic in the sampling distribution. Stan-

dard error measures the sampling fluctuation of any statistic and is widely used in

statistical inference. The standard error gives a measure of how well a sample is true

Table 2.7 Frequency distribution of the students in different community

S.N. Community No. of students % of students (P) P2

1 Hindu 218 68.1 4637.61

2 Muslim 55 17.2 295.84

3 Christian 25 7.8 60.84

4 Sikh 10 3.1 9.61

5 Others 12 3.8 14.44P
P2 ¼ 5018:34
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representative of the population. When the sample is truly representing the popula-

tion, the standard error will be small.

Constructing confidence intervals and testing of significance are based on standard

errors. The standard error of mean can be used to compare the observed mean to a

hypothesized value. The two values may be different at 5% level if the ratio of the

difference to the standard error is less than �2 or greater than +2.

The standard error of any statistics is affected by the sample size. In general, the

standard error decreases with the increase in sample size. It is denoted by s with a

subscript of a statistic for which it is computed.

Let �X1, �X2, �X3, . . ., �Xn are the means of n samples drawn from the same population.

Then the standard deviation of these n mean scores is said to be standard error of

mean. The standard error of sample mean can be estimated by even one sample. If

any sample consists of n scores with population standard deviation s, then the

standard error of the mean is given by

s �X ¼ sffiffiffi
n

p (2.14)

Whereas the standard error of the standard deviation is given by

ss ¼ sffiffiffiffiffi
2n

p (2.15)

Like standard error of the mean, the standard error of the standard deviation also

measures the fluctuation of standard deviations among the samples.

Remark If population standard deviation s is unknown, it may be estimated by the

sample standard deviation S.

Coefficient of Variation (CV)

Coefficient of variation is an index which measures the extent of variability in the

data set in relation to its mean value. It is free from unit and compensates with the

value of mean in the data set. Coefficient of variation is also known as relative

variability and is denoted by CV

CV ¼ S
�X
� 100 (2.16)

where S and �X represent sample standard deviation and sample mean respectively.

Since coefficient of variation measures the relative variability and computes the

variability in percentage, it can be used to know whether a particular parameter is

more variable or less variable. Coefficient of variation can be used for comparing

the variability of two groups in a situation when their mean values are not equal.
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It may also be used to compare the variability of two groups of data having different

units.

On the other hand, standard deviation is a measure of absolute variability, and

therefore, it cannot be used to assess the variability of any data set without knowing

its mean value. Further, standard deviation cannot be used to compare the

variability of two sets of scores if their mean value differs.

Consider the following statistics obtained on the number of customers visiting

the retail outlets of a company in two different locations in a month. Let us see what

conclusions can be drawn with this information.

Location A B

Mean 40 20

SD 8 6

CV 20% 30%

The standard deviation of the number of customers in location A is larger in

comparison to location B, whereas coefficient of variation is larger in location B in

comparison to location A. Thus, it may be inferred that the variation among the

number of customers visiting the outlet in location B is higher than that of location A.

Moments

A moment is a quantitative value that tells us the shape of a set of points. The

moment can be central or noncentral. Central moment is represented by mr, whereas
noncentral moment is denoted by m

0
r . If the deviation of scores is taken around mean,

then the moment becomes central, and if it is taken around zero or any other arbitrary

value, it is known as noncentral moment. The rth central moment is given by

mr ¼
1

n

X
X � �Xð Þr (2.17)

Different moments convey different meanings. For instance, second central

moment m2 is always equal to variance of a distribution. Similarly second, third,

and fourth moments are used to compute skewness and kurtosis of the data set. On

the other hand, rth noncentral moment around the origin zero is denoted by

m
0
r ¼

1

n

X
Xr (2.18)
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The first noncentral moment m
0
1 about zero always represents mean of the

distribution. These noncentral moments are used to compute central moments by

means of a recurrence relation.

Skewness

Skewness gives an idea about the symmetricity of the data. In symmetrical distri-

bution if the curve is divided in the middle, the two parts become the mirror image

of each other. If the curve is not symmetrical, it is said to be skewed. The skewness

of the distribution is represented by b1and is given by

b1 ¼
m23
m32

(2.19)

where m2 and m3 are the second and third central moments. For a symmetric

distribution, b1 is 0. A distribution is positively skewed if b1 is positive and

negatively skewed if it is negative. In a positively skewed distribution, the tail is

heavy toward the right side of the curve, whereas in a negatively skewed curve, the

tail is heavy toward the left side of the curve. Further, in positively skewed curve,

median is greater than mode, whereas in negatively skewed curve, the median is

less than mode. Graphically both these curves can be shown by Fig. 2.1a, b:

The standard error of the skewness is given by

SEðSkewnessÞ ¼ SE b1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6nðn� 1Þ
ðn� 2Þðnþ 1Þðnþ 3Þ

s
(2.20)

where n is the sample size. Some authors use
ffiffiffiffiffiffiffiffi
6=n

p
for computing standard error of

the skewness, but it is a poor approximation for the small sample.

The standard error of skewness can be used to test its significance. In testing the

significance of skewness, the following Z statistic is used which follows a normal

distribution.

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp
n� 2

� b1
SE b1ð Þ (2.21)

The critical value of Z is approximately 2 (for a two-tailed test with roughly at 5%

level). Thus, if calculated value of Z < �2, we may interpret that the population is
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very likely to be skewed negatively. On the other hand, if calculated Z > +2, it may

be concluded that the population is positively skewed.

However, in general, skewness values more than twice its standard error

indicates a departure from symmetry. This gives a criterion to test whether skew-

ness (positive or negative) in the distribution is significant or not. Thus, if the data is

positively skewed, it simply means that majority of the scores are less than its mean

value, and in case of negative skewness, most of the scores are more than its mean

value.

Kurtosis

Kurtosis is a statistical measure used for describing the distribution of observed data

around the mean. It measures the extent to which the observations cluster around

the mean value. It is measured by (Gamma) and is computed as

g ¼ b2 � 3 (2.22)

where b2 ¼ m4
m2
2

, m2 and m4 represent the second and fourth central moments

respectively.

For a normal distribution, the value of kurtosis ðgÞ is zero. Positive value of

kurtosis in a distribution indicates that the observations cluster more around its

mean value and have longer tails in comparison to that of normal distribution,

whereas a distribution with negative kurtosis indicates that the observations cluster

less around its mean and have shorter tails.

Depending upon the value of kurtosis, the distribution of scores can be classified

into any one of the three categories: leptokurtic, mesokurtic, and platykurtic.

If for any variable the kurtosis is positive, the curve is known as leptokurtic and

it represents a low level of data fluctuation, as the observations cluster around the

mean. On the other hand, if the kurtosis is negative, the curve is known as

platykurtic and it means that the data has a larger degree of variance. In other

words, if the value of kurtosis is significant and positive, it signifies less variability

in the data set or we may say that the data is more homogenous. On the other hand,

significant negative kurtosis indicates that there is more variability in the data set or

we may conclude that the data is more heterogeneous. Further, if the kurtosis is 0,
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Fig. 2.1 (a and b) Showing positively and negatively skewed curve
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the curve is classified as mesokurtic. Its flatness is equivalent to normal curve. Thus,

a normal curve is always a mesokurtic curve. The three types of the curves are

shown in Fig. 2.2

The standard error of kurtosis can be given by

SEðKurtosisÞ ¼ SEðgÞ ¼ 2SE b1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1

ðn� 3Þðnþ 5Þ

s
(2.23)

where n is the sample size. Some author suggests the approximated formula for

standard error of kurtosis as

SEðKurtosisÞ ¼
ffiffiffiffiffi
24

n

r
(2.24)

but this formula is poor approximation for small samples.

The standard error of the kurtosis is used to test its significance. The test statistics

Z can be computed as follows:

Z ¼ g
SEðgÞ (2.25)

This Z follows normal distribution. The critical value for Z is approximately 2 for

two-tailed test in testing the hypothesis that kurtosis ¼ 0 at approximately 5% level.

If the value of calculated Z is < �2, then the population is very likely to have

negative kurtosis and the distribution may be considered as platykurtic. On the

other hand, if the value of calculated Z is > +2, then the population is very likely to

have positive kurtosis and the distribution may be considered as leptokurtic.

Percentiles

Percentiles are used to develop norms based on the performance of the subjects.

A given percentile indicates the percentage of scores below it and is denoted by PX.

For example, P40 is a score below which 40% scores lie. Median is also known as

P50, and it indicates that 50% scores lie below it. Percentiles can be computed to

know the position of an individual on any parameter. For instance, 95th percentile

obtained by a student in GMAT examination indicates that his performance is better

than 95% of the students appearing in that examination.

Leptokurtic

Mesokurtic

Platykurtic

Fig. 2.2 Classification of

curve on the basis of kurtosis
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Since 25th percentile P25, 50th percentile P50, and 75th percentile P75 are also

known as first, second, and third quartiles, respectively, hence procedure of com-

puting other percentiles will be same as the procedure adopted in computing

quartiles. Quartiles (the 25th, 50th, and 75th percentiles) divide the data into four

groups of equal size. Percentiles at decile points and quartiles can be computed by

using SPSS.

Percentile Rank

A percentile rank can be defined as the percentage of scores that fall at or below a

given score. Thus, if the percentile rank of a score A is X, it indicates that X
percentage of scores lies below the score A. The percentile rank can be computed

from the following formula:

Percentile rank of the scoreX ¼ CF� 0:5� f s
n

� 100 (2.26)

where

CF: number of scores below X
fs : number of times the score X occurs in the data set

n : number of scores in the data set

Situation for Using Descriptive Study

There may be varieties of situation where a descriptive study may be planned. One

such situation has been discussed below to narrate the use of such study.

Nowadays Industries are also assuming social responsibilities toward society.

They keep engage themselves in many of the social activities like adult literacy,

slum development, HIV and AIDS program, community development, energy

conservation drive, and go green campaign. One such organization has started its

HIV and AIDS program in which it not only promotes the awareness but also

provides treatments. This company provides antiretroviral therapy to anyone in the

community who is a HIV-positive irrespective of whether that person is an

employee of the company or not. The company also provides counseling, education,

and training and disseminates information on nutrition, health, and hygiene. The

target population of the company for this program is truck drivers, contract and

migrant workers, employees of local organizations, and members of the local com-

munity. Descriptive study may be conducted to investigate the following issues:

(a) Number of programs organized in different sections of the society

(b) Number of people who attended the awareness program in different sections of

the society

Situation for Using Descriptive Study 53



(c) Number of people who are affected with HIV/AIDS in different sections of the

society

(d) The most vulnerable group affected by the HIV

(e) Details of population affected from HIV in different age and sex categories

To cater the above objectives, data may be processed as follows:

(i) Classify the data on HIV/AIDS-infected persons in different sections of the

society like truck drivers, contract laborers, migrant’s laborers, and local

establishment members of the local community month wise in the last

5 years.

(ii) Classify the number of participants attending the HIV/AIDS awareness pro-

gram in different sections of the society month wise in the last 5 years.

(iii) Compute the largest and smallest scores, mean, SD, coefficient of variation,

standard error, skewness, kurtosis, and quartile deviation for the data in all

the groups.

All these computations can be done by using SPSS, the procedure of which shall

be explained later in this chapter by using the following example:

Solved Example of Descriptive Statistics using SPSS

The procedure of computing various descriptive statistics including central ten-

dency, dispersion, percentile values, and distribution parameters through SPSS

has been explained in the solved Example 2.1.

Example 2.1 In a study conducted by response of customers were obtained on

various attributed of a company along with their satisfaction level. Apply descrip-

tive analysis to compute various statistics and explain the findings (Table 2.8).

Solution In order to compute various descriptive statistics like mean, median,

mode, SD, variance, skewness, SE of skewness, kurtosis, SE of kurtosis, range,

minimum and maximum scores, and percentiles, a data file shall be made in SPSS

and then steps shown below shall be followed to get the output. After getting the

output, its interpretation shall be made.

Computation of Descriptive Statistics Using SPSS

(a) Preparing Data File
In order to use SPSS for computing descriptive statistics, a data file needs to be

prepared. The data file can also be imported in SPSS from the ASCII or Excel

files. The readers are advised to go through the first chapter of the book to learn
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for starting the SPSS on the system, preparing the data file, and importing the file

in SPSS from other sources. The following steps will help you to prepare the data

file:

(i) Starting the SPSS: Use the following command sequence to start SPSS on

your system:

Start! All Programs! IBM SPSS Statistics! IBM SPSS Statistics 20

After clicking Type in Data option, you will be taken to the Variable

View option for defining the variables in the study.

(ii) Defining variables: In this example, there are eight variables that need to

be defined along with their properties. Do the following:

1. Click Variable View in the left corner of the bottom of the screen to

define variables and their properties.

2. Write short name of all the eight variables as Del_Speed, Price_Lev,
Price_Fle, Manu_Ima, Service, Salfor_Ima, Prod_Qua, and Sat_Lev
under the column heading Name.

3. Under the column heading Label, full name of these variables may be

defined as Delivery Speed, Price Level, Price Flexibility, Manufac-
turer Image, Service, Salesforce Image, Product Quality, and Satis-
faction Level.

4. Since all the variables were measured on an interval scale, hence

select the option “Scale” under the heading Measure for each

variable.

5. Use default entries in rest of the columns.

After defining variables in Variable View, the screen shall look like

Fig. 2.3.

(iii) Entering data: After defining all the eight variables in the Variable View,

click Data View on the left bottom of the screen to open the format for

entering the data column wise. For each variable, enter the data column

wise. After entering the data, the screen will look like Fig. 2.4. Save the

data file in the desired location before further processing.

(b) SPSS Commands for Descriptive Analysis
After entering the data in data view, do the following steps for computing

desired descriptive statistics:

(i) SPSS commands for descriptive statistics: In data view, click the following
commands in sequence:

Analyze ⇨ Descriptive Statistics ⇨ Frequencies

The screen shall look like as shown in Fig. 2.5.

(ii) Selecting variables for computing descriptive statistics: After clicking the

Frequencies tag, you will be taken to the next screen for selecting variables
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for which descriptive statistics need to be computed. The screen shall look

like as shown in Fig. 2.6. Do the following:

– Select the variables Del_Speed, Price_Lev, Price_Fle, Manu_Ima, Ser-
vice, Salfor_Ima, Prod_Qua, and Sat_Lev from the left panel to the

“Variable(s)” section of the right panel.

Here, all the eight variables can be selected one by one or all at once. To do

so, the variable(s) needs to be selected from the left panel, and by arrow

command, it may be brought to the right panel. The screen shall look like

Fig. 2.6.

(iii) Selecting option for computation: After selecting the variables, options

need to be defined for the computation of desired statistics. Do the

following:

– Click the option Statistics on the screen as shown in Fig. 2.6. This will

take you to the next screen that is shown in Fig. 2.7. Do the following:

– Check the options “Quartiles” and “Cut points for 10 equal groups”

in “Percentile Values” section.

– Check the option “Mean,” “Median,” and “Mode” under “Central

Tendency” section.

– Check the option “Std. Deviation,” “Variance,” “Range,” “Mini-

mum,” “Maximum,” “Range,” and “S.E. mean” under “Dispersion”

section.

Table 2.8 Response of customers on company’s attributes

S.

N.

Delivery

speed

(X1)

Price

level

(X2)

Price

flexibility

(X3)

Manufacturer

image (X4)

Service

(X5)

Salesforce

image (X6)

Product

quality

(X7)

Satisfaction

level (X8)

1 4.1 0.6 6.9 4.7 2.4 2.3 5.2 4.2

2 1.8 3.0 6.3 6.6 2.5 4.0 8.4 4.3

3 3.4 5.2 5.7 6.0 4.3 2.7 8.2 5.2

4 2.7 1.0 7.1 5.9 1.8 2.3 7.8 3.9

5 6.0 0.9 9.6 7.8 3.4 4.6 4.5 6.8

6 1.9 3.3 7.9 4.8 2.6 1.9 9.7 4.4

7 4.6 2.4 9.5 6.6 3.5 4.5 7.6 5.8

8 1.3 4.2 6.2 5.1 2.8 2.2 6.9 4.3

9 5.5 1.6 9.4 4.7 3.5 3.0 7.6 5.4

10 4.0 3.5 6.5 6.0 3.7 3.2 8.7 5.4

11 2.4 1.6 8.8 4.8 2.0 2.8 5.8 4.3

12 3.9 2.2 9.1 4.6 3.0 2.5 8.3 5.0

13 2.8 1.4 8.1 3.8 2.1 1.4 6.6 4.4

14 3.7 1.5 8.6 5.7 2.7 3.7 6.7 5.0

15 4.7 1.3 9.9 6.7 3.0 2.6 6.8 5.9

16 3.4 2.0 9.7 4.7 2.7 1.7 4.8 4.7

17 3.2 4.1 5.7 5.1 3.6 2.9 6.2 4.4

18 4.9 1.8 7.7 4.3 3.4 1.5 5.9 5.6

19 5.3 1.4 9.7 6.1 3.3 3.9 6.8 5.9

20 4.7 1.3 9.9 6.7 3.0 2.6 6.8 6.0
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– Check the option “Skewness” and “Kurtosis” under “Distribution”

section.

– Click Continue for getting back to the screen shown in Fig. 2.6.

Remarks

(a) You have four different classes of statistics like “Percentile Value,”

“Central Tendency,” “Dispersion,” and “Distribution” that can be

computed. Any or all the options may be selected under these

categories. Under the category “Percentile Values,” quartiles can be

checked (√) for computing Q1 and Q3. For computing percentiles at

deciles points, cut points can be selected for 10 equal groups. Simi-

larly, if the percentiles are required to be computed in the interval of 5,

cut points may be selected as 5.

(b) In using the option cut points for the percentiles, output contains some

additional information on frequency in different segments. If the

researcher is interested, the same may be incorporated in the findings;

otherwise, it may be ignored.

(c) “Percentile” option is selected if percentile values at different

intervals are required to be computed. For example, if we are inter-

ested in computing P4, P16, P27, and P39, then these numbers are added

in the “Percentile(s)” option.

(d) In this problem, only quartiles and cut points for “10” options have

been checked under the heading “Percentile Values,” whereas under

the heading “Central Tendency,” “Dispersion,” and “Distribution,” all

the options have been checked.

(iv) Option for graph: The option Chart can be clicked in Fig. 2.6 if graph is

required to be constructed. Any one of the option under this tag like bar

charts, pie charts, or histograms may be selected. If no chart is required,

then option “None” may be selected.

Fig. 2.3 Defining variables along with their characteristics
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– Press O.K. for output.

(c) Getting the Output
Clicking the option OK will lead you to the output window. The output panel

shall have lots of results. It is up to the researcher to select the relevant outputs

in their results. In the output window of the SPSS, the relevant output can be

selected by pressing the right click of the mouse over it and may be copied in

the word file. In this example, the output generated will look like as shown in

Table 2.9

Interpretation of the Outputs

Different interpretations can be made from the results in Table 2.9. However, some

of the important findings that can be drawn are as follows:

1. Except price level, mean and median of all the variables are nearly equal.

Fig. 2.4 Screen showing entered data for all the variables in the data view
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Fig. 2.6 Screen showing selection of variables for descriptive analysis

Fig. 2.5 Screen showing the SPSS commands for computing descriptive statistics
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2. Standard error of mean is least for the service whereas maximum for the price

flexibility.

3. As a guideline, a skewness value more than twice its standard error indicates a

departure from symmetry. Since none of the variable’s skewness is greater than

twice its standard error (2 � .512) hence all the variables are symmetrically

distributed.

4. SPSS uses the statistic b2 � 3 for kurtosis. Thus, for a normal distribution,

kurtosis value is 0. If for any variable the value of kurtosis is positive, its

distribution is known as leptokurtic, which indicates low level of data fluctuation

around its mean value, whereas negative value of kurtosis indicates large degree

of variance among the data and the distribution is known as platykurtic.

Since the value of kurtosis for any of the variable is not more than twice its

standard error of kurtosis hence none of the kurtosis values are significant. In

other words the distribution of all the variables is mesokurtic.

5. Minimum and maximum values of the parameter can give some interesting facts

and provide the range of variation. For instance, delivery speed of the products is

in the range of 1.3–6 days. Thus, one can expect the delivery of any product in at

the most 6 days time, and accordingly, one may try to place the order.

Fig. 2.7 Screen showing option for different statistics to be computed
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6. Similarly, price flexibility of any product is in the range of 5.7–9.9%. This

provides a feedback to the customers in taking a decision of buying an article

in case of urgency.

7. Percentile scales can be used to draw various conclusions about different

parameters. For instance, P40 for the delivery speed is 3.40, which indicates

that 40% customers get their product delivered in less than 3.4 days.

Developing Profile Chart

In a descriptive study, a researcher generally computes different statistics that are

described in Table 2.9. Based on these computations, meaningful interpretations

can be made as shown above in the example. However, it would be more interesting

to prepare a profile of the company using all its parameters investigated in the

survey. The procedure of making a profile chart shall be explained by using

the minimum score, maximum score, mean, and standard deviation of all the

parameters shown in Table 2.9.

After manipulating data as per the following steps, the graphical functionality of

Excel can be used to prepare the graphical profile of the company’s parameters:

Step 1: Segregate the statistics like minimum score, maximum score, mean, and

standard deviation of all the parameters in Table 2.9. The same has been

shown in Table 2.10.

Step 2: Convert minimum and maximum scores for each of the variables into its

standard scores by using the following transformation:

Z ¼ X � �X

S

Thus, mean of all the variables will become same. The values so obtained

are shown in Table 2.11.

Step 3: Convert these Z values into its linear transformed scores by using the

transformation Zl ¼ 50 + 10 � Z. By using this transformation, the nega-

tive values of Z-scores can be converted into positive scores. Descriptive

statistics shown in the form of linearly transformed scores are shown

Table 2.12.

Table 2.10 Selected

descriptive statistics of

all the variables

Variables Min Max Mean S.D.

Delivery speed 1.3 6.00 3.715 1.30

Price level 0.60 5.20 2.21 1.26

Price flexibility 5.70 9.90 8.12 1.50

Manufacturer image 3.80 7.80 5.54 1.03

Service 1.80 4.30 2.97 0.64

Salesforce image 1.40 4.60 2.82 0.93

Product quality 4.50 9.70 6.97 1.35

Satisfaction level 3.90 6.80 5.05 0.78
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Step 4: Use Excel graphic functionality for developing line diagram to show the

company’s profile on its various parameters. The profile chart so prepared

is shown in Fig. 2.8.

Summary of the SPSS Commands

1. Start SPSS by using the following commands:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

Table 2.11 Standard scores

of minimum, maximum, and

average of all the variables

Min (Z) Mean (Z) Max (Z)

Delivery speed �1.86 0 1.76

Price level �1.28 0 2.37

Price flexibility �1.61 0 1.19

Manufacturer image �1.69 0 2.19

Service �1.83 0 2.08

Salesforce image �1.53 0 1.91

Product quality �1.83 0 2.02

Satisfaction level �1.47 0 2.24

Table 2.12 Transformed

standard scores of minimum,

maximum, and average of all

the variables

Min Mean Max

Delivery speed 31.4 50 67.6

Price level 37.2 50 73.7

Price flexibility 33.9 50 61.9

Manufacturer image 33.1 50 71.9

Service 31.7 50 70.8

Salesforce image 34.7 50 69.1

Product quality 31.7 50 70.2

Satisfaction level 45.3 50 72.4

Fig. 2.8 Profile chart of the company’s performance indicators

Summary of the SPSS Commands 63



2. Click Variable View tag and define the variables Del_Speed, Price_Lev,
Price_Fle, Manu_Ima, Service, Salfor_Ima, Prod_Qua, and Sat_Lev as a scale
variable.

3. Once the variables are defined, then type the data for these variables by clicking

Data View.

4. In the data view, follow the below-mentioned command sequence for computing

descriptive statistics:

Analyze ! Descriptive Statistics ! Frequencies

5. Select all the variables from left panel to the right panel for computing various

descriptive statistics.

6. Click the tag Statistics and check the options under the headings “Percentile

Values,” “Central Tendency,” “Dispersion,” and “Distribution.” Press

Continue.
7. Click the Charts option and select the required chart, if graph is required for all

the variables.

8. Click OK to get the output for descriptive statistics.

Exercise

Short-Answer Questions

Note: Write answer to each of the following questions in not more than 200 words:

Q.1. If average performance of two groups is equal, can it be said that both the

groups are equally good?

Q.2. What do you mean by absolute and relative variability? Explain by means of

examples.

Q.3. What is coefficient of variation? In what situation it should be computed?

With the help of the following data on BSE quote during last trading sessions,

can it be concluded that the group WIPRO’s quotes were more variable than

GAIL?

Group WIPRO Group GAIL

Mean 5400 170

SD 200 40

Q.4. Is there any difference between standard error of mean and error in computing

the mean? Explain your answer.

Q.5. If skewness of a set of data is zero, can it be said to be is normally distributed?

If yes, how? And if no, how it can be checked for its normality?

Q.6. If performance of a student is 96th percentile in a particular subject, can it be

concluded that he is very intelligent in that subject? Explain your answer.

Q.7. What is a quartile measure? In what situation it should be used?
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Multiple-Choice Questions

Note: Question no. 1–10 has four alternative answers for each question. Tick mark

the one that you consider the closest to the correct answer.

1. If a researcher is interested to know the number of employees in an organization

belonging to different regions and how many of them have opted for club

memberships, the study may be categorized as

(a) Descriptive

(b) Inferential

(c) Philosophical

(d) Descriptive and inferential both

2. Choose the correct sequence of commands to compute descriptive statistics.

(a) Analyze -> Descriptive Statistics -> Frequencies

(b) Analyze -> Frequencies -> Descriptive Statistics

(c) Analyze -> Frequencies

(d) Analyze -> Descriptive Statistics

3. Which pair of statistics are nonparametric statistics?

(a) Mean and median

(b) Mean and SD

(c) Median and SD

(d) Median and Q.D.

4. Standard error of mean can be defined as

(a) Error in computing mean

(b) Difference in sample and population mean

(c) Variation in the mean values among the samples drawn from the same

population

(d) Error in measuring the data on which mean is computed

5. The value of skewness for a given set of data shall be significant if

(a) Skewness is more than twice its standard error.

(b) Skewness is more than its standard error.

(c) Skewness and standard error are equal.

(d) Skewness is less than its standard error.

6. Kurtosis in SPSS is assessed by

(a) b2
(b) b2 þ 3

(c) b2 � 3

(d) 2þ b2
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7. In order to prepare the profile chart, minimum scores for each variable are

converted into

(a) Percentage

(b) Standard score

(c) Percentile score

(d) Rank

8. While selecting option for percentile in SPSS, cut points are used for

(a) Computing Q1 and Q3

(b) Preparing the percentile at deciles points only

(c) Cutting Q1 and Q3

(d) Computing the percentiles at fixed interval points

9. If IQ of a group of students is positively skewed, what conclusions could be

drawn?

(a) Most of the students are less intelligent.

(b) Most of the students are more intelligent.

(c) There are equal number of high and low intelligent students.

(d) Nothing can be said about the intelligence of the students.

10. If the data is platykurtic, what can be said about its variability?

(a) More variability exists.

(b) Less variability exists.

(c) Variability is equivalent to normal distribution.

(d) Nothing can be said about the variability.

Assignment

1. Following table shows the data on different abilities of employees in an organi-

zation. Compute various descriptive statistics and interpret its findings.

Data on different abilities of employees

Define

problems

Supervise

others

Make

decisions

Build

consensus

Facilitate decision-

making

Work on a

team

.81 .84 .80 .89 .79 .72

.45 .31 .29 .37 .21 .12

.87 .79 .90 .88 .67 .50

.78 .71 .84 .92 .82 .62

.65 .59 .72 .85 .81 .56

.56 .55 .62 .71 .73 .61
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2. Following are the grades of ten MBA students in 10 courses. Compute various

descriptive statistics and interpret your findings.

Answers of Multiple-Choice Questions

Q.1 a Q.2 a

Q.3 d Q.4 c

Q.5 a Q.6 c

Q.7 b Q.8 d

Q.9 a Q.10 a

Data on grades of MBA students in ten courses

S.N. FACTG MACTG ECON FIN MKTG ENVIR MIS QM OPSM OB

1 7 1 7 6 6 6 7 5 5 6

2 7 6 7 7 6 5 6 7 4 7

3 3 6 6 6 6 4 5 4 6 7

4 8 7 8 6 7 8 7 8 9 6

5 5 3 5 7 5 8 6 6 4 8

6 3 3 3 3 3 5 6 7 7 7

7 4 7 6 5 8 6 5 4 4 6

8 5 6 8 7 6 7 8 7 5 5

9 6 5 7 8 5 6 5 8 7 7

10 7 6 5 8 6 4 8 6 7 8

FACTG financial accounting for managers, MACTG management accounting, ECON economic

environment of business, FINE managerial finance, MKTG marketing management, NVIR busi-

ness environment, MIS management information systems, QM quantitative methods, OPSM
operations management, OB organizational behavior
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Chapter 3

Chi-Square Test and Its Application

Learning Objectives

After completing this chapter you should be able to do the following:

• Know the use of chi-square in analyzing nonparametric data.

• Understand the application of chi-square in different research situations.

• Know the advantages of crosstabs analysis.

• Learn to construct the hypothesis in applying chi-square test.

• Explain the situations in which different statistics like contingency coefficient,

lambda coefficient, phi coefficient, gamma, Cramer’s V, and Kendall tau, for

measuring an association between two attributes, can be used.

• Learn the procedure of data feeding in preparing the data file for analysis using SPSS.

• Describe the procedure of testing an equal occurrence hypothesis and testing the

significance of an association in different applications by using SPSS.

• Interpret the output of chi-square analysis generated in SPSS.

Introduction

In survey research, mainly two types of hypothesis are tested. One may test goodness

of fit for a single attribute or may like to test the significance of association between

any two attributes. To test an equal occurrence hypothesis, it is required to tabulate

the observed frequency for each variable. The chi-square statistic in “nonparametric”

section of SPSS may be used to test the hypothesis of equal occurrence.

The scores need to be arranged in contingency table for studying an association

between any two attributes. A contingency table is the arrangement of frequency in

rows and column. The process of creating a contingency table from the observed

frequency is known as crosstab. The cross tabulation procedure provides tabulation of

two variables in two-way table. A frequency distribution provides the distribution of

one variable, whereas a contingency table describes the distribution of two or more

variables simultaneously (Table 3.1).

J.P. Verma, Data Analysis in Management with SPSS Software,
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The following is an example of a 2 � 3 contingency table. The first variable

“gender” has two options, male and female, whereas the second variable

“incentives” has three options, gift check, cash, and gift article. Each cell gives

the number of individuals who share the combination of traits.

The chi-square can be computed by using the Crosstabs option in “Descriptive

Statistics” section of SPSS command. Besides chi-square, the Crosstabs option in

SPSS provides the output showing magnitude of association along with summary

statistics including percentage of frequency and expected frequency in each cell.

Two-way tabulation in Crosstabs can be used to establish an interdependent

relationship between two tables of values but does not identify a causal relation

between the values. Cross tabulation technique can be used to analyze the results of

a survey study, for example, it may indicate a preference for certain types of jobs

based on the respondent’s gender.

Advantages of Using Crosstabs

1. Crosstabs analysis is easy to understand and is good for the researchers, who do

not want to use more sophisticated statistical techniques.

2. Crosstabs treats all data as nominal. In other words, the data is treated as nominal

even if it is measured in interval, ratio, or ordinal form.

3. A table is more explanatory than a single statistics.

4. They are simple to conduct.

Statistics Used in Cross Tabulations

In Crosstabs analysis, usually statistics like chi-square, contingency coefficient,

lambda coefficient, phi coefficient, Kendall tau, gamma, or Cramer’s V are used.

These shall be discussed below:

Chi-Square Statistic

If X1, . . ., Xn are independent and identical N(m, s2) random variables, then the

statistics
Pn
i¼1

Xi�m:
s

� �2
follows the chi-square distribution with (n�1) degrees of

freedom and is written as

Table 3.1 Preferences of

male and female towards

different incentives

Incentives

Gift check (%) Cash (%) Gift article (%)

Gender Male 30 45 25

Female 10 30 60
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Xn
i¼1

Xi � m
s

� �2

� w2 n� 1ð Þ

The probability density function of the chi-square (w2) random variable is

f ðxÞ ¼ 1

2n=2G n=2ð Þ x
n=2�1e�x=2 (3.1)

x>0 and n ¼ 1; 2; 3; . . .

The mean and variance of the chi-square statistics are n and 2n, respectively. The
w2 distribution is not unique but depends upon degrees of freedom. The family of

distribution with varying degrees of freedom is shown in Fig. 3.1.

Additive Properties of Chi-Square

If w21 and w22 are two independent chi-square variates with n1 and n2 degrees of

freedom, respectively, then w21 + w22 is also a chi-square variate with n1 + n2 degrees
of freedom. This property is used extensively in the questionnaire studies. Consider

a study to compare the attitude of male and female consumers about a particular

brand of car. The questionnaire may consist of questions under three factors,

namely, financial consideration, driving comforts, and facilities. Each of these

factors may have several questions. On each of the questions, attitude of male

and female users may be compared using chi-square. Further, by using additive
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n=3

n=4 n=5
0.
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Fig. 3.1 Probability

distribution of chi-square for

different degrees of freedom
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properties, the chi-square of each question under a particular factor may be added to

compare the attitude of male and female on that factor.

Chi-Square Test

Chi-square test is the most frequently used nonparametric statistical test. It is also

known as Pearson chi-square test and provides us the mechanism to test the

independence of two categorical variables. The chi-square test is based upon a

chi-square distribution just like the way a t-test is based upon t-distribution or an F-
test is based upon an F-distribution. The results of the Pearson’s chi-square test are
evaluated by referencing to the chi-square distribution.

The chi-square statistic is denoted as w2 and is pronounced as kai-square. The

properties of chi-square were first investigated by Karl Pearson in 1900 and hence

named after Karl Pearson chi-square test.

In using chi-square test, the chi-square (w2) statistic is computed as

w2 ¼
Xn
i¼1

ðf o � f eÞ2
f e

(3.2)

where fo and fe are the observed and expected frequencies for each of the possible

outcome, respectively.

Steps in the Chi-Square Test

The following steps are used in chi-square test:

1. Compute expected frequency for each of the observed frequency. The procedure

for computing expected frequency is different in case of testing the goodness of

fit and in testing the independence of attributes. This will be discussed later in

the chapter while solving the example.

2. Calculate the value of chi-square statistic w2 by using the formula (3.2).

3. Find degrees of freedom of the test. In testing the goodness of fit, the degrees of

freedom is equal to (r � 1), where r is the number of categories in the popula-

tion. On the other hand, in testing the independence of attributes, the degrees of

freedom is obtained by (r � 1) � (c � 1), where r and c are the number of rows

and columns, respectively.

4. Find the tabulated value of w2with required degrees of freedom and at a given

level of significance from Table A.6 in the Appendix.

5. If the calculated w2 is less than or equal to tabulated w2 , the null hypothesis is

failed to be rejected, and if the calculated w2is greater than the tabulated w2, the
null hypothesis is rejected at the tested level of significance.
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Assumptions in Using the Chi-Square

While using chi-square test, following assumptions are made:

1. Sample must be random.

2. Frequencies of each attribute must be numeric and should not be in percentages

or ratios.

3. Sample size must be sufficiently large. The chi-square test shall yield inaccurate

findings if the sample size is small. In that case, the researcher might end up

committing a type II error.

4. The observations must be independent of each other. In other words, the chi-

square test cannot be used to test the correlated data. In that situation,

McNemar’s test is used.

5. Normally, all cell frequencies must be 5 or more. In large contingency tables,

80% of cell frequencies must be 5 or more. If this assumption is not met, the

Yates’ correction is applied.

6. The expected frequencies should not be too low. Generally, it is acceptable if 20%

of the events have expected frequencies less than 5, but in case of chi-square with

one degree of freedom, the conclusions may not be reliable if expected frequencies

are less than 10. In all such cases, Yates’ correction must be applied.

Application of Chi-Square Test

The chi-square test is used for two purposes: first, to test the goodness of fit and,

second, to test the independence of two attributes. In both the situations, we intend

to determine whether the observed frequencies significantly differ from the theoret-

ical (expected) frequencies. The chi-square tests in these two situations shall be

discussed in the following sections:

To Test the Goodness of Fit

In many decision-making situations, a marketing manager may like to know whether

the pattern of frequencies that are observed fits well with the expected ones or not.

The appropriate test in such situations is the w2 test of goodness of fit. Thus, a chi-

square test for goodness of fit is used to verify whether an observed frequency

distribution differs from a theoretical distribution or not. This test can also be used

to check whether the data is from any specific distribution like normal, binomial or

Poisson. The chi-square test for goodness of fit can also be used to test an equal

occurrence hypothesis. By using this test, one can test whether all brands are equally

popular, or whether all the car models are equally preferred. In using the chi-square

test for goodness of fit, only one categorical variable is involved.

Consider a situation in which a researcher is interested to know whether all the

three specializations like finance, human resource, and marketing are equally

popular among MBA students; an equal occurrence hypothesis may be tested by
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computing the chi-square. The “Nonparametric Tests” option in SPSS provides the

computation of chi-square (w2). In such situations, following set of hypotheses is

tested:

H0: All three specializations are equally popular.

H1: All three specializations are not equally popular.

By using the procedure discussed above for applying chi-square test, the null

hypothesis may be tested. The procedure would clear by looking to the following

solved examples:

Example 3.1 A beverages company produces cold drink with three different

colors. One hundred and twenty college students were asked about their

preferences. The responses are shown in Table 3.2. Do these data show that all

the flavors were equally liked by the students? Test your hypothesis at .05 level of

significance.

Solution Here it is required to test the null hypothesis of equal occurrence; hence,

expected frequencies corresponding to each of the three observed frequencies shall

be obtained by dividing the total of all the observed frequencies by the number of

categories. Hence, expected frequency (fe) for each category shall be (Table 3.3)

f e ¼
50þ 40þ 30

3
¼ 40

Here, number of categories or rows (r) ¼ 3 and number of columns (c) ¼ 2.

w2 ¼
Xr
i¼1

ðf o � f eÞ2
f e

¼ 50� 40ð Þ2
40

þ 40� 40ð Þ2
40

þ 30� 40ð Þ2
40

¼ 100

40
þ 0þ 100

40
¼ 2:5þ 2:5

) Cal: w2 ¼ 5:0

Table 3.2 Preferences of the college students about different brands of cold drinks

Color White Orange Brown

Frequencies 50 40 30

Table 3.3 Observed and

expected frequencies of

responses

Observed frequencies Expected frequencies

(fo) (fe)

White 50 40

Orange 40 40

Brown 30 40
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Testing the Significance of Chi-Square
The degrees of freedom ¼ (r�1) ¼ 3�1 ¼ 2.

From Table A.6 in the Appendix, the tab w2:05ð2Þ ¼ 5:991:

Since Cal. w2 < Tab. w2:05ð2Þ, the null hypothesis may not be rejected at .05 level

of significance. Thus, it may be concluded that all the three colors of cold drinks are

equally liked by the college students.

Example 3.2 An examination was undertaken by 300 students, out of which 90

students had grade A, 65 got grade B, 60 got grade C, and the remaining had grade

D. Do these figures commensurate with the final examination result which is in the

ratio of 3:2:3:4 for various grades, respectively? Test the hypothesis at 5% level.

Solution The null hypothesis which is required to be tested here is

H0: The students in the various grades were distributed in the ratio 3:2:3:4

The expected number of students (fe) for each grade under the assumption that

H0 is true is as follows:

Expected number of students getting gradeA ¼ 3

3þ 2þ 3þ 4
� 300 ¼ 75

Expected number of students getting grade B ¼ 2

12
� 300 ¼ 50

Expected number of students getting grade C ¼ 3

12
� 300 ¼ 75

Expected number of students getting gradeD ¼ 4

12
� 300 ¼ 100

Thus, the observed and expected frequencies can be listed as shown in Table 3.4.

w2 ¼
Xr
i¼1

ðf o � f eÞ2
f e

¼ 90� 75ð Þ2
75

þ 65� 50ð Þ2
50

þ 60� 75ð Þ2
75

þ 85� 100ð Þ2
100

¼ 225

75
þ 225

50
þ 225

75
þ 225

100
¼ 3þ 4:5þ 3þ 2:25 ¼ 12:75

) Calculated w2 ¼12:75

Table 3.4 Observed and

expected frequencies
Observed frequencies Expected frequencies

(fo) (fe)

Grade A 90 75

Grade B 65 50

Grade C 60 75

Grade D 85 100
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Testing the Significance of Chi-Square
Degrees of freedom: (r � 1) 4�1 ¼ 3.

From Table A.6 in the Appendix, the tab w2:05ð3Þ ¼ 7:815.

Since Cal. w2 > Tab. w2:05ð3Þ, the null hypothesis may be rejected at .05 level of

significance. It may thus be concluded that grades A, B, C, and D are not in

proportion to 3:2:3:4.

To Test the Independence of Attributes

The chi-square test of independence is used to know whether paired observations on

two attributes, expressed in a contingency table, are independent of each other.

There may be varieties of situations where chi-square test of independence may be

used. For instance one may test the significance of association between income

level & brand preference, family size & television size purchased or educational

background & the type of job one does. Thus, chi-square test may be used to test the

significance of an association between any two attributes.

Let us assume that the population can be classified into r mutually exclusive

classes A1, A2,. . ., Ar on the basis of attribute A, and each of these r classes are

further classified into c mutually exclusive classes, like AiB1, AiB2, . . ., AiBc, etc.

If f oijis the observed frequency of AiBj, that is, (AiBj) ¼ f oij, the above classifica-

tion can be shown in the following table known as contingency table.

B

B1 B2 . . . Bc TotalA

A1 f o11 f o12 . . . f o1c (A1)

A2 f o21 f o22 . . . f o2c (A2)

.

.

Ar f or1 f or2 . . . f orc (Ar)

Total (B1) (B2) . . . (Bc) N

By assuming A and B as independent attributes, the expected frequencies of each

cell can be computed as

Eij ¼ ðAiÞðBjÞ
N

Thus,

w2 ¼
Xr
i¼1

Xc
j¼1

f oij � f eij

� �2
f eij

(3.3)

shall be a w2 variate with (r � 1)(c � 1) degrees of freedom.
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The value of the w2 variate so obtained can be used to test the independence of

two attributes.

Consider a situation where it is required to test the significance of association

between Gender (male and female) and Response (“prefer day shift” and “prefer

night shift”). In this situation, following hypotheses may be tested:

H0: Gender and Response toward shift preferences are independent.

H1: There is an association between the Gender and Response toward shift

preferences.

The calculated value of chi-square (w2) obtained from the formula (3.3) may be

compared with that of its tabulated value for testing the null hypothesis.

Thus, if calculated w2 is less than tabulated w2 with (r � 1) (c � 1) df at some

level of significance, then H0 may not be rejected otherwise H0 may be rejected.

Remark If H0 is rejected, we may interpret that there is a significant association

between the gender and their preferences toward shifts. Here, significant associa-

tion simply means that the response pattern of male and female is different. The

readers may note that chi-square statistic is used to test the significance of associa-

tion, but ultimately one gets the comparison between the levels of one attribute

across the levels of other attribute.

Example 3.3 Five hundred families were investigated to test the belief that high-

income people usually prefer to visit private hospitals and low-income people often

go to government hospitals whenever they fall sick. The results so obtained are

shown in Table 3.5.

Test whether income and hospital preferences are independent. Compute the

contingency coefficient to find the strength of association. Test your hypothesis at

5% level.

Solution The null hypothesis to be tested is

H0: Income and hospital preferences are independent.

Before computing the value of chi-square, the expected frequencies for each cell

need to be computed with the marginal totals and grand totals given in the observed

frequency (fo) table. The procedure is discussed in Table 3.6.

w2 ¼
Xr
i¼1

Xc
j¼1

f oij � f eij

� �2
f eij

¼ 125� 140:4ð Þ2
140:4

þ 145� 129:6ð Þ2
129:6

þ 135� 119:6ð Þ2
119:6

þ 95� 110:4ð Þ2
110:4

¼ 1:69þ 1:83þ 1:98þ 2:15 ¼ 7:65

) Calculated w2 ¼ 7:65
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Test of Significance
Here, r ¼ 2 and c ¼ 2, and therefore degree of freedom is

(r � 1) � (c � 1) ¼ 1.

From Table A.6 in the Appendix, the tab w2:05ð1Þ ¼ 3:841:

Since Cal. w2 > Tab. w2:05ð1Þ, the null hypothesis may be rejected at .05 level of

significance. It may therefore be concluded that there is an association between the

income level and the types of hospital preferred by the people.

Precautions in Using the Chi-Square Test

(a) While using chi-square test, one must ensure that the sample is random,

representative, and adequate in size.

(b) Chi-square should not be calculated if the frequencies are in percentage form;

in that case, these frequencies must be converted back to absolute numbers

before using the test.

(c) If any of the cell frequencies is less than 5, then for each cell, .5 is subtracted

from the difference of observed and expected frequency while computing chi-

square. This correction is known as Yates’ correction. SPSS automatically does

this correction while computing chi-square.

(d) The sum of the observed frequencies should be equal to the sum of the expected

frequencies.

Testing the Significance of Chi-Square in SPSS

(a) In SPSS, the null hypothesis is not tested on the basis of the comparison

between calculated and tabulated chi-square; rather, it uses the concept of

p value. p value is the probability of rejecting the null hypothesis when actually
it is true.

Table 3.5 Observed

frequencies (fo) of responses
Hospitals

Government Private TotalIncome

High 125 145 270

Low 135 95 230

Total 260 240 500

Table 3.6 Expected

frequencies (fe) of responses
Hospitals

Government Private TotalIncome

High 270�260
500

¼ 140:4 270�240
500

¼ 129:6 270

Low 230�260
500

¼ 119:6 230�240
500

¼ 110:4 230

Total 260 240 500
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(b) Thus, the chi-square is said to be significant at 5% level if the p value is less

than .05 and is insignificant if it is more than .05.

Contingency Coefficient

Contingency coefficient (C) provides the magnitude of association between the

attributes in the cross tabulation. Its value can range from 0 (no association) to 1

(the theoretical maximum possible association). Chi-square simply tests the signifi-

cance of an association between any two attributes but does not provide the

magnitude of the association. Thus, if the chi-square value becomes significant,

one must compute the contingency coefficient (C) to know the extent of association

between the attributes. The contingency coefficient C is computed by the following

formula:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

w2 þ N

s
(3.4)

where N is the sum of all frequencies in the contingency table.

Lambda Coefficient

Lambda coefficient is used to test the strength of an association in the cross

tabulation. It is assumed that the variables are measured at the nominal level.

Lambda can have the value in the range 0 (no association) to 1 (the theoretical

maximum possible association). Asymmetric lambda measures the percentage

improvement in predicting the dependent variable. Symmetric lambda measures

the percentage improvement when prediction is done in both directions.

Phi Coefficient

In a situation when both the variables are binary, phi coefficient is used to measure

the degree of association between them. This measure is similar to the correlation

coefficient in its interpretation. Two binary variables are considered positively

associated if most of the data falls along the diagonal cells. In contrast, two binary

variables are considered negatively associated if most of the data falls off the

diagonal.

The assumptions of normality and homogeneity can be violated when the

categories are extremely uneven, as in the case of proportions close to .90, .95 or
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.10, .05. In such cases, the phi coefficient can be significantly attenuated. The

assumption of linearity cannot be violated within the context of the phi coefficient

of correlation.

Gamma

If both the variables are measured at the ordinal level,Gamma is used for testing the
strength of association of the cross tabulations. It makes no adjustment for either

table size or ties. The value of Gamma can range from �1 (100% negative

association, or perfect inversion) to +1 (100% positive association, or perfect

agreement). A value of zero indicates the absence of association.

Cramer’s V

It measures the strength of association between attributes in cross tabulations. It is a

variant of the phi coefficient that adjusts for the number of rows and columns. Its

value can range from 0 (no association) to 1 (the theoretical maximum possible

association).

Kendall Tau

Tau b and Tau c both test the strength of association of the cross tabulations in a

situation when both variables are measured at the ordinal level. Both these tests Tau
b and Tau c make adjustments for ties, but Tau b is most suitable for square tables

whereas Tau c is most suitable for rectangular tables. Their values can range from

�1 (100% negative association, or perfect inversion) to +1 (100% positive associa-

tion, or perfect agreement). A value of zero indicates the absence of association.

Situation for Using Chi-Square

Chi-square is one of the most popularly used nonparametric statistical tests used in

the questionnaire study. Two different types of hypotheses, that is, testing the

goodness of fit and testing the significance of association between two attributes,

can be tested using chi-square.

Testing an equal occurrence hypothesis is a special case of goodness of fit.

In testing an equal occurrence hypothesis, the observed frequencies on different

80 3 Chi-Square Test and Its Application



levels of a factor are obtained. The total of observed frequencies for all the levels is

divided by the number of levels to obtain the expected frequencies for each level.

Consider an experiment in which it is intended to test whether all the three

locations, that is, Delhi, Mumbai, and Chennai, are equally preferred by the

employees of an organization for posting. Out of 250 employees surveyed, 120

preferred Delhi, 80 preferred Mumbai, and 50 preferred Chennai. In this situation,

the following null hypothesis may be tested using chi-square:

H0: All the three locations are equally preferred.

Against the alternative hypothesis:

H1: All the three locations are not equally preferred.

Here, the chi-square test can be used to test the null hypothesis of equal

occurrence.

Another application of chi-square is to test the significance of association between

any two attributes. Suppose it is desired to know as to whether preference of

consumers for a specific brand of soap depends upon their socioeconomic status

where the response of 200 customers is shown in Table 3.7.

The following null hypothesis may be tested by using the chi-square for two

samples at 5% level to answer the question.

H0: Socioeconomic status and soap preferences are independent.

Against the alternative hypothesis:

H1: There is an association between the socioeconomic status and soap preferences.

If the null hypothesis is rejected, one may draw the conclusion that the prefer-

ence of soap is significantly associated with the socioeconomic status of an individ-

ual. In other words, it may be concluded that the response patterns of the customers

in high and low socioeconomic status are different.

The above two different kinds of application of chi-square have been discussed

below by means of solved examples using SPSS.

Solved Examples of Chi-square for Testing an Equal

Occurrence Hypothesis

Example 3.4 In a study, 90 workers were tested for their job satisfaction. Their job

satisfaction level was obtained on the basis of the questionnaire, and the

respondents were classified into one of the three categories, namely, low, average,

and high. The observed frequencies are shown in Table 3.8. Compute chi-square in

testing whether there is any specific trend in their job satisfaction.

Table 3.7 Observed

frequencies in a contingency

table Socioeconomic status

Category of preference

Prefer Do not prefer

High 80 15

Low 40 65
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Solution Here, the null hypothesis that is required to be tested is

H0: All the three job satisfaction levels are equally probable.

Against the alternative hypothesis:

H1: All the three job satisfaction levels are not equally probable.

The SPSS shall be used to compute the value of chi-square for testing the null

hypothesis. Computation of chi-square for single sample using SPSS has been

shown in the following steps:

Computation of Chi-Square Using SPSS

(a) Preparing Data File
Before using SPSS command to compute chi-square, a data file needs to be

prepared. The following steps will help you prepare the data file:

(i) Starting the SPSS: Use the following command sequence to start SPSS:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

After checking the option Type in Data on the screen you will be taken to

the Variable View option for defining the variables in the study.

(ii) Defining variables: There is only one variable Job Satisfaction Level that
needs to be defined. Since this variable can assume any one of the three

values, it is a nominal variable. The procedure of defining the variable in

SPSS is as follows:

1. Click Variable View to define variables and their properties.

2. Write short name of the variable, that is, Job_Sat under the column

heading Name.

3. For this variable, define the full name, that is, Job Satisfaction Level
under the column heading Label.

4. Under the column heading Values, define “1” for low, “2” for medium,

and “3” for high.

5. Under the column heading Measure, select the option “Nominal”

because the variable Job_Sat is a nominal variable.

6. Use default entries in rest of the columns.

Table 3.8 Summary of

responses of the workers

about their job satisfaction

levels

Job satisfaction level

Low Average High

40 30 20
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After defining the variables in variable view, the screen shall look like

Fig. 3.2.

(iii) Entering data: Once the variable Job_Sat has been defined in the Variable
View, click Data View on the left bottom of the screen to open the format

for entering data column wise.

In this example, we have only one variable Job_Sat with three levels as

Low, Medium, and High. The Low satisfaction level was observed in 40

workers, whereas Medium satisfaction level was observed in 30 workers

and High satisfaction level was observed in 20 workers. Since these levels

have been defined as 1, 2, and 3, the data shall be entered under one

variable Job_Sat as shown below:

Data feeding procedure in SPSS under Data View

S.N. Job_Sat

1 1

2 1

3 1 Type “1” 40 times as Low satisfaction level was observed in 40 workers

. .

. .

. .

40 1

41 2

42 2

. . Type “2” 30 times as Medium satisfaction level was observed in 30 workers

. .

. .

70 2

71 3

72 3

73 3 Type “3” 20 times as Low satisfaction level was observed in 20 workers

. .

. .

. .

90 3

Fig. 3.2 Defining variable along with its characteristics
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After entering data, the screen shall look like Fig. 3.3. Only the partial data

has been shown in the figure as data set is long enough to fit in the window.

Save the data file in the desired location before further processing.

(b) SPSS Commands for Computing Chi-Square
After preparing the data file in data view, take the following steps to compute

the chi-square:

(i) Initiating the SPSS commands to compute chi-square for single variable: In
data view, click the following commands in sequence:

Analyze ! Nonparametric Tests ! Legacy Dialogs ! Chi� Square

The screen shall look like Fig. 3.4.

Note: In other versions of SPSS, the command sequence is as follows:

Analyze ! Nonparametric Tests ! Chi-Square

(ii) Selecting variable for computing chi-square: After clicking the “Chi-

Square” option, you will be taken to the next screen for selecting the

variable for which chi-square needs to be computed. Since there is only

one variable Jobs satisfaction level in the example, select it from the left

panel by using the left click of the mouse and bring it to the right panel by

clicking the arrow. The screen shall look like Fig. 3.5.

(iii) Selecting the option for computation: After selecting the variable, option

needs to be defined for the computation of chi-square. Take the following

steps:

– Click the Options in the screen shown in Fig. 3.5. This will take you to

the next screen that is shown in Fig. 3.6.

– Check the option “Descriptive.”

– Use default entries in other options.

– Click Continue. This will take you back to screen shown in Fig. 3.5

– Press OK.

(c) Getting the Output
Pressing OK will lead you to the output window. The output panel shall have

two results that are shown in Tables 3.9 and 3.10. These outputs can be selected

by using right click of the mouse which may be copied in the word file.

Interpretation of the Outputs

Table 3.9 shows the observed and expected frequencies of the different levels of job

satisfaction. No cell frequency is less than 5, and, therefore, no correction is

required while computing chi-square.
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The value of chi-square (¼6.667) in Table 3.10 is significant at 5% level because

its associated p value is .036 which is less than .05. Thus, the null hypothesis may be

rejected. It may therefore be concluded that all the three job satisfaction levels are

not equally probable.

So long the value of p is less than .05, the value of chi-square is significant at 5%

level, and if the p value becomes more than .05, the chi-square becomes

insignificant.

Fig. 3.3 Screen showing

entered data for the variable

Job_Sat in the data view
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Fig. 3.4 Screen showing the SPSS commands for computing chi-square

Fig. 3.5 Screen showing selection of variable for chi-square



Solved Example of Chi-square for Testing the Significance of

Association Between Two Attributes

Example 3.5 Out of 200 MBA students, 40 were given an academic counseling

throughout the semester, whereas other 40 did not receive this counseling. On the

basis of their marks in the final examination, their performance was categorized as

improved, unchanged, and deteriorated. Based on the results shown in Table 3.11,

can it be concluded that the academic counseling is effective at 5% level?

Fig. 3.6 Screen showing option for chi-square computation

Table 3.9 Observed and

expected frequencies for

different levels of job

satisfaction

Frequencies

Observed N Expected N Residual

Low 40 30.0 10.0

Medium 30 30.0 .0

High 20 30.0 �10.0

Total 90

Table 3.10 Chi-square for

the data on job satisfaction

level

Job satisfaction level

Chi-square 6.667a

df 2

Asymp sig. .036
a0 cells (0%) have expected frequencies less than 5. The mini-

mum expected cell frequency is 30
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Solution In order to check whether academic counseling is effective, we shall test the

significance of association between treatment and performance. If the association

between these two attributes is significant, then itmay be interpreted that the pattern of

performance in the counseling and control groups is not same. In that case, it might be

concluded that the counseling is effective since the number of improved cases is

higher in counseling group than that of control group.

Thus, it is important to compute the chi-square first in order to test the null hypothesis.

H0: There is no association between treatment and performance.

Against the alternative hypothesis:

H1: There is an association between treatment and performance.

The commands for computing chi-square in case of two samples are different

than that of one sample computed in Example 3.4.

In two-sample case, chi-square is computed using Crosstabs option in Descrip-

tive statistics command of SPSS. The chi-square so obtained shall be used for

testing the above-mentioned null hypothesis. Computation of chi-square for two

samples using SPSS has been shown in the following steps:

Computation of Chi-Square for Two Variables Using SPSS

(a) Preparing Data File
As discussed in Example 3.4, a data file needs to be prepared for using the SPSS

commands for computing chi-square. Follow the below-mentioned steps to

prepare data file:

(i) Starting the SPSS: Use the following command sequence to start SPSS:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

By checking the option Type in Data on the screen you will be taken to the

Variable View option for defining the variables in the study.

(ii) Defining variables: Here, two variables Treatment and Performance need

to be defined. Since both these variables are classificatory in nature, they

are treated as nominal variables in SPSS. The procedure of defining

variables and their characteristics in SPSS is as follows:

1. Click Variable View to define variables and their properties.

2. Write short name of the variables as Treatment and Performance under
the column heading Name.

Table 3.11 Frequencies of

the MBA students in a

contingency table Treatment

Performance

Improved Unchanged Deteriorated

Counseling group 22 8 10

Control group 4 5 31
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3. Under the column heading Label, full name of the Treatment and

Performance variables may be defined as Treatment groups and Perfor-
mance status, respectively. There is flexibility in choosing full name of

each variable.

4. In the Treatment row, double-click the cell under the columnValues and

add the following values to different labels:

Value Label

1 Counseling group

2 Control group

5. Similarly in the Performance row, double-click the cell under the

column Values and add the following values to different labels:

Value Label

3 Improved

4 Unchanged

5 Deteriorated

There is no specific rule of defining the values of labels. Even

“Improved,” “Unchanged,” and “Deteriorated” may be defined as 1, 2,

and 3, respectively.

6. Under the column label Measure, select the option “Nominal” for both

the variables Treatment and Performance.
7. Use default entries in rest of the columns. .

After defining the variables in Variable View, the screen shall look like

Fig. 3.7.

(iii) Entering data: Once the variables Treatment and Performance have been
defined in the Variable View, click Data View on the left bottom of the

screen to open the format for entering the data column wise.

In this example, there are two variables Treatment and Performance. Treatment
has two value levels: “1” for counseling group and “2” for control group. Since

there are 40 students in counseling group and 40 in control group in this example,

under the Treatment column, write first 40 data as 1 and next 40 data as 2.

Since out of 40 students of counseling group, 22 showed “improved” (value

¼ 3), 8 showed “unchanged” (value ¼ 4), and 10 showed “deteriorated” (value

¼ 5) performance, under the Performance column, type first 22 data as 3, next

8 data as 4, and subsequent 10 data as 5.

Similarly out of 40 students of control group, 4 showed “improved” (value ¼ 3),

5 showed “unchanged” (value ¼ 4), and 31 showed “deteriorated” (value ¼ 5)

performance; therefore, after typing the above data under the Performance column,

type next 4 data as 3, 5 data as 4, and 31 data as 5.
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Fig. 3.7 Defining variables along with their characteristics

Data feeding procedure for the data of Table 3.11 in SPSS under Data View

S.N. Treatment Performance

1 1 3

2 1 3

3 1 3 Type “3” twenty-two times as there

are 22 students showed Improved

performance in counseling group
4 1 3

5 1 3

6 1 3

7 1 3

8 1 3

9 1 3

10 1 3

11 1 3

12 Type “1” forty

times as there are 40

students in the

counseling group

1 3

13 1 3

14 1 3

15 1 3

16 1 3

17 1 3

18 1 3

19 1 3

20 1 3

21 1 3

22 1 3

23 1 4

24 1 4 Type “4” eight times as there are

8 students showed Unchanged

performance in counseling

group

25 1 4

26 1 4

27 1 4

28 1 4

29 1 4

30 1 4

31 1 5

32 1 5 Type “5” ten times as there are 10

students showed Deteriorated

performance in counseling

group

33 1 5

34 1 5

35 1 5

(continued)
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(continued)

S.N. Treatment Performance

36 1 5

37 1 5

38 1 5

39 1 5

40 1 5

41 2 3 Type “3” four times as there are 4

students showed Improved

performance in control group
42 2 3

43 2 3

44 2 3

45 2 4

46 2 4 Type “4” five times as there are 5

students showed Unchanged

performance in control group
47 Type “2” forty times as

there are 40 students in

the control group

2 4

48 2 4

49 2 4

50 2 5

51 2 5

52 2 5 Type “5” thirty-one times as there

are 31 students showed

Deteriorated performance in

control group

53 2 5

54 2 5

55 2 5

56 2 5

57 2 5

58 2 5

59 2 5

60 2 5

61 2 5

62 2 5

63 2 5

64 2 5

65 2 5

66 2 5

67 2 5

68 2 5

69 2 5

70 2 5

71 2 5

72 2 5

73 2 5

74 2 5

75 2 5

76 2 5

77 2 5

78 2 5

79 2 5

80 2 5

Treatment coding: 1 ¼ Counseling group, 2 ¼ Control group

Performance coding: 3 ¼ Improved, 4 ¼ Unchanged, 5 ¼ Deteriorated
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After entering the data, the screen will look like Fig. 3.8. The screen shows only

the partial data as the data is entered column wise which takes two-page-long

entries. Save the data file in the desired location before further processing.

(b) SPSS Commands for Computing Chi-square with Two Variables
After entering all the data by clicking the data view, take the following steps for

computing chi-square:

(i) Initiating the SPSS commands for computing chi-square: In Data View,

click the following commands in sequence:

Analyze ! Descriptive Statistics ! Crosstabs

The screen shall look like Fig. 3.9.

(ii) Selecting variables for computing chi-square: After clicking the

“Crosstabs” option, you will be taken to the next screen for selecting

variables for the crosstabs analysis and computing chi-square. Out of the

two variables, one has to be selected in the Row(s) panel and the other in

the Column(s) panel.

Fig. 3.8 Screen showing

entered data for the Treatment
and Performance variables in
the data view
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Select the variables Treatment group and Performance status from the left

panel and bring them to the “Row(s)” and “Column(s)” sections of the right

panel, respectively, by arrow button. The screen shall look like Fig. 3.10.

(iii) Selecting option for computation: After selecting variables, option needs

to be defined for the crosstabs analysis and computation of chi-square.

Take the following steps:

– Click Statistics option to get the screen shown in Fig. 3.11.

– Check the options “Chi-square” and “Contingency coefficient.”

– Click Continue.

– Click Cells option to get the screen shown in Fig. 3.12. Then,

– Check the options “Observed” and “Expected” under the Counts

section. Observed is checked by default.

– Click Continue. You will be taken back to the screen shown in

Fig. 3.10.

– Use default entries in other options. Readers are advised to try other

options and see what changes they are getting.

– Click OK.

Fig. 3.9 Screen showing the SPSS commands for computing chi-square in crosstabs
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Figure 3.10 Screen showing selection of variables for chi-square in crosstab

Fig. 3.11 Screen showing option for computing chi-square and contingency coefficient



(c) Getting the Output
Clicking option OK will lead you to the output window. The output panel will

have lots of results. It is up to the researcher to decide the relevant outputs to be

shown in their report. The relevant output can be selected by using the right

click of the mouse and copying in the word file. In this example, the output so

generated by the SPSS will look like as shown in Tables 3.12, 3.13, and 3.14.

Fig. 3.12 Screen showing option for computing observed and expected frequencies

Table 3.12 Treatment groups � Performance status cross tabulation

Performance status

TotalImprove Unchanged Deteriorated

Treatment groups Counseling Gp Count 22 8 10 40

Expected count 13.0 6.5 20.5 40.0

Control Gp Count 4 5 31 40

Expected count 13.0 6.5 20.5 40.0

Total Count 26 13 41 80

Expected count 26.0 13.0 41.0 80.0
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Interpretation of the Outputs

The observed and expected frequencies of the Treatment group � Performance
status can be seen in Table 3.12. Since no cell frequency is less than 5, therefore, no
correction is required while computing the chi-square. If any of the cell frequency

had value 5 or less, then SPSS would have computed the chi-square after applying

the correction.

Table 3.13 shows the value of chi-square (w2) as 23.910, which is significant at 1%
level as the p value is .000. Thus, we may reject the null hypothesis that “There is no

association between Treatment and Performance.” Hence, it may be concluded that

there is a significant association between treatment and performance. In other words,

it can be said that the pattern of academic performance is different in counseling and

control group. Since the number of improved performance cases (22) is higher in

counseling group than that of 4 in control group, it may be interpreted that the

academic counseling is effective in improving the performance.

In Table 3.14, the value of contingency coefficient is 0.480. This is a measure of

association between Treatment and Performance. This contingency coefficient can

be considered to be significant as its p value is .000 which is less than .05. Thus, it

may finally be concluded that counseling is significantly effective in improving the

academic performance.

Summary of the SPSS Commands

(a) For computing chi-square statistic (for testing equal occurrence

hypothesis):

1. Start SPSS by using the following sequence of commands:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

Table 3.14 Contingency coefficient for the data on Treatment � Performance

Value Approx. sig. (p value)

Nominal by nominal Contingency coefficient 0.480 0.000

N of valid cases 80

Table 3.13 Chi-square for the data on Treatment � Performance

Value df Asymp. sig. (2-sided)

Pearson chi-square 23.910a 2 .000

Likelihood ratio 25.702 2 .000

Linear-by-linear association 23.400 1 .000

N of valid cases 80
a0 cells (.0%) have expected count less than 5. The minimum expected count is 6.50

96 3 Chi-Square Test and Its Application



2. Create data file by choosing the option Type in Data.

3. Click the tag Variable View and define the variable Job_Sat as “Nominal”

variable.

4. For the variable Job_Sat, under the column heading Values, define “1” for

low, “2” for medium, and “3” for high.

5. By clicking the Data View, enter first forty data of the variable Job_Sat as 1,
next thirty as 2, and further 20 as 3 in the same column.

6. Click the following command sequence for computing chi-square:

Analyze ! Nonparametric Tests ! Legacy Dialogs ! Chi� Square

7. Select the variable Job_Sat from left panel to the right panel.

8. Click the tag Options and check the box of “Descriptive.” Press Continue.
9. Click OK to get the output.

(b) For computing chi-square statistic (for testing the significance of associa-

tion between two attributes):

1. Start SPSS by using the following command sequence:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

2. Click Variable View tag and define the variable Treatment and Perfor-
mance as “Nominal” variables.

3. In the Treatment row, double-click the cell under the column Values and

add the values “1” for Counseling group and “2” for Control group.

Similarly, in the Performance row, define the value “3” for Improved,

4 for Unchanged, and 5 for Deteriorated.

4. Use default entries in rest of the columns.

5. Click Data View tag and feed first forty entries as 1 and next forty entries

as 2 for the Treatment variable.
6. Similarly for the Performance variable, enter first twenty-two entries as 3,

next eight entries as 4, and further ten entries as 5. These three sets of

entries are for counseling group. Similarly for showing the entries of

control group, enter first four entries as 3, next five entries as 4, and after

that thirty-one entries as 5 in the same column.

7. Click the following command sequence for computing chi-square:

Analyze ! Descriptive Statistics ! Crosstabs

8. Select variables Treatment group and Performance status from the left panel

to the “Row(s)” and “Column(s)” sections of the right panel, respectively.

9. Click the option Statistics and check the options “Chi-square” and “Con-

tingency coefficient.” Press Continue.
10. Click OK to get the output.
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Exercise

Short-Answer Questions

Note: Write answer to each of the questions in not more than 200 words:

Q.1. Responses were obtained from male and female on different questions related

to their knowledge about smoking. There were three possible responses

Agree, Undecided, and Disagree for each of the questions. How will you

compare the knowledge of male and female about smoking?

Q.2. Write in brief two important applications of chi-square.

Q.3. How will you frame a null hypothesis in testing the significance of an associ-

ation between gender and IQ where IQ is classified into high and low

category? Write the decision criteria in testing the hypothesis.

Q.4. Can the chi-square be used for comparing the attitude of male and female on

the issue of “Foreign retail chain may be allowed in India” if the frequencies

are given in 3 � 5 table below? If so or otherwise, interpret your findings.

Under what situation chi-square is the most robust test?

Q.5 If chi-square is significant, it indicates that the association between the two

attributes exists. How would you find the magnitude of an association?

Q.6 What is phi coefficient? In what situation it is used? Explain by means of an

example.

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. For testing the significance of association between Gender and IQ level, the

command sequence for computing chi-square in SPSS is

(a) Analyze -> Nonparametric Tests -> Chi-square

(b) Analyze -> Descriptive Statistics -> Crosstabs

(c) Analyze -> Chi-square -> Nonparametric Tests

(d) Analyze -> Crosstabs -> Chi-square

2. Choose the most appropriate statement about the null hypothesis in chi-square.

(a) There is an association between gender and response.

(b) There is no association between gender and response.

(c) There are 50�50% chances of significant and insignificant association.

(d) None of the above is correct.

Response on “Foreign retail chain may be allowed in India”

Strongly agree Agree Undecided Disagree Strongly disagree

Gender Male 50 20 15 5 10

Female 20 15 10 25 30
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3. Response of the students on their preferences toward optional papers is as

follows:

Response of the students

Subjects Finance Human resource Marketing

No. of students 15 25 20

The value of chi-square shall be

(a) 2

(b) 2.5

(c) 50

(d) 25

4. The value of chi-square for the given data shall be

Gender

Male Female

Region North 30 20

South 10 40

(a) 16.67

(b) 166.7

(c) 1.667

(d) 1667

5. Chi-square is used for

(a) Finding magnitude of an association between two attributes

(b) Finding significance of an association between two attributes

(c) Comparing the variation between two attributes

(d) Comparing median of two attributes

6. Chi-square is the most robust test if the frequency table is

(a) 2 � 2

(b) 2 � 3

(c) 3 � 3

(d) m � n

7. While using chi-square for testing an association between the attributes, SPSS

provides Crosstabs option. Choose the most appropriate statement.

(a) Crosstabs treats all data as nominal.

(b) Crosstabs treats all data as ordinal.

(c) Crosstabs treats some data as nominal and some data as ordinal.

(d) Crosstabs treats data as per the problem.
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8. If responses are obtained in the form of the frequency on a 5-point scale and it is

required to compare the responses of male and female on the issue “Marketing

stream is good for the female students,” which statistical test you would prefer?

(a) Two-sample t-test
(b) Paired t-test
(c) One-way ANOVA

(d) Chi-square test

9. If p value for a chi-square is .02, what conclusion you can draw?

(a) Chi-square is significant at 95% confidence.

(b) Chi-square is not significant at 95% confidence.

(c) Chi-square is significant at .01 levels.

(d) Chi-square is not significant at .05 levels.

10. The degree of freedom of chi-square in a r � c table is

(a) r + c
(b) r + c�1

(c) rc
(d) (r�1)(c�1)

11. Phi coefficient is used if

(a) Both the variables are ordinal.

(b) Both the variables are binary.

(c) Both the variables are interval.

(d) One of the variables is nominal and the other is ordinal.

12. Gamma coefficient is used if

(a) Both the variables are interval.

(b) Both the variables are binary.

(c) Both the variables are ordinal.

(d) Both the variables may be on any scale.

Assignments

1. Following are the frequencies of students in an institute belonging to Low,

Medium, and High IQ groups. Can it be concluded that there is a specific

trend of IQ’s among the students. Test your hypothesis at 5% level.

Frequencies of the students in different IQ groups

IQ categories Low IQ Medium IQ High IQ

Frequency 20 65 35

2. In an organization following are the frequencies of male and female workers in

the skilled and unskilled categories. Test whether nature of work is independent

of the gender by computing chi-square. Also compute contingency coefficient
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along with the expected frequency and percentage frequencies in the Crosstabs

and interpret your findings. Test your hypothesis at 5% level.

Frequency of workers in different categories

Workers

Skilled Unskilled

Gender Male 50 15

Female 15 40

Answers to Multiple-Choice Questions

Q.1 b Q.2 b

Q.3 b Q.4 a

Q.5 b Q.6 a

Q.7 a Q.8 d

Q.9 a Q.10 d

Q.11 b Q.12 c
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Chapter 4

Correlation Matrix and Partial Correlation:

Explaining Relationships

Learning Objectives

After completing this chapter, you should be able to do the following:

• Learn the concept of linear correlation and partial correlation.

• Explore the research situations in which partial correlation can be effectively

used.

• Understand the procedure in testing the significance of product moment correla-

tion and partial correlation.

• Develop the hypothesis to test the significance of correlation coefficient.

• Formulate research problems where correlation matrix and partial correlation

can be used to draw effective conclusion.

• Learn the application of correlation matrix and partial correlation through case

study discussed in this chapter.

• Understand the procedure of using SPSS in computing correlation matrix and

partial correlation.

• Interpret the output of correlation matrix and partial correlation generated in

SPSS.

Introduction

One of the thrust areas in the management research is to find the ways and means to

improve productivity. It is therefore important to know the variables that affect it.

Once these variables are identified, an effective strategy may be adopted by

prioritizing it to enhance the productivity in the organization. For instance, if a

company needs to improve the sale of a product, then its first priority would be to

ensure its quality and then to improve other variables like resources available to the

marketing team, their incentive criteria, and dealer’s scheme. It is because of the

fact that the product quality is the most important parameter in enhancing sale.

J.P. Verma, Data Analysis in Management with SPSS Software,
DOI 10.1007/978-81-322-0786-3_4, # Springer India 2013
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To find how strongly a given variable is associated with the performance of an

employee, an index known as product moment correlation coefficient “r” may be

computed. The product moment correlation coefficient is also known as correlation

coefficient, and it measures only linear relation between two variables.

When we have two variables that covary, there are two possibilities. First, the

change in a thing is concomitant with the change in another, as the change in a

child’s age covaries with his weight, that is, the older, the heavier. When higher

magnitude on one variable occurs along with higher magnitude on another and the

lower magnitudes on both also occur simultaneously, then the things vary together

positively, and we denote this situation as positive correlation.

In the second situation, two things vary inversely. In other words, the higher

magnitudes of one variable go along with the lower magnitudes of the other and

vice versa. This situation is denoted as negative correlation.

The higher magnitude of correlation coefficient simply indicates that there is

more likelihood that if the value of one variable increases, the value of other

variable also increases or decreases. However, correlation coefficient does not

reveal the real relationship between the two variables until the effects of other

variables are eliminated.

This fact can be well explained with the following example. John and Philip

work for the same company. John has a big villa costing $540,000, whereas Philip

owns a three-room apartment, costing $160,000. Which person has a greater salary?

Here, one can reasonably assume that it must be John who earns more, as he has

a more expensive house. As he earns a larger salary, the chances are that he can

afford a more expensive house. One cannot be absolutely certain; of course, it may

be that John’s villa was a gift from his father, or he could have gotten it in a contest

or it might be a result of any legal settlement. However, most of the time, an

expensive house means a larger salary.

In this case, one may conclude that there is a correlation between someone’s

salary and the cost of the house that he/she possesses. This means that as one figure

changes, one can expect the other to change in a fairly regular way.

In order to be confident that the relationship exists between any two variables, it

must be exhibited across some cases. A case is a component of variation in a thing.

For example, different levels of IQ that go along with different marks obtained in

the final examination may be perceived across students. If the correlation between

IQ and marks of the students is positive, it indicates that a student with high IQ has

high marks and the one with low IQ has low marks.

The correlation coefficient gives fair estimate of the extent of relationship

between any two variables if the subjects are chosen at random. But in most of

the situations, samples are purposive, and, therefore, correlation coefficient in

general may not give the correct picture of the real relationship. For example, in

finding correlation coefficient between the age of customers and quantity of mois-

turizer purchased, if the sample is collected from the high socioeconomic popula-

tion, the result may not be valid as in this section of society, people understand the

importance of the product and can afford to invest on it. However, to establish the

relationship between sales and age of the users, one should collect the sample from

all the socioeconomic status groups.
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Even if the sample is random, it is not possible to find the real relationship

between any two variables as it might be affected by other variables. For instance, if

the correlation computed between height and weight of the children belonging to

age category 12–18 years is 0.85, it may not be considered as the real relationship.

Here all the subjects are in the developmental age, and in this age category, if the

height increases, weight also increases; therefore, the relationship exhibited

between height and weight is due to the impact of age as well. To know the real

relationship between the height and weight, one must eliminate the effect of age.

This can be done in two ways. First, all the subjects can be taken in the same age

category, but it is not possible in the experimental situation once the data collection

is over. Even if an experimenter tries to control the effect of one or two variables

manually, it may not be possible to control the effect of other variables; otherwise

one might end up with getting one or two samples only for the study.

In the second approach, the effects of independent variables are eliminated

statistically by partialing out their effects by computing partial correlation. Partial

correlation provides the relationship between any two variables after partialing out

the effect of other independent variables.

Although the correlation coefficient may not give the clear picture of the real

relationship between any two variables, it provides the inputs for computing partial

and multiple correlations, and, therefore, in most of the studies, it is important to

compute the correlation matrix among the variables. This chapter discusses the

procedure for computing correlation matrix and partial correlation using SPSS.

Details of Correlation Matrix and Partial Correlation

Matrix is an arrangement of scores in rows and column, and if its elements are

correlation coefficients, it is known as correlation matrix. Usually in correlation

matrix, upper diagonal values of the matrix are written. For instance, the correlation

matrix with the variables X1, X2, X3, and X4 may look like as follows:

X1 X2 X3 X4

X1 1 0.5 0.3 0.6

X2 1 0.7 0.8

X3 1 0.4

X4 1

The lower diagonal values in the matrix are not written because of the fact that

the correlation between X2 and X4 is same as the correlation between X4 and X2.

Some authors prefer to write the above correlation matrix in the following form:

X1 X2 X3 X4

X1 0.5 0.3 0.6

X2 0.7 0.8

X3 0.4

X4
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In this correlation matrix, diagonal values are not written as it is obvious that these

values are 1 because correlation between the same two variables is always one.

In this section, we shall discuss the product moment correlation and partial

correlation along with testing of their significance.

Product Moment Correlation Coefficient

Product moment correlation coefficient is an index which provides the magnitude

of linear relationship between any two variables. When we refer to correlation

matrix, it is usually a matrix of product moment correlation coefficients. It is

represented by “r” and is given by the following formula:

r ¼ NSXY � ðSXÞðSYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½NSX2 � ðSXÞ2�½NSY2 � ðSYÞ2�

q (4.1)

where N is the number of paired scores. The limits of r are from �1 to +1. The

positive value of rmeans higher scores on one variable tend to be paired with higher

scores on the other, or lower scores on one variable tend to be paired with lower

scores on the other. On the other hand, negative value of r means higher scores on

one variable tend to be paired with lower scores on the other and vice versa. Further,

r ¼ +1 indicates the perfect positive relationship between the two variables. This

means that if there is an increase (decrease) in X by an amount “a,” the Ywill also be

increased (decreased) by the same amount. Similarly r ¼ �1 signifies the perfect

negative linear correlation between the two variables. In this case, if the variable X
is increased (decreased) by an amount “b,” then the variable Y shall be decreased

(increased) by the same amount. The three extreme values of the correlation

coefficient r can be shown graphically in Fig. 4.1.

Example 4.1: Following are the scores on age and memory retention. Compute the

correlation coefficient and test its significance at 5% level (Table 4.1).

Solution In order to compute the correlation coefficient, first of all the summationP
X,
P

Y,
P

X2,
P

Y2
, and

P
XY shall be computed in Table 4.2.

Fig. 4.1 Graphical presentations of the three extreme cases of correlation coefficient
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Here N is 10:

r ¼ NSXY � ðSXÞðSYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½NSX2 � ðSXÞ2�½NSY2 � ðSYÞ2�

q
Substituting the values in the equation,

r ¼ 10� 597� 91� 67ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½10� 853� 912�½10� 461� 672�

q
¼ �127ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

249� 121
p ¼ �0:732

Testing the Significance

To test whether the correlation coefficient�0.732 is significant or not, the tabulated

value of r required for significance at .05 level of significance and N � 2(¼8)

degree of freedom can be seen from Table A.3 in the Appendix, which is 0.632.

Hence, it may be concluded that there is a significant negative relationship between

age and memory retention power. In other words, it may be inferred that as the age

increases, the memory retention power decreases.

Table 4.1 Data on age and

memory retention
S.N. Age Memory retention

1 11 7

2 12 5

3 8 7

4 9 6

5 7 8

6 10 5

7 8 7

8 9 8

9 10 6

10 7 8

Table 4.2 Computation for

correlation coefficient
Age Memory retention

S.N. (X) (Y) X2 Y2 XY

1 11 7 121 49 77

2 12 5 144 25 60

3 8 7 64 49 56

4 9 6 81 36 54

5 7 8 49 64 56

6 10 5 100 25 50

7 8 7 64 49 56

8 9 8 81 64 72

9 10 6 100 36 60

10 7 8 49 64 56

Total 91 67 853 461 597
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Properties of Coefficient of Correlation

1. The correlation coefficient is symmetrical with respect to the variables. In other

words, correlation between height and weight is same as the correlation between

weight and height. Mathematically rxy ¼ ryx.
2. The correlation coefficient between any two variables lies in between�1 and +1.

In other words, �1 � r � 1.

Consider the following sum of the squares:

X X � �X

sx
� Y � �Y

sy

� �2

s2x ¼
1

n

X
X � �Xð Þ2 )

X
X � �Xð Þ2 ¼ ns2x

Since s2y ¼
1

n

X
Y � �Yð Þ2 )

X
Y � �Yð Þ2 ¼ ns2y

and rxy ¼
P ðX � �XÞðY � �YÞ

nsxsy
)
X

ðX � �XÞðY � �YÞ ¼ nsxsyrxy

Now

X X � �X

sx
� Y � �Y

sy

� �2
¼
P

X � �Xð Þ2
s2x

� 2

P
X � �Xð Þ Y � �Yð Þ

sxsy
þ
P

Y � �Yð Þ2
s2y

¼ ns2x
s2x

� 2nsxsyrxy
sxsy

þ ns2y
s2y

¼ 2n� 2nr

¼ 2nð1� rÞ

Since the expression in the left-hand side is always a positive quantity,

; 2n 1� rð Þ � 0 n>0ð Þ

Taking positive sign

1þ r � 0 ; r � �1 (4.2)

And if the sign is negative,

1� r � 0 ; r � 1 (4.3)

Combining (4.2) and (4.3),

� 1 � r � 1
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3. The correlation coefficient is independent of origin and unit of measurement

(scale), that is,

if the two variables are denoted as X and Y and rxy, the correlation coefficient,

then

rxy ¼
P

X � �Xð Þ Y � �Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � �Xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y � �Yð Þ2

q (4.4)

Let us apply the transformation by shifting the origin and scale of X and Y.

Let U ¼ X�a
h and V ¼ Y�b

k

where a, b, h, and k are constants.

;X ¼ aþ hU )
X

X ¼
X

aþ h
X

U

) �X ¼ aþ h �U

Thus, X � �X ¼ hðU � �UÞ (4.5)

Similarly,

Y ¼ bþ kV )
X

Y ¼
X

bþ k
X

V

) �Y ¼ bþ k �V

Thus, Y � �Y ¼ kðV � �VÞ (4.6)

Substituting the values of ðX � �XÞand ðY � �YÞfrom The Equations (4.5) and (4.6)

into (4.4),

rx;y ¼
P

hðU � �UÞ � kðV � �VÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
P

U � �Uð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
P

V � �Vð Þ2
q

¼ hk
P ðU � �UÞðV � �VÞ

hk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
U � �Uð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
V � �Vð Þ2

q
¼ ru;v

; rx;y ¼ ru;v

Thus, it may be concluded that the coefficient of correlation between any two

variables is independent of change of origin and scale.

4. Correlation coefficient is the geometrical mean between two regression

coefficients. If byx and bxy are the regression coefficients, then

rxy ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
byx � bxy

p
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Correlation Coefficient May Be Misleading

As per the definition, correlation coefficient indicates the linear relationship

between the two variables. This value may be misleading at times. Look at the

following three situations:

1. Researchers often conclude that a high degree of correlation implies a causal

relationship between the two variables, but this is totally unjustified. For example,

both events, represented by X1 and X2, might simply have a common cause. If in a

study, X1 represents the gross salary of the family per month and X2 is the amount

of money spent on the sports and leisure activities per month, then a strong

positive correlation between X1 and X2 should not be concluded that the people

spend more on sports and leisure activities if their family income is more. Now, if

a third variable X3, the socioeconomic status, is taken into account, it becomes

clear that, despite the strong positive value of their correlation coefficient, there is

no causal relationship between “sports and leisure expenditure” and “family

income,” and that both are in fact caused by the third variable “socioeconomic

status.” It is not the family income which encourages a person to spend more on

sports and leisure activities but the socioeconomic status which is responsible for

such a behavior. To know the causal relationship, partial correlation may be used

with limitations.

2. A low or insignificant value of the correlation coefficient may not signify the lack

of a strong link between the two variables under consideration. The lower value of

correlation coefficient may be because of the other variables affecting the

relationships in a negative manner. And, therefore, the effect of those variables

eliminated may increase the magnitude of the correlation coefficient. Path Analy-

sis may provide the insight in this direction where a correlation coefficient may be

split into direct and indirect relationships.

3. The ecological fallacy is another source of misleading correlation coefficient. It

occurs when a researcher makes an inference about the correlation in a particular

situation based on correlation of aggregate data for a group. For instance, if a

high degree of relationship exists between height and performance of athletes in

the USA, it does not indicate that every tall athlete’s performance is excellent in

the USA. And if we conclude so, it will be an ecological fallacy.

4. Correlation does not explain causative relationship. High degree of correlation

between two variables does not indicate that one variable causes another. In other

words, correlation does not show cause and effect relationship. In a distance

learning program, if there is a high degree of correlation between the student’s

performance and the number of contact classes attended, it does not necessarily

indicate that one gets more marks because he learns more during contact classes.

Neither does it necessarily imply that the more classes you attend, the more

intelligent you become and get good marks. Some other explanation might also

explain the correlation coefficient. The correlation means that the one who attends

more contact classes gets higher marks and those who attend less classes get less

marks. It does not explain why it is the case.
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5. One must ensure that the result of correlation coefficient should be generalized

only for that population from which the sample was drawn. Usually for a specific

small sample, correlation may be high for any two variables, and if it is so, then it

must be verified with the larger representative and relevant sample.

Limitations of Correlation Coefficients

One of the main limitations of the correlation coefficient is that it measures only

linear relationship between the two variables. Thus, correlation coefficient should

be computed only when the data are measured either on interval scale or ratio scale.

The other limitation of the correlation coefficient is that it does not give the real

relationship between the variables. To overcome this problem, partial correlation

may be computed which explains the real relationship between the variables after

controlling for other variables with certain limitations.

Testing the Significance of Correlation Coefficient

After computing the correlation coefficient, the next question is to find as to

whether it actually explains some relationship or it is due to chance.

The following mutually exclusive hypotheses are tested by using the statistical

test for testing the significance of correlation coefficient:

H0: �r ¼ 0 (There is no correlation between the two variables in the population.)

H1: �r 6¼ 0 (There is a correlation between the two variables in the population.)

In fact, �r indicates the population correlation coefficient, and we test its signifi-

cance on the basis of the sample correlation coefficient. To test the above set of

hypotheses, any of the following three approaches may be used.

First Approach

The easiest way to test the null hypothesis mentioned above is to look for the critical

value of r with n � 2 degrees of freedom at any desired level of significance in

Table A.3 in the Appendix. If the calculated value of r is less than or equal to the

critical value of r, null hypothesis would fail to be rejected, and if calculated r is
greater than critical value of r, null hypothesis may be rejected. For instance, if the

correlation coefficient between height and self-esteem of 25 individuals is 0.45,

then the critical value of r required for significance at .05 level of significance and

N � 2(¼23) df from Table A.3 in the Appendix can be seen as 0.396. Since

calculated value of r, that is, 0.45 is greater than the critical value of r (¼0.396),

the null hypothesis may be rejected at .05 level of significance, and we may

conclude that there is a significant correlation between height and self-esteem.

Details of Correlation Matrix and Partial Correlation 111

http://dx.doi.org/10.1007/978-81-322-0786-3_BM1
http://dx.doi.org/10.1007/978-81-322-0786-3_BM1


Second Approach

Significance of correlation coefficient may be tested by using t-test as well. In this

case, t-statistic is given by the following formula:

t ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
(4.7)

Here r is the observed correlation coefficient and n is the number of paired sets of

data.

The calculated value of t is compared with that of tabulated value of t at .05 level
and n�2 df (¼t.05(n�2)). The value of tabulated t can be obtained from Table A.2 in

the Appendix.

Thus, if Cal t � t.05(n�2), null hypothesis is failed to be rejected at .05 level of significance

and if Cal t > t.05(n�2), null hypothesis may be rejected at .05 level of significance

Third Approach

In this approach, significance of correlation coefficient is tested on the basis of its

p value. p value is the probability of wrongly rejecting the null hypothesis. If

p value is .04 for a given correlation coefficient, it indicates that the chances of

wrongly rejecting the null hypothesis are only 4%. Thus, so long p value is less than
.05 the correlation coefficient is significant and the null hypothesis may be rejected

at 5% level. On the other hand, if p value is more than or equal to .05, the correlation

coefficient is not significant and the null hypothesis may not be rejected at 5% level.

Note: The SPSS output follows third approach and provides p values for each of the
correlation coefficient in the correlation matrix.

Partial Correlation

Partial correlation is the measure of relationship between two variables after

partialing out the effect of one or more independent variables. In computing partial

correlation, the data must be measured either on interval or on ratio scale. For

example, one may compute partial correlation if it is desired to see the relationship

of age with stock portfolio after controlling the effect of income. Similarly to

understand the relationship between price and demand would involve studying

the relationship between price and demand after controlling the effect of money

supply, exports, etc.

The partial correlation between X1 and X2 adjusted for X3 is given by
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r12:3 ¼ r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r213Þð1� r223Þ

p (4.8)

The limits of partial correlation are �1 to +1.

The order of partial correlation refers to the number of independent variables

whose effects are to be controlled. Thus, first-order partial correlation controls the

effect of one variable, second-order partial correlation controls the effect of two

variables, and so on.

The generalized formula for (n � 2)th order partial correlation is given by

r12:34:::::::n ¼
r12:345::::ðn�1Þ � r1n:345...ðn�1Þr2n:345::::ðn�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
1n:345::::ðn�1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

2n:345::::ðn�1Þ
q (4.9)

Limitations of Partial Correlation

1. Since partial correlation is computed by using product moment correlation

coefficient, it also assumes the linear relationship. But generally, this assumption

is not valid especially in social sciences, as linear relationship rarely exists in

such parameters.

2. The reliability of partial correlation decreases if its order increases.

3. Large number of data is required to draw the valid conclusions from the partial

correlations.

4. In spite of controlling the effect of many variables, one cannot be sure that the

partial correlation explains the real relationship.

Testing the Significance of Partial Correlation

The significance of partial correlation is tested in a similar way as has been

discussed above in case of product moment correlation.

In SPSS, significance of partial correlation is tested on the basis of p value. The

partial correlation would be significant at 5% level if its p value is less than .05 and
will be insignificant if the p value is equal to or more than .05.

Computation of Partial Correlation

Example 4.2: The following correlation matrix shows the correlation among

different academic performance parameters. Compute partial correlations r12.3
and r12.34 and test their significance. Interpret the findings also (Table 4.3).
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Solution

(i) Computation of r12:3

Since we know that r12:3 ¼ r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r213

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r223

q
Substituting the values of correlation coefficients from the correlation matrix,

we get

r12:3 ¼ 0:7� 0:6� 0:65ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:62

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:652

p

¼ 0:70� 0:39ffiffiffiffiffiffiffiffiffi
0:64

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5775

p

¼ 0:51

(ii) Computation of r12.34

Since we know that r12:34 ¼ r12:3 � r14:3r24:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r214:3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r224:3

p
We shall first compute the first-order partial correlations r12.3, r14.3, and r24.3
which are required to compute the second-order partial correlation r12.34.
Since r12.3 has already been computed above, the remaining two shall be

computed here.

Thus,

r14:3 ¼ r14 � r13r43ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r213

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r243

p ¼ 0:4� 0:6� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:62

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:52

p ¼ 0:1

0:69
¼ 0:14

and

r24:3 ¼ r24 � r23r43ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r223

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r243

p ¼ 0:3� 0:65� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:652

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:52

p ¼ �0:025

0:66
¼ �0:04

After substituting the values of r12:3 ,r14:3 , and r24:3 , the second-order partial

correlation becomes

Table 4.3 Correlation matrix among different paramters

X1 X2 X3 X4

X1 1 0.7 0.6 0.4

X2 1 0.65 0.3

X3 1 0.5

X4 1

X1: GMAT scores, X2: Mathematics marks in high school, X3: IQ

scores, X4: GPA scores
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r12:34 ¼ r12:3 � r14:3r24:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r214:3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r224:3

p ¼ 0:51� 0:14� ð�0:04Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:142

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:04Þ2

q
¼ 0:51þ 0:0056ffiffiffiffiffiffiffiffiffi

0:98
p ffiffiffiffiffiffiffiffiffiffiffi

0:998
p ¼ 0:5156

0:989

¼ 0:521

Situation for Using Correlation Matrix and Partial Correlation

Employee’s performance largely depends upon their work environment, and,

therefore, organizations give more emphasis to improve the working environment

of their employees by means of different programs and policies. In order to know

the various parameters that are responsible for job satisfaction, statistical

techniques like correlation coefficient and partial correlation can be used. With

the help of these statistics, one can understand the extent of multicollinearity among

independent variables besides understanding the pattern of relationship between job

satisfaction and independent variables.

In order to develop an effective strategy to improve the level of job satisfaction

of employees, one should know as to what parameters are significantly associated

with it. These variables can be identified from the correlation matrix. All those

variables which show significant relation with the job satisfaction may be identified

for further investigation. Out of these identified variables, it may be pertinent to

know as to which variable is the most important one. Simply looking to the

magnitude of the correlation coefficient, it is not possible to identify the most

important variable responsible for job satisfaction because high correlation does

not necessarily mean real relationship as it may be due to other independent

variables. Thus, in order to know as to which variable is the most important one,

partial correlation may be computed by eliminating the effect of other variables so

identified in the correlation matrix.

The application of correlation matrix and partial correlation can be understood

by considering the following research study:

Consider a situation where an organization is interested in investigating the

relationship of job satisfaction with certain environmental and motivational

variables obtained on its employees. Besides finding the relationships of job

satisfaction with environmental and motivational variables, it may be interesting

to know the relationships among the environmental and motivational variables as

well. The following variables may be taken in the study:

Dependent variable
1. Job satisfaction (X1)
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Independent variables
1. Autonomy (X2)

2. Organizational culture (X3)

3. Compensation (X4)

4. Upward communications (X5)

5. Job training opportunity (X6)

6. Management style (X7)

7. Performance appraisal (X8)

8. Recognition (X9)

9. Working atmosphere (X10)

10. Working relationships (X11)

The following computations may be done to fulifil the objectives of the study:

1. Compute product moment correlation coefficient between Job satisfaction and

each of the environmental and motivational variables.

2. Identify few independent variables that show significant correlations with the

Job satisfaction for further developing the regression model. Say these selected

variables are X3, X9, X6, and X2.

3. Out of these identified variables in step 2, pick up the one having the highest

correlation with the dependent variable (X1), say it is X6.

4. Then find the partial correlation between the variables X1 and X6 by eliminating

the effect of variables X3, X9, and X2 in steps. In other words, find the first-order

partial correlation r16.3, second-order partial correlation r16.39, and third-order

partial correlation r16.392.
5. Similarly find the partial correlation between other identified variables X3, X9,

and X2 with that of dependent variable (X1) in steps. In other words, compute the

following three more sets of partial correlation:

(i) r13.9, r13.96, and r13.962
(ii) r19.3, r19.36, and r19.362
(iii) r12.3, r12.39, and r12.396

Research Hypotheses to Be Tested

By computing product moment correlation and partial correlation, the hypotheses
that can be tested are as follows:

(a) To test the significance of relationship between Job satisfaction and each of the

environmental and motivational variables

(b) To test the significance of relationship among independent variables

(c) Whether few environmental and motivational variables are highly related with

Job satisfaction
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Statistical Test

To address the objectives of the study and to test the listed hypotheses, the

following computations may be done:

1. Correlation matrix among all the independent variables and dependent variable

2. Partial correlations of different orders between the Job satisfaction and identified

independent variables

Thus, we have seen how a research situation requires computing correlation

matrix and partial correlations to fulfill the objectives.

Solved Example of Correlation Matrix and Partial Correlations

by SPSS

Example 4.3 To understand the relationships between patient’s loyalty and other

variables, a study was conducted on 20 patients in a hospital. The following data

was obtained. Construct the correlation matrix and compute different partial

correlations using SPSS and interpret the findings (Table 4.4).

Table 4.4 Data on patient’s loyalty and other determinants

S.N. Trust of patient Service quality Customer satisfaction Patient loyalty

1 37 69 52 25

2 35 69 50 20

3 41 94 70 26

4 33 50 41 7

5 54 91 66 25

6 41 69 56 20

7 44 68 53 23

8 45 95 71 32

9 49 95 68 21

10 42 75 57 28

11 35 82 70 28

12 37 80 57 22

13 47 82 61 23

14 44 74 59 26

15 54 100 78 29

16 35 82 54 24

17 39 63 36 16

18 32 57 38 15

19 53 99 74 32

20 49 98 63 25
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Solution First of all, correlation matrix shall be computed using SPSS. Option

shall be selected to show the significant correlation values. After selecting the

variables that shows significant correlation with the customer loyalty, partial

correlation shall be computed between customer loyalty and any of these selected

variables after controlling the effect of the remaining variables. The correlation

coefficients and partial correlations so obtained in the output using SPSS shall be

tested for their significance by using the p value.

Computation of Correlation Matrix Using SPSS

(a) Preparing Data File

Before using the SPSS commands for computing correlation matrix, the data

file is required to be prepared. The following steps will help you prepare the

data file:

(i) Starting the SPSS: Use the following command sequence to start SPSS:

Start ⟶ All Programs ⟶ IBM SPSS Statistics ⟶ IBM SPSS

Statistics 20

After checking the option Type in Data on the screen you will be taken to

the Variable View option for defining the variables in the study.

(ii) Defining variables: There are four variables, namely, Customer trust,
Service quality, Customer satisfaction, and Customer loyalty that need to

be defined. Since these variables were measured on interval scale, they will

be defined as Scale variable in SPSS. Any variable measured on interval or

ratio scale is defined as Scale variable in SPSS. The procedure of defining

the variable in SPSS is as follows:

1. Click Variable View to define variables and their properties.

2. Write short name of these variables, that is, Trust, Service, Satisfaction,
and Loyalty under the column heading Name.

3. Full names of these variables may be defined as Customer trust, Service
quality, Customer satisfaction, and Customer loyalty under the column

heading Label.

4. Under the column heading Measure, select the option “Scale” for all

these variables.

5. Use default entries in rest of the columns.

After defining all the variables in Variable View, the screen shall look like

Fig. 4.2.

(iii) Entering data After defining these variables in the Variable View, click

Data View on the left bottom of the screen to open the format for entering

data. For each variable, enter the data column wise. After entering data, the

screen will look like Fig. 4.3. Save the data file in the desired location

before further processing.
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(b) SPSS Commands for Computing Correlation Coefficient
After preparing the data file in data view, take the following steps to prepare the

correlation matrix:

(i) Initiating the SPSS commands to compute correlations: In Data View, click
the following commands in sequence:

Analyze ⟶ Correlate ⟶ Bivariate

The screen shall look like Fig. 4.4.

(ii) Selecting variables for correlation matrix: Clicking Bivariate option will

take you to the next screen for selecting variables for the correlation matrix.

Select all the variables from left panel to the right panel by using the arrow

key. The variable selection may be made one by one or all at once. After

selecting the variables, the screen shall look like Fig. 4.5.

(iii) Selecting options for computation After selecting the variables, option

need to be defined for the correlation analysis. Take the following steps:

– In the screen shown in Fig. 4.5, ensure that the “Pearson,” “Two-

tailed,” and “Flag significant correlations” options are checked. By

default they are checked.

– Click the tag Options. This will take you to the screen shown in

Fig. 4.6.

– Check the option “Means and standard deviation.”

– Use default entries in other options. Readers are advised to try other

options and see what changes they are getting in their output.

– ClickContinue. This will take you back to the screen shown in Fig. 4.5.

– Click OK.

(c) Getting the Output
After clicking OK, output shall be generated in the output windows. The two

outputs generated in the form of descriptive statistics and correlation matrix are

shown in Tables 4.5 and 4.6.

Fig. 4.2 Defining variables along with their characteristics
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Interpretation of the Outputs

The values of mean and standard deviation for all the variables are shown in

Table 4.5. The user may draw the conclusions accordingly, and the findings may

be used for further analysis in the study.

The actual output shows the full correlation matrix, but only upper diagonal

values of the correlation matrix are shown in Table 4.6. This table shows the

magnitude of correlation coefficients along with their p values and sample size.

The product moment correlation coefficient is also known as Pearson correlation as

Fig. 4.3 Scheme of data feeding for all the variables
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Fig. 4.4 Screen showing SPSS commands for computing correlation matrix

Fig. 4.5 Screen showing selection of variables for computing correlation matrix
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it was developed by the British mathematician Karl Pearson. The value of correla-

tion coefficient required for significance (known as critical value) at 5% as well as

at 1% level can be seen from Table A.3 in the Appendix. Thus, at 18 degrees of

freedom, the critical values of r at 5 and 1% are 0.444 and 0.561, respectively. The

correlation coefficient with one asterisk (*) mark is significant at 5% level, whereas

the one with two asterisk (**) marks shows the significance at 1% level. In this

example, the research hypothesis is two-tailed which states that “There is a signifi-

cant correlation between the two variables.” The following conclusions may be

drawn from the results in Table 4.6:

(a) The Customer loyalty is significantly correlated with customer trust at 5% level,

whereas it is significantly correlated with Service quality and Customer satis-

faction at 1% level.

(b) Customer satisfaction is highly correlated with service quality. This is rightly so

as only satisfied customers would be loyal to any hospital.

(c) All those correlation coefficients having p value less than .05 are significant at

5% level. This is shown by asterisk (*) mark by the side of the correlation

coefficient. Similarly correlations having p value less than .01 are significant at
1% level, and this is indicated by two asterisk (**) marks by the side of

correlation coefficient.

Fig. 4.6 Screen showing option for computing correlation matrix and other statistics
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Computation of Partial Correlations Using SPSS

The decision of variables among which partial correlation needs to be computed

depends upon objective of the study. In computing partial correlation, one of the

variables is usually a criterion variable, and the other is the independent variable

having the highest magnitude of correlation with the criterion variable. Criterion

variable is the one in which the variation is studied as result of variation in other

independent variables. Usually criterion variable is known as dependent variable.

Here the criterion variable is the Customer loyalty because the effect of other

variables needs to be investigated on it. Depending upon the situation, the

researcher may choose any variable other than the highest correlated variable for

computing partial correlation with that of dependent variable. In this example,

partial correlation shall be computed between Customer loyalty (X4) and Customer

satisfaction (X3) after eliminating the effect of Service quality (X2) and Customer

trust (X1). This is because X3 is highly correlated with the criterion variable X4.

Table 4.5 Descriptive

statistics for the data on

customer’s behavior

Variables Mean SD N

Customer trust 42.3000 7.01952 20

Service quality 79.6000 14.77338 20

Customer satisfaction 58.7000 11.74779 20

Customer loyalty 23.8500 4.79336 20

Table 4.6 Correlation matrix for the data on customer’s behavior along with p values

Customer

trust

Service

quality

Customer

satisfaction

Customer

loyalty

(X1) (X2) (X3) (X4)

Customer trust Pearson

correlation

1 .754** .704** .550*

(X1) sig. (2-tailed) .000 .001 .012

N 20 20 20 20

Service quality Pearson

correlation

1 .910** .742**

(X2) sig. (2-tailed) .000 .000

N 20 20 20

Customer

satisfaction

Pearson

correlation

1 .841**

(X3) sig. (2-tailed) .000

N 20 20

Customer loyalty Pearson

correlation

1

(X4) sig. (2-tailed)

N 20

**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level

(2-tailed)
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The decision of eliminating the effect of variables X2 and X1 has been taken because

both these variables are significantly correlated with the criterion variable. How-

ever, one can investigate the relationship between X4 vs. X2 after eliminating the

effect of the variables X3 and X1. Similarly partial correlation between X4 vs. X1

may also be investigated after eliminating the effect of the variables X3 and X2. The

procedure of computing these partial correlations with SPSS has been discussed in

the following sections:

(a) Data File for Computing Partial Correlation
The data file which was prepared for computing correlation matrix shall be used

for computing the partial correlations. Thus, procedure for defining the

variables and entering the data for all the variables is exactly the same as was

done in case of computing correlation matrix.

(b) SPSS Commands for Partial Correlation
After entering all the data in the data view, take the following steps for

computing partial correlation:

(i) Initiating the SPSS commands for partial correlation: In Data View, go to
the following commands in sequence:

Analyze ⟶ Correlate ⟶ Partial

The screen shall look like Fig. 4.7.

(ii) Selecting variables for partial correlation:After clicking the Partial option,
you will get the next screen for selecting variables for the partial correlation.

– Select the two variables Customer loyalty (X4) and Customer satisfac-
tion (X3) from the left panel to the “Variables” section in the right panel.

Here, relationship between the variables X4 and X3 needs to be

computed after controlling the effects of Service quality (X2) and

Customer trust (X1).

– Select the variables Service quality (X2) and Customer trust (X1) from

the left panel to the “Controlling for” section in the right panel. X2 and

X1 are the two variables whose effects are to be eliminated.

The selection of variables is made either one by one or all at once. To do

so, the variable needs to be selected from the left panel, and by arrow

command, it may be brought to the right panel. The screen shall look like

Fig. 4.8.

(iii) Selecting options for computation: After selecting the variables for partial

correlation and identifying controlling variables, option needs to be defined

for the computation of partial correlation. Take the following steps:

– In the screen shown in Fig. 4.8, ensure that the options “Two-tailed”

and “Display actual significance level” are checked. By default they are

checked.

– Click the tag Options; you will get the screen as shown in Fig. 4.9.

Take the following steps:

– Check the box of “Means and standard deviations.”
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– Use the default entries in other options. Readers are advised to try

other options and see what changes they are getting in their outputs.

– Click Continue.

– Click OK.

(c) Getting the Output
After clicking OK, outputs shall be generated in the output panel. The output

panel shall have two tables: one for descriptive statistics and the other for partial

correlation. These outputs can be selected by right click of the mouse and may

be pasted in the word file. In this example, the output so generated by the SPSS

will look like as shown in Tables 4.7 and 4.8.

Interpretation of Partial Correlation

Table 4.7 shows the descriptive statistics of all the variables selected in the study.

Values of mean and standard deviations may be utilized for further analysis.

Readers may note that similar table of descriptive statistics was also obtained

while computing correlation matrix by using SPSS.

Fig. 4.7 Screen showing SPSS commands for computing partial correlations
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In Table 4.8, partial correlation between Customer loyalty (X4) and Customer

satisfaction (X3) after controlling the effect of Service quality (X2) and Customer

trust (X1) is shown as 0.600. Since p value for this partial correlation is .009, which
is less than .01, it is significant at 1% level. It may be noted that the correlation

coefficient between Customer loyalty and Customer satisfaction in Table 4.6 is

0.841 which is highly significant, but when the effects of Service quality and

Customer trust are eliminated, the actual correlation dropped down to 0.600. But

this partial correlation of 0.600 is still highly correlated in the given sample, and,

hence, it may be concluded that within the framework of this study, there exists a

real relationship between Customer loyalty and Customer satisfaction. One may

draw the conclusion that at all cost, Customer satisfaction is the most important

factor for maintaining patient’s loyalty towards the hospital.

Summary of the SPSS Commands

(a) For Computing Correlation Matrix

1. Start the SPSS by using the following commands:

Start⟶ All Programs ⟶ IBM SPSS Statistics ⟶ IBM SPSS Statistics 20

Fig. 4.8 Screen showing selection of variables for partial correlation
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Fig. 4.9 Screen showing option for computing partial correlation and other statistics

Table 4.7 Descriptive

statistics for the variables

selected for partial

correlations

Variables Mean SD N

Customer loyalty 23.8500 4.79336 20

Customer satisfaction 58.7000 11.74779 20

Service quality 79.6000 14.77338 20

Customer trust 42.3000 7.01952 20

Table 4.8 Partial correlation between Customer loyalty (X4) and Customer satisfaction (X3) after

controlling the effect of Service quality (X3) and Customer trust (X1)

Control variables

Customer

loyalty (X4)

Customer

satisfaction

(X3)

Service quality (X2) and

Customer trust (X1)

Customer

loyalty (X4)

Correlation

significance

(2-tailed)

1.000 .600

.009

df 0 16

Customer

satisfaction

Correlation .600 1.000

(X3) significance

(2-tailed)

.009

df 16 0

Note: Readers are advised to compute partial correlations of different orders with the same data
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2. Click Variable View tag and define the variables Trust, Service, Satisfac-
tion, and Loyalty as Scale variables.

3. Once the variables are defined, type the data column wise for these variables

by clicking Data View.

4. In Data View, click the following commands in sequence for correlation

matrix:

Analyze ⟶ Correlate ⟶ Bivariate

5. Select all the variables from left panel to the “Variables” section of the right

panel.

6. Ensure that the options “Pearson,” “Two-tailed,” and “Flag significant

correlations” are checked by default.

7. Click the tag Options and check the box of “Means and standard

deviations.” Click Continue.
8. Click OK for output.

(b) For Computing Partial Correlation

1. Follow steps 1–3 as discussed above.

2. With the same data file, follow the below-mentioned commands in sequence

for computing partial correlations:

Analyze ⟶ Correlate ⟶ Partial

3. Select any two variables between which the partial correlation needs to be

computed from left panel to the “Variables” section of the right panel.

Select the variables whose effects are to be controlled, from left panel to the

“Controlling for” section in the right panel.

4. After selecting the variables for computing partial correlation, click the

caption Options on the screen. Check the box “Means and standard devia-

tion” and press Continue.
5. Click OK to get the output of the partial correlation and descriptive

statistics.

Exercise

Short-Answer Questions

Note: Write the answer to each of the questions in not more than 200 words.

Q.1. “Product moment correlation coefficient is a deceptive measure of relation-

ship, as it does not reveal anything about the real relationship between two

variables.” Comment on this statement.

Q.2. Describe a research situation in management where partial correlation can be

used to draw some meaningful conclusions.
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Q.3. Compute correlation coefficient between X and Y and interpret your findings

considering that Y and X are perfectly related by equation Y ¼ X2.

X: �3 �2 �1 0 1 2

Y: 9 4 1 0 1 4

Q.4. How will you test the significance of partial correlation using t-test?
Q.5. What does the p value refer to? How is it used in testing the significance of

product moment correlation coefficient?

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. In testing the significance of product moment correlation coefficient, degree of

freedom for t-test is

(a) N � 1

(b) N + 2

(c) N + 1

(d) N � 2

2. If the sample size increases, the value of correlation coefficient required for its

significance

(a) Increases

(b) Decreases

(c) Remains constant

(d) May increase or decrease

3. Product moment correlation coefficient measures the relationship which is

(a) Real

(b) Linear

(c) Curvilinear

(d) None of the above

4. Given that r12 ¼ 0.7 and r12.3 ¼ 0.28, where X1 is academic performance, X2 is

entrance test score, and X3 is IQ, what interpretation can be drawn?

(a) Entrance test score is an important contributory variable to the academic

performance.

(b) IQ affects the relationship between academic performance and entrance

test score in a negative fashion.

(c) IQ has got nothing to do with the academic performance.

(d) It seems there is no real relationship between academic performance and

entrance test score.

5. If p value for a partial correlation is 0.001, what conclusion can be drawn?

(a) Partial correlation is not significant at 5% level.

(b) Partial correlation is significant at 1% level.
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(c) Partial correlation is not significant at 1% level.

(d) Partial correlation is not significant at 10% level.

6. Partial correlation is computed with the data that are measured in

(a) Interval scale

(b) Nominal scale

(c) Ordinal scale

(d) Any scale

7. In computing correlation matrix through SPSS, all variables are defined as

(a) Nominal

(b) Ordinal

(c) Scale

(d) Any of the nominal, ordinal, or scale option depending upon the nature of

variable

8. In computing correlation matrix through SPSS, the following command

sequence is used:

(a) Analyze -> Bivariate -> Correlate

(b) Analyze -> Correlate -> Bivariate

(c) Analyze -> Correlate -> Partial

(d) Analyze -> Partial -> Bivariate

9. While selecting variables for computing partial correlation in SPSS, in

“Controlling for” section, the variables selected are

(a) All independent variables except the two between which partial correlation

is computed.

(b) Any of the independent variables as it does not affect partial correlation.

(c) Only those variables whose effects need to be eliminated.

(d) None of the above is correct.

10. The limits of partial correlation are

(a) �1 to 0

(b) 0�1

(c) Sometimes more than 1

(d) �1 to +1

Assignments

1. In a study, Job satisfaction and other organizational variables as perceived by the

employees were assessed. The data were obtained on interval scale and are

shown in the below mentioned table. Compute the following:

(a) Correlation matrix with all the seven variables

(b) Partial correlations : r12.3, r12.35, and r12.356
(c) Partial correlations : r13.2, r13.25, and r13.256
(d) Partial correlations : r16.2, r16.23, and r16.235
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Data on Job satisfaction and other organizational variables as perceived by the

employees

S.

N.

Job

satisfaction Autonomy

Organizational

culture Compensation

Job training

opportunity Recognition

Working

atmosphere

(X1) (X2) (X3) (X4) (X5) (X6) (X7)

1 75 45 34 23 35 44 23

2 65 41 31 24 32 34 32

3 34 27 25 14 28 38 25

4 54 38 28 25 37 32 27

5 47 32 26 26 28 37 31

6 33 28 32 14 25 23 32

7 68 41 38 23 38 32 28

8 76 42 45 28 29 42 42

9 68 37 42 26 29 37 24

10 45 29 35 27 19 30 22

11 36 32 23 31 18 26 31

12 66 33 44 28 38 39 43

13 72 41 45 24 35 36 27

14 58 41 38 25 26 36 28

15 26 23 25 26 24 18 19

16 61 45 42 22 36 42 39

2. The data in the following table shows the determinants of US domestic price of

copper during 1966–1980. Compute the following and interpret your findings:

(a) Correlation matrix with all the six variables

(b) Partial correlations: r12.3, r12.34, and r12.346
(c) Partial correlations: r13.2, r13.24, and r13.246

Determinants of US domestic price of copper

Year

Avg. domestic

copper price GNP

Industrial

production

Exchange

copper price

No. of

housing/year

Aluminum

price

(X1) (X2) (X3) (X4) (X5) (X6)

1966 36.60 753.00 97.8 555.0 1,195.8 24.50

1967 38.60 796.30 100.0 418.0 1,321.9 24.98

1968 42.20 868.50 106.3 525.2 1,545.4 25.58

1969 47.90 935.50 111.1 620.7 1,499.5 27.18

1970 58.20 982.40 107.8 588.6 1,469.0 28.72

1971 52.00 1,063.4 109.6 444.4 2,084.5 29.00

1972 51.20 1,171.1 119.7 427.8 2,378.5 26.67

1973 59.50 1,306.6 129.8 727.1 2,057.5 25.33

1974 77.30 1,412.9 129.3 877.6 1,352.5 34.06

1975 64.20 1,528.8 117.8 556.6 1,171.4 39.79

1976 69.60 1,700.1 129.8 780.6 1,547.6 44.49

1977 66.80 1,887.2 137.1 750.7 1,989.8 51.23

1978 66.50 2,127.6 145.2 709.8 2,023.3 54.42

(continued)

Exercise 131



(continued)

Year

Avg. domestic

copper price GNP

Industrial

production

Exchange

copper price

No. of

housing/year

Aluminum

price

(X1) (X2) (X3) (X4) (X5) (X6)

1979 98.30 2,628.8 152.5 935.7 1,749.2 61.01

1980 101.40 2,633.1 147.1 940.9 1,298.5 70.87

Note: The data were collected by Gary R. Smith from sources such as American Metal Market,

Metals Week, and US Department of Commerce publications

Answers to Multiple-Choice Questions

Q.1 d Q.2 b

Q.3 b Q.4 d

Q.5 b Q.6 a

Q.7 c Q.8 b

Q.9 c Q.10 d
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Chapter 5

Regression Analysis and Multiple Correlations:

For Estimating a Measurable Phenomenon

Learning Objectives

After completing this chapter, you should be able to do the following:

• Explain the use of regression analysis and multiple correlation in research.

• Interpret various terms involved in regression analysis.

• Learn to use SPSS for doing regression analysis.

• Understand the procedure of identifying the most efficient regression model.

• Know the method of constructing the regression equation based on the SPSS

output.

Introduction

Regression analysis deals with estimating the value of dependent variable on the

basis of one or more independent variables. To do so, an equation is developed

between dependent and independent variables by means of least square method.

When the estimation is done on the basis of one independent variable, the procedure

is known as simple regression, and if the estimation involves more than one

independent variable, it is referred to as multiple regression analysis.

In multiple regression analysis, the dependent variable is referred to as Y,
whereas independent variables are denoted as X. The dependent variable is also

known as criterion variable. The goal is to develop an equation that will determine

the Y variable in a linear function of corresponding X variables. The regression

equation can be either linear or curvilinear, but our discussion shall be limited to

linear regression only.

In regression analysis, a regression model is developed by using the observed

data obtained on dependent variable and several independent variables. During the

process, only those independent variables are picked up for developing the model

which shows significant relationship with dependent variable. Therefore, the

researcher must be careful in identifying the independent variables in regression

J.P. Verma, Data Analysis in Management with SPSS Software,
DOI 10.1007/978-81-322-0786-3_5, # Springer India 2013
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analysis study. It may be quite possible that some of the important independent

variables might have been left in the study, and, therefore, in spite of the best

possible effort, the regression model so developed may not be reliable.

Multiple regression analysis can be used in many applications of management

and behavioral researches. Numerous situations can be listed where the use of this

technique can provide an edge to the decision makers for optimum solutions.

For example, in order to evaluate and reform the existing organization and make

them more responsive to the new challenges, the management may be interested to

know; the factors responsible for sale to plan the business strategy, the estimated

number of inventory required in a given month, and the factors affecting the job

satisfaction of the employees. They may also be concerned in developing the model

for deciding the pay packets of an employee, factors that motivate people to work,

or parameters that affect the productivity of work. In all these situations, regression

model may provide the input to the management for strategic decision-making. The

success of the model depends upon the inclusion of relevant independent variables

in the study. For instance, a psychologist may like to draw up variables that directly

affect one’s mental health causing abnormal behavior. Therefore, it is important for

the researchers to review the literature thoroughly for identifying the relevant

independent variables for estimating the criterion variable.

Besides regression analysis, there are other quantitative and qualitative methods

used in performance forecasting. But the regression analysis is one of the most

popularly used quantitative techniques.

In developing a multiple regression equation, one needs to know the efficiency

in estimating the dependent variable on the basis of the identified independent

variables in the model. The efficiency of estimation is measured by the coefficient

of determination (R2) which is the square of multiple correlation. The coefficient of

determination explains the percentage of variance in the dependent variable by the

identified independent variables in the model. The multiple correlation explains the

relationship between the group of independent variables and dependent variable.

Thus, high multiple correlation ensures greater accuracy in estimating the value of

dependent variable on the basis of independent variables. Usually multiple correla-

tion, R is computed during regression analysis to indicate the validity of regression

model. It is necessary to show the value of R2 along with regression equation for

having an idea about the efficiency in prediction.

Any regression model having larger multiple correlation gives better estimates

in comparison to that of other models. We will see an explanation of the multiple

correlation while discussing the solved example later in this chapter.

Terminologies Used in Regression Analysis

In order to use the regression analysis effectively, it is essential to know different

terminologies involved in it. These terms are discussed in the following sections.
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Multiple Correlation

Multiple correlation is a measure of relationship between a group of independent

variables and a dependent variable. Since multiple correlation provides the strength

of relationship between dependent variable and independent variables, it is used to

determine the power of regression models also. The multiple correlation is

represented by “R” and is computed by the following formula:

R1:23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212 þ r213 � 2r12 r13 r23

1� r223

s
(5.1)

If the number of independent variables is more than two, then the multiple

correlation is computed from the following formula:

R1:2345::::n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� r212Þð1� r213:2Þð1� r214:23Þ::::::ð1� r2

1n:23...ðn�1ÞÞ
q

(5.2)

where r13.2, r14.23, and r1n.234. . .(n � 1) are partial correlations.

The multiple correlation R can have the value in between 0 and +1. Since

multiple correlation is computed with the help of product moment correlation

coefficients, therefore it also measures the linear relationship only. Further, the

order of the multiple correlation is defined by n � 2, where n is the number of

variables involved in the computation of multiple correlation. Thus, the order of the

multiple correlationR12:345:::::::n is n � 2. The value of R closer to 1 indicates that the

independent variables explain most of the variations in the dependent variable. On

the other hand, if the value of R is closer to 0, it signifies that independent variables

are not capable of explaining the variation in the dependent variable. Thus, multiple

correlation can be considered to be the yardstick of efficiency in estimating the

value of dependent variable on the basis of the values of independent variables.

Properties of Multiple Correlation

1. The multiple correlation can never be lower than the highest correlation between

dependent and any of the independent variables. For instance, the value of R1.234

can never be less than the value of any of the product moment correlations r12,
r13, or r14.

2. Sometimes, an independent variable does not show any relationship with depen-

dent variable, but if it is combined with some other variable, its effect becomes

significant. Such variable is known as suppression variable. These suppression

variables should be handled carefully. Thus, if the independent variables are

identified on the basis of their magnitude of correlations with the dependent

variable for developing regression line, some of the suppression variable might
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be ignored. To handle this problem, SPSS provides the stepwise regression

method.

3. In using the stepwise regression, the variables are picked up one by one

depending upon their relative importance. Every time one variable is included,

there is an increase in multiple correlation. But the increase in multiple correla-

tion keeps on decreasing with the inclusion of every new variable. This is known

as law of diminishing return.

Example 5.1 Following is the correlation matrix obtained on the psychological

variables. Compute R1.23 and R1.234 and interpret the findings (Table 5.1):

Solution

(i)

; R1:23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212 þ r213 � 2r12r13r23

1� r223

s

Substituting values of these correlations from the correlation matrix,

R1:23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0:5Þ2 þ 0:32 � 2� ð�0:5Þ � 0:3� 0:4

1� 0:42

s

¼
ffiffiffiffiffiffiffiffiffi
0:46

0:84

r
¼ 0:74

(ii)

; R1:234 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� r212

� �
1� r213:2
� �

1� r214:23
� �� �q

To compute R1.234, we need to first find the values of first-order partial

correlations: r13.2, r14.2, and r43.2.

r13:2 ¼ r13 � r12r32ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r212

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r232

p ¼ 0:3� ð�0:5Þ � 0:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:5Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:42

p ¼ 0:50

0:79
¼ 0:63

r14:2 ¼ r14 � r12r42ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r212

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r242

p ¼ 0:6� ð�0:5Þ � 0:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:5Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:32

p ¼ 0:75

0:83
¼ 0:90

Table 5.1 Correlation matrix

of psychological variables
X1 X2 X3 X4

X1 1 �0.5 0.3 0.6

X2 1 0.4 0.3

X3 1 0.4

X4 1

X1: Memory retention, X2: Age, X3: IQ, X4: Stress level
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r43:2 ¼ r43 � r42r32ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r242

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r232

p ¼ 0:4� 0:3� 0:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:32

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:42

p ¼ 0:28

0:87
¼ 0:32

After substituting these partial correlations, the second-order partial correlation

r14.23 shall be computed; this in turn shall be used to compute the value of

R1.234.

r14:23 ¼ r14:2 � r13:2r43:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r213:2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r243:2

p ¼ 0:90� 0:63� 0:32ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:632

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:322

p ¼ 0:6984

0:7358
¼ 0:95

Thus, substituting the values of r12, r13.2, and r14.23 in the following equation:

R1:234 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� r212

� �
1� r213:2
� �

1� r214:23
� �� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� ð�0:5Þ2

� �
1� 0:632
� �

1� 0:952
� �h ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:75� 0:603� 0:10½ �

p
¼ 0:976

Interpretation

Taking n equals to 2 and substituting the value of r12 in Eq. (5.2),

R1:2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� �0:5ð Þ2

h ir
¼

ffiffiffiffiffiffiffiffiffi
0:25

p
¼ 0:5

Now let us have a look on the following values:

R1.2 ¼ 0.5

R1.23 ¼ 0.74

R1.234 ¼ 0.976

It can be seen that the multiple correlation increases with the increase in the

independent variable. Further, the increase in multiple correlation is larger when the

third independent variable (X3) is included in the model and after that the increase

has reduced when one additional independent variable (X4) is introduced.

Coefficient of Determination

It can be defined as the variance explained in the dependent variable on the basis of

the independent variables selected in the regression model. It is the square of

multiple correlation and is represented by R2. Thus, in regression analysis R2 is
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used for assessing the efficiency of the regression model. If for a particular

regression model R is 0.8, it means that 64% of the variability in the dependent

variable can be explained by the independent variables selected in the model.

The Regression Equation

The equation is said to be simple regression if the value of dependent variable is

estimated on the basis of one independent variable only. If Y is the dependent

variable and X is the independent variable, then the regression equation of Y on X is

written as

ðY � YÞ ¼ byxðX � XÞ (5.3)

Equation 5.3 can be used to predict the value of Y if the value of X is known.

Similarly to estimate the value of X from the value of Y, the regression equation of X
on Y shall be used which is shown in Eq. 5.4.

ðX � XÞ ¼ bxyðY � YÞ (5.4)

whereX and Y are the sample means of X and Y, respectively, and byx and bxy are the
regression coefficients. These regression coefficients can be computed as

byx ¼ r
sY
sX

(5.5)

bxy ¼ r
sX
sY

(5.6)

After substituting the value of byx in Eq. (5.3) and solving, we get

Y ¼ r
sY
sX

X þ ðY � r
sY
sX

XÞ (5.7)

) Y ¼ BX þ C (5.8)

where B is equal to r
sY
sX

and C is (Y � r
sY
sX

X). The coefficients B and C are known

as unstandardized regression coefficient and regression constant respectively.

Remark Reproduce r
sY
sX

and (Y � r
sY
sX

X) in equation format. Y is the mean of Y

and X is the mean of X

After substituting the values of byx and bxy in the regression equations (5.3) and

(5.4), we get
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ðY � YÞ ¼ r
sy
sx

ðX � XÞ

ðX � XÞ ¼ r
sx
sy

ðY � YÞ

After rearranging the above equations,

ðY � YÞ
sy

¼ r
ðX � XÞ

sx

ðX � XÞ
sx

¼ r
ðY � YÞ

sy

The above two equations can be rewritten as

Zy ¼ bxZx (5.9)

Zx ¼ byZy (5.10)

The Eqs. (5.9) and (5.10) are known as regression equations in standard score

form, and the coefficients bx and by are known as beta coefficients and are referred

to as standardized regression coefficients.

Conditions of Symmetrical Regression Equations

The two regression equations (5.3) and (5.4) are different. Equation (5.3) is known

as regression equation of Y on X and is used to estimate the value of Y on the basis of

X, whereas Eq. (5.4) is known as regression equation of X on Y and is used for

estimating the value of X if Y is known. These two equations can be rewritten as

follows:

ðY � YÞ ¼ byxðX � XÞ

ðY � YÞ ¼ 1

bxy
ðX � XÞ

These two regression equations can be same if the expressions in the right-hand

side of these two equations are same.

That is,

Terminologies Used in Regression Analysis 139



byxðX � XÞ ¼ 1

bxy
ðX � XÞ

) byx � bxy ¼ 1

) r
sy
sx

� r
sx
sy

¼ 1

) r2 ¼ 1

) r ¼ �1

Hence, the two regression equations shall be similar if there is a perfect positive

or perfect negative correlation between them. In that situation, same regression

equation can be used to estimate the value of Y or value of X.

Computation of Regression Coefficient

The regression coefficient can be obtained for the given set of data by simplifying

the formula:

;B ¼ r
sY
sX

¼ N
P

XY �PX
P

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

X2 � ðPXÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

Y2 � ðP YÞ2
q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
Y2 �

P
Y

N

	 
2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
X2 �

P
X

N

	 
2
s

After solving,

B ¼ N
P

XY �PX
P

Y

N
P

X2 � P
Xð Þ2 (5.11)

From Eqs. (5.7) and (5.8),

C ¼ Y � r
sY
sX

X

After substituting the value of r sY
sX

¼ B from Eq. (5.11), we get

C ¼
P

Y

N
� N

P
XY �PX

P
Y

N
P

X2 � ðPXÞ2 �
P

X

N

After simplification,
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C ¼
P

Y
P

X2 �PX
P

XY

N
P

X2 � ðPXÞ2 (5.12)

Thus, by substituting the value of B and C in Eq. (5.8), regression equation can

be developed.

Example 5.2 Consider the two sets of scores on job satisfaction (X) and autonomy

(Y) as shown below. Compute the regression coefficient “B” and constant “C” and
develop regression equation.

Autonomy (X) : 15 13 7 11 9

Job satisfaction (Y) : 9 8 5 8 6

Solution The regression equation given by Y ¼ BX + C can be constructed if the

regression coefficient B and constant C are known. These can be obtained by the

following formula (Table 5.2):

;B ¼ N
P

XY �PX
P

Y

N
P

X2 � P
Xð Þ2 C ¼

P
Y
P

X2 �PX
P

XY

N
P

X2 � ðPXÞ2

To compute “B” and “C,” we shall first compute ∑X, ∑Y, ∑X2, and ∑XY.

B ¼ N
P

XY �PX
P

Y

N
P

X2 � P
Xð Þ2 ¼ 5� 416� 55� 36

5� 645� 55� 55
¼ 0:5

C ¼
P

Y
P

X2 �PX
P

XY

N
P

X2 � ðPXÞ2 ¼ 36� 645� 55� 416

5� 645� 55� 55
¼ 1:7

Substituting the values of B and C, the regression equation becomes

Y Job satisfactionð Þ ¼ 0:5X Autonomyð Þ þ 1:7

These values can be obtained from the SPSS output discussed in the solved

Example 5.1. The SPSS produces these outputs on the basis of least square

methods. The method of least square has been discussed later in this chapter.

Properties of Regression Coefficients

1. The square root of the product of two regression coefficients is equal to the

correlation coefficient between X and Y. The sign of the correlation coefficient is
equal to the sign of the regression coefficients. Further, the signs of the two

regression coefficients are always same.
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; byx � bxy ¼ r
sy
sx

� r
sx
sy

¼ r2

) r ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
byx � bxy

p
To prove that the sign of the correlation coefficient between X and Y and both

the regression coefficients are same, consider the following formula:

rxy ¼ CovðX;YÞ
sXsY

(5.13)

byx ¼ CovðX;YÞ
s2x

(5.14)

bxy ¼ CovðX;YÞ
s2y

(5.15)

Since sx and sy are always positive, the values of rxy, byx, and bxywill be same

and will depend upon the sign of Cov(X,Y).
2. If one of the regression coefficients is greater than 1, the other will have to be

less than 1. Thus, in other words, both the regression coefficients can be less than

1 but can never be greater than 1.

We have

byx � bxy ¼ r2and� 1b r b1
; byx � bxyb1
) If byx>1; then bxy<1

Or if bxy>1; then byx<1

Table 5.2 Computation for

regression coefficients
Scores on

Autonomy Job satisfaction

(X) (Y) X2 XY

15 9 225 135

13 8 169 104

7 5 49 35

11 8 121 88

9 6 81 54

∑X ¼ 55 ∑Y ¼ 36 ∑X2 ¼ 645 ∑XY ¼ 416
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Hence, the two regression coefficients cannot be simultaneously greater than

one.

3. The average of the two regression coefficients is always greater than the corre-

lation coefficient.

byx þ bxy
2

>r

Least Square Method for Regression Analysis

The simple linear regression equation (5.8) is also known as least squares regression

equation. Let us plot the paired values of Xi and Yi for n sets of data; the scattergram
shall look like Fig. 5.1.

The line of best fit can be represented as

Ŷ ¼ BX þ C

where B is the slope of the line and C is the intercept on Y axis. There can be many

lines passing through these points, but the line of best fit shall be the one for which

the sum of the squares of the residuals should be least. This fact can be explained as

follows:

Each sample point has two dimensions X and Y. Thus, for ith point, Yi is the

actual value and Ŷi is the estimated value obtained from the line. We shall call the

line as the line of best fit if the total sum of squares is least for all these points.

X
Yi � Ŷi

� �2 ¼ Y1 � Ŷ1

� �2 þ Y2 � Ŷ2

� �2 þ Y3 � Ŷ3

� �2 þ . . .þ Yn � Ŷn

� �2
Since the criterion used for selecting the best fit line is based upon the fact that

the squares of the residuals should be least, the regression equation is known as least

square regression equation. This method of developing regression equation is

known as ordinary least square method (OLS) or simply least square method.

Fig. 5.1 Plotting of data and

the line of best fit
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Computation of Regression Coefficients by Least Square Methods

Least square means that the criterion used to select the best fitting line is that the

sum of the squares of the residuals should be least.

In other words, the least squares regression equation is the line for which the sum

of squared residuals
P

Yi � Ŷi

� �2
is least.

The line of best fit is chosen on the basis of some algebra based on the concept of

differentiation and solving the normal equations. We can compute the regression

coefficient B and regression constant C so that the sum of the squared residuals is

minimized. The procedure is as follows:

Consider a set of n data points (X1,Y1), (X2,Y2), . . ., (Xn,Yn), then the regression

line is

Ŷi ¼ BXi þ C (5.16)

and the actual value of Yi can be obtained by the model

Yi ¼ Ŷi þ ei (5.17)

where Yi is the actual value and Ŷi is the estimated value obtained from the

regression line shown in Eq. (5.16). The eiis the amount of error in estimating Yi.
Our effort is to minimize the error ei8i, so as to get the best fit of the regression

line. This can be done by minimizing the sum of the squared deviation S2 as shown
below:

S2 ¼
Xn
i¼1

e2i ¼
Xn
i¼1

ðYi � ŶiÞ2 ¼
Xn
i¼1

ðYi � BXi � CÞÞ2 (5.18)

The coefficients B and C are so chosen that S2 is minimized. This can be done by

differentiating equation (5.18) first with respect to B and then with respect to C and

equating the results to zero.

Thus,

@S2

@B
¼ �2

Xn
i¼1

XiðYi � BXi � CÞ ¼ 0

and @S2

@C ¼ �2
Pn
i¼1

ðYi � BXi � CÞ ¼ 0

Solving these equations, we get

Xn
i¼1

XiðYi � BXi � CÞ ¼ 0
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and
Pn
i¼1

ðYi � BXi � CÞ ¼ 0

Taking the summation inside the bracket, the equations become

B
Xn
i¼1

X2
i þ C

Xn
i¼1

Xi ¼
Xn
i¼1

XiYi (5.19)

B
Xn
i¼1

Xi þ nC ¼
Xn
i¼1

Yi (5.20)

The above two equations are known as normal equations having two unknowns

B and C.
After solving these equations for B and C,

we get B ¼ N
P

XY �PX
P

Y

N
P

X2 � P
Xð Þ2

and

C ¼
P

Y
P

X2 �PX
P

XY

N
P

X2 � ðPXÞ2

Assumptions Used in Linear Regression

In using the linear regression model, the following assumptions must be satisfied:

1. Both the variables X and Y must be measured on either interval or ratio scale.

2. The regression model is linear in nature.

3. Error terms in estimating the dependent variable are independent and normally

distributed.

4. Error distribution in predicting the dependent variable is constant irrespective of

the values of X.

Multiple Regression

Estimating a phenomenon is always a complex procedure and depends upon

numerous factors. Therefore, complex statistical techniques are needed which

can deal with interval or ratio data and can forecast for future outcomes. Ordinary

least square method which is widely used in case of simple regression is also most

widely used in case of predicting the value of dependent variable from the values of

two or more independent variables. Regression equation in which dependent

variable is estimated by using two or more independent variables is known as
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multiple regression. Multiple regression equation having four independent

variables looks like

Y ¼ aþ b1X1 þ b2X2 þ b3X3 þ b4X4

where

Y is a dependent variable

X1, X2, X3, and X4 are the independent variables

a represents regression constant

b1, b2, b3, and b4 are the unstandardized regression coefficients

Procedure in Multiple Regression

In developing the multiple regression equation, independent variables must be

carefully chosen. Only those variables should be included in the study which is

supposed to explain some variation in the dependent variable. Further, one must

ensure that high degree of correlations does not exist among the independent

variables so as to avoid the multicollinearity.

The following steps are used in multiple regression analysis:

1. Compute descriptive statistics like mean, standard deviation, skewness, kurtosis,

frequency distribution, etc., and check the distribution of each variable by testing

the significance of skewness and kurtosis.

2. Assess the linearity of each independent variable with the dependent variable by

plotting the scatter diagram.

3. Check for multicollinearity among the independent variables by computing the

correlation matrix among the independent variables. If multicollinearity exists

between the independent variables then one of the independent variables must be

dropped as it does not explain additional variability in the dependent variable.

4. Develop a regression equation by using the unstandardized regression

coefficients (B coefficients).

5. Test the significance of the regression coefficients by using the t-test. As a rule of
thumb, a t-value greater than 2.0 is usually statistically significant but one must

consult a t-table to be sure.

6. Test the significance of the regression model by using the F-test. The F-value is
computed by dividing the explained variance by the unexplained variance. In

general, an F-value of greater than 4.0 is usually statistically significant, but one
must consult an F-table to be sure.

7. Compute R2 and adjusted R2 to know the percentage variance of the dependent

variable as explained by all the independent variables together in the regression

model.

146 5 Regression Analysis and Multiple Correlations: For Estimating a Measurable. . .



Limitations of Multiple Regression

There are certain limitations of multiple regression which are as follows:

1. Like simple regression, multiple regression also will not be efficient if the

independent variables are not linearly related with dependent variable.

2. Multiple regression can be used only if the variables are either measured on

interval or ratio scale. In case the data is measured on some other scale, other

methods should be used for estimation.

3. Simple regression having one dependent and one independent variable usually

requires a minimum of 30 observations. In general, add minimum of at least 10

observations for each additional independent variable added in the study.

What Happens If the Multicollinearity Exists Among the Independent

Variables?

While doing multiple regression if multicollinearity exists, the following things

may happen:

1. The F-test for the multiple regression equation shows significance, but none of

the t-ratios for the regression coefficients will be statistically significant.

2. By adding any additional variable in the equation, the size or the sign of the

regression coefficients of other independent variables may radically change.

In case the multicollinearity is noted between any two independent variables,

one may either drop one of the two independent variables or simply show in their

findings that the multicollinearity is present.

Unstandardized and Standardized Regression Coefficients

Unstandardized regression coefficients are usually known as B coefficients,

whereas standardized regression coefficients are denoted as b(beta) coefficients.
B coefficient explains the slopes of the regression lines. It indicates the amount of
change in the dependent variable (Y) that is associated with a change in one unit

of the independent variable (X). All B coefficients are known as unstandardized

coefficients because the magnitude of their values is relative to the means and

standard deviations of the independent and dependent variables in the equation.

In other words, the slopes can be interpreted directly in terms of the raw values of X
and Y. Because the value of a B coefficient depends on the scaling of the raw data,

therefore it varies if the unit of the independent variable varies. For example, the

magnitude of B coefficient keeps changing if the unit of the independent variable

time changes as days, hours, minutes, etc. Since B coefficients depend upon the

units of the independent variables, it cannot be easily compared within a regression

equation. Thus, unstandardized regression coefficients cannot be used to find the

relative importance of the independent variables in explaining the variability of the

dependent variable in the model.
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In order to compare the relative contribution of the independent variables in the

regression model, another type of regression coefficient, beta (b), is used. These beta
coefficients are standardized coefficients such that it adjusts for the different means

and variances of the independent variables in the regression model. The standardized

regression coefficients in any regression equation are measured on the same scale on

0 to 1. Thus, these standardized regression coefficients can be directly compared to

one another, with the largest coefficient indicating the corresponding independent

variable having the maximum influence on the dependent variable.

Procedure of Multiple Regression in SPSS

In using SPSS for regression analysis, the regression coefficients are computed in the

output. Significance of these regression coefficients are tested by means of t-test. The
regression coefficient becomes significant at 5% level if its significance value

(p value) provided in the output is less than .05. Significance of regression coefficient
indicates that the corresponding variable significantly explains the variation in the

dependent variable and it contributes to the regression model. F-test is computed in

the output to test the significance of overall model whereas R2 and adjusted R2 show

the percentage variability in the dependent variable as explained by all the indepen-

dent variables together in the model. Further, standardized regression coefficients are

computed in the output to find the relative predictability of the independent variables

in the model.

Methods of Regression Analysis

While doing regression analysis, the independent variables are selected either on

the basis of literature or some known information. In conducting a regression study,

a large number of independent variables are selected, and, therefore, there is a need

to identify only those independent variables which explain the maximum variation

in the dependent variable. This can be done by following any of the two methods,

namely, “stepwise regression” or “Enter” method in SPSS.

Stepwise Regression Method

This method is used in exploratory regression analysis where a larger number

of independent variables are investigated and the researcher does not have much

idea about the relationship of these variables with that of the dependent variable.

In stepwise regression analysis, the independent variables are selected one by one

depending upon the relative importance in the regression model. In other words, the

first entered variable in the model has the largest contribution in explaining variability

in the dependent variable. A variable is included in the model if its regression

coefficient is significant at 5% level. Thus, if the stepwise regression method is

selected for regression analysis, the variables are selected one by one and finally

the regression coefficients of the retained variables are generated in the output. These

regression coefficients are used to develop the required regression equation.
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Enter Method

This method is used in confirmatory regression analysis in which an already

developed regression model is tested for its validity on the similar sample group

for which it was earlier developed. In this procedure a regression model is devel-

oped by selecting all the independent variables in the study. The computed value of

R2 is used to assess whether the developed model is valid for the population for

which it is tested.

Application of Regression Analysis

The main focus of any industry is to maximize the profits by controlling different

strategic parameters. Optimum processes are identified, employees are motivated,

incentives are provided to sales force, and human resources are strengthened to

enhance the productivity and improve profit scenario. All these situations lead to an

exploratory study where the end result is estimated on the basis of certain indepen-

dent parameters. For instance, if one decides to knowwhat all parameters are required

to boost the sales figure in an organization, then a regression study may be planned.

The parameters like employee’s incentives, retailer’s margin, user’s schemes, prod-

uct info, advertisement expenditure, and socioeconomic status may be studied to

develop the regression model. Similarly, regression analysis may be used to identify

the parameters responsible for job satisfaction in the organization. In such case,

parameters like employee’s salary, motivation, incentives, medical facility, family

welfare incentives, and training opportunity may be selected as independent variables

for developing regression model for estimating the job satisfaction of an employee.

Regression analysis may identify independent variables which may be used for

developing strategies in production process, inventory control, capacity utilization,

sales criteria, etc. Further, regression analysis may be used to estimate the value of

dependent variable at some point of time if the values of independent variables are

known. This is more relevant in a situation where the value of dependent variable is

difficult to know. For instance, in launching a new product in a particular city, one

cannot know the sales figure, and accordingly it may affect the decision of stock

inventory. By using the regression model on sales, one can estimate the sales figure in

a particular month.

Solved Example of Multiple Regression Analysis Including

Multiple Correlation

Example 5.3 In order to assess the feasibility of a guaranteed annual wage, the

Rand Corporation conducted a study to assess the response of labor supply in terms

of average hours of work(Y) based on different independent parameters. The data

were drawn from a national sample of 6,000 households with male head earnings

less than $15,000 annually. These data are given in Table 5.3. Apply regression
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analysis by using SPSS to suggest a regression model for estimating the average

hours worked during the year based on identified independent parameters.

Solution To develop the regression model for estimating the average hours of

working during the year for guaranteed wages on the basis of socioeconomic

variables, do the following steps:

(i) Choose the “stepwise regression” method in SPSS to get the regression

coefficients of the independent variables identified in the model for developing

the regression equation.

(ii) Test the regression coefficients for its significance through t-test by using its

significance value (p value) in the output.

(iii) Test the regression model for its significance through the F-value by looking to
its significance value (p value) in the output.

(iv) Use the value of R2 in the output to know the amount of variance explained in

the dependent variable by the identified independent variables together in the

model.

Steps involved in getting the output of regression analysis by using SPSS have been

explained in the following sections.

Computation of Regression Coefficients, Multiple Correlation,
and Other Related Output in the Regression Analysis

(a) Preparing Data File
Before using the SPSS commands for different output of regression analysis,

the data file needs to be prepared.

The following steps will help you to prepare the data file:

(i) Starting SPSS: Use the following command sequence to start SPSS:

Start ⟶ All Programs ⟶ IBM SPSS Statistics ⟶ IBM SPSS

Statistics 20

After clicking the Type in Data, you will be taken to the Variable View

option for defining the variables in the study.

(ii) Defining variables: There are nine variables in this exercise which need to
be defined in SPSS first. Since all these variables were measured on

interval scale, they will be defined as “Scale” variable in SPSS. The

procedure of defining the variables in SPSS is as follows:

1. Click Variable View to define variables and their properties.

2. Write short name of these variables, that is, Hours, Rate, Ersp, Erno,
Nein, Assets, Age, Dep, and School under the column heading Name.

3. Full name of these variables may be defined as Average hours worked
during the year, Average hourly wage in dollars, Average yearly
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Table 5.3 Data on average yearly hour and other socioeconomic variables

S.N.

Hours Rate ERSP ERNO NEIN Assets Age DEP School

(X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) (X9)

1 2,157 2.905 1,121 291 380 7,250 38.5 2.340 10.5

2 2,174 2.970 1,128 301 398 7,744 39.3 2.335 10.5

3 2,062 2.350 1,214 326 185 3,068 40.1 2.851 8.9

4 2,111 2.511 1,203 49 117 1,632 22.4 1.159 11.5

5 2,134 2.791 1,013 594 730 12,710 57.7 1.229 8.8

6 2,185 3.040 1,135 287 382 7,706 38.6 2.602 10.7

7 2,210 3.222 1,100 295 474 9,338 39.0 2.187 11.2

8 2,105 2.493 1,180 310 255 4,730 39.9 2.616 9.3

9 2,267 2.838 1,298 252 431 8,317 38.9 2.024 11.1

10 2,205 2.356 885 264 373 6,789 38.8 2.662 9.5

11 2,121 2.922 1,251 328 312 5,907 39.8 2.287 10.3

12 2,109 2.499 1,207 347 271 5,069 39.7 3.193 8.9

13 2,108 2.796 1,036 300 259 4,614 38.2 2.040 9.2

14 2,047 2.453 1,213 297 139 1,987 40.3 2.545 9.1

15 2,174 3.582 1,141 414 498 10,239 40.0 2.064 11.7

16 2,067 2.909 1,805 290 239 4,439 39.1 2.301 10.5

17 2,159 2.511 1,075 289 308 5,621 39.3 2.486 9.5

18 2,257 2.516 1,093 176 392 7,293 37.9 2.042 10.1

19 1,985 1.423 553 381 146 1,866 40.6 3.833 6.6

20 2,184 3.636 1,091 291 560 11,240 39.1 2.328 11.6

21 2,084 2.983 1,327 331 296 5,653 39.8 2.208 10.2

22 2,051 2.573 1,194 279 172 2,806 40.0 2.362 9.1

23 2,127 3.262 1,226 314 408 8,042 39.5 2.259 10.8

24 2,102 3.234 1,188 414 352 7,557 39.8 2.019 10.7

25 2,098 2.280 973 364 272 4,400 40.6 2.661 8.4

26 2,042 2.304 1,085 328 140 1,739 41.8 2.444 8.2

27 2,181 2.912 1,072 304 383 7,340 39.0 2.337 10.2

28 2,186 3.015 1,122 30 352 7,292 37.2 2.046 10.9

29 2,188 3.010 990 366 374 7,325 38.4 2.847 10.6

30 2,077 1.901 350 209 951 370 37.4 4.158 8.2

31 2,196 3.009 947 294 342 6,888 37.5 3.047 10.6

32 2,093 1.899 342 311 120 1,425 37.5 4.512 8.1

33 2,173 2.959 1,116 296 387 7,625 39.2 2.342 10.5

34 2,179 2.971 1,128 312 397 7,779 39.4 2.341 10.5

35 2,200 2.980 1,126 204 393 7,885 39.2 2.341 10.6

Source: D. H. Greenberg and M. Kosters, Income Guarantees and the Working Poor, The Rand

Corporation, R-579-OEO, December 1970.

Hours(X1): average hours worked during the year

Rate(X2): average hourly wage (dollars)

ERSP(X3): average yearly earnings of spouse (dollars)

ERNO(X4): average yearly earnings of other family members (dollars)

NEIN(X5): average yearly non-earned income

Assets(X6): average family asset holdings (bank account) (dollars)

Age(X7): average age of respondent

Dep(X8): average number of dependents

School(X9): average highest grade of school completed
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earnings of spouse in dollars, Average yearly earnings of other family
members in dollars, Average yearly non-earned income, Average
family asset holdings (bank account, etc.) in dollars, Average age of
respondent, Average number of dependents, and Average highest
grade of school completed under the column heading Label.

4. Under the column heading Measure, select the option “Scale” for all

these variables.

5. Use default entries in all other columns.

After defining these variables in variable view, the screen shall look like

Fig. 5.2.

(iii) Entering data: After defining these variables in the Variable View, click

Data View on the left bottom of the screen to enter data. For each variable,

enter the data column wise. After entering data, the screen will look like

Fig. 5.3. Save the data file in the desired location before further processing.

(b) SPSS Commands for Computing Correlation Coefficient
After preparing the data file in data view, take the following steps for regression

analysis. Data file in SPSS can also be prepared by transporting the data from

the other format like EXCEL or ASCII. The procedure of transporting data

from other formats has been explained in Chap. 1.

(i) Initiating the SPSS commands for regression analysis: In data view, choose
the following commands in sequence:

Analyze⟶ Regression⟶Linear

The screen shall look like Fig. 5.4.

(ii) Selecting variables for regression analysis: After clicking the Linear

option, you will be taken to the next screen as shown in Fig. 5.5 for

selecting the variables for regression analysis. Select the variable Average
hours worked during the year (dependent variable) from left panel to the

“Dependent” section of the right panel. Select all independent variables

from left panel to the “Independent(s)” section of the right panel.

Fig. 5.2 Defining variables along with their characteristics
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Either the variable selection is made one by one or all at once. To do so, the

variable needs to be selected from the left panel, and by arrow command, it

may be brought to the right panel. After choosing the variables for

analysis, the screen shall look like Fig. 5.5.

(iii) Selecting the options for computation: After selecting the variables, option
needs to be defined for the regression analysis. Take the following steps:

– In the screen shown in Fig. 5.5, click the tag Statistics; you will get the

screen as shown in Fig. 5.6.

– Check the box “R squared change,” “Descriptive,” and “Part and

partial correlations.”

– By default, the options “Estimates” and “Model fit” are checked.

Ensure that they remain checked.

– Click Continue. You will now be taken back to the screen shown in

Fig. 5.5.

Fig. 5.3 Screen showing entered data for all the variables in the data view
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By checking the option “R squared change” the output shall include the values

of R2 and adjusted R2. Similarly by checking the option “Descriptive” the

output will provide the values of mean and standard deviations along with

correlation matrix of all the variables, whereas checking the option “Part and

partial correlations” shall provide the partial correlations of various orders

between Average hours worked during the year and other variables. Readers

are advised to try other options and see what changes they are getting in their

outputs.

– In the option Method shown in Fig. 5.5, select “Stepwise.”

– Click OK.

(c) Getting the Output
Clicking the OK tag in Fig. 5.5 will lead you to the output window. In the

output window of SPSS, the relevant outputs can be selected by using the right

click of the mouse and may be copied in the word file. The output panel shall

have the following results:

1. Mean and standard deviation

2. Correlation matrix along with significance value

3. Model summary along with the values of R, R2 and adjusted R2

4. ANOVA table showing F-values for all the models

Fig. 5.4 Screen showing SPSS commands for regression analysis
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5. Standardized and unstandardized regression coefficients of selected variables

in different models along with their t-values and partial correlations

In this example, all the outputs so generated by the SPSS have been shown in

Tables 5.4, 5.5, 5.6, 5.7, and 5.8.

Interpretation of the Outputs

Different outputs generated in the SPSS are shown below along with their

interpretations.

1. The values of mean and standard deviation for all the variables are shown in

Table 5.4. These values can be used for further analysis in the study. By using

the procedure discussed in Chap. 2, a profile chart may be prepared by comput-

ing other descriptive statistics for all the variables.

2. The correlation matrix in Table 5.5 shows the correlations among the variables

along with their significance value (p value). Significance of these correlations

has been tested for one-tailed test. The correlation coefficient with one asterisk

Fig. 5.5 Screen showing selection of variables for regression analysis
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mark (*) indicates its significance at 5% level. The asterisk mark (*) is put on the

correlation coefficient if its value is more than the required value of correlation

coefficients for its significance at 5% level which is .284. For one-tailed test, the

required value of “r” for significance with 33 (N � 2) df can be seen from

Table A.3 in the Appendix.

Fig. 5.6 Screen showing options for computing various components of regression analysis

Table 5.4 Descriptive statistics for different variables

Variables Mean SD N

Average hours worked during the year 2,137.09 64.12 35

Average hourly wage 2.74 .46 35

Average yearly earnings of spouse 1,083.66 256.78 35

Average yearly earnings of other family members 298.23 94.99 35

Average yearly non-earned income 348.23 167.59 35

Average family asset holdings 6,048.14 2,921.40 35

Average age of respondent 39.24 4.40 35

Average number of dependents 2.49 .66 35

Average highest grade of school completed 9.92 1.17 35

156 5 Regression Analysis and Multiple Correlations: For Estimating a Measurable. . .

http://dx.doi.org/10.1007/978-81-322-0786-3_BM1


Similarly for one-tailed test, the significance value for the correlation coefficient

at .01 level with 33 (¼N � 2) df can be seen as 0.392. Thus, all those correlation

coefficients having valuesmore than 0.392 are significant at 1% level. Such correla-

tion coefficients have been shown with two asterisk marks (**).

Readers may also show the correlation matrix by writing the upper diagonal

values as has been done in Chap. 4.

3. From Table 5.5, it can be seen that Hours (Average hours worked during the

year) is significantly correlated with Rate (Average hourly wage), Nein (Average
yearly non-earned income), Assets (Average family asset holdings), and School
(Average highest grade of school completed) at 1% level, whereas with Dep
(Average number of dependents) at 5% level.

Table 5.5 Correlation matrix for different variables along with significance level

Hours Rate Ersp Erno Nein Assets Age Dep School

Pearson correlation

Hours 1.000 .556** .124 �.245 .413** .716** �.077 �.339* .681**

Rate .556** 1.000 .572** .059 .297* .783** .044 �.601** .881**

Ersp .124 .572** 1.000 �.041 �.238 .298* �.015 �.693** .549**

Erno �.245 .059 �.041 1.000 .152 .296* .775** .050 �.299*

Nein .413** .297* �.238 .152 1.000 .512** .347* �.045 .219

Assets .716** .783** .298* .296* .512** 1.000 .414** �.530** .634**

Age �.077 .044 �.015 .775** .347* .414** 1.000 �.048 �.331

Dep �339* �.601** �.693** .050 �.045 �.530** �.048 1.000 �.603**

School .681** .881** .549** �.299* .219 .634** �.331* �.603** 1.000

Sig. (1-tailed)

Hours .000 .239 .078 .007 .000 .330 .023 .000

Rate .000 . .000 .368 .041 .000 .401 .000 .000

Ersp .239 .000 . .408 .084 .041 .465 .000 .000

Erno .078 .368 .408 . .192 .042 .000 .387 .041

Nein .007 .041 .084 .192 . .001 .021 .398 .103

Assets .000 .000 .041 .042 .001 . .007 .001 .000

Age .330 .401 .465 .000 .021 .007 . .391 .026

Dep .023 .000 .000 .387 .398 .001 .391 . .000

School .000 .000 .000 .041 .103 .000 .026 .000 .

Hours: Average hours worked during the year

Rate: Average hourly wage

Ersp: Average yearly earnings of spouse

Erno: Average yearly earnings of other family members

Nein: Average yearly non-earned income

Assets: Average family asset holdings

Age: Average age of respondent
Dep: Average number of dependents

School: Average highest grade of school completed

*Significant at 0.05 level (1-tailed) Significant value of r at .05 level with 33 df (1-tailed) ¼ 0.284;

**Significant at 0.01 level (1-tailed) Significant value of r at .01 level with 33 df (1-

tailed) ¼ 0.392
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4. The three regression models generated by the SPSS have been presented in

Table 5.6. In the third model, the value of R2 is .773, which is maximum, and,

therefore, third model shall be used to develop the regression equation. It can be

seen from Table 5.6 that in the third model, three independent variables, namely,

Assets (Average family asset holdings), Erno (Average yearly earnings of other

family members), and Dep (Average number of dependents), have been

identified, and, therefore, the regression equation shall be developed using

these three variables only. The R2 value for this model is 0.773, and, therefore,

these three independent variables explain 77.3% variations in Hours (Average
hours worked during the year) in the USA. Thus, this model can be considered

appropriate to develop the regression equation.

5. In Table 5.7, F-values for all the models have been shown. Since F-value for the
third model is highly significant, it may be concluded that the model selected is

highly efficient also.

6. Table 5.8 shows the unstandardized and standardized regression coefficients in all

the three models. Unstandardized coefficients are also known as “B” coefficients

and are used to develop the regression equation whereas standardized regression

coefficients are denoted by “b” and are used to explain the relative importance of

independent variables in terms of their contribution toward the dependent

variables in the model. In the third model, t-values for all the three regression

coefficients are significant as their significance values (p values) are less than .05.
Thus, it may be concluded that the variables Assets (Average family asset

holdings), Erno (Average yearly earnings of other family members), and Dep
(Average number of dependents) significantly explain the variations in the Hours
(Average hours worked during the year).

Regression Equation

Using unstandardized regression coefficients (B) of the third model shown in

Table 5.8, the regression equation can be developed which is as follows:

Hours ¼ 2064:285þ 0:22� Assetsð Þ � 0:371� Ernoð Þ þ 20:816� Depð Þ

Table 5.6 Model summary along with the values of R and R square

Change statistics

Model R
R
square

Adj R
square.

SE of the

estimate

R square

change F change df1 df2

Sig. F
change

1 .716a .512 .498 45.44102 .512 34.687 1 33 .000

2 .861b .742 .726 33.58681 .229 28.405 1 32 .000

3 .879c .773 .751 32.00807 .031 4.235 1 31 .048
aPredictors: (Constant), Average family asset holdings
bPredictors: (Constant), Average family asset holdings, Average yearly earnings of other family

members
cPredictors: (Constant), Average family asset holdings, Average yearly earnings of other family

members, Average number of dependents
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where

Hours: Average hours worked during the year

Assets: Average family asset holdings

Erno: Average yearly earnings of other family members

Dep: Average number of dependents

Thus, it may be concluded that the above regression equation is quite reliable as

the value of R2 is 0.773. In other words, the three variables selected in this

regression equation explain 77.3% of the total variability in the Hour (Average

hours worked during the year), which is quite good. Since the F-value for this

regression model is highly significant, the model is reliable. At the same time, all

the regression coefficients in this model are highly significant, and, therefore, it may

be interpreted that all the three variables selected in the model, namely, Assets
(Average family asset holdings), Erno (Average yearly earnings of other family

members), and Dep (Average number of dependents), have significant predictabil-

ity in estimating the value of the Hour (Average hours worked during the year) in

the USA.

Summary of the SPSS Commands For Regression Analysis

1. Start SPSS by using the following commands:

Start ⟶ All Programs ⟶ IBM SPSS Statistics ⟶ IBM SPSS Statistics

2. Create data file by clicking the tag Type in Data. Define all the variables and

their characteristics by clicking the Variable View. After defining the variables,

type the data for these variables by clicking Data View.

Table 5.7 ANOVA table showing F-values for all the modelsa

Model Sum of squares df Mean square F Sig.

1 Regression 71,625.498 1 71,625.498 34.687 .000b

Residual 68,141.245 33 2,064.886

Total 139,766.743 34

2 Regression 103,668.390 2 51,834.195 45.949 .000c

Residual 36,098.353 32 1,128.074

Total 139,766.743 34

3 Regression 108,006.736 3 36,002.245 35.141 .000d

Residual 31,760.007 31 1,024.516

Total 139,766.743 34
aDependent variable: Average hours worked during the year
bPredictors: (Constant), Average family asset holdings
cPredictors: (Constant), Average family asset holdings, Average yearly earnings of other family

members
dPredictors: (Constant), Average family asset holdings, Average yearly earnings of other family

members, Average number of dependents
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3. Once the data file is ready, use the following command sequence for selecting

the variables for analysis.

Analyze ! Regression ! Linear

4. Select the dependent variable from left panel to the “Dependent” section of the

right panel. Select all other independent variables from left panel to the “Inde-

pendent(s)” section of the right panel.

5. After selecting the variables for regression analysis, click the tag Statistics on

the screen. Check the box “R squared change,” “Descriptive,” and “Part and

partial correlations.” Press Continue.
6. In the Method option, select “Stepwise,” then press OK to get the different

outputs for regression analysis.

Exercise

Short-Answer Questions

Note: Write answer to each of the questions in not more than 200 words.

Q.1. Describe regression analysis. Explain the difference between simple regres-

sion and multiple regression models.

Q.2. What is the difference between stepwise regression and backward regression?

Q.3. Discuss the role of R2 in regression analysis. Explain multiple correlation and

its order.

Q.4. Explain an experimental situation where regression analysis can be used.

Q.5. How will you know that the variables which are selected in the regression

analysis are valid?

Q.6. What is the difference between Stepwise and Enter method in developing

multiple regression equation?

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. The range of multiple correlation R is

(a) �1 to 0

(b) 0 to 1

(c) �1 to 0

(d) None of the above

2. SPSS commands for multiple regression analysis is

(a) Analyze -> Linear -> Regression

(b) Analyze -> Regression -> Linear

(c) Analyze -> Linear Regression

(d) Analyze -> Regression Linear
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3. Choose the most appropriate statement

(a) R2 is a measure of multiple correlation.

(b) R2 is used for selecting the variables in the regression model.

(c) R2 is the amount of variability explained in the dependent variable by the

independent variables.

(d) All above are correct.

4. If p value for the correlation between college GPA and GMAT score is .008,

what conclusion can be drawn?

(a) Correlation is not significant at 1% level.

(b) Correlation is not significant at 5% level.

(c) Correlation is significant at 1% level.

(d) All above statements are wrong.

5. Following are the two statements about the significance of value of r:

Statement I: Correlation coefficient required for significance at 1% is 0.462.

Statement II: Correlation coefficient required for significance at 5% is 0.337.

Choose the most appropriate alternative.

(a) Statement I is right, but II is wrong.

(b) Statement I is wrong, but II is right.

(c) Both statements I and II are wrong.

(d) Both statements are right.

6. In regression analysis, four models have been developed. Which model in your

opinion is the most appropriate?

Models

No. of independent

variables R2

(a) Model I: 5 0.88

(b) Model II: 4 0.87

(c) Model III: 3 0.86

(d) Model IV: 2 0.65

7. In a regression analysis to estimate the sale of a particular product, the regression

coefficients of independent variables were as follows:

Independent variables B coefficient p value

Customer’s incentive 1.5 .06

Dealer’s incentive 2.2 .009

Hours of marketing 3.1 .32

Product price 1.2 .006

Choose the most appropriate statement.

(a) Both Customer’s incentive and Hours of marketing are significant at .05

level in the model.

(b) Both Hours of marketing and Product price are significant at .05 level in the

model.
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(c) Both Dealer’s incentive and Product price are significant at .01 level in the

model.

(d) Both Dealer’s incentive and Product price are not significant at .05 level in

the model.

8. Choose correct statement about B and b coefficients.

(a) “B” is an unstandardized coefficient and “b” is a standardized coefficient.

(b) “b” is an unstandardized coefficient and “B” is a standardized coefficient.

(c) Both “B” and “b” are standardized coefficients.

(d) Both “B” and “b” are unstandardized coefficients.

Assignments

1. The data on copper industry and its determinants in the US market during

1951–1980 are shown in the following table. Construct a regression model and

develop the regression equation by using the SPSS. Test the significance of

regression coefficients and explain the robustness of the regression model to

predict the price of the copper in the US market.

Determinants of US domestic price of copper

DPC GNP IIP MEPC NOH PA

21.89 330.2 45.1 220.4 1,491.00 19.00

22.29 347.2 50.9 259.5 1,504.00 19.41

19.63 366.1 53.3 256.3 1,438.00 20.93

22.85 366.3 53.6 249.3 1,551.00 21.78

33.77 399.3 54.6 352.3 1,646.00 23.68

39.18 420.7 61.1 329.1 1,349.00 26.01

30.58 442.0 61.9 219.6 1,224.00 27.52

26.30 447.0 57.9 234.8 1,382.00 26.89

30.70 483.0 64.8 237.4 1,553.70 26.85

32.10 506.0 66.2 245.8 1,296.10 27.23

30.00 523.3 66.7 229.2 1,365.00 25.46

30.80 563.8 72.2 233.9 1,492.50 23.88

30.80 594.7 76.5 234.2 1,634.90 22.62

32.60 635.7 81.7 347.0 1,561.00 23.72

35.40 688.1 89.8 468.1 1,509.70 24.50

36.60 753.0 97.8 555.0 1,195.80 24.50

38.60 796.3 100.0 418.0 1,321.90 24.98

42.20 868.5 106.3 525.2 1,545.40 25.58

47.90 935.5 111.1 620.7 1,499.50 27.18

58.20 982.4 107.8 588.6 1,469.00 28.72

52.00 1,063.4 109.6 444.4 2,084.50 29.00

51.20 1,171.1 119.7 427.8 2,378.50 26.67

59.50 1,306.6 129.8 727.1 2,057.50 25.33

77.30 1,412.9 129.3 877.6 1,352.50 34.06

64.20 1,528.8 117.8 556.6 1,171.40 39.79

69.60 1,700.1 129.8 780.6 1,547.60 44.49

66.80 1,887.2 137.1 750.7 1,989.80 51.23

(continued)
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(continued)

Determinants of US domestic price of copper

DPC GNP IIP MEPC NOH PA

66.50 2,127.6 145.2 709.8 2,023.30 54.42

98.30 2,628.80 152.5 935.7 1,749.20 61.01

101.40 2,633.10 147.1 940.9 1,298.50 70.87

DPC ¼ 12-month average US domestic price of copper (cents per pound)

GNP ¼ annual gross national product ($, billions)

IIP ¼ 12-month average index of industrial production

MEPC ¼ 12-month average London Metal Exchange price of copper (pounds sterling)

NOH ¼ number of housing starts per year (thousands of units)

PA ¼ 12-month average price of aluminum (cents per pound)

Note: The data are from the sources such as American Metal Market, Metals Week, and US

Department of Commerce publications

Note: The data were collected by Gary R. Smith from sources such as American

Metal Market, Metals

2. Data in the following table shows the crime rate in 47 states in the USA in 1960.

Develop a suitable regression model for estimating the crime rate depending

upon identified socioeconomic variables.

US crime data for 47 states

S.N. R Age ED EX0 LF N NW U1 U2 X

1 79.1 151 91 58 510 33 301 108 41 261

2 163.5 143 113 103 583 13 102 96 36 194

3 57.8 142 89 45 533 18 219 94 33 250

4 196.9 136 121 149 577 157 80 102 39 167

5 123.4 141 121 109 591 18 30 91 20 174

6 68.2 121 110 118 547 25 44 84 29 126

7 96.3 127 111 82 519 4 139 97 38 168

8 155.5 131 109 115 542 50 179 79 35 206

9 85.6 157 90 65 553 39 286 81 28 239

10 70.5 140 118 71 632 7 15 100 24 174

11 167.4 124 105 121 580 101 106 77 35 170

12 84.9 134 108 75 595 47 59 83 31 172

13 51.1 128 113 67 624 28 10 77 25 206

14 66.4 135 117 62 595 22 46 77 27 190

15 79.8 152 87 57 530 30 72 92 43 264

16 94.6 142 88 81 497 33 321 116 47 247

17 53.9 143 110 66 537 10 6 114 35 166

18 92.9 135 104 123 537 31 170 89 34 165

19 75 130 116 128 536 51 24 78 34 135

20 122.5 125 108 113 567 78 94 130 58 166

21 74.2 126 108 74 602 34 12 102 33 195

22 43.9 157 89 47 512 22 423 97 34 276

23 121.6 132 96 87 564 43 92 83 32 227

24 96.8 131 116 78 574 7 36 142 42 176

(continued)
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(continued)

US crime data for 47 states

S.N. R Age ED EX0 LF N NW U1 U2 X

25 52.3 130 116 63 641 14 26 70 21 196

26 199.3 131 121 160 631 3 77 102 41 152

27 34.2 135 109 69 540 6 4 80 22 139

28 121.6 152 112 82 571 10 79 103 28 215

29 104.3 119 107 166 521 168 89 92 36 154

30 69.6 166 89 58 521 46 254 72 26 237

31 37.3 140 93 55 535 6 20 135 40 200

32 75.4 125 109 90 586 97 82 105 43 163

33 107.2 147 104 63 560 23 95 76 24 233

34 92.3 126 118 97 542 18 21 102 35 166

35 65.3 123 102 97 526 113 76 124 50 158

36 127.2 150 100 109 531 9 24 87 38 153

37 83.1 177 87 58 638 24 349 76 28 254

38 56.6 133 104 51 599 7 40 99 27 225

39 82.6 149 88 61 515 36 165 86 35 251

40 115.1 145 104 82 560 96 126 88 31 228

41 88 148 122 72 601 9 19 84 20 144

42 54.2 141 109 56 523 4 2 107 37 170

43 82.3 162 99 75 522 40 208 73 27 224

44 103 136 121 95 574 29 36 111 37 162

45 45.5 139 88 46 480 19 49 135 53 249

46 50.8 126 104 106 599 40 24 78 25 171

47 84.9 130 121 90 623 3 22 113 40 160

Source: W. Vandaele, “Participation in Illegitimate Activities: Erlich Revisited,” in A. Blumstein,

J. Cohen, and Nagin, D., eds., Deterrence and Incapacitation, National Academy of Sciences,

1978, pp. 270–335. 386

R ¼ crime rate, number of offenses reported to police per million population

Age ¼ number of males of age 14–24 per 1,000 population

S ¼ indicator variable for southern states (0 ¼ no, 1 ¼ yes)

ED ¼ mean number of years of schooling times 10 for persons age 25 or older

EX0 ¼ 1,960 per capita expenditure on police by state and local government

LF ¼ labor force participation rate per 1,000 civilian urban males age 14–24

N ¼ state population size in hundred thousands

NW ¼ number of nonwhites per 1,000 population

U1 ¼ unemployment rate of urban males per 1,000 of age 14–24

U2 ¼ unemployment rate of urban males per 1,000 of age 35–39

X ¼ the number of families per 1,000 earnings 1/2 the median income

Answers to Multiple-Choice Questions

Q.1 b Q.2 b

Q.3 c Q.4 c

Q.5 d Q.6 c

Q.7 c Q.8 a
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Chapter 6

Hypothesis Testing for Decision-Making

Learning Objectives

After completing this chapter, you should be able to do the following:

• Understand the purpose of hypothesis testing.

• Learn to construct the hypotheses.

• Know the situations for using one- and two-tailed tests.

• Describe the procedure of hypothesis testing.

• Understand the p value.

• Learn the computing procedure manually in different situations by using t-tests.
• Identify an appropriate t-test in different research situations.

• Know the assumptions under which t-test should be used.

• Describe the situations in which one-tailed and two-tailed tests should be used.

• Interpret the difference between one-tailed and two-tailed hypotheses.

• Learn to compute t-statistic in different research situations by using SPSS.

• Learn to interpret the outputs of different t-tests generated in SPSS.

Introduction

Human beings are progressive in nature. Most of our decisions in life are governed

by our past experiences. These decisions may be subjective or objective. Subjective

decisions are solely based upon one’s own perception of viewing issues. These

perceptions keep on changing from person to person. Same thing or situation can

be perceived differently by different persons, and therefore, the decision cannot be

universalized. On the other hand, if decisions are taken on the basis of scientific

law, it is widely accepted and works well in the similar situations.

Decision makers are always engaged in identifying optimum decision in a given

situation for solving a problem. Theory of statistical inference which is based on

scientific principles provide optimum solution to these decision makers. Statistical

inference includes theory of estimation and testing of hypothesis. In this chapter,
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different aspects of hypothesis testing regarding population parameter have been

discussed. At times one may be interested to know as to whether the population

mean is equal to the given value. In testing such hypothesis, a representative sample

may be drawn to verify it by using statistical tests. Testing of hypothesis may be

done for comparing two population averages on the basis of samples drawn from

these populations. For instance, one may like to know whether memory retention

power is more in girls or in boys in a particular age category or whether motivation

level of employees in two different units of an organization is same or not. By

comparing sample means of two groups, we intend to find out whether these

samples come from the same population. In other words, we try to test whether

their population means are equal or not. In this chapter, procedure of hypothesis

testing in comparative studies has been discussed in detail. Besides comparative

studies, the researcher may be interested to see the effect of certain treatment on

dependent variable. Impact of advertisement campaign on the sale of a product,

effect of training on employee’s performance, and effect of stress management

program on absenteeism are such examples where the posttesting mean may be

compared with that of pretesting mean on the dependent variable.

For testing a hypothesis concerning mean, two statistical tests “t” and “z” are

normally used. In case of small sample, t-test is used, whereas z-test is used in large-
sample case. For all practical purposes, a sample is considered to be small if its size

is less than or equal to 30 and large if it is more than 30. Since t-distribution
approaches to z-distribution for n > 30, t-test can be considered as a specific case of
z-test. The t-test is used in a situation where population is normally distributed and

population variance is not known, and on the other hand Z test is used when

population variance is known. In this chapter, only t-tests in different situations

have been discussed.

Usually testing of hypothesis is done for population mean and variance as these

are the two indices which are used to describe the nature of data to a great extent.

In this chapter, only testing of hypothesis concerning mean in different situations

has been discussed in great detail. Plan of choosing a statistical test for testing a

hypothesis has been shown graphically in Fig. 6.1.

This chapter describes the procedure of testing a hypothesis concerning single

group mean and the difference between two group means for unrelated and related

groups.

Hypothesis Construction

Hypotheses are any assertion or statement about certain characteristics of the

population. If the characteristics can be quantitatively measured by parameters

such as mean or variance, then the hypothesis based on these parameters is said

to be parametric. Whereas if the characteristics are qualitatively measured (e.g.,

assessment of quality, attitude, or perception), then the hypothesis so developed on

these characteristics is known as nonparametric hypothesis. These parametric and
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nonparametric hypotheses are known as statistical hypotheses. A hypothesis is said

to be statistical hypothesis if the following three conditions prevail:

1. The population may be defined.

2. Sample may be drawn.

3. The sample may be evaluated to test the hypothesis.

Statistical hypotheses are based on the concept of proof by contradiction. For

example, consider that a hypothesis concerning population mean (m) is tested to see
if an experiment has caused an increase or decrease in m. This is done by proof of

contradiction by formulating a null hypothesis. Thus, in testing of hypothesis, one

needs to formulate a research hypothesis which is required to be tested for some

Testing of Hypothesis

Hypothesis concerning mean Hypothesis concerning Variance

Population variances known
Use Z–test (N³30)

Population variances unknown
Use t –test (N<30)

Test concerning two group means

Test concerning 
single group mean

Use Z-test for
single group

Use Z-test for comparing 
two group means

Test concerning single 
group mean

Test concerning two
group means

Use student’s t-test
for single group

Comparing two group 
means (Unrelated groups)

Comparing two group 
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Fig. 6.1 Scheme of selecting test statistic in hypothesis testing
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population parameter. Based on research hypothesis, a null hypothesis is

formulated. The null and the research (alternative) hypotheses are complementary

to each other. In fact the null hypothesis serves as a means of testing the research

hypothesis, and therefore, rejection of null hypothesis allows the researcher to

accept the research hypothesis.

Null Hypothesis

Null hypothesis is a hypothesis of no difference. It is denoted by H0. It is formulated

to test an alternative hypothesis. Null hypothesis is assumed to be true. By assuming

the null hypothesis to be true, the distribution of the test statistic can be well

defined. Further, null signifies the unbiased approach of the researcher in testing

the research hypothesis. The researcher verifies the null hypothesis by assuming

that it is true and rejects it in favor of research hypothesis if any contradiction is

observed. In fact the null hypothesis is made for rejection. In case if the null

hypothesis cannot be rejected on the basis of the sample data, it is said that the

researcher fails to reject the null hypothesis. The sole purpose of the researcher is to

try rejecting the null hypothesis in favor of research hypothesis in case the contra-

diction is observed on the basis of the sample.

Alternative Hypothesis

Alternative hypothesis is also known as research hypothesis. In any research study,

the researcher first develops a research hypothesis for testing some parameter of the

population, and accordingly null hypothesis is formulated to verify it. The alterna-

tive hypothesis is denoted by H1. Alternative hypothesis means that there is a

difference between the population parameter and the sample value. In testing of

hypothesis, the whole focus is to test whether research hypothesis can be accepted

or not, and this is done by contradicting the null hypothesis.

Test Statistic

In hypothesis testing, the decision about rejecting or not rejecting the null hypothe-

sis depends upon the value of test statistic. A test statistic is a random variable

X whose value is tested against the critical value to arrive at a decision.

If a random sample of size n is drawn from the normal population with mean, m
and variance, s2, then the sampling distribution of mean will also be normal with

mean m and variance s2/n. As per the central limit theorem even if the population

from which the sample is drawn is not normal, the sample mean will still follow the

normal distribution with mean, m, and variance s2/n provided the sample size n is

large (n > 30).
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Thus, in case of large sample (n > 30), for testing the hypothesis concerning

mean, z-test is used. However, in cases of small sample (n � 30), the distribution of

sample mean follows t-distribution if the population variance is not known. In such
situation, t-test is used. In case population standard deviation (s) is unknown, it is
estimated by the sample standard deviation(S). For different sample size, the

t-curve is different, and it approaches to normal curve for sample size n > 30.

All these curves are symmetrical and bell shaped and distributed around t ¼ 0. The

exact shape of the t-curve depends on the degrees of freedom.

In one-way ANOVA, the comparison between group variance and within-group

variance is done by using the F-statistic. The critical value of F can be obtained

from the Table A4 or A5 in appendix for a particular level of significance and the

degrees of freedom between and within the groups.

Rejection Region

Rejection region is a part of the sample space in which if the value of test statistic

falls, null hypothesis is rejected. Rejection region is also known as critical region. The

value of the statistic in the distribution that divides sample space into acceptance and

rejection region is known as critical value. These can be seen in Fig. 6.2.

The size of the rejection region is determined by the level of significance (a).
The level of significance is that probability level below which we reject the null

hypothesis. The term statistical significance of a statistic refers only to the rejection

of a null hypothesis at some level a. It indicates that the observed difference

between the sample mean and the mean of the sampling distribution did not

occur by chance alone. So to conclude, if the test statistic falls in the rejection/

critical region, H0 is rejected, else H0 is failed to be rejected.

Steps in Hypothesis Testing

In experimental research, the inferences are drawn on the basis of testing a

hypothesis on population parameters. The following steps are involved in

decision-making process:

1. Formulate the null and alternative hypothesis for each of the parameters to be

investigated. It is important to mention as to whether the hypothesis required to

be tested is one tailed or two tailed.

2. Choose the level of significance at which the hypothesis needs to be tested.

Usually in experimental research, the significance levels are chosen as 0.01,

0.05, or 0.10, but any value between 0 and 1 can be used.

3. Identify the test statistic (follow the guidelines shown in Fig. 6.1) that can be used

to test the null hypothesis, and compute its value on the basis of the sample data.

4. Obtain the tabulated value of the statistic from the designated table. Care must be

taken to obtain its value as its values are different at the same level of signifi-

cance for one-tailed and two-tailed hypotheses.
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5. If calculated value of statistic is greater than tabulated value, null hypothesis is

rejected, and if the calculated value of statistic is less than or equal to its tabulated

value, null hypothesis is failed to be rejected. SPSS output provides p value against
the computed value of statistic. If the p value is less than .05, the statistic is said to
be significant and the null hypothesis may be rejected at significance level of .05;

on the other hand, if the p value is more than .05, one would fail to reject the null

hypothesis. If the null hypothesis is failed to be rejected, one may state that there is

not enough evidence to suggest the truth of the alternative hypothesis.

Type I and Type II Errors

We have seen that the research hypothesis is tested by means of testing the null

hypothesis. Thus, the focus of the researcher is to find whether the null hypothesis can

be rejected on the basis of the sample data or not. In testing the null hypothesis, the

researcher has two options, that is, either to reject the null hypothesis or fail to reject

the null hypothesis. Further, the true state of the null hypothesis may be true or false

in either of these situations. Thus, the researcher has four courses of actions in testing

the null hypothesis. The two actions, that is, rejecting the null hypothesis when it is

false and fails to reject the null hypothesis when it is true, are correct decisions.

Whereas the remaining two decisions, that is, rejecting the null hypothesis when it is

true and fails to reject the null hypothesis when it is false, are the two wrong

decisions. These two wrong decisions are known as two different kinds of errors in

hypothesis testing. All the four courses of actions have been summarized in Table 6.1.

Thus, in hypothesis testing, a researcher is exposed to two types of errors known

as type I and type II errors.

Type I error can be defined as rejecting the null hypothesis, H0, when it is true. The

probability of type I error is known as level of significance and is denoted by a.
The choice of a determines the critical values. Looking to the relative importance of

the decision, the researcher fixes the value of a. Normally the level of significance is

chosen as .05 or .01.

Fig. 6.2 Different regions in two-tailed test
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Type II error is said to be committed if we fail to reject the null hypothesis (H0)

when it is false. The probability of type II error is denoted by the Greek letter b and

is used to determine the power of the test. The value of b depends on the way the

null hypothesis is false. For example, in testing the null hypothesis of equal

population means for a fixed sample size, the probability of type II error decreases

as the difference between population means increases. The term 1 � b is said to be

the power of test. The power of test is the probability of rejecting the null hypothesis

when it is wrong.

Often type I and type II errors are confused with a and b, respectively. In fact a is
not the type I error but it is the probability of type I error and similarly b is the

probability of type II error and not the type II error. Since a is the probability, hence it
can take any value in between 0 and 1, and one should write the statement like “null

hypothesis may be rejected at .05 level of significance” instead of “null hypothesis

may be rejected at 5% level of significance.” Thus, the level of significance (a) should
always be expressed in fractions such as .05 and .01, or it may be written as 5 or 1%

level. For fixed sample size, the reduction of type I and type II errors simultaneously

is not possible because if you try to minimize one error, the other error will increase.

Therefore, there are two ways to reducing these two errors.

The first approach is to increase the sample size. This is not always possible in

research studies because once the data is collected, the same has to be used by the

researcher for drawing the inferences. Moreover, by increasing the sample size, a

researcher loses the control over experiment, due to which these errors get elevated.

The second approach is to identify the error which is more severe, fix it up at a

desired level, and then try to minimize the other error to a maximum possible extent.

In most of the research studies, type I error is considered to be more severe because

wrongly rejecting a correct hypothesis forces us to accept the wrong alternative

hypothesis. For example, consider an experiment where it is desired to test the

effectiveness of an advertisement campaign on the sales performance. The null

hypothesis required to be tested in this case would be, “Advertisement campaign

either do not have any impact on sales or may reduce the sales performance.” Now if

the null hypothesis is wrongly rejected, an organization would go for the said

advertisement campaign which in fact is not effective. These decisions will unneces-

sarily enhance the budget expenditure without any further appreciation in the revenue

modal. Severity of type I error can also be seen in the following legal analogy.

Convicts are presumed to be innocent until unless they are proved to be guilty. The

purpose of the trial is to see whether the null hypothesis of innocence can be rejected

based on the evidences. Here the type I error (rejecting a correct null hypothesis)

means convicting the innocence, whereas type II error (failing to reject the false null

hypothesis) means letting the guilty go free. Here the type I error is more severe than

type II error because no innocent should be punished in comparison to guilty may get

Table 6.1 Decision options in testing of hypothesis

True state of H0

True False

Researcher’s decision about H0 Reject H0 Type I error Correct decision

Failed to reject H0 Correct decision Type II error
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no punishment. Type I error becomes more serious if the crime is murder and the

person gets the punishment of death sentence. Thus, usually in research studies, the

type I error is fixed at the desired level of, say, .05 or .01 and then type II error is tried

to be minimized as much as possible.

The value of a and b depends upon each other. For a fixed sample size, the only

way to reduce the probability of making one type of error is to increase the other.

Consider a situation where it is desired to compare the means of two populations.

Let us assume that the rejection regions have critical values�1. Using the statistical

test, H0 will never get rejected as it will exclude every possible difference in sample

means. Since the null hypothesis will never be rejected, the probability of rejecting

the null hypothesis when it is true will be zero. In other words, the value of a ¼ 0.

Since the null hypothesis will never be rejected, the probability of type II error

(failing to reject the null hypothesis when it is false) will be 1 or to say that b ¼ 1.

Now consider the rejection regions whose critical values are 0,0. In this case, the

rejection region includes every possible difference in sample means. This test will

always reject H0. Since the null hypothesis will always be rejected, the probability

of type I error (rejecting H0 when it is true) will be 1 or the value of a ¼ 1. Since the

null hypothesis is always rejected, the probability of type II error (failing to reject

H0 when it is false) is 0, or the value of b ¼ 0.

To conclude, a statistical test having rejection region bounded by the critical

values �1 has a ¼ 0 and b ¼ 1, whereas the test with a rejection region bounded

by the critical values 0,0 has a ¼ 1 and b ¼ 0. Consider a test having rejection

region bounded by the critical values� q. As q increases from 0 to1, a decreases

from 1 to 0, while b increases from 0 to 1.

One-Tailed and Two-Tailed Tests

Consider an experiment in which null and alternative hypotheses are H0 and H1,

respectively. We perform a test to determine whether or not the null hypothesis

should be rejected in favor of the alternative hypothesis. In this situation, two

different kinds of tests can be performed. One may either use a one-tailed test to
see whether there is an increase or decrease in the parameter or may decide to use a

two-tailed test to verify for any change in the parameter that can be increased or

decrease. The word tail refers to the far left and far right of a distribution curve.

These one-tailed and two-tailed tests can be performed at any of the two, 0.01 or

0.05, levels of significance.

One-Tailed Test A statistical test is known as one-tailed test if the null hypothesis

(H0) is rejected only for the values of the test statistic falling into one specified tail of

its sampling distribution. In one-tailed test, the direction is specified, that is, we are

interested to verify whether population parameter is greater than some value. Or at

times we may be interested to know whether the population parameter is less than

some value. In other words, the researcher is clear as to what specifically he/she is

interested to test. Depending upon the research hypothesis, one-tailed test can be

classified as right-tailed or left-tailed tests. If the research hypothesis is to test whether
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the population mean is greater than some specified value, then the test is known as

right-tailed test and the entire critical region shall lie in the right tail only. And if the

test statistic falls into right critical region, the alternative hypothesis will be accepted

instead of the null hypothesis. On the other hand, if the research hypothesis is to test

whether the population mean is less than some specified value, then the test is known

as left-tailed test and the entire critical region shall lie in the left tail only. The critical

regions at 5% level in both these situations are shown in Fig. 6.3.

Two-Tailed Test A statistical test is said to be a two-tailed test if the null

hypothesis (H0) is rejected only for values of the test statistic falling into either

tail of its sampling distribution. In two-tailed test, no direction is specified. We are

only interested to test whether the population parameter is either greater than or less

than some specified value. If the test statistic falls into either of the critical regions,

the alternative hypothesis will be accepted instead of the null hypothesis. In two-

tailed test, the critical region is divided in both the tails. For example, if the null

hypothesis is tested at 5% level, the critical region shall be divided in both the tails

as shown in Fig. 6.4. Tables A.1 and A.2 in Appendix provide critical values for z-
test and t-test, respectively.

Criteria for Using One-Tailed and Two-Tailed Tests

A one-tailed test is usedwhenwe are quite sure about the direction of the difference in

advance (e.g., exercise will improve the fitness level). With that assumption, the level

of significance (a) is only calculated from one tail of the distribution. However, in

standard testing, the probability is calculated from both tails.

Fig. 6.3 Critical regions at 5% level in (a) left-tailed test and (b) right-tailed test

0.025

−Zα/2 = −1.96 Zα/2 = 1.96

0.025

Fig. 6.4 Critical regions in

two-tailed tests
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For instance if the significance of correlation is tested between age and medical

expenses; onemight hypothesize thatmedical expensesmay increase or do not increase

but will never decrease with age. In such case one-tailed hypothesis should be used.

On the other hand, in testing the correlation between people’s weights with their

income, wemay not have reasons to believe that the incomewill increase with increase

in weights or the income will decreases with weights. Here we might be interested just

to find out if there was any relationship at all and that is a two-tailed hypothesis.

The issue in deciding between one-tailed and two-tailed tests is not whether or

not you expect a difference to exist. Had you known whether or not there was a

difference, there is no reason to collect the data. Instead, the question is whether the

direction of a difference can only go one way. One should only use a one-tailed test

if there is an absolute certainty before data collection that in the overall populations,

either there is no difference or there is a difference in a specified direction. Further,

if you end up showing a difference in the opposite direction, you should be ready to

attribute that difference to random sampling without bothering about the fact that

the measured difference might reflect a true difference in the overall populations.

If a difference in the “wrong” direction brings even little meaning to your findings,

you should use two-tailed test.

The advantage of using one-tailed hypothesis is that you can use a smaller

sample to test it. The smaller sample often reduces your cost of the experiment.

But on the other hand, it is easier to reject the null hypothesis with a one-tailed test

in comparison to two-tailed test. Thus, the level of significance increases in one-

tailed test. Because of this reason, it is rarely correct to perform a one-tailed test;

usually we want to test whether any difference exists.

Strategy in Testing One-Tailed and Two-Tailed Tests

The strategy in choosing between one-tailed and two-tailed tests is to prefer a two-

tailed test unless there is a strong belief that the difference in the population can

only be in one direction. If the two-tailed test is statistically significant (p < a),
interpret the findings in one-tailed manner. Consider an experiment in which it is

desired to test the null hypothesis that the average cure time of cold and cough by a

newly introduced vitamin C tablet is 4 days against an alternative hypothesis that it

is not. If a sample of 64 patients has an average recovery time of 3.5 days with

s ¼ 1.0 day, the p value in this testing would be 0.0002 and therefore the null

hypothesis H0 will be rejected and we accept the alternative hypothesis H1. Thus, in

this situation, it is concluded that the recovery time is not equal to 4 days for the

new prescription of vitamin C.

But we may conclude more than that in saying that the recovery time is less than

4 days with the new prescription of vitamin C. We arrive at this conclusion by

combining the two facts: Firstly, we have proved that the recovery time is different

than 4 days, which means it must be either less or more than 4 days, and secondly,

the sample mean �X (¼3.5 days) in this problem is less than the specified value, that

176 6 Hypothesis Testing for Decision-Making



is, 4 days(population mean). After combining these two facts, it may be concluded

that the average recovery time (3.5 days) is significantly lower than the 4 days. This

conclusion is quite logical because if we again test the null hypothesis H0:m � 4

against the alternative hypothesis H1:m < 4(one-tailed test), the p value would be

0.0001 which is even smaller than 0.0002.

Thus, we may conclude first by answering the original question then going for

writing about the directional difference such as “The mean recovery time in cold and

cough symptom with the new prescription of vitamin C is different from 4 days”; in

fact, it is less than 4 days.

What Is p Value?

The p value is the probability of wrongly rejecting the null hypothesis. It is

analogous to the level of significance. Usually an experimenter decides to test the

hypothesis at some desired level of significance. If the absolute value of test statistic

increases, the probability of rejecting the correct null hypothesis decreases. Thus, if

a null hypothesis is tested at the level of significance .05 and the value of test

statistic is large so that its corresponding p value is 0.004, in that case if we

conclude that the null hypothesis is rejected at 5% level, it would not be logically

correct as the error attached to this judgment is only 0.4%. In fact as the absolute

value of test statistic increases, the p value keeps on decreasing.

One may decide the level of significance in advance say, 0.05, but while

explaining the decision, the concept of p value should be used to report as to how

much error is involved in the decision about rejecting or being unable to reject the

null hypothesis. Thus, while testing a hypothesis, a p value is calculated against the

test statistic which is used to explain the error involved in the decision. In SPSS and

other statistical packages, the p values are automatically computed against each test

statistic. Thus, if an experimenter decides to test the hypothesis at the significance

level of 0.05, the test statistic shall be significant so long p value is less than 0.05. The
general practice is to write the p value along with the value of test statistic. For

instance, we may write as “Since the calculated t ¼ 4.0(p ¼ 0.0002) is significant,

the null hypothesis may be rejected.” The p value may be calculated against the value

of t-statistic by using the t-table or by using the free conversion software available on
many sites such as http://faculty.vassar.edu/lowry/tabs.html#t.

Degrees of Freedom

Any parameter can be estimated with certain amount of information or data set. The

number of independent pieces of data or scores that are used to estimate a parameter is

known as degrees of freedom and is usually abbreviated as df. In general, the degrees

of freedom of an estimate are calculated as the number of independent scores that are

required to estimate the parameter minus the number of parameters estimated as
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intermediate steps in the estimation of the parameter itself. In general, each item being

estimated costs one degree of freedom.

The degrees of freedom can be defined as the number of independent scores or

pieces of information that are free to vary in computing a statistic.

Since the variance s2 is estimated by the statistic S2 which is computed from a

random sample of n independent scores, let us see what the degrees of freedom of S2

are. Since S is computed from the sample of n scores, its degrees of freedom would

have been n, but because one degree of freedom is lost due to the condition thatP
X � �Xð Þ ¼ 0, the degrees of freedom for S2 are n � 1. If we go by the definition,

the degrees of freedom of S2 are equal to the number of independent scores (n)
minus the number of parameters estimated as intermediate steps (one, as m is

estimated by �X) and are therefore equal to n � 1.

In case of two samples, pooled standard deviation S is computed by using

n1 + n2 observations. In the computation of S, the two parameters m1 and m2 are

estimated by �X1, and �X2 hence, the two degrees of freedom are lost and therefore the

degrees of freedom for estimating S are n1 + n2 � 2.

In computing chi-square in a 2 � 2 contingency table for testing the indepen-

dence between rows and columns, it is assumed that you already know 3 pieces of

information: the row proportions, the column proportions, and the total number of

observations. Since the total number of pieces of information in the contingency

table is 4, and 3 are already known before computing the chi-square statistic, the

degrees of freedom are 4 � 3 ¼ 1. We know that the degrees of freedom for chi-

square are obtained by (r � 1) � (c � 1); hence, with this formula, also the

degrees of freedom in a 2 � 2 contingency table are 1.

One-Sample t-Test

A t-test can be defined as a statistical test used for testing of hypothesis in which the

test statistic follows a Student’s t-distribution under the assumption that the null

hypothesis is true. This test is used if the population standard deviation is not known

and the distribution of the population from which the sample has been drawn is

normally distributed. Usually t-test is used for small sample size (n < 30) in a

situation where population standard deviation is not known. Even if the sample is

large (n � 30) but if the population standard deviation is not known in that situation,

also t-test should be used instead of z-test. A one-sample t-test is used for testing

whether the population mean is equal to a predefined value or not. An example of a

one-sample t-test may be to see whether population average sleep time is equal to 5 h

or not.

In using t-test, it is assumed that the distribution of data is approximately normal.

The t-distribution depends on the sample size. Its parameter is called the degrees of

freedom (df) which is equal to n � 1, where n is the sample size.
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In one-sample test, t-statistic is computed by the following formula:

t ¼
�X�m
S=

ffiffiffi
n

p (6.1)

Calculated t is compared with tabulated t at 0.05 level of significance and n � 1

degrees of freedom if the hypothesis is to be tested at 5% level. The value of

tabulated t can be obtained from Table A.2 in Appendix. The t-statistic is tested for
its significance by finding its corresponding p value. If p value is less than .05, the t-
statistic becomes significant, and we reject the null hypothesis against the alterna-

tive hypothesis. On the other hand, if the p value is more than .05, the null

hypothesis is failed to be rejected.

Application of One-Sample Test

In the era of housing boom, everybody is interested to buy a home, and the role of

banking institution is very important in this regard. Every bank tries to woe their

clients by highlighting their specific features of housing loan like less assessment

fee, quick sanctioning of the loans, and waving of penalty for prepayment. One

particular bank was more interested to concentrate on loan processing time instead

of other attributes and therefore made certain changes in their loan processing

procedure without sacrificing the risk features so as to serve their clients with

quick processing time. They want to test if their mean loan processing time differs

from a competitor’s claim of 4 h. The bank randomly selected a sample of few loan

applications in their branches and noted the processing time for each cases. On the

basis of this sample data, the authorities may be interested to test whether the bank’s

processing time in all their branches is equal to 4 h or not. One-sample t-test can
provide the solution to test the hypothesis in this situation.

Example 6.1 A professor wishes to know if his statistics class has a good back-

ground of basic math. Ten students were randomly chosen from the class and were

given a math proficiency test. Based on the previous experience, it was

hypothesized that the average class performance on such math proficiency test

cannot be less than 75. The professor wishes to know whether this hypothesis

may be accepted or not. Test your hypothesis at 5% level assuming that the

distribution of the population is normal. The scores obtained by the students are

as follows:

Math proficiency score: 71, 60, 80, 73, 82, 65, 90, 87, 74, and 72

Solution The following steps shall show the procedure of applying the t-test for
one sample in testing the hypothesis, whether the students of statistics class had

their average score on math proficiency test equal to 75 or not.
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(a) Here the hypothesis which needs to be tested is

H0 : m � 75

against the alternative hypothesis

H1 : m < 75

(b) The level of significance: 0.05
(c) Statistical test: As per the test selection scheme shown in Fig. 6.1, the test

applicable in this example shall be one-sample t-test.

t ¼
�X � m
S=

ffiffiffi
n

p

To compute the calculated value of t, firstly it is required to compute the value

of mean and standard deviation of the sample:

X X2

71 5,041

60 3,600

80 6,400

73 5,329

82 6,724

65 4,225

90 8,100

87 7,569

74 5,476

72 5,184P
X ¼ 754

P
X2 ¼ 57; 648

Since n ¼ 10; �X ¼ 754

10
¼ 75:4 and

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
X2 �

P
Xð Þ2

nðn� 1Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
� 57648� 7542

10� 9

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6405:33� 6316:84

p

¼9:41

After substituting the value of mean and standard deviation,

Calculated t ¼ 75:4� 75

9:41=
ffiffiffiffiffi
10

p ¼ 0:4� ffiffiffiffiffi
10

p

9:41

¼ 0:134
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(d) Decision criteria: From Table A.2 in Appendix, the tabulated value of t for one-
tailed test at .05 level of significance with 9 degrees of freedom is

t:05ð9Þ ¼ 1:833:
Since calculated t ¼ 0:134ð Þ<t:05ð9Þ, hence the null hypothesis is failed to be

rejected at 5% level.

(e) Inference: Since the null hypothesis is failed to be rejected, hence the alterna-

tive hypothesis that the average math proficiency performance of the students is

less than 75 cannot be accepted. Thus, it may be concluded that the average

students’ performance on math proficiency test is equal or higher than 75.

Two-Sample t-Test for Unrelated Groups

The two-sample t-test is used for testing the hypothesis of equality of means of two

normally distributed populations. All t-tests are usually called Student’s t-tests. But
strictly speaking, this name should be used only if the variances of the two

populations are also assumed to be equal. Two-sample t-test is based on the

assumption that the variances of the populations s21 and s22 are unknown and

population distributions are normal. In case the assumptions of equality of

variances are not met, then the test used in such situation is called as Welch’s t-
test. Readers may read some other text for this test.

We often want to compare the means of two different populations, for example,

comparing the effect of two different diets on weights, the effect of two teaching

methodologies on the performance, or the IQ of boys and girls. In such situations,

two-sample t-test can be used. One of the conditions of using two-sample t-test is
that the samples are independent and identically distributed. Consider an experi-

ment in which the job satisfaction needs to be compared among the bank employees

working in rural and urban areas. Two randomly selected groups of 30 subjects each

may be selected from rural and urban areas. Assuming all other conditions of the

employees like salary structure, status and age categories to be similar, null

hypothesis of no difference in their job satisfaction scores may be tested by using

the two-sample t-test for independent samples. In this case, the two samples are

independent because subjects in both the groups are not same.

Assumptions in Using Two-Sample t-Test

The following assumptions need to be fulfilled before using the two-sample t-test
for independent groups:

• The distributions of both the populations from which the samples have been

drawn are normally distributed.

• The variances of the two populations are nearly equal.
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• Population variances are unknown.

• The samples are independent to each other.

Since we assume that s21 and s
2
2 are equal, we can compute a pooled variance S2

of both the samples. The purpose of pooling the variances is to obtain a better

estimate. The pooled variance is a weighted sum of variances. Thus, if the sample

sizes n1 and n2 are equal, then S
2 is just an average of the individual variances. The

overall degrees of freedom in that case will be the sum of the individual degrees of

freedom of the two samples, that is,

df ¼ df þ df2 ¼ n1 � 1ð Þ þ n2 � 1ð Þ ¼ n1 þ n2 � 2

Computation of t-statistic is same irrespective of testing two-tailed or one-tailed

hypotheses. The only difference in testing these hypotheses are in its testing criteria

and critical values of “t.” These cases shall be discussed in the following sections.

Application of Two-Sampled t-Test

The situation where two-sample t-test is applicable can be easily understood by

looking to the following case study. A pharmaceutical company decided to conduct

an experiment to know as to whether high-protein diet or low-protein diets are more

responsible in increasing the weights of male mouse in a controlled environment.

Two groups of male mouse of similar age and weights may be selected randomly to

serve as the two experimental groups. The number of mouse may be equal or

unequal in both the groups. The first group may be fed with low-protein diet,

whereas the other may be on the high-protein diet. To compare the average increase

in their weights, two-sample t-test may be used to answer the research question.

Since one of the conditions of using the two-sample t-test is that the variance of
the two groups must be equal, therefore F-test may be used to compare the

variability. Only if the variability of the two groups is equal the two-sample t-test
should be used. Here the null hypothesis of no difference in the increased weights of

the high and low-protein groups is tested against the alternative hypothesis that the

difference exists. In case the two-sample t-statistic is significant at some specified

level of significance, the null hypothesis may be rejected, and it may be concluded

that the effect of low-protein and high-protein diets on weights is different. On the

other hand, if the t-statistic is not significant, we failed to reject the null hypothesis,
and it may be concluded that it is not possible to find any significant difference in

the rats’ weight kept on high- and low-protein diets.

Further, if the null hypothesis is rejected, the mean weight of the high- and low-

protein groups is seen, and if the average weight of the high-protein group is higher

than that of the low-protein group, it may be concluded that the high-protein diet is

more effective than the low-protein diet in increasing the weights of the rats.
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Case 1: Two-Tailed Test

Since we have already discussed the general procedure of testing of hypothesis

and the situations under which the two-tailed tests should be used, here the

working method for two-tailed test shall be discussed. In two-tailed test, null

hypothesis is tested against the alternative hypothesis that the groups are different

in their means. Acceptance of alternative hypothesis suggests that the difference

exists between the two group means. Further, by looking to the mean values of the

two groups, one may draw the conclusion as to which group means is greater than

the other. There may be many situations where two-tailed test can be used. For

example, consider an experiment where it is desired to see the impact of different

kinds of music on the hours of sleep. The two groups of the subjects are randomly

selected, and the first group is exposed to classical music, whereas the second

group is exposed to Jazz music for 1 h before sleep for a week. To test whether

average sleep hour remains same or different in two different kinds of music

groups, a two-tailed test may be used. Here it is not known that a particular music

may increase the sleep hour or not, and hence, two-tailed test would be appropri-

ate. In case of two-tailed test, the testing protocol is as follows:

(a) Hypotheses need to be tested

H0 : m1 ¼ m2
H1 : m1 6¼ m2

(b) Test statistic

Calculated t ¼
�X1 � �X2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s (6.2)

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS21 þ ðn2 � 1ÞS22

n1 þ n2 � 2

s

(c) Degrees of freedom n1 þ n2 � 2

(d) Decision criteria
In two-tailed test, the critical region is divided in both the tails. If the level of

significance is a, then the area in each tail would be a/2. If the critical value is
ta=2 and

if calculated tj jbta=2, H0 is failed to be rejected at a level of significance

and if calculated tj j>ta=2, H0 may be rejected at a level of significance

Note: The value of calculated t is taken as absolute because the difference in the

two means may be positive or negative.
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Case II: Right-Tailed Test (One-Tailed Test)

We have already discussed the situations in which one-tailed test should be used.

One-tailed test should only be used if an experimenter, on the basis of past

information, is absolutely sure that the difference can go only in one direction.

One-tailed test can be either right tailed or left tailed. In right-tailed test, it is desired

to test the hypothesis, whether mean of first group is greater than that of the mean of

the second group. In other words, the researcher is interested in a particular group

only. In such testing, if the null hypothesis is rejected, it can be concluded that the

first group mean is significantly higher than that of the second group mean. The

situation where right-tailed test can be used is to test whether frustration level is less

among those employees whose jobs are linked with incentives in comparison to

those whose jobs are not linked with the incentives. Here the first group is the one

whose jobs are linked with the incentives, whereas the second group’s jobs are not

linked with the incentives. In this situation, it is assumed that the employees feel

happy in their jobs if it is linked with incentives. The testing protocol in testing the

right-tailed hypothesis is as follows:

(a) Hypotheses need to be tested

H0 : m1bm2
H1 : m1>m2

(b) Test statistic

Calculated t ¼
�X1 � �X2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞS21 þ n2 � 1ð ÞS22

n1 þ n2 � 2

s

(c) Degrees of freedom n1 þ n2 � 2

(d) Decision criteria
In one-tailed test, the entire critical region lies in one tail only. Here the

research hypothesis is the right tailed; hence, the entire critical region would

lie in the right tail only, and therefore, the sign of the critical value would be

positive. If the critical value is represented by ta and
if calculated tbta, H0 is failed to be rejected at a level of significance

and if calculated t>ta, H0 may be rejected at a level of significance

Case III: Left-Tailed Test (One-Tailed Test)

At times the researcher is interested in testing whether a particular group mean is less

than the second one. In this type of hypothesis testing, it is desired to test whether

mean of first group is less than that of mean of the second group. Here if the null
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hypothesis is rejected, it can be concluded that the first group mean is significantly

smaller than that of the second group mean. Consider a situation where an exercise

therapist is interested to know whether a 4-week weight reduction program is

effective or not if implemented on the housewives. The two groups consisting 20

women each are selected for the study, and the first group is exposed to the weight

reduction program, whereas the second group serves as a control and does not take

part in any special activities except daily normal work. If the therapist is interested

to know whether on an average first treatment group shows the reduction in their

weight in comparison to those who did not participate in the program, the left-tailed

test may be used. In this situation, as per the experience, it is known that any weight

reduction program will always reduce the weight in general in comparison to those

who do not participate in it, and therefore, one tailed test would be appropriate in

this situation. The testing protocol in applying the left-tailed test is as follows:

(a) Hypotheses need to be tested

H0 : m1 � m2
H1 : m1<m2

(b) Test statistic

Calculated t ¼
�X1 � �X2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞS21 þ n2 � 1ð ÞS22

n1 þ n2 � 2

s

(c) Degrees of freedom n1 þ n2 � 2

(d) Decision criteria
In one-tailed test, the entire critical region lies in one tail. Since this is a case of

left-tailed test, hence the entire critical region lies in the left tail only and

therefore the critical value would be negative. If the critical value is represented

by �ta and
if calculated t � �ta, H0 is failed to be rejected at a level of significance

and if calculated <� ta, H0 may be rejected at a level of significance

Example 6.2 Counseling cell of a college keeps conducting sessions with the

problematic students by using different methods. Since the number of visitors keeps

increasing every day in the center, they have decided to test whether audiovisual-

based counseling and personal counseling are equally effective in reducing the stress

level. Eighteen women students were randomly chosen among those who visited the

center. Nine of them were given the personal counseling, whereas the other nine were

given the sessions with the audiovisual presentation. After the session, the students

were tested for their stress level. The data so obtained are shown in Table 6.2.
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Test your hypothesis at 1% level, whether any one method of counseling is better

than other. It is assumed that population variances are equal and both the

populations are normally distributed.

Solution To test the required hypothesis, the following steps shall explain the

procedure.

(a) Here the hypothesis which needs to be tested is

H0 : mPersonal ¼ mAudi�visual

against the alternative hypothesis

H1 : mPersonal 6¼ mAudi�visual

(b) The level of significance: 0.05
(c) Statistical test: In this example, it is required to test a two-tailed hypothesis for

comparing the means of two groups. Thus, as per the scheme of the test

selection shown in Fig. 6.1, a two-sample t-test for independent groups shall
be appropriate in this case which is given by

t ¼
�X � �Y

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s

where the pooled standard deviation S is computed as

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞS21 þ n2 � 1ð ÞS22

n1 þ n2 � 2

s

In order to compute the value of t-statistic, the mean and standard deviation of

both the groups along with the pooled standard deviation S will have to be

computed first (Table 6.3).

Since n1 ¼ n2 ¼ 9, �X ¼ 220
9
¼ 24:44 and �Y ¼ 275

9
¼ 30:56

S
X
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 1

X
X2 �

P
Xð Þ2

n1 n1 � 1ð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
� 5488� 220ð Þ2

9� 8

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
686� 672:22

p

¼3:71

Table 6.2 Data on stress level for the students in both the counseling groups

Personal counseling: 27 22 28 21 23 22 20 31 26

Audiovisual counseling: 35 28 24 28 31 32 33 34 30
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Similarly

S
Y
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2 � 1

X
Y2 �

P
Yð Þ2

n2 n2 � 1ð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
� 8499� 275ð Þ2

9� 8

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1062:38� 1050:35

p

¼3:47

Further, pooled standard deviation S is equal to

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞS2X þ n2 � 1ð ÞS2Y

n1 þ n2 � 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 3:712 þ 8� 3:472

9þ 9� 2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
110:11þ 96:33

16

r
¼ 3:59

One of the conditions of using the two-sample t-test for independent groups is
that the variance of the two populations must be same. This hypothesis can be

tested by using the F-test.

Thus, F ¼ S2X
S2Y

¼ 3:712

3:472
¼ 1:14

From Table A.4 in Appendix, tabulated F.05(8,8) ¼ 3.44

Since calculated value of F is less than the tabulated F, hence it may not be

concluded that the variances of the two groups are different, and therefore, two-

sample t-test for two independent samples can be applied in this example.

Remark: In computing F-statistic, the larger variance must be kept in the

numerator, whereas the smaller one should be in the denominator.

Table 6.3 Computation for

mean and standard deviation
Personal counseling Audiovisual counseling

X X2 Y Y2

27 729 35 1,225

22 484 28 784

28 784 24 576

21 441 28 784

23 529 31 961

22 484 32 1,024

20 400 33 1,089

31 961 34 1,156

26 676 30 900P
X ¼220

P
X2 ¼ 5; 488

P
Y ¼275

P
Y2 ¼ 8; 499
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After substituting the values of �X, �Y, and pooled standard deviation S, we get

calculated t ¼
�X � �Y

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s ¼ 24:44� 30:56

3:59

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
þ 1

9

� �s

¼� 6:12

1:69

¼� 3:62

) calculated tj j ¼3:62

(d) Decision criteria: From Table A.2 in Appendix, the tabulated value of t for
two-tailed test at .05 level of significance with 16(¼n1 + n2 � 2) degrees of

freedom is t:05ð16Þ ¼ 2:12:
Since calculated t ¼ 3:62ð Þ>t:05ð16Þ, the null hypothesis may be rejected at 5%

level against the alternative hypothesis.

Further, since the mean stress score of the personal counseling group is lower

than that of the audiovisual group, hence it may be concluded that the stress

score of the personal counseling group is significantly less than that of the

audiovisual group.

(e) Inference: Since the null hypothesis is rejected, hence the alternative hypothesis
that the average stress scores of the personal counseling group as well as

audiovisual counseling groups are not same is accepted. Further, since the

mean stress score of the personal counseling group is significantly lower than

that of the audiovisual group, it may be concluded that the personal counseling

is more effective in comparison to that of the audiovisual counseling in reduc-

ing stress among women.

Example 6.3 A researcher wishes to know whether girls’ marriage age in metro

cities is higher than that of class B cities. Twelve families from metro cities and 11

families from class B cities were randomly chosen and were asked about their

daughter’s age at which they got married. The data so obtained are shown in

Table 6.4. Can it be concluded from the given data that the girls’ marriage age

was higher in metro cities in comparison to class B cities? Test your hypothesis at

5% level assuming that the population variances are equal and the distribution of

both the populations from which the samples have been drawn are normally

distributed.

Solution In order to test the hypothesis, the following steps shall be performed:

(a) The hypothesis which needs to be tested is
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H0 : mMetro CitybmClass B City

against the alternative hypothesis

H0 : mMetro City>mClass B City

(b) The level of significance: 0.05
(c) Statistical test: In this example, it is required to test one-tailed hypothesis for

comparing means of the two groups. Thus, as per the scheme of the test

selection shown in Fig. 6.1, a two-sample t-test for independent groups shall
be appropriate in this case which is

t ¼
�X � �Y

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s

where the pooled standard deviation S is given by

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞS21 þ n2 � 1ð ÞS22

n1 þ n2 � 2

s

To compute the value of t statistic, the mean and standard deviation of both the

groups along with the pooled standard deviation S need to be computed first

(Table 6.5).

Here n1 ¼ 12 and n2 ¼ 11 �X ¼ 342
12

¼ 28:5 and �Y ¼ 272
11

¼ 24:73

SX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1 � 1

X
X2 �

P
Xð Þ2

n1 n1 � 1ð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

11
� 9854� 342ð Þ2

12� 11

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
895:82� 886:09

p

¼3:12

Table 6.4 Marital age of the girls

Metro city: 29, 28, 27, 31, 32, 25, 28, 24, 27, 30, 35, 26

Class B city: 28, 25, 24, 28, 22, 24, 23, 21, 25, 24, 28
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Similarly

SY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n2 � 1

X
Y2 �

P
Yð Þ2

n2 n2 � 1ð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
� 6784� 272ð Þ2

11� 10

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
678:4� 672:58

p

¼2:41

The pooled standard deviation S is equal to

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞS2X þ n2 � 1ð ÞS2Y

n1 þ n2 � 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11� 3:122 þ 10� 2:412

12þ 11� 2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
107:08þ 58:08

21

r
¼ 2:80

Since t-test can only be applied if the variance of both the populations is same,

this hypothesis can be tested by using the F-test.

Thus, F ¼ S2X
S2
Y

¼ 3:122

2:412
¼ 1:67

The tabulated value of F can be seen from Table A.4 in Appendix.

Thus, tabulated F.05(11,10) ¼ 2.85

Since calculated value of F is less than that of tabulated F, hence hypothesis of
equality of variances in two groups may not be rejected, and therefore, the two-

sample t-test for independent samples can be applied in this example.

After substituting the values of �X, �Y, and pooled standard deviation, S we get

Table 6.5 Computation for

mean and standard deviation
Metro city Class B city

X X2 Y Y2

29 841 28 784

28 784 25 625

27 729 24 576

31 961 28 784

32 1,024 22 484

25 625 24 576

28 784 23 529

24 576 21 441

27 729 25 625

30 900 24 576

35 1,225 28 784

26 676P
X ¼342

P
X2 ¼ 9; 854

P
Y ¼272

P
Y2 ¼ 6; 784
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calculated t ¼
�X � �Y

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

� �s ¼ 28:5� 24:73

2:80

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12
þ 1

11

� �s

¼ 3:77

2:80� 0:42

¼3:21

(d) Decision criteria: From Table A.2 in Appendix, the tabulated value of t for one-
tailed test at .05 level of significance with 21(¼n1 + n2 � 2) degrees of free-

dom is t:05ð21Þ ¼ 1:721. Similarly for one-tailed test, tabulated value of t at .01
level of significance is t:01ð21Þ ¼ 2:518:
Since calculated t ¼ 3:21ð Þ>t:05ð21Þ, the null hypothesis may be rejected at 5%

level. Further, calculated value of t is also less than that of tabulated value of t at
1% level as well; hence, t-value is also significant at 1% level.

(e) Inference: Since the null hypothesis is rejected, hence the alternative hypothesis
that the marriage age of the girls in metro cities is higher than that of class B

cities is accepted. It may thus be concluded that girls in metro cities prefers to

marry late in age in comparison to that of class B cities.

Paired t-Test for Related Groups

Paired t-test is used to test the null hypothesis that the difference between the two

responses measured on the same experimental units has a mean value of zero. This

statistical test is normally used to test the research hypothesis as to whether the

posttreatment response is better than the pretreatment response. Paired t-test is used
in all those situations where there is only one experimental group and no control

group. The question which is tested here is to know whether the treatment is

effective or not. This is done by measuring the responses of the subjects in the

experimental group before and after the treatment. There can be several instances in

which the paired t-test may be used. Such situations may be, for instance, to see the

effectiveness of management development program on the functional efficiency,

effectiveness of the weight training program in weight reduction, effectiveness of

the psychological training in enhancing memory retention power, etc.

The paired t-test is also known as “repeated measures” t-test. In using the paired
t-test, the data must be obtained in pair on the same set of subjects before and after

the experiment.

While applying the paired t-test for two related groups, the pairwise differences,

di, is computed for all n paired data. The mean, �d and standard deviation, Sd, of the
differences di are calculated. Thus, paired t-statistic is computed as follows:

t ¼
�d

Sd=
ffiffiffi
n

p (6.3)

where “t” follows the Student’s t-distribution with n � 1 degrees of freedom.
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An assumption in using the paired t-test is that the difference di follows the

normal distribution. An experiment where paired difference is computed is often

more powerful, since it can eliminate differences in the samples that increase the

total variances2. When the comparison is made between groups (of similar experi-

mental units), it is called blocking. The paired difference experiment is an example

of a randomized block experiment.

Note: The blocking has to be done before the experiment is performed.

Assumptions in Using Paired t-Test

While using the paired t-test, the following assumptions need to be satisfied:

1. The distribution of the population is normal.

2. The distribution of scores obtained by pairwise difference is normal, and the

differences are a random sample.

3. Cases must be independent of each other.

Remark: If the normality assumption is not fulfilled, you may use the nonparamet-

ric Wilcoxon sign rank test for paired difference designs.

Testing Protocol in Using Paired t-Test

Testing protocol of using paired t-test is similar to that of two-sample t-test for
independent groups discussed above. In applying paired t-test, the only difference is
that the test statistic is

t ¼
�d

Sd=
ffiffiffi
n

p

instead of the one used in two-sample t-test. Further, in paired t-test, the degrees of
freedom are n � 1. While using paired t-test, one should normally construct the

two-tailed test first, and if the difference is significant, then by looking to the values

of the samples mean of the pre- and posttesting responses, one may interpret as to

which group mean is higher than the other. In general using one-tailed test should

be avoided until there is strong evidence that the difference can go only in one

direction. In one-tailed test, the probability of rejecting the correct null hypothesis

becomes more in comparison to two-tailed test for the same level of significance.
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The trade-off using one- and two-tailed tests has been discussed in details while

discussing the criteria for using one-tailed and two-tailed tests earlier in this

chapter.

Application of Paired t-Test

The application of paired t-test can be understood by considering the following

situation. An herbal company has come out with a drug useful for lowering the

cholesterol level if taken for a week. In order to claim its effectiveness, it has been

decided to administer the drug on the patients with high cholesterol level. In this

situation, the paired t-test can be used to test the hypothesis to know as to whether

there is any difference in the cholesterol level between post- and pretest data after

administering this new drug. In this situation, the null hypothesis of no difference

may be tested to test the two-tailed hypothesis first. If the t-statistic is significant,

we reject the null hypothesis in favor of the alternative, and it is concluded that the

difference exists between the cholesterol levels of the patients before and after

the administration of the drug. On the other hand, if the t-statistic is not significant,
we may fail to reject the null hypothesis and we may end up in concluding that

the claim of the drug being effective may not be proved with this sample. After

having rejected the null hypothesis, by looking to the average cholesterol level of

the patients before and after the administration of the drugs, one may conclude as

to whether the drug is effective or not.

Example 6.4 Twelve women participated in a nutritional educative program.

Their calorie intake, before and after the program, was measured which are

shown in Table 6.6.

Can you draw the conclusion that the nutritional educative program was suc-

cessful in reducing the participant’s calorie requirements? Test your hypothesis at

5% level assuming that the differences of the scores are normally distributed.

Solution In this example, data is paired. In other words, post- and pretest data

belongs to the same person, and therefore, the groups may be called as related or

paired. To test a hypothesis as to whether the nutritional educative program is

effective or not in reducing the calorie intake, the following steps shall be

performed:

(a) Here the hypothesis which needs to be tested is

Table 6.6 Calorie intake of the women participants before and after the nutrition educative

program

Before: 2,900 2,850 2,950 2,800 2,700 2,850 2,400 2,200 2,650 2,500 2,450 2,650

After: 2,800 2,750 2,800 2,800 2,750 2,800 2,450 2,250 2,550 2,450 2,400 2,500
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H0 : mD ¼ 0 Difference of means of the two groups is zero:ð Þ
against the alternative hypothesis

H1 : mD 6¼ 0 Difference of means of the two groups is not equal to zero:ð Þ

(b) The level of significance: 0.05
(c) Statistical test: In this example, it is required to test the effectiveness of the

nutritional educative program in reducing the calorie consumption in diet. Here

the null hypothesis that there is no difference in the means of the two groups is

to be tested against the alternative hypothesis that there is a difference. Once the

null hypothesis is rejected, then on the basis of mean values of the pre- and

posttesting data of calorie consumption, the conclusion would be drawn as to

whether the program was effective or not.

Thus, first a two-tailed test will be used, and if the null hypothesis is rejected

against the alternative hypothesis, then the directional interpretation would be

made by looking to the mean values. It is because of the fact that if the t-statistic
is significant in two-tailed test, then it will also be significant at one-tailed test.

This can be understood like this: for the two-tailed test, the critical value ta=2 at a
level of significance will always be greater than that of the critical value ta in

one-tailed test. And therefore, if the calculated value of t is greater than ta=2, it

will also be greater than ta.
Since this example is a case of paired samples, hence as per the scheme of the

test selection shown in Fig. 6.1, the paired t-test for related groups shall be

appropriate in this case which is given by

t ¼
�d

Sd=
ffiffiffi
n

p

where �d is the mean of the difference between X and Y, and Sd is the standard

deviation of these differences as given by

Sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
d2 � ðP dÞ2

nðn� 1Þ

s

The �d and Sd shall be computed first to find the value of t-statistic (Table 6.7).

Remark: Difference d can be computed by subtracting postdata from

predata or vice versa because two-tailed test is being used here

Here number of paired data, n ¼ 12,

�d ¼ 600

12
¼ 50

and
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Sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
d2 �

P
dð Þ2

n n� 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

11
� 90000� 600ð Þ2

12� 11

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8181:82� 2727:27

p

¼73:85

After substituting the values of �d and Sd, we get

calculated t ¼
�d

Sd
ffiffiffi
n

p
=

¼ 50

73:85
ffiffiffiffiffi
12

p�
¼ 50� ffiffiffiffiffi

12
p

73:85

¼2:345

(d) Decision criteria: From Table A.2 in Appendix, the tabulated value of t for
two-tailed test at .05 level of significance with 11(¼n � 1) degrees of freedom

is t:05=2ð11Þ ¼ 2:201.

Since calculated t ¼ 2:345ð Þ>t:05=2ð11Þ, the null hypothesis may be rejected at

5% level against the alternative hypothesis. It may therefore be concluded that

the mean calorie intakes before and after the nutritional educative program are

not same.

Since the mean calorie intake of the after-testing group is lower than that of the

before-testing group, it may be concluded that the mean calorie score of the

after-testing group is significantly less than that of the before-testing group.

(e) Inference: It is therefore concluded that the nutritional educative program is

effective in reducing the calorie intake among the participants.

Table 6.7 Computation for
�dand Sd for paired t-ratio

Before X After Y d ¼ X � Y d2

2,900 2,800 100 10,000

2,850 2,750 100 10,000

2,950 2,800 150 22,500

2,800 2,800 0 0

2,700 2,750 �50 2,500

2,850 2,800 50 2,500

2,400 2,450 �50 2,500

2,200 2,250 �50 2,500

2,650 2,550 100 10,000

2,500 2,450 50 2,500

2,450 2,400 50 2,500

2,650 2,500 150 22,500P
d ¼ 600

P
d2 ¼ 90; 000
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Solved Example of Testing Single Group Mean with SPSS

Example 6.5 The age of the 15 randomly chosen employees of an organization is

shown in Table 6.8. Can it be concluded that the average age of the employees in

the organization is 28 years? Test your hypothesis at 5% level and interpret your

findings.

Solution The hypothesis that needs to be tested here is

H0 : m ¼ 28

against the alternative hypothesis

H1 : m 6¼ 28

After using the SPSS commands as mentioned below for testing the population

mean to be equal to 28, the output will generate the value of t-statistic along with its
p value. If p value is less than .05, then the t-statistic will be significant and the null
hypothesis shall be rejected at 5% level in favor of alternative hypothesis; other-

wise, we would fail to reject the null hypothesis.

Computation of t-Statistic and Related Outputs

(a) Preparing Data File
Before using the SPSS commands for computing the value of t-statistic and

other related statistics for single group, a data file needs to be prepared. The

following steps will help you to prepare the data file:

Table 6.8 Data on age 27

31

34

29

28

34

33

36

26

28

29

36

35

31

36
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(i) Starting the SPSS: Use the following command sequence to start SPSS:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS

Statistics 20

After checking the option Type in Data on the screen you will be taken to

the Variable View option for defining the variables in the study.

(ii) Defining variables: There is only one variable in this example which needs

to be defined in SPSS along with its properties. Since the variable is

measured on interval scale, hence will be defined as ‘Scale’ variable. The

procedure of defining the variable in the SPSS is as follows:

1. Click Variable View to define the variable and its properties.

2. Write short name of the variable as Age under the column headingName.

3. Under the column heading Label, define full name of the variable as

Employees’ Age.
4. Under the column heading Measure, select the option ‘Scale’ for the

variable.

5. Use default entries in all other columns.

After defining the variable in variable view, the screen shall look like Fig. 6.5.

(iii) Entering data: After defining the variable in the Variable View, click Data
View on the left bottom of the screen to enter the data. Enter the data for the

variable column wise. After entering the data, the screen will look like

Fig. 6.6. Save the data file in the desired location before further processing.

(b) SPSS Commands for Computing t-Statistic
After entering the data in the data view, follow these steps for computing t-
statistic:

(i) Initiating the SPSS commands for one-sample t-test: In data view, go to the

following commands in sequence:

Analyze ⇨ Compare Means ⇨ One-Sample t Test

The screen shall look like Fig. 6.7 as shown below.

(ii) Selecting variables for t-statistic: After clicking the One-Sample t Test
option you will be taken to the next screen for selecting variable for

computing t-statistic. Select the variable Age from left panel and bring it

to the right panel by clicking the arrow sign. In case of computing t-value
for more than one variable simultaneously, all the variables can be selected

together. The screen shall look like Fig. 6.8.

(iii) Selecting the options for computation: After selecting the variable, option

needs to be defined for the one-sample t-test. Do the following:

– In the screen shown in Fig. 6.8, enter the ‘test value’ as 28. This is the

assumed population mean age that we need to verify in the hypothesis.

– Click the tag Options, you will get the screen shown in Fig. 6.9. Enter

the confidence interval as 95% and click Continue and then you will be
taken back to the screen shown in Fig. 6.8.
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The confidence interval is chosen to get the confidence limits of mean

based on sample data. Since in this example the null hypothesis needs to

be tested at 5% level, choose the confidence interval as 95%.

– Click OK.

(c) Getting the Output
After clicking the OK tag in Fig. 6.8, you will get the output window. In the

output window, the relevant outputs can be selected by using the right click of

Fig. 6.5 Defining variable and its characteristics for the data shown in Table 6.8

Fig. 6.6 Screen showing

entered data for the age

variable in the data view
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Fig. 6.7 Screen showing SPSS commands for one sample t-test

Fig. 6.8 Screen showing selection of variable for one-sample t-test
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the mouse, and the content may be copied in the word file. The output panel

shall have the following results:

1. Sample statistics showing mean, standard deviation, and standard error

2. Table showing the value of t and its significance level

Fig. 6.9 Screen showing options for computing one-sample t-test and selecting significance level

Table 6.9 One-sample statistics

N Mean Std. deviation Std. error mean

Employees’ age 15 31.5333 3.54293 .91478

Table 6.10 One-sample t test

Test value ¼ 28

95% confidence interval

of the difference

t df Sig. (two-tailed) Mean difference Lower Upper

Employees’ age 3.862 14 .002 3.53333 1.5713 5.4953

Table 6.11 t-table for the
data on employees’ age

Mean SD Mean diff. t-value p value

31.53 3.54 3.53 3.862 .002
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In this example, all the outputs so generated by the SPSS will look like

Tables 6.9 and 6.10. The model way of writing the results of one-sample t-
test has been shown in Table 6.11.

Interpretation of the Outputs

The mean, standard deviation, and standard error of mean for the data on age are

given in Table 6.9. These values may be used for further analysis.

From Table 6.11, it can be seen that the t-value is equal to 3.862 along with its

p value .002. Since p value is less than 0.05, it may be concluded that the t-value is
significant and the null hypothesis may be rejected at 5% level. Further, since the

average age of the employees in this problem is 31.5 which is higher than the

assumed age of 28 years, hence it may be inferred that average age of the employees

in the organization is higher than 28 years.

Solved Example of Two-Sample t-Test for Unrelated Groups

with SPSS

Example 6.6 An experiment was conducted to assess delivery performance of the

two pizza companies. Customers were asked to reveal the delivery time of the pizza

they have ordered from these two companies. Following are the delivery time in

minutes of the two pizza companies as reported by their customers (Table 6.12).

Can it be concluded that the delivery time of the two companies is different? Test

your hypothesis at 5% level.

Solution Here the hypothesis which needs to be tested is

H0 : mA ¼ mB
against the alternative hypothesis

H1 : mA 6¼ mB

After computing the value of t-statistic for two independent samples by the

SPSS, it will be tested for its significance. The SPSS output also gives the signifi-

cance value (p value) corresponding to the t-value. The t-value would be significant
if its corresponding p value is less than .05, and in that case, the null hypothesis

shall be rejected at 5% level; otherwise, null hypothesis is failed to be rejected.

One of the conditions in using the two sample t-test is that the variance of the

two groups must be equal or nearly equal. The SPSS uses Levene’s F-test to test
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this assumption. If the p value for F-test is more than .05, null hypothesis may be

accepted, and this will ensure the validity of t-test.
Another important feature in this example is the style of feeding the data for

SPSS analysis. The readers should note the procedure of defining the variables and

feeding the data carefully in this example. Here there are two variables Pizza

Company and Delivery Time. Pizza Company is a nominal variable, whereas

Delivery Time is a scale variable.

Computation of Two-Sample t-Test for Unrelated Groups

(a) Preparing Data File
Before using the SPSS commands for computing the t-value and other related

statistics for two independent groups, a data file needs to be prepared. The

following steps will help you to prepare the data file:

(i) Starting the SPSS: Use the following command sequence to start SPSS:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS

Statistics 20

After checking the option Type in Data on the screen you will be taken to

the Variable View option for defining the variables in the study.

(ii) Defining variables: There are two variables in this example which need to

be defined in SPSS along with their properties. Variable Pizza Company is
defined as ‘Nominal,’ whereas Delivery Time is defined as ‘Scale’ as they

are measured on nominal as well as interval scale, respectively. The

procedure of defining the variables in SPSS is as follows:

1. Click Variable View to define the variables and their properties.

2. Write short name of the variables as Company and Del_Time under the
column heading Name.

Table 6.12 Data of delivery

time (in minutes) in two

pizza companies

S.N. Company A Company B

1 20.5 20.5

2 24.5 17

3 15.5 18.5

4 21.5 17.5

5 20.5 20.5

6 18.5 16

7 21.5 17

8 20.5 18

9 19.5 18

10 21 18.5

11 21.5

12 22
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3. Under the column heading Label, full names of these variables may be

defined as Pizza Company and Delivery Time, respectively. Readers
may choose some other names of these variables as well.

4. For the variable Company, double-click the cell under the column

heading Values and add the following values to different levels:

Value Label

1 Company A

2 Company B

The screen for defining the values can be seen in Fig. 6.10.

5. Under the column headingMeasure, select the option ‘Nominal’ for the

Company variable and ‘Scale’ for the Del_Time variable.
6. Use default entries in rest of the columns.

After defining the variables in variable view, the screen shall look like

Fig. 6.10

(iii) Entering data
After defining both the variables in Variable View, click Data View on

the left corner in the bottom of the screen shown in Fig. 6.10 to open the

data entry format column wise. For the Company variable, type first twelve
scores as 1 and the next ten scores as 2 in the column. This is because the

value ‘1’ denotes Company A and there are 12 delivery time scores

reported by the customers. Similarly, the value ‘2’ denotes Company B

and there are 10 delivery time scores as reported by the customers. After

entering the data, the screen will look like Fig. 6.11.

Fig. 6.10 Defining variables along with their characteristics
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(b) SPSS Commands for Two-Sample t-Test
After preparing the data file in data view, take the following steps for two-

sample t-test:

(i) Initiating the SPSS commands for two-sample t-test: In data view, click the

following commands in sequence:

Analyze ⇨ Compare means ⇨ Independent-Samples t test
The screen shall look like Fig. 6.12.

(ii) Selecting variables for analysis: After clicking the Independent-Samples

t test option, you will be taken to the next screen for selecting variables for
the two-sample t-test. Select the variable Delivery Time from left panel and

Fig. 6.11 Screen showing

entered data for company and

delivery time in the data view
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bring it in the “Test Variable” section of the right panel. Similarly, select

the variable Pizza Company from the left panel and bring it to the “Group-

ing Variable” section of the right panel.

Select variable from the left panel and bring it to the right panel by using

the arrow key. After selecting both the variables, the values ‘1’ and ‘2’ need

to be defined for the grouping variable Pizza Company by pressing the tag

‘Define Groups.’ The screen shall look like Fig. 6.13.

Note: Many variables can be defined in the variable view in the same data

file for computing several t-values for different independent groups.

(iii) Selecting options for computation: After selecting the variables, option

needs to be defined for the two-sample t-test. Do the following:

– In the screen shown in Fig. 6.13, click the tag Options and you will get

the screen shown in Fig. 6.14.

– Enter the confidence interval as 95% and click Continue to get back to

the screen shown in Fig. 6.13. By default, the confidence interval is

95%; however, if desired, it may be changed to some other level.

The confidence level is the one at which the hypothesis needs to be

tested. In this problem, the null hypothesis is required to be tested at .05

level of significance, and therefore, the confidence level here shall be

95%. One can choose the confidence level as 90 or 99% if the level of

significance for testing the hypothesis is .10 or .01, respectively.

– Click OK on the screen shown in Fig. 6.13.

Fig. 6.12 Screen showing SPSS commands for two-sample t-test
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(c) Getting the Output
Clicking the OK key in Fig. 6.14 will lead you to the output window. In the

output window of the SPSS, the relevant outputs may be selected by using the

Fig. 6.13 Screen showing selection of variable for two-sample t-test for unrelated groups

Fig. 6.14 Screen showing the option for choosing the significance level
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right click of the mouse, and it may be copied in the word file. The output panel

shall have the following results:

1. Descriptive statistics for the data in different groups

2. ‘F-’ and ‘t-’values for testing the equality of variances and equality of

means, respectively

(i) In this example, all the outputs so generated by the SPSS will look like

Tables 6.13 and 6.14. The model way of writing the results of two-sample t-
test for unrelated samples has been shown in Table 6.15.

Interpretation of the Outputs

The following interpretations can be made on the basis of the results shown in the

above outputs:

1. Table 6.13 shows the mean, standard deviation, and standard error of the mean

for the data on delivery time of both the pizza companies. The mean delivery

time of the company B is less than that of the delivery time of company A.

However, whether this difference is significant or not shall be revealed by

looking to the t-value and its associated p value. However, if the t-value is not

significant, no one should draw the conclusion about the delivery time of the

pizza companies by looking to the sample means.

Table 6.13 Descriptive statistics of the groups

Pizza company N Mean Std. deviation Std. error mean

Delivery time in sec A 12 20.58 2.16 .62412

B 10 18.15 1.45 .45977

Table 6.14 F- and t-table for testing the equality of variances and equality of means of two

unrelated groups

Levene’s

test for

equality of

variance t-test for equality of means

95%

confidence

interval of the

difference

F Sig. t df

Sig. (two-

tailed)

Mean

diff.

SE

diff. Lower Upper

Delivery time in sec.

Equal variances

assumed

.356 .557 3.028 20 .007 2.43 .804 0.76 4.11

Equal variances not

assumed

3.139 19.3 .005 2.43 .775 0.81 4.05
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2. One of the conditions for using the two-sample t-ratio for unrelated groups is that
the variance of the two groups must be equal. To test the equality of variances,

Levene’s test was used. In Table 6.14, F-value is .356 which is insignificant as

the p value is .557 which is more than .05. Thus, the null hypothesis of equality

of variances may be accepted, and it is concluded that the variances of the two

groups are equal.

3. It can be seen from Table 6.15 that the value of t-statistic is 3.028. This t-value is
significant as its p value is 0.007 which is less than .05. Thus, the null hypothesis
of equality of population means of two groups is rejected, and it may be

concluded that the average delivery time of the pizza in both the companies is

different. Further, average delivery time of the company B is less than that of the

company A, and therefore, it may be concluded that the delivery of pizza by the

company B to their customers is faster than that of the company A.

Remark: The readers can note that initially the two-tailed hypothesis was tested in

this example, but the final conclusion has beenmade similar to the one-tailed test. This

is because of the fact that if the t-statistic is significant in two-tailed test then it will also
be significant at one-tailed test. To make it clearer, let us consider that for two-tailed

test, the critical value is ta=2 at level of significance. This value will always be greater

than that of the critical value of ta in one-tailed test, and therefore, if the calculated

value of t is greater than ta=2, it will also be greater than ta.

Solved Example of Paired t-Test with SPSS

Example 6.7 An experiment was conducted to know the impact of new advertise-

ment campaign on sale of television of a particular brand. The number of television

units sold on 12 consecutive working days before and after launching the advertise-

ment campaign in a city was recorded. The data obtained are shown in Table 6.16.

Solution Here the hypothesis which needs to be tested is

H0 : mD ¼ 0 Difference of average sales after and before the advertisement is zero:ð Þ

against the alternative hypothesis

Table 6.15 t-table for the data on delivery time along with F-value

Groups Means S.D. Mean. diff SE of mean diff t-value p value F-value p value

Company A 20.58 2.16 2.43 .804 3.028 .007 .356 .557

Company B 18.15 1.45
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H1 : mD 6¼ 0 Difference of average sales after and before the advertisement isð
not equal to zero:Þ

After getting the value of t-statistic for paired sample in the output of SPSS, it

needs to be tested for its significance. The output so generated by the SPSS also

gives the significance level (p value) along with t-value. The null hypothesis may be

rejected if the p value is less than .05; otherwise, it is accepted. If the null hypothesis
is rejected, an appropriate conclusion may be drawn regarding the effectiveness of

the advertisement campaign by looking to the mean values of the sales before and

after the advertisement.

In this problem, there are two variables TV Sold before Advertisement and TV Sold
after Advertisement. For both these variables, data shall be entered in two different

columns unlike the way it was entered in two-sample t-test for unrelated groups.

Computation of Paired t-Test for Related Groups

(a) Preparing Data File
The data file needs to be prepared first for using the SPSS commands for the

computation of t-value and other related statistics. Follow the below-mentioned

steps in preparing the data file.

(i) Starting the SPSS: Follow the below-mentioned command sequence to start

SPSS on your computer:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS

Statistics 20

(ii) Defining variables: In this example, two variables TV Sold before Adver-
tisement and TV Sold after Advertisement need to be defined along with

their properties. Both these variables are scalar as they are measured on

Table 6.16 Number of TV

units sold in a city before and

after the advertisement

campaign

Days Before advertisement After advertisement

1 25 28

2 36 42

3 22 38

4 26 40

5 18 35

6 8 12

7 23 29

8 31 52

9 25 26

10 22 26

11 20 25

12 5 7
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ratio scale. These variables can be defined along with their properties in

SPSS by using the following steps:

1. After clicking the Type in Data above, click theVariable View to define

the variables and their properties.

2. Write short name of the variables as After_Ad and Before_Ad under the

column heading Name.

3. Under the column heading Label, full name of these variables may be

defined as TV Sold before Advertisement and TV Sold after Advertise-
ment, respectively. Readers may choose some other names of these

variables if so desired.

4. Under the column heading Measure, select the option ‘Scale’ for both

the variables.

5. Use default entries in rest of the columns.

After defining the variables in variable view, the screen shall look like

Fig. 6.15.

(iii) Entering the data
Once both these variables are defined in the Variable View, click Data

View on the left corner in the bottom of the screen as shown in Fig. 6.15 to

open the format for entering the data column wise. For both these

variables, data is entered column wise. After entering the data, the screen

will look like Fig. 6.16.

(b) SPSS Commands for Paired t-Test
After entering all the data in the data view, take following steps for paired t-test.

(i) Initiating SPSS commands for paired t-test: In data view, click the follow-

ing commands in sequence:

Analyze ! Compare means ! Paired-Samples t Test

The screen shall look like Fig. 6.17.

Fig. 6.15 Variables along with their characteristics for the data shown in Table 6.16
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Fig. 6.16 Screen showing

entered data on TV sales

before and after the

advertisement campaign

Fig. 6.17 Screen showing SPSS commands for paired t-test

Solved Example of Paired t-Test with SPSS 211



(ii) Selecting variables for analysis: After clicking the Paired-Samples t Test,
the next screen will follow for variable selection. Select the variable TV
Sold before Advertisement and TV Sold after Advertisement from left panel

and bring them to the right panel as variable 1 and variable 2 of pair 1. After

selecting both the variables, the screen shall look like Fig. 6.18.

Note: Many pairs of variables can be defined in the variable view in the

same data file for computing several paired t-tests. These pairs of variables
can be selected together in the screen as shown in Fig. 6.18.

(iii) Selecting options for computation: After selecting the variables, option

needs to be defined for computing paired t-test. Do the following:

– In the screen as shown in Fig. 6.18, click the tag Options and you will

get the screen where by default confidence level is selected 95%. No

need of doing anything except to click Continue.
One can define the confidence level as 90 or 99% if the level of

significance for testing the hypothesis is .10 or .01, respectively.

– Click OK on the screen shown in Fig. 6.18.

(c) Getting the Output
Clicking the OK tag in Fig. 6.18 will lead you to the output window. In the

output window, the relevant results can be selected by using right click of the

mouse and may be copied in the word file. The output panel shall have the

following results:

Fig. 6.18 Screen showing selection of variables for paired t-test
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1. Paired samples statistics

2. Paired t-test table

In this example, all the outputs so generated by the SPSS will look like

Tables 6.17 and 6.18.

Interpretation of the Outputs

The following interpretations can be made on the basis of the results shown in the

above output:

1. The values of the mean, standard deviation, and standard error of the mean for

the data on TV sales before and after the advertisement are shown in Table 6.17.

These values can be used to draw conclusion as to whether the advertisement

campaign was effective or not.

2. It can be seen from Table 6.18 that the value of t-statistic is 4.204. This t-value is
significant as the p value is 0.001 which is less than .05. Thus, the null hypothesis
of equality of average TV sales before and after advertisement is rejected, and

therefore, it may be concluded that the average sale of the TV units before and

after the advertisement is not same.

Further, by looking to the values of the mean sales of the TV units before and

after advertisement in Table 6.17, you may note that the average sales have

increased after the advertisement campaign. Since the null hypothesis has been

rejected, it may thus be concluded that the increase in the TV units has been

significantly increased due to advertisement campaign.

Table 6.17 Paired sample statistics

Mean N SD SE(mean)

Pair 1

TV sold before advertisement 21.75 12 8.61 2.49

TV sold after advertisement 30.00 12 12.55 3.62

Table 6.18 Paired t-test for the data on number of TV sold

Paired differences

95% confidence

interval of the

difference

Mean SD SE(M) Lower Upper t df Sig.(two-tailed)

Pair 1

Before advertisement 8.25 6.797 1.96 3.93 12.57 4.204 11 .001

After advertisement
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You may notice that we started with testing two-tailed test but ended up in

testing one-tailed test. This is because of the fact that if the t-value is significant
at 5% level in two-tailed test, then this will also be significant in one-tailed test.

Summary of SPSS Commands for t-Tests

(a) For One-Sample t-Test

(i) Start the SPSS by using the following commands:

Start ! All Programs ! IBM SPSS Statistics ! IBM SPSS

Statistics 20

(ii) Click Variable View tag and define the variable Age.
(iii) Once the variables are defined, type the data for each variable by clicking

Data View.

(iv) In the data view, follow the below-mentioned command sequence for

computing one-sample t-test:

Analyze Compare Means One-Sample t Test

(v) Select the variable Age from left panel to the right panel by using the arrow

command.

(vi) Enter the test value as 28. This is the population mean age which is

required to be tested.

(vii) By clicking the tag Options, ensure that confidence interval is selected as

95% and click Continue. Confidence level can be entered as 90 or 99% if

the level of significance for testing the hypothesis is .10 or .01,

respectively.

(viii) Press OK for output.

(b) For Two-Sample t-Test for Unrelated Groups

(i) Start the SPSS the way it is done in case of one-sample t-test.
(ii) In the variable view, define Company and Del_Time as a ‘Nominal’ and

‘Scale’ variables, respectively.

(iii) In the variable view under column heading Values, define the values ‘1’

for Company A and ‘2’ for Company B for the variable Company.
(iv) In the data view, feed the data of Company A as 1 for first twelve entries (as

there are twelve scores in the Company A) and 2 as next ten entries (as ten

scores are in Company B) column wise under the column Company. Under
the columnDel_Time, enter the first group of delivery time data and then in

the same column, enter the second group of delivery time data.

(v) In the data view, follow the below-mentioned command sequence for

computing the value of t:

Analyze ! Compare means ! Independent-Samples t test

214 6 Hypothesis Testing for Decision-Making



(vi) Select the Company and Del_Time variables from left panel and bring

them in the “Test Variable” and “Grouping Variable” sections of the right

panel, respectively.

(vii) Define the values 1 and 2 as two groups for the grouping variable

Company.
(viii) By clicking the tagOptions, ensure that confidence interval is selected as

95% and click Continue.
(ix) Press OK for output.

(c) For Paired t-Test

(i) Start the SPSS the way it is done in case of one-sample t-test.
(ii) In variable view, define the variables After_Ad and Before_Ad as scale

variables.

(iii) In the data view, follow the below-mentioned command sequence for

computing the value of t after entering the data for both the variables:

Analyze ! Compare means ! Paired-Samples t Test
(iv) Select the variables After_Ad and Before_Ad from left panel and bring

them to the right panel as variable 1 and variable 2 of pair 1.

(v) By clicking the tag Options, ensure that confidence interval is selected as

95% and click Continue.
(vi) Press OK for output.

Exercise

Short-Answer Questions

Note: Write the answer to each of the following questions in not more than 200

words.

Q.1. What do you mean by pooled standard deviation? How will you compute it?

Q.2. Discuss the criteria of choosing a statistical test in testing hypothesis

concerning mean and variances.

Q.3. What are the various considerations in constructing null and alternative

hypotheses?

Q.4. What are the various steps in testing a hypothesis?

Q.5. Discuss the advantages and disadvantages of one- and two-tailed tests.

Q.6. Explain the situations in which one- and two-tailed tests should be used.

Q.7. Discuss the concept of one- and two-tailed hypotheses in terms of rejection

region.

Q.8. What do you mean by type I and type II errors? Discuss the situations when

type II error is to be controlled.

Q.9. What do you mean by p value? How it is used in testing the significance of

test statistic?
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Q.10. What do you mean by degrees of freedom? Discuss it in computing different

statistics.

Q.11. Discuss a situation where one-sample t-test can be used. Explain the formula

and procedure of testing the hypothesis.

Q.12. What are the various assumptions in using two-sample t-tests for unrelated
groups? What is the solution if the assumptions are not met?

Q.13. Write the steps in testing a hypothesis in comparing the means of two

unrelated groups.

Q.14. Discuss the procedure of testing a hypothesis by using paired t-test.
Q.15. Under what situations should paired t-test be used? Can it be used if sample

sizes differ?

Multiple-Choice Questions

Note: Question no. 1–10 has four alternative answers for each question. Tick marks

the one that you consider the closest to the correct answer.

1. If the value of t-statistic increases, then its associated p value

(a) Increases

(b) Decreases

(c) Remains constant

(d) Depends upon the level of significance chosen in the study

2. At a particular level of significance, if a null hypothesis is rejected in two-tailed

test, then

(a) It will be accepted in one-tailed test.

(b) May be accepted or rejected in one-tailed test depending upon the level of

significance.

(c) It may be rejected in one-tailed test.

(d) It will also be rejected in one-tailed test.

3. Choose the most appropriate statement.

(a) t-test cannot be used for large sample.

(b) z-test cannot be used for large sample.

(c) t-test can be used for large sample.

(d) Both t-test and z-test can be used for small sample.

4. Sample is said to be small if it is

(a) 39

(b) 31

(c) 29

(d) 32

5. In two-tailed hypothesis, the critical region is

(a) Divided in both the tails in 1:4 proportion

(b) Lying in right tail only
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(c) Lying in left tail only

(d) Divided in both the tails

6. If a researcher wishes to test whether rural youth is less intelligent than the

urban youth by means of the following hypotheses,

H0 : mRural � mUrban
H1 : mRural<mUrban

the critical region lies

(a) In the left tail only.

(b) In the right tail only.

(c) In both the tails.

(d) None of the above is correct.

7. In using two-sample t-test, which assumption is used?

(a) Variances of both the populations are equal.

(b) Variances of both the populations are not necessarily equal.

(c) No assumption is made on the population variance.

(d) Variance of one population is larger than other.

8. If Cal t < ta, choose the most appropriate statement.

(a) H0 is failed to be rejected.

(b) H1 may be rejected.

(c) H0 may be rejected.

(d) H1 is failed to be accepted.

9. If it is desired to compare the anxiety of male and female, which is the most

appropriate set of hypotheses?

(a)
H0 : mMale ¼ mFemale

H1 : mMale 6¼ mFemale

(b)
H0 : mMale ¼ mFemale

H1 : mMale>mFemale

(c)
H0 : mMale ¼ mFemale

H1 : mMale<mFemale

(d)
H0 : mMale 6¼ mFemale

H1 : mMale ¼ mFemale
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10. In testing the following set of hypotheses,

H0 : m1 � m2
H1 : m1<m2

choose the most appropriate statement.

(a) If Cal t � ta, H0 may not be rejected.

(b) If Cal t < �ta, H0 may be rejected.

(c) If Cal t > �ta, H0 may be rejected.

(d) None of the above is correct.

11. If there are N pairs of score and paired t-test is used for comparing the means of

both the groups, what will be the degrees of freedom for t-statistic?

(a) N
(b) 2N � 2

(c) N + 1

(d) N � 1

12. If attitude toward science is to be compared among 22 male and 18 women

students of class XII by using t-ratio, what would be its degrees of freedom?

(a) 40

(b) 39

(c) 2

(d) 38

13. To see the effectiveness of observation method on learning skill, which of the

SPSS command shall be used?

(a) One-sample t-test
(b) Independent-sample t-test
(c) Paired-sample t-test
(d) None of the above

14. Power of statistical test is given by

(a) b
(b) 1 + b
(c) b � 1

(d) 1 � b

Assignments

1. A random sample of 25 management students was tested for their IQ in a

university. Their scores were as follows:

92, 101, 94, 93, 97, 98, 120, 104, 98, 96, 85, 121, 87, 96, 111, 102, 99, 95, 89,

102, 131, 107, 109, 99, 97

Can it be concluded that the management students in the university have a mean

IQ score equal to 101? Test your hypothesis at 5% level.
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2. The following data set represents the weight of the average daily household

waste (kg/day/house) generated from 20 houses in a locality:

4.1 3.7 4.3 2.5 2.5 6.8 4.0 4.5 4.6 7.1

3.5 3.1 6.6 5.5 6.5 4.1 4.2 4.8 5.1 4.8

Can it be concluded that the average daily household waste of that community is

5.0 kg/day/house? Test your hypothesis at 1% level.

3. A feeding experiment was conducted with two random samples of pigs on the

relative value of limestone and bone meal for bone development. The data so

obtained on ash content are shown in the following table:

Test the significance of the difference between the mean ash content of the two

groups at 5% level.

4. A company wanted to know as to which of the two pizza types, that is, fresh

veggie and peppy paneer, was most popular among the people. An experiment

was conducted in which 12 men were given two types of pizza, that is, fresh

veggie pizza and pepper paneer pizza, to eat on two different days. Each pizza

was carefully weighed at exactly 16 oz. After 20 min, the leftover pizzas were

weighed, and the amount of each type of pizza remaining per person was

calculated assuming that the subjects would eat more if they preferred the

pizza type. The data so obtained is shown in the following table.

Ash contents (%) in the bones

of pigs
S.N. Lime stone Bone stone

1 48.9 52.5

2 52.3 53.9

3 51.4 53.2

4 50.6 49.9

5 52 51.6

6 45.8 48.5

7 50.5 52.6

8 52.1 44.6

9 53 52.8

10 46.5 48.8

Weights of the leftover pizzas

in both varieties
S.N. Fresh veggie (in oz.) Pepper paneer (in oz.)

1 12.5 15

2 5.87 7.1

3 14 14

4 12.3 13.7

5 3.5 14.2

6 2.6 5.6

7 14.4 15.4

8 10.2 11.3

9 4.5 15.6

10 6.5 10.5

11 4.3 8.5

12 8.4 9.3
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Apply the paired t-test and interpret your findings. Do people seem to prefer

fresh veggie pizza over pepper veggie pizza? Test your hypothesis at 5% level.

Answers to Multiple-Choice Questions

Q.1 b Q.2 d

Q.3 c Q.4 c

Q.5 d Q.6 a

Q.7 a Q.8 a

Q.9 a Q.10 b

Q.11 d Q.12 d

Q.13 c Q.14 d

Assignments

1. Calculated value of t ¼ �0.037; average IQ score of the students is 101.

2. Calculated value of t ¼ �1.286; average daily household waste of the commu-

nity is 5 kg/day/house.

3. Calculated value of t ¼ �0.441; mean ash contents of both the groups are same.

4. Calculated value of t ¼ 3.193 which is significant. People prefer fresh veggie

pizza.
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Chapter 7

One-Way ANOVA: Comparing Means of More

than Two Samples

Learning Objectives

After completing this chapter, you should be able to do the following:

• Understand the basics of one-way analysis of variance (ANOVA).

• Learn to interpret the model involved in one-way analysis of variance.

• Learn the different designs of ANOVA.

• Describe the situations in which one-way analysis of variance should be used.

• Learn the manual procedure of applying one-way ANOVA in testing of

hypothesis.

• Construct the null and research hypotheses to be tested in the research study.

• Learn what happens if multiple t-tests are used instead of one-way ANOVA.

• Understand the steps involved in one-way analysis of variance in equal and

unequal sample sizes.

• Interpret the significance of F-statistic using the concept of p value.

• Know the procedure of making data file for analysis in SPSS.

• Understand the steps involved in using SPSS for solving the problems of one-

way analysis of variance.

• Describe the output of one-way analysis of variance obtained in SPSS.

Introduction

One-way analysis of variance is a statistical technique used for comparing means of

more than two groups. It tests the null hypothesis that samples in different groups

have been drawn from the same population. It is abbreviated as one-way ANOVA.

This technique can be used in a situation where the data is measured either on

interval or ratio scale. In one-way ANOVA, group means are compared by com-

paring the variability between groups with that of variability within the groups. This

is done by computing an F-statistic. The F-value is computed by dividing the mean

sum of squares between the groups by the mean sum of squares within the groups.
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As per the central limit theorem, if the groups are drawn from the same popula-

tion, the variance between the group means should be lower than the variance

within the groups. Thus, a higher ratio (F-value) indicates that the samples have

been drawn from different populations.

There are varieties of situations in which one-way analysis of variance can be

used to compare the means of more than two groups. Consider a study in which it is

required to compare the responses of the students belonging to north, south, west

and east regions towards liking of mess food in the university. If the quality of mess

food is rated on a scale of 1–10 (1 ¼ “I hate the food,” 10 ¼ “Best food ever”),

then the responses of the students belonging to different regions can be obtained in

the form of the interval scores. Here the independent variable would be the

student’s region having four different levels namely north, south, east and west

whereas the response of the students shall be the dependent variable. To achieve the

objective of the study the null hypothesis of no difference among the mean

responses of the four groups may be tested against the alternative hypothesis that

at least one group mean differs. If the null hypothesis is rejected, a post hoc test is

used to get the correct picture as to which group’s liking is the best.

Similarly a human resource manager may wish to determine whether the

achievement motivation differs among the employees in three different age

categories (<25, 26–35, and >35 years) after attending a training program. Here,

the independent variable is the employee’s age category, whereas the achievement

motivation is the dependent variable. In this case, it is desired to test whether the

data provide sufficient evidence to indicate that the mean achievement motivation

of any age category differs from other. The one-way ANOVA can be used to answer

this question.

Principles of ANOVA Experiment

There are three basic principles of design of experiments, that is, randomization,

replication, and local control. Out of these three, only randomization and replica-

tion need to be satisfied by the one-way ANOVA experiments. Randomization

refers to the random allocation of the treatment to experimental units. On the other

hand, replication refers to the application of each individual level of the factor to

multiple subjects. In other words, the experiment must be replicated in more than

one subject. In the above example several employees in each age group should be

selected in a random fashion in order to satisfy the principles of randomization and

replication. This facilitates in drawing the representative sample.

One-Way ANOVA

It is used to compare the means of more than two independent groups. In one-way

ANOVA, the effect of different levels of only one factor on the dependent variable

is investigated. Usually one-way ANOVA is used for more than two groups because
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two groups may be compared using t-test. In comparing two group means, the t and F
are related as F ¼ t2. In using one-way ANOVA, the experimenter is often interested

in investigating the effect of different treatments on some subjects. Which may be

people, animals, or plants, etc. For instance, obesity can be compared among the

employees of three different departments: marketing, production, and human

resource of an organization. Similarly anxiety of the employees can be compared

in three different units of an organization. Thus, one-way ANOVA has a wide

application in management sciences, humanities, and social sciences.

Factorial ANOVA

A factorial design is the one in which the effect of two factors on the dependent

variable is investigated. Here each factor may have several levels and each combi-

nation becomes a treatment. Usually factorial ANOVA is used to compare the main

effect of each factor as well as their interaction effects across the levels of other

factor on the criterion variable. But the situation may arise where each combination

of levels in two factors is treated as a single treatment and it is required to compare

the effect of these treatments on the dependent variable. In such situation one-way

ANOVA can be used to test the required hypothesis. Consider a situation where the

effect of different combination of duration and time on learning efficiency is to be

investigated. The duration of interest is 30 and 60 minutes and the subjects are

given training in the morning and evening sessions for a learning task. The four

combinations of treatments would be morning time with 30 minutes duration,

morning time with 60 minutes duration, evening time with 30 minutes duration

and evening time with 60 minutes duration. In this case neither the main effect nor

the interaction effects are of interest to the investigator rather just the combinations

of these levels form four levels of the independent treatment.

If the number of factors and their levels are large, then lots of experimental

groups need to be created which is practically not possible, and in that case

fractional factorial design is used. In this design, only important combinations are

studied.

Repeated Measure ANOVA

Repeated measure ANOVA is used when same subjects are given different

treatments at different time interval. In this design, same criterion variable is

measured many times on each subject. This design is known as repeated measure

design because repeated measures are taken at different time in order to see the

impact of time on changes in criterion variable. In some studies of repeated measure

design, same criterion variable is compared under two or more different conditions.

For example, in order to see the impact of temperature on memory retention, a

subject’s memory might be tested once in an air-conditioned atmosphere and

another time in a normal room temperature.
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The experimenter must ensure that the carryover effect does not exist in

administering different treatments on the same subjects. The studies in repeated

measure design are also known as longitudinal studies.

Multivariate ANOVA

Multivariate ANOVA is used when there are two or more dependent variables.

It provides solution to test the three hypotheses, namely, (a) whether changes in

independent variables have significant impact in dependent variables, (b) whether

interaction among independent variables is significant, and (c) whether interaction

among dependent variables is significant. Multivariate analysis of variance is also

known as MANOVA. In this design, the dependent variables must be loosely

related with each other. They should neither be highly correlated nor totally

uncorrelated among themselves. Multivariate ANOVA is used to compare the

effects of two or more treatments on a group of dependent variables. The dependent

variables should be such so that together it conveys some meaning. Consider an

experiment where the impact of educational background on three personality traits

honesty, courtesy, and responsibility is to be studied in an organization. The

subjects may be classified on the basis of their educational qualification; high

school, graduation or post-graduation. Here the independent variable is the Educa-

tion with three different levels: high school, graduation, and postgraduation,

whereas the dependent variables are the three personality traits namely honesty,

courtesy, and responsibility. The one-way MANOVA facilitates us to compare the

effect of education on the personality as a whole of an individual.

One-Way ANOVA Model and Hypotheses Testing

Let us suppose that there are r groups of scores where first group has n1 scores,

second has n2 scores, and so on, and rth group has nr scores. If Xij represents the jth
score in the ith group (i ¼ 1, 2, . . ., r; j ¼ 1, 2, . . ., ni), then these scores can be

shown as follows:

Total Mean

1 X11 X12 . . ... X1j .... X1n1 R1 X1

2 X21 X22 . . ... X2j . . .. X2n2 R2 X2

. . . . .

. . . . .

Samples i Xi1 Xi2 . . ... Xij . . .. Xini Ri Xi

. . . . .

. . . . .

r Xr1 Xr2. . ... Xrj . . .. Xrnr Rr Xr

G ¼ R1 + R2 + . . .Rr
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Here,

N ¼ n1 + n2 + . . .nr, the total of all the scores
G is the grand total of all N scores

Ri is the total of all the scores in ith group

The total variability among the above-mentioned N scores can be attributed due

to the variability between groups and variability within groups. Thus, the total

variability can be broken into the following two components:

Total variability ¼ Variability between groupsþ Variability withinGroups

or TSS ¼ SSb þ SSw
(7.1)

This is known as one-way ANOVA model where it is assumed that the variability

among the scores may be due to the groups. After developing the model, the

significance of the group variability is tested by comparing the variability between

groups with that of variability within groups by using the F-test.
The null hypothesis which is being tested in this case is that whether variability

between groups (SSb) and variability within the groups (SSw) are the same or not.

If the null hypothesis is rejected, it is concluded that the variability due to groups is

significant, and it is inferred that means of all the groups are not same. On the other

hand, if the null hypothesis is not rejected, one may draw the inference that group

means do not differ significantly. Thus, if r groups are required to be compared on

some criterion variable, then the null hypothesis can be tested by following the

below mentioned steps:

(a) Hypothesis construction: The following null hypothesis is tested

H0 : m1 ¼ m2 ¼ . . . ¼ mr

against the alternative hypothesis that at least one mean differs.

(b) Level of significance: The level of significance may be chosen beforehand.

Usually it is taken as .05 or .01.

(c) Statistical test: The F-test is used to test the above mentioned hypothesis.

If F-value is significant, it indicates that the variability between groups is

significantly higher than the variability within groups; in that case, the null

hypothesis of no difference between the group means is rejected. F-value is

obtained by computing the total sum of squares (TSS), sum of squares between

groups (SSb), and sum of squares within groups (SSw):

(i) Total sum of squares (TSS): It indicates the variation present in the whole

data set around its mean value and is obtained by adding the sum of

squares due to “between groups” and sum of squares due to “within

groups.” The total sum of squares can be defined as the sum of squared
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deviations of all the scores from their mean value. It is usually denoted

by TSS and is given by

TSS ¼
X
i

X
j

Xij � G

N

� �2

after solving

¼
X
i

X
j

X2
ij �

G2

N
(7.2)

Here G is the grand total of all the scores. The degrees of freedom for total

sum of squares is N � 1, and, therefore, mean sum of squares is computed

by dividing TSS by N � 1.

(ii) Sum of squares between groups (SSb): The sum of squares between groups

can be defined as the variation of group around the grand mean of the data

set. In other words, it is the measure of variation between the group means

and is usually denoted by SSb. This is also known as the variation due to

assignable causes. The sum of squares between groups is computed as

SSb ¼
X
i

R2
i

ni
� G2

N
(7.3)

Since r samples are involved in one-way ANOVA, the degrees of freedom

for between groups is r � 1. Thus, mean sum of squares for between

groups (MSSb) is obtained by dividing SSb by its degrees of freedom

r � 1.

(iii) Sum of squares within groups (SSw): The sum of squares within groups is

the residual variation and is referred as variation due to non-assignable

causes. It is the average variation within the groups and is usually denoted

by SSw:

SSw ¼ TSS� SSb (7.4)

The degrees of freedom for the sum of squares within groups is given by

N � r, and, therefore, mean sum of squares for within groups (MSSw) is

obtained by dividing SSw by N � r.
(iv) ANOVA table:After computing all sum of squares, these values are used in

the analysis of variance(ANOVA) table for computing F-value as shown

below.

ANOVA table

Sources of variation SS df MSS F-value

Between groups SSb r � 1 MSSb ¼ SSb
r�1

F ¼ MSSb
MSSw

Within groups SSw N � r MSSw ¼ SSw
N�r

Total TSS N � 1

Remark: Sum of squares are additive in nature, but mean sum of squares are not
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(v) F-statistic: Under the normality assumptions, the F-value obtained in the

above table, that is,

F ¼ MSSb

MSSw
(7.5)

follows an F-distribution with (r � 1, N � r) degrees of freedom.

This test statistic F is used to test the null hypothesis of no difference among

the group means.

(d) Decision criteria: The tabulated value of F at .05 and .01 level of significance

with (r � 1, N � r) degrees of freedom may be obtained from Tables A.4 and

A.5, respectively, in the Appendix. If calculated value of F is greater than

tabulated F, the null hypothesis is rejected. And in that case it is concluded that
at least one of the means will be different. Since ANOVA does not tell us where

the difference lies, post hoc test is used to get the clear picture. There are several

post hoc tests which can be used, but least significant difference (LSD) test is

generally used in equal sample sizes, whereas Scheffe’s test is most often used

in unequal sample sizes.

In all the post hoc tests, a critical difference is calculated at a particular level

of significance, and if the difference of any pair of observed means is higher

than the critical difference, it is inferred that one mean is higher than the other;

otherwise, group means are equal. By comparing all pair of means, conclusion

is drawn as to which group mean is the highest. The procedure of such

comparison can be seen in the solved Example 7.1.

LSD test provides the critical difference (CD) which is used for comparing

differences in all the pair of means. The CD is computed as follows:

Critical difference ¼ t:05 N � rð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
MSSð Þw

r
(7.6)

where the symbols have their usual meanings.

Since Scheffe’s test is used in case of unequal sample size hence it also provides

different critical difference for comparing different pair of group means. Here

the critical difference (CD) is calculated as follows:

CD for comparing ith and jth groupmeans

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � 1ð ÞF:05 r � 1;N � rð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSSw

1

ni
þ 1

nj

� �s
(7.7)

where ni and nj represent the sample sizes of ith and jth groups, respectively,

and other symbols have their usual meanings.

The SPSS output provides p value (significant value) for each pair of means

to test the significance of difference between them. If p value for any pair
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of means is less than .05, it is concluded that means are significantly different

otherwise not. SPSS provides various options for post hoc tests. One may

choose one or more options for analysis while using SPSS.

Assumptions in Using One-Way ANOVA

While applying one-way ANOVA for comparing means of different groups, the

following assumptions are made:

1. The data must be measured either on interval or ratio scale.

2. The samples must be independent.

3. The dependent variable must be normally distributed.

4. The population from which the samples have been drawn must be normally

distributed.

5. The variances of the population must be equal.

6. The errors are independent and normally distributed.

Remarks

1. ANOVA is a relatively robust procedure in case of violations of the normality

assumption.

2. In case the data is ordinal, a nonparametric alternative such as Kruskal-Wallis

one-way analysis of variance should be used instead of parametric one-way

ANOVA.

Effect of Using Several t-tests Instead of ANOVA

Many times a researcher argues that what if I use three t-tests rather than using

one-way ANOVA in comparing the means of three groups. One of the logics is that,

why to use three times t-test if equality of means can be tested by using one-way

ANOVA once. If the number of groups are more, then one needs to apply large

number of t-tests. For example, in case of six groups, one needs to apply 6C2 ¼ 15,

t-tests instead of one-time one-way ANOVA. This may be one of the arguments of

the researcher in favor of using one-way ANOVA, but the main problem in using

multiple t-tests instead of one-way ANOVA is that the type I error gets inflated.

If the level of significance has been chosen as p1, then Fisher has showed that the
type I error rate expands from p1 to some larger value as the number of tests

between paired means increases. The error rate expansion is constant and predict-

able which can be computed by the following equation:

p ¼ 1� 1� p1ð Þr (7.8)

where p is the new level of significance and r is the number of t-tests used for

comparing all the pair of group means.
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For example, in comparing three group means, if t-tests are used instead of one-

way ANOVA and if the level of significance is chosen as .05, then the total number

of paired comparison would be 3C2 ¼ 3.

Here, p1 ¼ 0.05 and r ¼ 3, and, therefore, the actual level of significance

becomes

p ¼ 1� ð1� p1Þr

¼ 1� 1� 0:5ð Þ3 ¼ 1� 0:953 ¼ 1� 0:8574

¼ 0:143

Thus, in comparing three group means instead of using one-way ANOVA, if

three t-tests are applied, then level of significance shall inflate from .05 to 0.143.

Application of One-Way ANOVA

One-way ANOVA is used when more than two group means are compared. Such

situations are very frequent in management research where a researcher may like to

compare more than two group means. For instance, one may like to compare the

mood state of the employees working in three different plants or to compare the

occupational stress among three different age categories of employees in an

organization.

Consider an experiment where a market analyst of a company is interested to

know the effect of three different types of incentives on the sale of a particular brand

of shampoo. Shampoo is sold to the customers with three schemes. In the first scheme

20% extra is offered in the same price, in the second scheme shampoo is sold with

free bath soap, whereas in the third scheme it is sold to the customers with a free

ladies’ perfume. These three schemes are offered to the customers in the same outlet

for 3 months. During the second month, sales of the shampoo are recorded in all three

schemes for 20 days. In this situation, scheme is the independent variable having

three different levels: 20% extra shampoo, shampoo with a bath soap, and shampoo

with a ladies’ perfume whereas, the sales figure is the dependent variable. Here the

null hypothesis which is required to be tested would be

H0 : Average sale of shampoo in all three incentive groups are same against the

alternative hypothesis.

H1 : At least one group mean is different.

The one-way ANOVA may be applied to compute F-value. If F-statistic is

significant, the null hypothesis may be rejected, and in that case, a post hoc test

may be applied to find as to which incentive is the most attractive in improving the

sale of the shampoo. On the other hand, if F-value is not significant, one fails to

reject the null hypothesis, and in that case, there would be no reason to believe that

any one incentive is better than others to enhance the sale.
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Example 7.1 An audio company predicts that students learn more effectively with

a constant low-tune melodious music in background, as opposed to an irregular loud

orchestra or no music at all. To verify this hypothesis, a study was planned by

dividing 30 students into three groups of ten each. Students were assigned to these

three groups in a random fashion, and all of them were given a comprehension to

read for 20 min. Students in group 1 were asked to study the comprehension with

low-tune melodious music at a constant volume in the background. Whereas the

students in group 2 were exposed to loud orchestra and group 3 to no music at all

while reading the comprehension. After reading the comprehension, they were

asked to solve few questions. The marks obtained are shown in the Table 7.1.

Do these data confirm that learning is more effective in particular background

music? Test your hypothesis at 5% level.

Solution Following steps shall be taken to test the required hypothesis:

(a) Hypotheses construction: The researcher is interested in testing the following

null hypothesis:

H0 : mMusic ¼ mOrchestra ¼ mWithout Music

against the alternative hypothesis that at least one mean is different.

(b) Level of significance: 0.05
(c) Statistical test: One-way ANOVA shall be used to test the null hypothesis. In

order to complete the ANOVA table, first, all the sum of squares are computed.

Here,

Number of groups ¼ r ¼ 3

Sample size in each group ¼ n ¼ 10

Total number of scores ¼ nr ¼ 30

The computation of group total, group means, and grand total has to be

computed first which is shown in Table 7.2.

(i) Correction factor CFð Þ ¼ G2

N
¼ 1352

30
¼ 607:5

ðiiÞ Raw sum of squares RSSð Þ ¼
X
i

X
j

X2
ij

¼ 82 þ 42 þ 82 þ . . . 92 þ 62
� �
þ 42 þ 62 þ 32 þ . . . 42 þ 32
� �

þ 32 þ 42 þ 62 þ . . . 12 þ 22
� �

¼ 440þ 188þ 127 ¼ 755
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(iii) Total sum of square TSSð Þ ¼ RSS� CF ¼
X
i

X
j

X2
ij �

G2

N

¼ 755� 607:5 ¼ 147:5

(iv) Sum of squares between groups SSbð Þ ¼
X
i

R2
i

ni
� G2

N

¼ 642 þ 402 þ 312

10
� 607:5

¼ 665:7� 607:5 ¼ 58:2

(v) Sumof squarewithin groups SSwð Þ ¼ TSS� SSb

¼ 147:5� 58:2 ¼ 89:3

Table 7.2 Computation of group total, group means, and grand total

Music Orchestra Without music

8 4 3

4 6 4

8 3 6

6 4 2

6 3 1

7 8 2

3 3 6

7 2 4

9 4 1

6 3 2

Group total R1 ¼ 64 R2 ¼ 40 R3 ¼ 31 G ¼ R1 + R2 + R3 ¼ 135

Group mean 6.4 4 3.1

Table 7.1 Comprehension

scores of the students under

three different environments

Music Orchestra Without music

8 4 3

4 6 4

8 3 6

6 4 2

6 3 1

7 8 2

3 3 6

7 2 4

9 4 1

6 3 2

Application of One-Way ANOVA 231



(d) Decision criteria
From Table A.4 in the Appendix, F.05(2,27) ¼ 4.22.

Since calculated F(¼8.79) > F.05(2,27), the null hypothesis may be rejected.

It is therefore concluded that learning efficiency in all the three experimental

groups is not same. In order to find as to which group’s learning efficiency is

best, the least significance difference (LSD) test shall be applied. The critical

difference in LSD test is given by

CD ¼ t:05 27ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MSSw

n

r

¼ 2:052�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3:31

10

r
¼ 1:67

(e) Results
The group means may be compared by arranging them in descending order as

shown in the Table 7.4

It is clear from Table 7.4 that the mean difference between “music” and

“orchestra” groups as well as “music” and “without music” groups is greater

than the critical difference. Since the mean difference between orchestra and

without music groups is significant hence it is shown by clubbing their means

by the line as shown in the Table 7.4.

(f) Inference
From the results, it is clear that the mean learning performance in music group

is significantly higher than that of orchestra as well as nonmusic groups,

whereas the mean learning of orchestra group is equal to that of nonmusic

group. It is therefore concluded that melodious music improves the learning

efficiency.

Table 7.3 ANOVA table for the data on comprehension test

Sources of variation SS df MSS F-value

Between groups 58.2 r � 1 ¼ 2 58:2
2

¼ 29:1

8.79

Within groups 89.3 N � r ¼ 27 89:3
27

¼ 3:31

Total 147.5 N � 1 ¼ 29

Table 7.4 Group means and their comparison

Music Orchestra Without music CD at 5% level

6.4 4 3.1 1.67

“ ” represents no significant difference between

the means at 5% level
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Solved Example of One-Way ANOVA with Equal Sample Size

Using SPSS

Example 7.2 The data in the following table indicates the psychological health

ratings of corporate executives in banking, insurance, and retail sectors. Apply one-

way ANOVA to test whether the executives of any particular sector are healthier in

their psychological health in comparison to other sectors. Test your hypothesis at

5% as well as 1% level (Table 7.5).

Solution

In this problem, it is required to test the following null hypothesis

H0 : mBanking ¼ mInsurance ¼ mRetail

against the alternative hypothesis that at least one mean differs.

The SPSS output provides F-value along with its significance value (p value).

The F-value would be significant if the p value is less than .05. If F-value becomes

significant, a post hoc test shall be used to compare the paired means. SPSS

provides facility to choose one or more post hoc test for analysis.

In this example, since the sample sizes are equal, LSD test shall be used as a

post hoc test for comparing the group means. However, one can choose other post

hoc tests as well. The SPSS output provides the p value for testing the significance
of the difference between each pair of group means. Thus, by looking to the

results of post hoc test, one can determine as to which group mean is higher. The

procedure has been discussed while interpreting the output.

Table 7.5 Data on

psychological health
S.N. Banking Insurance Retail

1 45 41 58

2 41 38 54

3 47 43 49

4 59 53 65

5 48 43 51

6 45 42 56

7 38 40 41

8 48 42 51

9 39 32 45

10 42 39 53

11 38 36 37

12 36 32 42

13 45 40 44

14 38 39 32

15 42 40 50
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Computations in One-Way ANOVA with Equal Sample Size

(a) Preparing data file
A data file needs to be prepared before using the SPSS commands for one-way

ANOVA with equal samples size. The following steps will help you prepare the

data file:

(i) Starting the SPSS: Use the following command sequence to start SPSS:

Start ! Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

After clicking the Type in Data, you will be taken to the Variable View

option for defining the variables in the study.

(ii) Defining variables: There are two variables in this example which need to

be defined along with their properties while preparing the data file. These

variables are psychological health and sector. The psychological health is

defined as scale variable, whereas sector is defined as nominal variable as

they are measured on interval as well as nominal scales, respectively. The

procedure of defining these variables in the SPSS is as follows:

1. Click the Variable View to define the variables and their properties.

2. Write short name of the variables as Psy_Health and Sector under the
column heading Name.

3. Under the column heading Label, full names of these variables have

been defined as Psychological health rating and Different sector,
respectively. You may choose some other names of these variables

as well.

4. For the variable Sector, double-click the cell under the column

heading Values and add the following values to different levels:

Value Label

1 Banking

2 Insurance

3 Retail

5. Under the column headingMeasure, select the option “Scale” for the

Psy_Health variable and “Nominal” for the Sector variable.
6. Use default entries in rest of the columns. The screen shall look like

Fig. 7.1.

Remark: Many variables can be defined in the variable view simulta-

neously if ANOVA is to be applied for more than one variable.

(iii) Entering data
After defining both the variables in Variable View, click Data View on

the left corner in the bottom of the screen as shown in Fig. 7.1 to open the

234 7 One-Way ANOVA: Comparing Means of More than Two Samples



data entry format column wise. After entering the data, the screen will look

like as shown in Fig. 7.2. Since the data is large, only a portion of data is

shown in the figure. Save the data file in the desired location before further

processing.

(b) SPSS commands for one-way ANOVA
After entering all the data in the data view, follow the below-mentioned steps

for one-way analysis of variance:

(i) Initiating the SPSS commands for one-way ANOVA: In data view, click the

following commands in sequence:

Analyze ➾ Compare Means ➾ One-Way ANOVA

The screen shall look like Fig. 7.3.

(ii) Selecting variables for one-way ANOVA: After clicking the One-Way

ANOVA option, you will be taken to the next screen for selecting

variables. Select the variables Psychological health rating and Different
sector from left panel to the “Dependent list” section and “Factor” section

of the right panel, respectively. The screen will look like Fig. 7.4.

(iii) Selecting the options for computation: After selecting the variables, option
needs to be defined for generating the output in one-way ANOVA. Take

the following steps:

– Click the tag Post Hoc in the screen shown in Fig. 7.4.

– Check theoption “LSD.”LSD test is selectedbecause the sample sizes

are equal. You may choose any other post hoc test if you so desire.

– Write “Significance level” as .05. By default, it is selected. However,

you may select any other significance level like .01 or .10 as well.

– Click Continue.

Fig. 7.1 Defining variables along with their characteristics
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The screen will look like Fig. 7.5.

– Click the tag Options in the screen shown in Fig. 7.4 and then check

‘Descriptive’.

– Click Continue.

The screen for this option shall look like Fig. 7.6.

– After selecting the options, the screen shown in Fig. 7.4 shall be

restored.

– Click OK.

Fig. 7.2 Screen showing

entered data for the

psychological health and

sector in the data view
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Fig. 7.3 Screen showing SPSS commands for one-way ANOVA

Fig. 7.4 Screen showing selection of variables for one-way ANOVA
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(c) Getting the output
After clickingOK in the screen shown in Fig. 7.4, the output shall be generated

in the output window. The relevant outputs may be selected by using right click

of the mouse and may be copied in the word file. Here, the following outputs

shall be generated:

1. Descriptive statistics

2. ANOVA table

3. Post hoc comparison table

In this example, all the outputs so generated by the SPSS will look like as shown

in Tables 7.6, 7.7, and 7.8.

Interpretations of the Outputs

Different descriptive statistics have been shown in Table 7.6 which may be used to

study the nature of the data. Further descriptive profiles of the psychological health

rating for the corporate executives in different sectors can be developed by using

the values of mean, standard deviation, and minimum and maximum scores in each

groups. The procedure of developing such profile has been discussed in Chap. 2 of

this book.

Fig. 7.5 Screen showing options for post hoc test and significance level
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Table 7.6 Descriptive statistics for the data on psychological health among corporate executives

in different sectors

95% confidence interval for mean

N Mean SD SE Lower bound Upper bound Min. Max.

Banking 15 43.40 5.84 1.51 40.17 46.63 36.00 59.00

Insurance 15 40.00 4.97 1.28 37.25 42.75 32.00 53.00

Retail 15 48.53 8.53 2.20 43.81 53.26 32.00 65.00

Total 45 43.98 7.38 1.10 41.76 46.20 32.00 65.00

Note: Values have been rounded off nearest to the two decimal places

Table 7.7 ANOVA table for the data on psychological health

Sum of squares df Mean square F Sig. (p value)

Between groups 553.64 2 276.82 6.31 .004

Within groups 1,843.33 42 43.89

Total 2,396.98 44

Note: Values have been rounded off nearest to the two decimal places

Fig. 7.6 Screen showing options for descriptive statistics
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The mean of different groups in Table 7.6 and the results of Table 7.8 have been

used to prepare the graphics shown in Table 7.9 which can be used to draw

conclusions about post hoc comparison of means.

The F-value in Table 7.7 is significant at 5% level because its p value (¼.004) is

less than .05. Thus, the null hypothesis of no difference among the means of the

three groups may be rejected at 5% level. Since the p value is also less than .01, the
null hypothesis may be rejected at 1% level also.

Here, the F-value is significant; hence, the post hoc test needs to be applied for

testing the significance of mean difference between different pairs of groups.

Table 7.8 provides such comparison. It can be seen from this table that the

difference between banking and retail groups on their psychological health rating

is significant at 5% level because the p value for this mean difference is .04 which is

less than .05.

Similarly, the difference between insurance and retail groups on their psycho-

logical health is also significant at 5% as well as 1% level because the p value

attached to this mean difference is .001 which is less than .05 as well as .01.

There is no significant difference between the banking and insurance groups on

their psychological health rating because the p value attached to this group is .167

which is more than .05.

All the above-mentioned three findings can be very easily understood by looking

to the graphics in Table 7.9. From this table, it is clear that the mean psychological

health rating score is highest among the executives in the retail sector in comparison

to that of banking and insurance sectors. It may thus be concluded that the psycho-

logical health of the executives in the retail sector is best in comparison to that of

banking and insurance sectors.

Table 7.8 Post hoc comparison of means using LSD test

(I) Different sectors (J) Different sectors Mean difference (I � J) Std. error Sig. (p value)

Banking Insurance 3.40 2.42 .167

Retail �5.13* 2.42 .040

Insurance Banking �3.40 2.42 .167

Retail �8.53** 2.42 .001

Retail Banking 5.13* 2.42 .040

Insurance 8.53** 2.42 .001

Note: The values of lower bound and upper bound have been omitted from the original output. The

values have been rounded off nearest to the two decimal places

*The mean difference is significant at 5% level

**The mean difference is significant at 1% level

Table 7.9 Mean scores on

psychological health in

different groups

Retail Banking Insurance

48.53 43.40 40.00

“ ” represents no significant differ-

ence between the means
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Solved Example of One-Way ANOVA with Unequal Sample

Example 7.3 A human resource department of an organization conducted a study

to know the status of occupational stress among their employees in different age

categories. A questionnaire was used to assess the stress level of the employees in

three different age categories: <40, 40–55, and >55 years. The stress scores so

obtained are shown in Table 7.10.

Apply one-way analysis of variance to test whether mean stress score of the

employees in any two age categories are different. Test your hypothesis at 5% level.

Solution Solving problems of one-way ANOVA with equal and unequal samples

through SPSS are almost similar. In case of unequal sample size, one should be

careful in feeding the data. The procedure of feeding the data in this case shall be

discussed below. Here, the SPSS procedure shall be discussed in brief as it is

exactly similar to the one discussed in Example 7.2. Readers are advised to refer

to the procedure mentioned in Example 7.2 in case of doubt in solving this problem

of unequal sample size.

Here, the null hypothesis which needs to be tested is

H0 : mA ¼ mB ¼ mC

against the alternative hypothesis that at least one group mean differs.

If the null hypothesis is rejected, post hoc test will be used for comparing group

means. Since the sample sizes are different, the Scheffe’s test has been used for post

hoc analysis.

Table 7.10 Occupational stress scores among the employees in different age categories

Group A (<40 years) Group B (40–55 years) Group C (>55 years)

54 75 55

48 68 51

47 68 59

54 71 64

56 79 52

62 86 48

56 81 65

45 79 48

51 72 56

54 78 49

48 69

52
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Computations in One-Way ANOVA with Unequal Sample Size

(a) Preparing data file:

(i) Starting the SPSS: Start the SPSS the way it has been done in the above-

mentioned example and click the Type in Data option. You will be taken

to the Variable View option for defining the variables in the study.

(ii) Defining variables: There are two variables in this example that need to be

defined along with their properties while preparing the data file. The two

variables are stress scores and age group. The stress score is defined as

scale variable, whereas age group is defined as nominal variable as they

are measured on interval as well as nominal scales, respectively. The

procedure of defining these variables in the SPSS is as follows:

1. Click Variable View to define variables and their properties.

2. Write short name of the variables as Stress and Age_Gp under the

column heading Name.

3. Under the column heading Label, full names of these variables may

be defined as Stress scores and Age group, respectively. You may

choose some other names of these variables as well.

4. For the variable Age group, double-click the cell under the column

heading Values and add the following values to different levels:

Value Label

1 Group A (<40 years)

2 Group B (40–55 years)

3 Group C (>55 years)

5. Under the column headingMeasure, select the option “Scale” for the

Stress variable and “Nominal” for the Age_Gp variable.

6. Use default entries in rest of the columns.

After defining all the variables in variable view, the screen shall look like

Fig. 7.7.

Remark: More than one variable can be defined in the variable view for

doing ANOVA for many variables simultaneously.

(iii) Entering the data: After defining the variables in the Variable View, enter
the data, column-wise in Data View. The data feeding shall be done as

follows:
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Format of data feeding in Data View

S.N. Stress Age_Gp

Group A      n1 =12

1 54 1

2 48 1

3 47 1

4 54 1

5 56 1

6 62 1

7 56 1

8 45 1

9 51 1

10 54 1

11 48 1

12 52 1

Group B      n2 = 11

13 75 2

14 68 2

15 68 2

16 71 2

17 79 2

18 86 2

19 81 2

20 79 2

21 72 2

22 78 2

23 69 2

Group C     n3 = 10

24 55 3

25 51 3

26 59 3

27 64 3

28 52 3

29 48 3

30 65 3

31 48 3

32 56 3

33 49 3

After feeding the data as mentioned above, the final screen shall look like Fig. 7.8.

(b) SPSS commands for one-way ANOVA for unequal sample size
After entering all the data in data view, save the data file in the desired location

before further processing.

(i) Initiating the SPSS commands for one-way ANOVA: In data view, go to the

following commands in sequence:

Analyze ➾ Compare Means ➾ One-Way ANOVA

(ii) Selecting variables for analysis: After clicking the One-Way ANOVA

option, you will be taken to the next screen for selecting variables. Select
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the variables Stress scores and Age group from left panel to the “Dependent

list” section and “Factor” section of the right panel, respectively. The

screen shall look like Fig. 7.9.

(iii)Selecting options for computation: After variable selection, option needs to
be defined for generating outputs in one-way ANOVA. This shall be done

as follows:

– Click the tag Post Hoc in the screen shown in Fig. 7.9.

– Check the option “Scheffe.” This test is selected because the sample

sizes are unequal; however, you can choose any other test if you so

desire.

– If graph needs to be prepared, select the option “Means plot.”

– Write “Significance level” as .05. Usually this is written by default;

however, you may write any other significance level like .01 or .10

as well.

– Click Continue.

– Click the tag Options and then check “Descriptive.” Click Continue.
– After selecting the options, click OK.

(c) Getting the output
After clicking OK on the screen as shown in Fig. 7.9, the output shall be

generated in the output window. The relevant outputs can be selected by

using right click of the mouse and may be copied in the word file. The following

output shall be generated in this example:

(a) Descriptive statistics

Fig. 7.7 Defining variables along with their characteristics
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(b) ANOVA table
(c) Post hoc comparison table
(d) Graph for means plot

These outputs are shown in Tables 7.11, 7.12, and 7.13 and in Fig. 7.10. The

Table 7.14 has been developed by using the descriptive statistics from the

Table 7.11 and inputs from Table 7.13.

Fig. 7.8 Showing data entry

of stress scores for the

employees in different age

categories in data view
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Interpretation of the Outputs

Table 7.11 shows the descriptive statistics of the data on occupational stress of

employees in different age categories. These statistics can be used to develop a

graphic profile of the employee’s occupational stress in different age categories.

Fig. 7.9 Screen showing selection of variables

Table 7.11 Descriptive statistics for the data on occupational stress of employees in different age

categories

95% confidence interval for mean

N Mean SD SE Lower bound Upper bound Min. Max.

Group A (<40 years) 12 52.25 4.77 1.38 49.23 55.28 45.00 62.00

Group B

(40–55 years)

11 75.09 5.97 1.80 71.08 79.10 68.00 86.00

Group C (>55 years) 10 54.70 6.29 1.99 50.20 59.20 48.00 65.00

Total 33 60.61 11.80 2.05 56.42 64.79 45.00 86.00

Table 7.12 ANOVA table for the data on occupational stress

Sum of squares df Mean square F Sig.

Between groups 3494.620 2 1747.310 54.42 .000

Within groups 963.259 30 32.109

Total 4457.879 32
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The procedure of developing such profile has been discussed in detail in Chap. 2 of

this book. Further, these descriptive statistics can be used to discuss the nature of

data in different age categories.

Table 7.12 gives the value of calculated F. The p value attached with the F is

.000 which is less than .05 as well as .01; hence, it is significant at 5% as well as 1%

levels. Since the F-value is significant, the null hypothesis of no difference in the

occupational stress among the employees in all the three age categories is rejected.

The post hoc test is now used to compare the means in different pairs.

SPSS provides the option of choosing the post hoc test, and, therefore, one may

choose any one or more test for post hoc analysis. In this example, the Scheffe’s test

was chosen to compare the means in different pairs. Table 7.13 provides such

comparisons.

It can be seen that the difference between occupational stress of the employees in

group A (<40 years) and group B (40–55 years) is significant at 5% as well as at 1%

level both as the p value for this mean difference is .000 which is less than .05 as

well as .01. Similarly, the mean difference between occupational stress of the

employees in group B (40–55 years) and group C (>55 years) is also significant

at 5% as well as 1% level both as the p value for this mean difference is .000 which

is also less than .05 and .01. However, there is no significant difference between the

occupational stress of the employees in group A (<40 years) and group C

(>55 years) because the p value is .606.

Fig. 7.10 Graphical presentation of mean scores of occupational stress in three different age

categories
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The above results can be easily understood by looking to the graphics in

Table 7.14. This table has been obtained by combining the results of Tables 7.11

and 7.13.

Table 7.14 reveals that the mean occupational stress is highest among the

employees in group B (40–55 years). Further, mean occupation stress is similar in

group C (>55 years) and group A (<40 years). Since the option for mean plot was

selected in the SPSS, Fig. 7.10 has been generated in the output which shows the

mean plots of all the groups. The graph provides the conclusion at a glance.

Inference: On the basis of the results obtained above, it may be inferred that the

occupational stress among the employees in the age category 40–55 years is

maximum. The researcher may write their own reasons for these findings after

studying the lifestyle and working environment of the employees in this age

category. The results in the study provide an opportunity to the researcher to

write their own reasoning or develop their theoretical concepts supported by the

review of literatures.

Summary of the SPSS Commands for One-Way ANOVA

(Example 7.2)

(i) Start the SPSS by using the following commands:

Start ! Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

(ii) Click Variable View tag and define the variables Psy_Health and Sector as
scale and nominal variables, respectively.

Table 7.13 Post hoc comparison of group means using Scheffe’s test

(I) Age group (J) Age group Mean diff. (I � J) SE Sig. (p value)

Group A (<40 years) Group B (40–55 years) �22.84091* 2.36531 .000

Group C (>55 years) �2.45000 2.42623 .606

Group B (40–55 years) Group A (<40 years) 22.84091* 2.36531 .000

Group C (>55 years) 20.39091* 2.47585 .000

Group C (>55 years) Group A (<40 years) 2.45000 2.42623 .606

Group B (40–55 years) �20.39091* 2.47585 .000

Note: The values of lower bound and upper bound have been omitted from the original output

*The mean difference is significant at 5% as well as 1% levels

Table 7.14 Mean scores on occupational stress

in different groups

Group B

(40–55 years)

Group C

(>55 years)

Group A

(<40 years)

75.09 54.70 52.25

“ ” represents no significant difference

between the means
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(iii) Under the column heading Values, define “1” for banking, “2” for insur-

ance, and “3” for retail.

(iv) After defining variables, type the data for these variables by clicking Data

View.

(v) In the data view, follow the below-mentioned command sequence for the

computation involved in one-way analysis of variance:

Analyze ➾ Compare Means ➾ One-Way ANOVA

(vi) Select the variables Psychological health rating and Different sector from
left panel to the “Dependent list” section and “Factor” section of the right

panel, respectively.

(vii) Click the tag Post Hoc and check the option “LSD” and ensure that the

value of “Significance level” is written as .05. Click Continue.
(viii) Click the tag Options and then check “Descriptive.” Press Continue.
(ix) Press OK for output.

Exercise

Short Answer Questions

Note: Write answer to each of the following questions in not more than 200 words.

Q.1. In an experiment, it is desired to compare the time taken to complete a task

by the employees in three age groups, namely, 20–30, 31–40, and

41–50 years. Write the null hypothesis as well as all possible types of

alternative hypotheses.

Q.2. Explain a situation where one-way analysis of variance can be applied.

Which variances are compared in one-way ANOVA?

Q.3. Define principles of ANOVA.What impact it will have if these principles are

not met?

Q.4. In what situations factorial experiments are planned? Discuss a specific

situation where it can be used.

Q.5. What is repeated measure design? What precaution one must take in framing

such an experiment?

Q.6. Discuss the procedure of one-way ANOVA in testing of hypotheses.

Q.7. Write a short note on post hoc tests.

Q.8. What do you mean by different sum of squares? Which sum of square you

would like to increase and decrease in your experiment and why?

Q.9. What are the assumptions in applying one-way ANOVA?

Q.10. If you use multiple t-tests instead of one-way ANOVA, what impact it will

have on results?

Q.11. Analysis of variance is used for comparing means of different groups, but in

doing so F-test is applied, which is a test of significance for comparing the

variances of two groups. Discuss this anomaly.
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Q.12. What do you mean by the post hoc test? Differentiate between LSD and

Scheffe’s test.

Q.13. What is p value? In what context it is used?

Multiple Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the one

that you consider the closest to the correct answer.

1. In one-way ANOVA experiment, which of the following is a randomization

assumption that must be true?

(a) The treatment must be randomly assigned to the subjects.

(b) Groups must be chosen randomly.

(c) The type of data can be randomly chosen to either categorical or quantitative.

(d) The treatments must be randomly assigned to the groups.

2. Choose the correct statement.

(a) Total sum of square is additive in nature.

(b) Total mean sum of square is additive in nature.

(c) Total sum of square is nonadditive.

(d) None of the above is correct.

3. In one-way ANOVA, Xij represents

(a) The sample mean of the criterion variable for the ith group

(b) The criterion variable value for the ith subject in the jth group

(c) The number of observations in the jth group

(d) The criterion variable value for the jth subject in the ith group

4. In one-way ANOVA, TSS measures

(a) The variability within groups

(b) The variability between groups

(c) The overall variability in the data

(d) The variability of the criterion variable in any group.

5. In an experiment, three unequal groups are compared with total number of

observations in all the groups as 31 (with some items missing). Calculate the

test statistic for one-way ANOVA F-test.

Source df SS MS F

Between groups 7.5 3.75 ?

Within groups

Total 20.8
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(a) 17.89

(b) 789

(c) 7.89

(d) 78.9

6. Choose the correct statement.

(a) LSD may be used for unequal sample size.

(b) Scheffe’s test may be used for unequal sample size.

(c) Scheffe’s test may be used for comparing more than ten groups.

(d) None of the above is correct.

7. If two groups having 10 observations in each are compared by using one-way

ANOVA and if SSw ¼ 140, then what will be the value of MSSw?

(a) 50

(b) 5

(c) 0.5

(d) 50.5

8. In a one-way ANOVA, if the level of significance is fixed at .05 and if p value

associated with F-statistics is 0.062, then what should you do?

(a) Reject H0, and it is concluded that the group population means are not all

equal.

(b) Reject H0, and it may be concluded that it is reasonable that the group

population means are all equal.

(c) Fail to reject H0, and it may be concluded that the group population means

are not all equal.

(d) Fail to reject H0, and it may be concluded that there is no reason to believe

that the population means differ.

9. Choose the correct statement.

(a) If F-statistic is significant at .05 level, it will also be significant at .01 level.
(b) If F-statistic is significant at .01 level, it may not be significant at .05 level.

(c) If F-statistic is significant at .01 level, it will necessarily be significant at

.05 level.

(d) If F-statistic is not significant at .01 level, it will not be significant at .05

level.

10. Choose the correct statement.

(a) If p value is 0.02, F-statistic shall be significant at 5% level.

(b) If p value is 0.02, F-statistic shall not be significant at 5% level.

(c) If p value is 0.02, F-statistic shall be significant at 1% level.

(d) None of the above is correct.

11. In comparing the IQ among three classes using one-way ANOVA in SPSS,

choose the correct statement about the variable types.
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(a) IQ is a nominal variable and class is a scale variable.

(b) Both IQ and class are the scale variables.

(c) IQ is a scale variable and class is a nominal variable.

(d) Both IQ and class are the nominal variables.

12. If product sales are to be compared in three outlets, then choose the valid

variable names in SPSS.

(a) Product_Sale and Outlet

(b) Product-Sale and Outlet

(c) Product_Sale and 3Outlet

(d) Product-Sale and 3_Outlet

13. If three groups of students are compared on their work efficiency and in each

group there are 12 subjects, what would be the degrees of freedom for the

within group in one-way ANOVA?

(a) 30

(b) 31

(c) 32

(d) 33

14. Choose the correct model in one-way ANOVA.

(a) TSS ¼ (SS)b + (SS)w
(b) TSS ¼ (SS)b � (SS)w
(c) TSS ¼ (SS)b � (SS)w
(d) TSS ¼ (SS)b/(SS)w

15. In one-way ANOVA F-test, if SSw decreases (other sums of squares and

degrees of freedom remain the same), then which of the following is true?

(a) The value of the test statistic increases.

(b) The p value increases.

(c) Both (a) and (b).

(d) Neither (a) nor (b).

16. In a one-way ANOVA, the p value associated with F-test is 0.100. If the level
of significance is taken as .05, what would you do?

(a) Reject H0, and it is concluded that some of the group population means may

differ.

(b) Reject H0, and it is reasonable to assume that all the group population

means are equal.

(c) Fail to reject H0, and it is concluded that some of the group population

means differ.

(d) Fail to reject H0, and it is reasonable to assume that all the group population

means are equal.
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17. In one-way ANOVA, four groups were compared for their memory retention

power. These four groups had 8, 12, 10, and 11 subjects, respectively. What

shall be the degree of freedom of between groups?

(a) 41

(b) 37

(c) 3

(d) 40

18. If motivation has to be compared among the employees of three different units

using one-way ANOVA, then the variables Motivation and Units need to be

selected in SPSS. Choose the correct selection strategy.

(a) Motivation in “Factor” section and Plant in “Dependent list” section.

(b) Motivation in “Dependent list” section and Plant in “Factor” section.

(c) Both Motivation and Plant in “Dependent list” section.

(d) Both Motivation and Plant in “Factor” section.

Assignments

1. A CFL company was interested to know the impact of weather on the life of the

bulb. The bulb was lit continuously in hot humid and cold environmental

conditions till it was fused. The following are the number of hours it lasted in

different conditions:

Apply one-way analysis of variance and test whether the average life of bulbs are

same in all the weather conditions. Test your hypothesis at 5% level of signifi-

cance as well as 1% level of significance.

2. It was experienced by a researcher that the housewives read local news with

more interests in comparison to the news containing health information and read

Life of bulbs (in hours) in

different environmental

conditions

S.N. Humid Hot Cold

1 400 450 520

2 425 460 522

3 423 480 529

4 465 490 521

5 422 540 529

6 435 580 540

7 444 598 579

8 437 589 595

9 437 540 510

10 480 598 530

11 475 578 567

12 430 549 529

13 431 542 523

14 428 530 510

15 412 532 570
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health news with more interest in comparison to that of international news.

To test this hypothesis, ten housewives were selected at random in each of the

three groups. First group was given an article containing local news for reading,

the second group read an article about health, whereas the third group was given

an article related with international news. After an hour, subjects in each of these

groups were tested for a recall measure test where they were asked true-false

questions about the news story they read. The scores so obtained on the recall

measure test in all the three groups are shown below:

Apply one-way ANOVA and discuss your findings at 5% as well as 1% levels.

Answers to Multiple-Choice Questions

Q.1 a Q.2 a Q.3 d Q.4. c

Q.5 c Q.6 b Q.7 b Q.8. d

Q.9 c Q.10 a Q.11 c Q.12. a

Q.13 d Q.14 a Q.15 a Q.16. d

Q.17 c Q.18 b

Data on recall measure in

three groups
Local news Health news International news

15 14 10

16 12 8

15 14 12

18 16 11

12 11 13

16 14 16

17 14 9

15 12 8

16 13 12

15 13 12
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Chapter 8

Two-Way Analysis of Variance: Examining

Influence of Two Factors on Criterion Variable

Learning Objectives

After completing this chapter, you should be able to do the following:

• Explain the importance of two-way analysis of variance (ANOVA) in research.

• Understand different designs where two-way ANOVA can be used.

• Describe the assumptions used in two-way analysis of variance.

• Learn to construct various hypotheses to be tested in two-way analysis of

variance.

• Interpret various terms involved in two-way analysis of variance.

• Learn to apply two-way ANOVA manually in your data.

• Understand the procedure of analyzing the interaction between two factors.

• Know the procedure of using SPSS for two-way ANOVA.

• Learn the model way of writing the results in two-way analysis of variance by

using the output obtained in the SPSS.

• Interpret the output obtained in two-way analysis of variance.

Introduction

A two-way analysis of variance is a design with two factors where we intend to

compare the effect of multiple levels of two factors simultaneously on criterion

variable. The two-way ANOVA is applied in two situations: first, where there is one

observation per cell and, second, where there is more than one observation per cell.

In a situation where there is more than one observation per cell, it is mandatory that

the number of observations in each cell must be equal. Using two-way ANOVA

with n observations per cell facilitates us to test if there is any interaction between

the two factors.

Two-way analysis of variance is in fact an extension of one-way ANOVA.

In one-way ANOVA, the effect of one factor is studied on the criterion variable,

whereas in two-way ANOVA, the effect of two factors on the criterion variable is

J.P. Verma, Data Analysis in Management with SPSS Software,
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studied simultaneously. An additional advantage in two-way ANOVA is to study

the interaction effect between the two factors. One of the important advantages of

two-way analysis of variance design is that there are two sources of assignable

causes of variation, and this helps to reduce the error variance and thus making this

design more efficient.

Consider an experiment where a personal manger is interested to know whether

the job satisfaction of the employees in different age categories is same or not

irrespective of an employee being male or female. In testing this hypothesis, 15

employees may be randomly selected in each of three age categories: 20–30, 31–40,

and 41–50 years, and one-way ANOVA experiment may be planned. Since in

making the groups male and female employees were selected at random, and,

therefore, if any difference in the satisfaction level is observed in different age

categories, it may not be truly attributed due to the age category only. The variation

might be because of their gender difference as well.

Now, the same experiment may be planned in two-way ANOVA with one factor

as age and the second as gender. Here, the factor age has 3 levels and gender has

2 levels. By planning this experiment in two-way ANOVA, the total variability may

be broken into two assignable causes, that is, age and gender, and, therefore, more

variability among the employees’ satisfaction level can be explained resulting in

reduction of error variance. Thus, an experimenter is in a better position to explain

the overall variability in the satisfaction level of the employees. Moreover, interac-

tion effect, if any, between gender and age on the satisfaction level of the

employees can also be studied in this design.

There may be several instances where two-way ANOVA experiment can be

planned. For example, in studying the effect of three outlet locations on the sale of a

particular facial cream, one may select another factor as age because it is assumed

that the age is also responsible in the sale of this product besides the variation in the

outlet location. In framing this experiment as a two-way ANOVA, the variation in

the sale of this product due to difference in the outlet location can be efficiently

explained by separating the variation due to age difference. The design has been

shown in the following table.

District

1 2 3 4

Outlet 1 B C D A

Outlet 2 D A B C

Outlet 3 C D A B

Outlet 4 A B C D

Principles of ANOVA Experiment

All the three basic principles of design, that is, randomization, replication, and

local controls, are used in planning a two-way ANOVA experiment in order to

minimize the error variance. In one-way ANOVA experiments only two principles
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i.e. randomization and replication are used to control the error variance whereas

in two-way ANOVA experiments all the three principles i.e. randomization, rep-

lication, and local control are used to control the error variance. The very purpose

of using these three principles of design is to enable the researcher to conclude with

more authority that the variation in the criterion variable is due to the identified

level of a particular factor.

In two-way ANOVA experiment, the principle of randomization means that the

samples in each group are selected in a random fashion so as to make the groups as

homogeneous as possible. The randomization avoids biases and brings control in

the experiment and helps in reducing the error variance up to a certain extent.

The principle of replication refers to studying the effect of two factors on more

than one subject in each cell. The logic is that one should get the same findings on

more than one subject. In two-way ANOVA experiment, the principle of replication

allows a researcher to study the significance of interaction between the two factors.

Interaction effect cannot be studied if there is only one observation in each cell.

The principle of local control refers to making the groups as homogeneous as

possible so that variation due to one or more assignable causes may be segregated

from the experimental error. Thus, the application of local control helps us in

reducing the error variation and making the design more efficient.

In the example discussed above, in studying the effect of age on job satisfaction

if the employees were divided only according to their age, then we would have

ignored the effect of gender on job satisfaction which would have increased

the experimental error. However, if the researcher feels that instead of gender

if the job satisfaction varies as per their salary structure, then the subjects may be

selected as per their salary bracket in different age categories. This might further

reduce the experimental error. Thus, maximum homogeneity can be ensured

among the observations in each cell by including the factor in the design which is

known to vary with the criterion variable.

Classification of ANOVA

By using the above-mentioned principles the two-way ANOVA can be used for

different designs. Some of the most popular designs where two-way ANOVA can

be used are discussed below.

Factorial Analysis of Variance

Two-way ANOVA is the most widely used in factorial designs. The factorial design

is used for more than one independent variable. The independent variables are also

referred to as factors. In factorial design, there are at least two or more factors.

Usually, two-way analysis of variance is used in factorial designs having two factors.
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In this design, the effect of two factors (having different levels) is seen on the

dependent variable. Consider an experiment where age (A) and gender (B) are

taken as two factors whose effect has to be seen on the dependent variability,

sincerity. Further, let the factor A has three levels (20–30, 31–40, and 41–50 years)

and the factor B has two levels (Male and Female). Thus, in this design, 2 � 3, that

is, six combination of treatment groups need to be taken. This design facilitates

in studying the effect of both the factors A and B on the dependent variable. Further,

in this design, significance of the interaction effect between the two factors can

also be tested. The factorial design is very popular in the behavioral research, social

sciences, and humanities. This design has a few advantages over single-factor

designs. The most important aspect of the factorial design is that it can provide

some information about how factors interact or combine in the effect they have on the

dependent variable. The factorial design shall be discussed in detail while in solving

two-way ANOVA problem later in this chapter.

Repeated Measure Analysis of Variance

Another design where two-way ANOVA is used is the repeated measure design.

This design is also known as a within-subject design. In this design, same subject is

tested under repeated conditions over a time. The repeated measure design can be

considered to be an extension of the paired-samples t-test because in this case,

comparison is done between more than two repeated measures. The repeated

measure design is used to eliminate the individual differences as a source of

between-group differences. This helps to create a more powerful test. The only

care to be taken in the repeated measure design is that while testing the same subject

repeatedly, no carryover effect should be there.

Multivariate Analysis of Variance (MANOVA)

In this design, effect of two factors is studied on more than one dependent variable.

It is similar to the factorial design having two factors, but the only difference is that

here we have more than one dependent variable. At times, it makes sense to

combine the dependent variables for drawing the conclusion about the effects of

two factors on it. For instance, in an experiment, if the effect of teaching methods

and hostel facilities have to be seen on the overall academic performance

(consisting four subjects: Physics, Chemistry, Math, and English) of the students,

then it makes sense to see the effect of these two factors, that is, teaching methods

and hostel facilities on all the subjects together. Once the effect of any of these

factors is found to be significant, then the two-way ANOVA for each of the

dependent variable is applied.
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In using two-way MANOVA, the dependent variables should neither be highly

correlated among themselves nor should they be totally uncorrelated. The benefit of

using MANOVA is that one can study the effect of each factor and their interaction

on the whole basket of dependent variables. It makes sense to study the effect of two

factors on the group of dependent variables like personality, employees, students,

etc. Personality is the sum total of many variables like honesty, sincerity, and

positivity; similarly, employees may be classified as male and female, whereas

students may be categories as undergraduate and postgraduate. At times, it may be

interesting to see the impact of two factors like age and education on the personality

of an individual. Once any of this factor’s effect on the personality as a whole is

significant, then the two-way analysis of variance may be applied for each of these

dimensions of the personality separately to see how these dimensions are affected

individually by the age and education.

Advantages of Two-Way ANOVA over One-Way ANOVA

Two-way ANOVA design is more efficient over one-way ANOVA because of the

following four reasons:

1. Unlike one-way ANOVA, the two-way ANOVA design facilitates us to test the

effect of two factors at the same time.

2. Since in two-way ANOVA variation is explained by two assignable causes, it

reduces the error variance. Due to this fact, two-way ANOVA design is more

efficient than one-way ANOVA.

3. In two-way ANOVA, one can test for independence of the factors provided there

is more than one observation per cell. However, number of observations in each

cell must be equal. On the other hand, in one-way ANOVA, one may have the

unequal number of scores in each group.

4. Besides reducing the error variance, two-way ANOVA also reduces the compu-

tation as it includes several one-way ANOVA.

Important Terminologies Used in Two-Way ANOVA

Factors

Independent variables are usually known as factors. In two-way ANOVA, the effect
of two factors is studied on certain criterion variable. Each of the two factors may

have two or more levels. The degrees of freedom for each factor is equal to the

number of levels in the factor minus one.
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Treatment Groups

The number of treatments in two-way ANOVA experiment is equal to the number

of combinations of the levels of the two factors. For example, if the factor A has

2 levels, A1 and A2, and the factor B has 3 levels, B1, B2, and B3, then there will be

2 � 3 ¼ 6 different treatment groups A1B1, A1B2, A1B3, A2B1, A2B2, and A2B3.

Main Effect

The main effect is the effect of one independent variable (or factor) on the

dependent variable across all the levels of the other variable. The interaction is

ignored for this part. Just the rows or just the columns are used, not mixed. This is

the part which is similar to one-way analysis of variance. Each of the variances

calculated to analyze the main effects (rows and columns) is like between

variances. The degrees of freedom for the main effect are one less than its number

of levels. For example, if the factor A has r levels and factor B has c levels, then the
degrees of freedom for the factor A and B would be r � 1 and c � 1, respectively.

Interaction Effect

The joint effect of two factors on the dependent variable is known as interaction

effect. It can also be defined as the effect that one factor has on the other factor. The

degrees of freedom for the interaction is the product of degrees of freedom of both

the factors. If the factors A and B have levels r and c, respectively, then the degrees
of freedom for the interaction would be (r � 1) � (c � 1).

Within-Group Variation

The within-group variation is the sum of squares within each treatment groups.

In two-way ANOVA, all treatment groups must have the same sample size. The

total number of treatment groups is the product of the number of levels for each

factor. The within variance is equal to within variation divided by its degrees of

freedom. The within group is also denoted as error. The within-group variation is

often denoted by SSE.
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Two-Way ANOVA Model and Hypotheses Testing

Let us suppose that there are two factors A and B whose effects have to be tested on

the criterion variable X, and let the factors A and B have levels r and c, respectively,
with n units per cell, then these scores can be written as follows:

Factor B

1 .. j .. c

1 X111 X1j1 X1c1

X112 .. X1j2 .. X1c2

. . .

X11n

T11

X1jn

T1j

X1cn

T1c

R1

Factor A i Xi11 Xij1 Xic1

Xi12 .. Xij2 .. Xic2

. . .

Xi1n

Ti1

Xijn

Tij

Xicn

Tic

Ri

r Xr11 Xrj1 Xrc1

Xr12 .. Xrj2 .. Xrc2

. . .

Xr1n

Tr1

Xrjn

Trj

Xrcn

Trc

Rr

C1 Cj Cc G ¼PRi ¼
P

Cj

where

Xijk represents the kth score in the (i,j)th cell

Tij represents the total of all the n scores in the (i,j)th cell

G is the grand total of all the scores

Ri is the total of all the scores in ith level of the factor A
Cj is the total of all the scores in jth level of the factor B
N is the total of all the scores and is equal to r � c � n

In two-way ANOVA, the total variability among the above-mentioned N scores

can be attributed to the variability due to row (or factor A), due to column (or factor

B), due to interaction (row � column (A � B)), and due to error. Thus, the total

variability can be broken into the following four components:

Total variability ¼ Variability due to Row SSRð Þ þ Variability due to Column SSCð Þ
þ Variability due to Interaction SSIð Þ þ Variability due to Error

or TSS ¼ SSRþ SSCþ SSIþ SSE (8.1)

Remark: SSE is the variability within group which was represented by SSw in one-

way ANOVA.
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The above-mentioned model is a two-way ANOVA model where it is assumed

that the variability among the scores may be due to row factor, column factor,

interaction due to row and column, and the error factor. Since the variation in the

group has been explained by the two factors instead of one factor in one-way

ANOVA, reduction of error variance is more in two-way ANOVA in comparison

to that of one-way ANOVA design. This makes this design more efficient than one-

way ANOVA. After developing the above-mentioned model of variability, it is

required to test whether the effects of these factors are significant or not in

explaining the variation in the data. The significance of these components is tested

by means of using F-test.

(a) Hypotheses construction: The hypotheses which are being tested in two-way

ANOVA are as follows:

(i) H0 : mA1
¼ mA2

¼ . . . ¼ mAr

(The population means of all the levels of the factor A are equal. This is like

the one-way ANOVA for the row factor.)

(ii) H0 : mB1
¼ mB2

¼ . . . ¼ mBc

(The population means of all the levels of the factor B are equal. This is like

the one-way ANOVA for the column factor.)

(iii) H0: There is no interaction between factors A and B.
(This is similar to performing a test for independence with contingency

table.)

The above-mentioned null hypotheses are tested against the alternative

hypothesis that at least one mean is different.

If the null hypotheses mentioned in (i) and (ii) are rejected, then it is

concluded that the variability due to factor is significant, and it is inferred

that the means of all the groups in that factor is not same. On the other hand, if

the null hypothesis is failed to be rejected, one may draw the inference that all

group means are equal. If the hypothesis mentioned in (iii) is rejected, then one

may conclude that there is a significant interaction between the factors A and B.
In other words, it may be concluded that the pattern of differences of group

means in factor A is not the same in different levels of factor B. This fact shall
be discussed in detail while solving the Example 8.1. Thus, if the effects of

factors A and B having levels m and n, respectively, are to be seen on the

criterion variable, then the following steps will explain the procedure of testing

the hypotheses:

(b) Level of significance: The level of significance may be chosen beforehand.

Usually, it is taken as .05 or .01.

(c) Statistical test: The F-test is used to compare the variability between levels of a

factor with that of variability within groups. If F-value is significant, it indicates
that variability between levels of the factor groups is significantly higher than

the variability within groups; in that case, the null hypothesis of no difference

between the group means is rejected. Before computing F-value, it is required
to compute the total sum of squares (TSS), sum of squares due to row factor
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A (SSR), sum of squares due to column factor B (SSC), sum of squares due to

interaction A � B (SSI), and sum of squares due to error (SSE).

(i) Total sum of squares (TSS): It represents the total variation present in the

data set and is usually represented by TSS. It is defined as the sum of the

squared deviations of all the scores in the data set from their grand mean.

The TSS is computed by the following formula:

TSS ¼
Xr
i¼1

Xc
j¼1

Xn
k¼1

Xijk � G

N

� �2

after solving

¼
X
i

X
j

X
k

X2
ijk �

G2

N
(8.2)

Since the degrees of freedom for the TSS are N � 1, therefore mean sum

of squares is computed by dividing the TSS by N � 1.

(ii) Sum of squares due to row factor (SSR): It is the measure of variation

between the row group means and is usually denoted by SSR. This is also

known as the variation due to row factor (one of the assignable causes).

The sum of squares due to row is computed as follows:

SSR ¼
Xr
i¼1

R2
i

nc
� G2

N
(8.3)

Since r levels of row factor A is compared in two-way ANOVA, the

degrees of freedom for SSR are given by r � 1. Thus, mean sum of squares

for row factor is obtained by dividing the SSR by its degrees of freedom

r � 1.

(iii) Sum of squares due to column factor (SSC): It is the measure of variation

between the column group means and is usually denoted by SSC. This

explains the variation due to column factor (one of the assignable causes).

The sum of squares due to column factor is computed as

SSC ¼
Xc
j¼1

C2
j

nr
� G2

N
(8.4)

The degrees of freedom for SSC are given by c � 1 as there are c column

group means that are required to be compared. The mean sum of square for

column factor is obtained by dividing SSC by c � 1.
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(iv) Sum of squares due to interaction (SSI): It is the measure of variation due

to the interaction of both the factors A and B. It facilitates us to test whether
or not there is a significant interaction effect. The sum of squares due to

interaction is usually denoted by SSI. The SSI is computed as follows:

SSI ¼
Xr
i¼1

Xc
j¼1

T2
ij

n
� G2

N
� SSR� SSC (8.5)

The degrees of freedom for interaction are obtained by (r � 1) � (c � 1).

The mean sum of squares due to interaction is obtained by dividing SSI by

its degrees of freedom (r � 1) � (c � 1).

(v) Sum of squares due to error (SSE): It is the measure of unexplained portion

of the variation in the data and is denoted by SSE. This error is minimized

in two-way ANOVA model because here the variability in the data is

explained by the two factors besides interaction, in contrast to that of

one factor in one-way ANOVA model. The degrees of freedom are given

by N � rc. The SSE is computed as

SSE ¼ TSS� SSR� SSC� SSI (8.6)

The mean sum of square due to error is obtained by dividing SSE by its

degrees of freedom N � rc.
(vi) ANOVA table: This is a summary table showing different sum of squares

and mean sum of squares for all the components of variation. The compu-

tation of F-values is shown in this table. This table is popularly known as

two-way ANOVA table. After computing all the sum of squares, the

ANOVA table is prepared for further analysis which is shown as follows:

(vii) F-statistic: Under the normality assumptions, the F-value obtained in the

ANOVA table, say, for row, follows a F-distribution with (r � 1, N � r)
degrees of freedom. F-statistic is computed for each source of variation.

Two-way ANOVA table

Sources of

variation SS df MSS F

Main effect A
(row)

SSR r � 1 S2R ¼ SSR/(r � 1) F for row effect ¼ S2R=S
2
E

Main effect B
(column)

SSC c � 1 S2C ¼ SSC/(c � 1) F for column effect

¼ S2C=S
2
E

Interaction

effect

(A � B)

SSI (r � 1)�
(c � 1)

S2I ¼ SSI/(r � 1)�
(c � 1)

F for interaction effect

¼ S2I =S
2
E

Error SSE N � rc S2E ¼ SSE/(N � rc)

Total TSS N � 1

Remark: The total sum of squares is additive in nature
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This test statistic F is used to test the null hypothesis of no difference

among the group means.

(d) Decision criteria: The tabulated value of F at .05 or .01 level of significance

with different degrees of freedom may be obtained from Tables A.4 or A.5,

respectively in the Appendix. If the calculated value of F is greater than the

tabulated F, the null hypothesis is rejected, and in that case, at least one of the

means is different than others. Since ANOVA does not tell us where the

difference lies, post hoc test is used to get the clear picture. There are several

post hoc tests which can be used but least significant difference (LSD) test is

generally used in equal sample sizes. However, one may use other post hoc tests

like Scheffe’s, Tukey, Bonferroni, or Duncan as well.

In all the post hoc tests, a critical difference is computed at a particular level

of significance, and if the difference of any pair of observed means is higher

than the critical difference, it is inferred that the mean difference is significant

otherwise insignificant. By comparing all pair of group means, conclusion is

drawn as to which group mean is the highest. The detail procedure of applying

the post hoc test has been discussed in the solved Example 8.1.

In LSD test, the critical difference (CD) is computed as

CD ¼ t:05 N � rcð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSSE

n

r
(8.7)

where the symbols have their usual meanings.

This critical difference (CD) is used for comparing differences in all the pair

of means.

The SPSS output provides the significance value (p-value) for each of the F-
statistics computed in two-way ANOVA table. If p-value is less than .05, F
would be significant. Post hoc test for comparing means is applied for those

factors and interaction whose F-value is significant. The SPSS also provides p-
values (significant value) for each pair of means in row, column, and interaction

to test the significance of difference between them. If p-value for any pair of

means is less than .05, it is concluded that means are significantly different

otherwise not.

Assumptions in Two-Way Analysis of Variance

Following assumptions need to be satisfied while using the two-way ANOVA

design:

(a) The population from which the samples are drawn must be normally

distributed.

(b) The samples must be independent.

(c) The population variances must be equal.

(d) The sample size must be same in each cell.
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Situation Where Two-Way ANOVA Can Be Used

In two-way ANOVA, we investigate the effect of main effects along with the

interaction effect of two factors on dependent variable. The following situation

shall develop an insight among the researchers to appreciate the use of this analysis.

Consider a situation where a mobile company is interested to examine the effect

of gender and age of the customers on the frequency of short messaging service

(sms) sent per week. Each person may be classified according to gender (men and

women) and age category (16–25, 26–35, and 36–45 years). Thus, there will be six

groups, one for each combination of gender and age. Random sample of equal size

in each group may be drawn, and each person may be asked about the number of

sms he or she sends per week. In this situation, there are three main research

questions that can be answered:

(a) Whether the number of sms sent depends on gender

(b) Whether the number of sms sent depends on age

(c) Whether the number of sms sent depends on gender differently for different age

categories of age, and vice versa

All these questions can be answered through testing of hypothesis in two-way

ANOVA model. The first two questions simply ask whether sending sms depends

on age and gender. On the other hand, the third question asks whether sending sms

depends on gender differently for people in different age category, or whether

sending sms depends on age differently for men and women. This is because one

may think that men send more sms than women in 18–25 years age category, but

women send more sms than men in 26–55 years age category. After applying the

two-way ANOVAmodel, one may be able to explain the above-mentioned research

questions in the following manner:

whether the factor gender has a significant impact on the number of sms sent

irrespective of their age categories. And if it is so, one may come to know whether

men send more sms than women or vice versa, irrespective of their age categories.

Similarly, one can test whether the factor age has a significant impact on the

number of sms sent irrespective of gender. And if age factor is significant, one can

know that in which age category people send more sms irrespective of their gender.

The most important aspect of two-way ANOVA is to know the presence of

interaction effect of gender and age on sending the sms. One may test whether these

two factors, that is, gender and age, are independent to each other in deciding the

number of sms sent. The interaction analysis allows us to compare the average sms

sent in different age categories in each of the men and women groups separately.

Similarly, it also provides the comparison of the average sms sent by the men and

women in different age categories separately.

The information provided through this analysis may be used by the marketing

department to chalk out their promotional strategy for men and women separately

in different age categories for the mobile users.
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Example 8.1 An experiment was conducted by a utility company to study the

effects of three sales incentives – toothpaste with 20% extra in the same price

(incentive I), toothpaste along with traveling toothpaste (incentive II), and tooth-

paste along with bath soap (incentive III) – and to study the effects of gender of the

sales manager (male and female) on the daily sales of a toothpaste. The daily sale of

the toothpaste was recorded in each of the six groups for five continuous days. The

data so obtained are shown in Table 8.1.

Apply two-way ANOVA and discuss your findings at 5% level.

Solution Here, the two factors that need to be investigated are gender and incentive

and

Number of row factor (gender) ¼ r ¼ 2

Number of column factor (incentive) ¼ c ¼ 3

Number of scores in each cell ¼ n ¼ 5

Total number of scores ¼ N ¼ n � c � r ¼ 30

In order to apply the two-way ANOVA, the following steps shall be performed:

(a) Hypotheses construction: The hypotheses that need to be tested are:

(i) H0 : mMale ¼ mFemale

(The sales performance given by male and female sales manager is equal

irrespective of the incentives.)

(ii) H0 : mIncentive I ¼ mIncentive II ¼ mIncentive III

(The sales performance under the three incentive schemes is equal

irrespective of the gender of the sales manager.)

(iii) H0: There is no interaction between the gender of the sales manager and the

types of sales incentives.

(It is immaterial whether male or female are offering the sales incentives.)

Table 8.1 Data on toothpaste

sales in different incentive

groups

Incentive

I II III

15 15 18

13 14 16

Male 14 10 10

11 9 12

9 8 16

10 13 11
Gender of sales manager

7 14 10

Female 9 16 13

7 17 12

8 14 11
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(b) Level of significance: .05
(c) Test statistic: In order to test the hypotheses, F-statistic shall be computed

for row factor, column factor, and interaction in order to test their signifi-

cance. After computing different sum of squares, the ANOVA table shall be

prepared. The following computation shall be done for completing the

ANOVA table:

Computation
Before computing components of different sum of squares, let us first compute the

row, column, and cell total along with the grand total (Table 8.2).

1. Raw sum of square (sum of squares of all the scores in the study)

RSS¼
Xr
i¼1

Xc
j¼1

Xn
k¼1

X2
ijk

¼ 152 þ 132 þ . . .92
� �þ 152 þ 142 þ . . .82

� �þ 182 þ 162 þ . . .162
� �

þ 102 þ 72 þ . . .82
� �þ 132 þ 142 þ . . .142

� �þ 112 þ 102 þ . . .112
� �

¼ 792þ 666þ 1080þ 343þ 1106þ 655

¼ 4642

Table 8.2 Computation for two-way ANOVA

Incentive

I II III Row total (Ri) Row mean

Male 15 15 18

13 14 16

14 10 10

11 9 12

9 8 16

T11 ¼ 62 T12 ¼ 56 T13 ¼ 72 R1 ¼ 190 12.67

Gender of sales
manager

Female 10 13 11

7 14 10

9 16 13

7 17 12

8 14 11

T21 ¼ 41 T22 ¼ 74 T23 ¼ 57 R2 ¼ 172 11.47

Column total C1 ¼ 103 C2 ¼ 130 C3 ¼ 129 G ¼ 362

Column mean 10.3 13.0 12.9
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2. Correction factor ¼ CF

¼ G2

N
¼ 3622

30
¼ 4368:13

3. Total sum of squares ¼ TSS

¼
X
i

X
j

X
k

X2
ijk �

G2

N
¼ RSS� CF

¼ 4642� 4368:13 ¼ 273:87

4. Sum of squares due to row factor genderð Þ ¼ SSR

¼
Xr
i¼1

R2
i

nc
� G2

N
¼ 1902 þ 1722

5� 3
� 4368:13

¼ 10:80

5. Sum of squares due to column factor incentivesð Þ ¼ SSC

¼
Xc
j¼1

C2
j

nr
� G2

N

¼ 1032 þ 1302 þ 1292

5� 2

� 4368:13 ¼ 46:87

6. Sum of squares due to interaction ¼ SSI

¼
Xr
i¼1

Xc
j¼1

T2
ij

n
� G2

N
� SSR� SSC

¼ 622 þ 562 þ 722 þ 412 þ 742 þ 572

5

� 4368:13� 10:80� 46:87

¼ 4514� 4425:8 ¼ 88:20

7. Sum of squares due to error ¼ SSE

¼TSS� SSR� SSC� SSI

¼ 273:87� 10:80� 46:87� 88:20

¼ 128

Tabulated value of F can be seen from Table A.4 in the Appendix. Thus, from

Table A.4, the value of F.05 (1,24) ¼ 4.26 and F.05 (2,24) ¼ 3.40.

In Table 8.3, since the calculated value of F for incentives and interaction is

greater than their corresponding tabulated value of F, these two F-ratios are

significant. However, F-value for gender is not significant.
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Post hoc test shall be used to further analyze the column factor (incentives) and

the interaction effect.

Post Hoc Test for Column Factor (Incentives)
LSD test shall be used to find the critical difference for comparing the means of

the groups in the column factor. The critical difference (CD) is given by

CD at :05 significance level ¼ t:05 24ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSSE

n� r

r

¼ 2:064�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5:33

5� 2

r
½From Table A:2 in the Appendix; t:05ð24Þ ¼ 2:064�

¼ 2:064� 1:03

¼ 2:13

Table 8.4 shows that the mean difference between II and III incentive groups is

less than the critical difference (¼2.13); hence, there is no difference between these

two incentive groups. To show this, a line has been drawn below these two group

means. On the other hand, there is a significant difference between the means of II

and I as well as III and I incentive groups. Thus, it may be concluded that the II and

III incentives are equally effective and better than Ist incentive in enhancing the

sale of the toothpaste irrespective of the gender of the sales manager.

Table 8.4 Mean sale in

different incentive groups

(both gender combined)

Incentives CD at 5% level

II III I

13.0 12.9 10.3 1.48

“ ” Denotes no difference between the means

at .05 level

Table 8.3 Two-way ANOVA table for the data on sales of toothpaste

Source of variation

Sum of

squares (SS) df

Mean sum of

squares (MSS) F
Tab. F at

5% level

Gender 10.80 r � 1 ¼ 1 10.80 2.03 4.26

Incentives 46.87 c � 1 ¼ 2 23.44 4.398* 3.40

Interaction (gender*

incentives)

88.20 (r � 1) �
(c � 1) ¼ 2

44.10 8.27* 3.40

Error 128.00 N � rc ¼ 24 5.33

Corrected total 273.87 N � 1 ¼ 29

*Significant at 5% level
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Post Hoc Test for Interaction (Gender � Incentives)
Since interaction effect is significant, comparison shall be made among the means

of each incentive groups in each gender. Similarly, mean comparison shall also be

made between male and female groups in each of the incentive groups. Since the

cell size is similar, the critical difference for row comparison in each column and

for column comparison in each row shall be same. The CD using LSD test shall be

obtained by

CD at :05 significance level ¼ t:05 24ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSSE

n

r

¼ 2:064�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5:33

5

r
¼ 2:064� 1:46

¼ 3:01

Table 8.5 provides the post hoc comparison of means of male and female groups

in each of the three incentive groups. Since the mean difference between male and

female in each of the three incentive groups is higher than the critical difference,

these differences are significant at 5% level. Further, it may be concluded that the

average sales of male group in I and III incentives groups are higher than that of

female group whereas average sales of female is higher than that of male in II

incentive group.

Table 8.6 shows the comparison of different incentive groups in each of the gender

group. It can be seen from this table that in male section, average sales are signifi-

cantly different in III and II incentive groups, whereas average sales in the III and I

incentive groups as well as I and II incentive groups are same. On the other hand, in

female section, the average sales in all the three incentive groups are significantly

different from each other.

Table 8.5 Comparison

of mean sale of toothpaste

between male and female

groups in each of the three

incentive groups

Gender

Incentives Male Female Mean diff. CD at 5% level

I 12.4 8.2 4.2* 2.10

II 11.2 14.8 3.6* 2.10

III 14.4 11.4 3.0* 2.10

*Significant at 5% level

Table 8.6 Comparison of mean sale of toothpaste among different

incentive groups in each of the two gender groups

Gender Incentives CD at 5% level

Male 14.4 (III) 12.4 (I) 11.2 (II) 2.10

Female 14.8 (II) 11.4 (III) 8.2 (I) 2.10

Remark: Arrange means of the groups in descending order
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Thus, on the basis of the given data, the result suggests that IIIrd incentive

should be preferred if it is promoted by the male sales manager whereas the sales of

the toothpaste would increase if it is promoted by the female sales manager using

IInd incentive.

Solved Example of Two-Way ANOVA Using SPSS

Example 8.2 A chocolate manufacturing company wanted to know the impact of

color and sweetness of its chocolates on buying decision of the customers. Data in

Table 8.7 shows the number of units sold per day in a city for five consecutive days.

Apply two-way analysis of variance to see whether the factors sweetness and color

have significant effect on the sale of chocolates. Also test the significance of

interaction between these two factors and discuss your findings at 5% level.

Solution Here, two main factors, namely, sweetness and color as well as interac-

tion between sweetness and color, need to be investigated. Thus, following three

hypotheses shall be tested:

(i) H0 : mSemi Sweet ¼ mBitter Sweet ¼ mUn Sweet

(The sales of semisweet, bittersweet, and unsweetened chocolates are same

irrespective of the color of the chocolate.)

(ii) H0 : mWhite ¼ mMilk ¼ mDark
(The sales of white, milk, and dark chocolates are same irrespective of the

sweetness of the chocolate.)

(iii) H0: There is no interaction between the sweetness and color of the chocolate.

Table 8.7 Data on sale

of chocolates of different

flavours and colours

Chocolate color

Sweetness White Milk Dark

Semisweet chocolate 25 20 35

20 15 32

22 17 31

28 21 42

23 25 30

Bittersweet chocolate 28 32 15

24 35 22

32 37 25

32 38 12

23 29 20

Unsweetened chocolate 26 20 15

24 15 12

32 17 10

26 21 22

31 25 13
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(It is immaterial whether any color of the chocolates is semisweet, bittersweet,

or unsweetened.)

The SPSS output for two-way analysis of variance provides F-values for the

sweetness factor, color factor, and interaction (sweetness � color) along with

their significant values (p-values). The F-values for these factors and interaction

shall be significant if their p-values are less than .05. For any factor or interaction if
the F-value is significant, then a post hoc test shall be applied to compare the paired

means. SPSS provides option to choose any of the post hoc tests for comparing the

significance of mean difference.

In this example, since the sample sizes are equal, LSD test shall be used as a post

hoc test for comparing group means. The SPSS output provides the significance

values (p-values) for the difference of each pair of group means. The significance of

difference between pair of group means is tested by using these p-values rather than
computing the critical differences as is done in case of solving two-way ANOVA

manually.

Computation in Two-Way ANOVA Using SPSS

(a) Preparing data file

(i) Starting the SPSS: Use the below-mentioned command sequence to start

SPSS on your system:

Start ! Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

After clicking the Type in Data, you will be taken to the Variable View

option for defining the variables in the study.

(ii) Defining variables: There are three variables in this example, namely, sales,

sweetness, and color. Since sales were measured on ratio scale, it has been

defined as a scale variable, whereas sweetness and color were measured on

nominal scale hence they have been defined as nominal variables. The

procedure of defining the variables and their characteristics in SPSS is as

follows:

1. Click Variable View to define variables and their properties.

2. Write short name of the variables as Sale, Sweetness, and Colour under
the column heading Name.

3. Under the column heading Label, define full name of these variables as

Chocolate_Sale, Chocolate_Sweetness, and Chocolate_Colour. Alter-
nate names may also be chosen for describing these variables.

4. Under the column heading Measure, select the option “Scale” for the

variable Sale and “Nominal” for the variables Sweetness and Colour.
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5. For the variable Sweetness, double-click the cell under the column

Values and add following values to different labels:

Value Label

1 Semisweet chocolate

2 Bittersweet chocolate

3 Unsweetened chocolate

6. Similarly, for the variable Colour, add the following values to different

labels:

Value Label

1 White

2 Milk

3 Dark

7. Use default entries in rest of the columns.

After defining the variables in variable view, the screen shall look like

Fig. 8.1.

(iii) Entering data: After defining these variables in the Variable View, click

Data View on the left bottom of the screen to enter the data. One should

note the procedure of data feeding carefully in this example. First 15 sales

data of semisweet chocolate of Table 8.6 are entered in the column of Sales
after which next 15 data of bittersweet chocolate are entered in the same

column, and thereafter the remaining 15 data of unsweetened chocolate

are entered in the same column. Thus, in the column of Sales variable,

Fig. 8.1 Defining variables along with their characteristics
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there will be 45 data. Under the column Sweetness, first 15 scores are

entered as 1 (denotes semisweet chocolate), the next 15 scores are entered

as 2 (denotes bittersweet chocolate), and the remaining 15 scores are

entered as 3 (denotes unsweetened chocolate). Under the column Colour,
first five scores are entered as 1 (denotes white color chocolate), next five

scores as 2 (denotes milk color chocolate), and subsequent five scores as 3

(denotes dark color chocolate). These 15 data belong to semisweet choco-

late group. Similarly, next 15 scores of bittersweet chocolate group and

unsweetened chocolate groups can be just the repetition of the semisweet

chocolate group. Thus, after feeding the first 15 data in the Colour column,

repeat this set of 15 data twice in the same column.

After entering the data, the screen will look like Fig. 8.2. Save the data

file in the desired location before further processing.

(b) SPSS commands for two-way ANOVA
After entering the data in data view as per above-mentioned scheme, follow the

below-mentioned steps for two-way analysis of variance:

(i) Initiating the SPSS commands for two-way ANOVA: In Data View, click

the following commands in sequence:

Analyze ! General Linear Model ! Univariate

The screen shall look like Fig. 8.3.

(ii) Selecting variables for two-way ANOVA: After clicking the Univariate

option, you will be taken to the next screen for selecting variables. Select

the variables Chocolate_Sale from left panel to the “Dependent variable”

section of the right panel. Similarly, select the variables Chocolate_S-
weetness and Chocolate_Colour from left panel to the “Fixed Factor(s)”

section of the right panel. The screen will look like Fig. 8.4.

(iii) Selecting the option for computation: After selecting the variables, various
options need to be defined for generating the output in two-way ANOVA.

Do the following:

– Click the tag Post Hoc in the screen shown in Fig. 8.4. Then,

– Select the factors Sweetness and Colour from the left panel to the

“Post Hoc Tests for” panel on the right side by using the arrow key.

– Check the option “LSD.” LSD test is selected as a post hoc because

the sample sizes are equal in each cell.

The screen will look like Fig. 8.5.

– Click Continue. This will again take you back to the screen as shown in
Fig. 8.4.

– Now click the tag Options on the screen and do the following steps:

– Check the option “Descriptive.”
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Fig. 8.2 Screen showing data entry for different variables in the data view
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Fig. 8.3 Screen showing SPSS commands for two-way ANOVA

Fig. 8.4 Screen showing selection of variables for two-way ANOVA
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– Select the variables OVERALL, Sweetness, Colour, and Sweet-
ness � Colour from the left panel and bring them into the “Dis-

play Means for” section of the right panel.

– Check the option “Compare main effects.”

– Ensure the value of Significance level as .05 in the box. The

screen for these options shall look like as shown in Fig. 8.6.

– Click Continue to go back to the main screen.

After selecting the options, the screen shown in Fig. 8.4 shall be

restored.

– Press OK.

(c) Getting the output
After clicking OK in the screen shown in Fig. 8.4, various outputs shall be

generated in the output window. Relevant outputs may be selected by using

Fig. 8.5 Screen showing options for post hoc test
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right click of the mouse and may be copied in the word file. Here, the following

outputs shall be selected:

1. Descriptive statistics

2. Two-way ANOVA table

3. Pairwise comparisons of sweetness groups (all color groups combined)

4. Pairwise comparisons of different color groups (all sweetness groups

combined)

In this example, all the identified outputs so generated by the SPSS will look

like as shown in Tables 8.8, 8.9, 8.10, and 8.11.

In order to interpret the findings, these outputs may be rearranged so that it can

directly be used in your project. These rearranged formatted tables have been

shown under the heading “Model Way of Writing the Results” in the next

section.

Model Way of Writing the Results of Two-Way ANOVA
and Its Interpretations

The outputs so generated in the SPSS may be presented in user-friendly format by

selecting the relevant details from Tables 8.8, 8.9, 8.10, and 8.11 and making some

slight modifications. Further, if the interaction is significant, it is not possible to

compare the cell means by using the outputs of SPSS. However, critical difference

can be computed by using these outputs for testing the significance of mean

Fig. 8.6 Screen showing options for descriptive statistics and comparison of main effects

Solved Example of Two-Way ANOVA Using SPSS 279



difference among different groups. The procedure of comparing group means has

been discussed later in this section.

The first important table consisting F-values for the factors and interaction can

be reproduced by deleting some of the contents of Table 8.9. The information so

reduced is shown in Table 8.12.

The p-values for the Sweetness, Color, and Interaction (Sweetness � Color) in

Table 8.12 are less than .05; hence, all the three F-values are significant at 5% level.

Thus, the null hypothesis for the Sweetness factor, Color factor, and Interaction

(Sweetness � Color) may be rejected at .05 level of significance. Now the post hoc

comparison analysis shall be done for these factors and interaction. These analyses

are shown below.

Table 8.8 Descriptive

statistics
Sweetness Color Mean Std. dev. N

Semisweet chocolate White 23.60 3.04959 5

Milk 19.60 3.84708 5

Dark 34.00 4.84768 5

Total 25.73 7.28469 15

Bittersweet chocolate White 27.80 4.26615 5

Milk 34.20 3.70135 5

Dark 18.80 5.26308 5

Total 26.93 7.73181 15

Unsweetened chocolate White 27.80 3.49285 5

Milk 19.60 3.84708 5

Dark 14.40 4.61519 5

Total 20.60 6.81175 15

Total White 26.40 3.94244 15

Milk 24.47 7.94505 15

Dark 22.40 9.81107 15

Total 24.42 7.64106 45

Dependent variable: Chocolate_Sale

Table 8.9 Two-way ANOVA table generated by the SPSS

Source Type III sum df Mean square of squares F Sig.

Corrected model 1946.978a 8 243.372 14.086 .000

Intercept 26840.022 1 26840.022 1553.44 .000

Sweetness 339.511 2 169.756 9.825 .000

Color 120.044 2 60.022 3.474 .042

Sweetness * color 1487.422 4 371.856 21.522 .000

Error 622.000 36 17.278

Total 29409.000 45

Corrected total 2568.977 44

Dependent variable: Chocolate_Sale
aR squared ¼ .758 (adjusted R squared ¼ .704)
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Table 8.10 Pairwise comparison of different sweetness groups

95% Confidence

interval for

differencea

(I)
Chocolate_Sweetness

(J)
Chocolate_Sweetness

Mean diff.

(I – J)
Std.

error

Sig.a

(p-value)
Lower

bound

Upper

bound

Semisweet chocolate Bittersweet chocolate �1.200 1.518 .434 �4.278 1.878

Unsweetened

chocolate

5.133* 1.518 .002 2.055 8.212

Bittersweet chocolate Semisweet chocolate 1.200 1.518 .434 �1.878 4.278

Unsweetened

chocolate

6.333* 1.518 .000 3.255 9.412

Unsweetened

chocolate

Semisweet chocolate �5.133* 1.518 .002 �8.212 �2.055

Bittersweet chocolate �6.333* 1.518 .000 �9.412 �3.255

Dependent variable: Chocolate_Sale

Based on estimated marginal means

*The mean difference is significant at the .05 level
aAdjustment for multiple comparisons: least significant difference (equivalent to no adjustments)

Table 8.11 Pairwise comparison of different color groups

95% Confidence

interval for differencea

(I)
Chocolate_Colour

(J)
Chocolate_Colour

Mean diff.

(I – J)
Std.

error Sig.a
Lower

bound

Upper

bound

White Milk 1.933 1.518 .211 �1.145 5.012

Dark 4.000* 1.518 .012 .922 7.078

Milk White �1.933 1.518 .211 �5.012 1.145

Dark 2.067 1.518 .182 �1.012 5.145

Dark White �4.000* 1.518 .012 �7.078 -.922

Milk �2.067 1.518 .182 �5.145 1.012

Dependent variable: Chocolate_Sale

Based on estimated marginal means

*The mean difference is significant at the .05 level
aAdjustment for multiple comparisons: least significant difference (equivalent to no adjustments)

Table 8.12 Two-way ANOVA table for the data on chocolate sale

Source of variation

Sum of squares

(SS) df

Mean sum of

squares (MSS) F p-value (sig.)

Sweetness 339.51 2 169.76 9.83 .000

Color 120.04 2 60.02 3.47 .042

Sweetness � color 1,487.42 4 371.86 21.52 .000

Error 622.00 36 17.28

Corrected total 2,568.977 44
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Row (Sweetness) Analysis

For row analysis, critical difference has been obtained by using the LSD test. The

value of “t” at .05 level and 36 df (error degrees of freedom) can be obtained from

Table A.2 in Appendix.

Thus,

CD for row ¼ t:05 36ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 MSSð ÞE

nc

r
n ¼ number of scores in each cell ¼ 5½ �

½c ¼ number of column colour groupsð Þ ¼ 3�

¼ 2:03�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 17:28

5� 3

r
¼ 3:08

Table 8.13 has been obtained by using the contents from the Tables 8.8 and 8.10.

Readers are advised to note the way this table has been generated.

If difference of any two group means is higher than the critical difference, the

difference is said to be significant. Owing to this principle from Table 8.13, two

conclusions can be drawn.

(a) Average sale of chocolate in bittersweet and semisweet categories is signifi-

cantly higher than that of unsweetened category.

(b) Average sale of chocolate in bittersweet and semisweet categories is equal.

It may thus be inferred that bittersweet and semisweet chocolates are more

preferred than unsweetened chocolates irrespective of the color of the chocolate.

Remark By looking at the p-values in Table 8.10, you can infer as to which group
means differ significantly. If for any mean difference, significance value (p-value)
is less than .05, then the difference is considered to be significant. In using this

table, you can test the significance of mean difference, but it is difficult to find out as

to which group mean is higher until and unless the results of Table 8.8 are

combined. Hence, it is advised to construct Table 8.13 for post hoc analysis so as

to get the clear picture in the analysis.

Table 8.13 Comparison of mean chocolate sale in all the three sweetness groups (all colors

combined)

Bittersweet chocolate Semisweet chocolate Unsweetened chocolate CD at 5% level

26.93 25.73 20.60 3.08

“ ”Denotes no difference between the means at 5% level

Remark: Arrange means of the group in descending order
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Column (Color) Analysis

For column analysis, critical difference has been obtained by using the LSD test as

there are equal numbers of samples in each column.

Thus,

CD for column ¼ t:05 36ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 MSSð ÞE

nr

r
n ¼ number of scores in each cell ¼ 5½ �

½r ¼ number of row sweetness groupsð Þ ¼ 3�

¼ 2:03�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 17:28

5� 3

r
¼ 3:08

Table 8.14 has been obtained from the contents in Tables 8.8 and 8.11.

From Table 8.14, the following two conclusions can be drawn:

(a) There is no difference in the average sale of white and milk chocolate. Similarly

average sale of milk and dark chocolate is also same.

(b) Average sale of white chocolates is significantly higher than that of dark

chocolates.

Thus, it may be inferred, in general, that the mean sale of the white chocolates is

more in comparison to that of dark chocolate irrespective of the type of sweetness.

Remark You may note that critical difference for row and column analysis is

same. It is so because the number of rows is equal to the number of columns.

Interaction Analysis

Since F-value for the interaction is significant, it indicates that there is a joint effect
of the chocolate sweetness and chocolate colors on the sale of chocolates. In other

words, there is an association between sweetness and color of the chocolates. Thus,

to compare the average chocolate sale among the three levels of sweetness in each

of the color groups and to compare the average sales in all the three types of colored

Table 8.14 Comparison of mean chocolate sale in all the three Color groups

(all sweetness types combined)

White chocolate Milk chocolate Dark chocolate CD at 5% level

26.40 24.47 22.40 3.08

“ ”Denotes no difference between the means at .05 level
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chocolates in each of the sweetness group, a critical difference (CD) has to be

computed:

CD for Interaction ¼ t:05 36ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 MSSð ÞE

n

r

¼ 2:03�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 17:28

5

r
¼ 5:34

Tables 8.15 and 8.16 have been generated with the help of the contents of

Table 8.8. Readers are advised to note that CD is same for comparing all the

three types of sweetness groups in each color group as well as for comparing all

the colored groups in each of the sweetness group. It is so because the number of

samples (n) in each cell is equal.

If the difference of group means is higher than that of the critical difference, it

denotes that there is a significant difference between the two means; otherwise,

group means are equal. If the mean difference is not significant, an underline is put

against both the groups.

From Table 8.15, the following three conclusions can be drawn:

(a) The average sale of chocolates in all the three categories of sweetness groups is

same for white chocolates.

(b) In milk chocolates, the average sale in bittersweet category is significantly

higher than that of unsweetened and semisweet categories.

(c) In dark chocolates, the average sale in semisweet category is significantly

higher than that of bittersweet and unsweetened categories.

It is thus concluded that in white chocolate, it hardly matters which sweetness

flavor is being sold, whereas types of sweetness matters in case of milk and dark

chocolates.

Table 8.15 Comparison of mean chocolate sale among different sweetness groups in each of the

three colour groups

Color Sweetness CD at 5% level

White 27.80 (Bittersweet) 27.80 (Unsweetened) 23.60 (Semisweet) 5.34

Milk 34.20 (Bittersweet) 19.60 (Unsweetened) 19.60 (Semisweet) 5.34

Dark 34.00 (Semisweet) 18.80 (Bittersweet) 14.40 (Unsweetened) 5.34

“ ”Denotes no difference between the means at .05 level
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From Table 8.16, the following three conclusions can be drawn:

(a) In semisweet category, the sale of dark chocolate is significantly higher than

that of white and milk chocolates.

(b) In bittersweet category, the sale of milk chocolate is significantly higher than

that of white and dark chocolates.

(c) In unsweetened category, the sale of white chocolate is significantly higher than

that of milk and dark chocolates.

It may be inferred that in each of the sweetness flavor, it matters as to which

color of chocolates is being sold.

Summary of the SPSS Commands for Two-Way ANOVA

(i) Start the SPSS by using the following commands:

Start ! Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

(ii) Click Variable View tag and define the variables Sale as a scale variable and
Sweetness and Colour as nominal variables.

(iii) Under the column heading Values, define “1” for semisweet chocolates, “2”

for bittersweet chocolates, and “3” for unsweetened chocolates for the variable

Sweetness.
(iv) Similarly, for the variable Colour, under the column heading Values, define “1”

for white chocolates, “2” for milk chocolates, and “3” for dark chocolates.

(v) Once the variables are defined, type the data for these variables by clicking

Data View.

Table 8.16 Comparison of mean chocolate sale among different colour groups in each of the

three sweetness groups

Sweetness Color CD at 5% level

Semisweet 34.00 (Dark) 23.60 (White) 19.60 (Milk) 5.34

Bittersweet 34.20 (Milk) 27.80 (White) 18.80 (Dark) 5.34

Unsweetened 27.80 (White) 19.60 (Milk) 14.40 (Dark) 5.34

“ ” Denotes no difference between the means at .05 level
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(vi) In the data view, follow the below-mentioned command sequence for two-

way ANOVA:

Analyze ➾ General Linear Model ➾ Univariate

(vii) Select the variable Chocolate_Sale from left panel to the “dependent variable”

section of the right panel. Similarly, select the variables Chocolate_Sweetness
and Chocolate_Colour from left panel to the “Fixed Factor(s)” section of the

right panel.

(viii) Click the tag Post Hoc and select the factors Sweetness and Colour from the

left panel to the “Post Hoc test” panel on the right side. Check the option

“LSD” and then click Continue.
(ix) Click the tag Options, Select the variables OVERALL, Sweetness, Colour,

and Sweetness � Colour from left panel to the right panel. Check the

“Compare main effects” and “Descriptive” boxes and ensure the value of

significance as .05. Click Continue.
(x) Press OK for output.

Exercise

Short Answer Questions

Note: Write answer to each of the following questions in not more than 200 words.

Q.1. What do you mean by main effects, interactions effects, and within-group

variance? Explain by means of an example.

Q.2. Justify the name “two-way analysis of variance.” What are the advantages of

using two-way ANOVA design over one-way?

Q.3. While using two-way ANOVA, what assumptions need to be made about the

data?

Q.4. Describe an experimental situation where two-way ANOVA can be used.

Discuss different types of hypotheses that you would like to test.

Q.5. Discuss a situation where a factorial design can be used in market research.

What research questions you would like to investigate?

Q.6. What is repeated measure design? Explain by means of an example. What

precaution should be taken in planning such design?

Q.7. Explain MANOVA and discuss any one situation where it can be applied in

management studies.

Q.8. Describe Latin square design. Discuss its layout. How is it different than

factorial design?
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Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. In applying two-way ANOVA in an experiment, where “r” levels of factor A
and “c” levels of factor B are studied. What will be the degree of freedom for

interaction?

(a) rc
(b) r + c
(c) rc � 1

(d) (r � 1)(c � 1)

2. In an experiment “r” levels of factor A are compared in “c” levels of factor B.
Thus, there are N scores in this experiment. What is the degree of freedom for

within group?

(a) N � rc
(b) N + rc
(c) N � rc + 1

(d) Nrc � 1

3. In a two-way ANOVA, if the two factors A and B have levels 3 and 4,

respectively, and the number of scores per cell is 3, what would be the degrees

of freedom of error?

(a) 36

(b) 24

(c) 12

(d) 9

4. In order to apply two-way ANOVA

(a) There should be equal number of observations in each cell.

(b) There may be unequal number of observations in each cell.

(c) There should be at least ten observations in each cell.

(d) There is no restriction on the number of observations per cell.

5. Consider an experiment in which the Satisfaction levels of employees (men and

women both) were compared in their plants located in three different cities.

Choose the correct statement in defining the three variables Gender, City, and

Satisfaction level in SPSS:

(a) Gender and Satisfaction level are Scale variables and City is Nominal.

(b) Gender and City are Nominal variables and Satisfaction level is Scale.

(c) Gender and City are Scale variables and Satisfaction level is Nominal.

(d) City and Satisfaction level are Scale variables and Gender is Nominal.
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6. Command sequence in SPSS for starting two-way ANOVA is

(a) Analyze -> General Linear Model -> Univariate

(b) Analyze -> General Linear Model -> Multivariate

(c) Analyze -> General Linear Model -> Repeated Measures

(d) Analyze -> Univariate -> General Linear Model

7. While performing two-way ANOVA with SPSS, Fixed Factor(s) refers to

(a) Dependent variable

(b) Independent variables

(c) Both dependent and independent variables

(d) None of the above

8. If there are N scores in a two-way ANOVA experiment, the total degree of

freedom would be

(a) N + 1

(b) N � 1

(c) N
(d) N � 2

9. If 3 levels of factor A are compared among the 4 levels of factor B, how many

treatment groups will have to be created?

(a) 7

(b) 1

(c) 12

(d) 11

10. In an experiment, motivation level of employees was compared in three

different organizations. Employees were categorized as per their gender to

see its impact on motivation level. Interaction effect between plants and gender

can be investigated only if there are

(a) Equal number of observations in each cell

(b) At least one cell must have five or more observations

(c) Unequal number of observations in each cell

(d) More than one and equal number of observations in each cell

11. What should be the minimum number of observations in order to perform two-

way ANOVA?

(a) 8

(b) 6

(c) 4

(d) 2
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12. What should be the minimum number of observations in order to perform two-

way ANOVA with interaction effect?

(a) 8

(b) 6

(c) 4

(d) 2

Assignments

1. Four salesmen were appointed by a company to sell their products in door-to-

door marketing. Their sales were observed in three seasons, summer, rainy, and

winter, on month to month basis. The sales data so obtained (in lakhs of rupees)

are shown in the following table:

Discuss your findings by applying two-way ANOVA. Test your hypotheses at

5% level.

2. The management of a private bank was interested to know the stress level of

their employees in different age categories and gender. A stress questionnaire

was administered on the randomly selected employees in different age

categories. The scores on their stress level are shown in the following table:

Apply two-way ANOVA and discuss your findings at 5% level.

Sales data (in lakhs of rupees)

of the sales persons in

different season Season

Salesmen

A B C D

Summer 36 36 21 25

35 32 25 27

32 30 28 24

38 33 25 29

Rainy 26 28 29 29

25 28 32 31

27 31 33 34

29 28 38 39

Winter 28 29 31 32

27 32 35 31

32 33 31 28

29 35 41 33
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Answers to Multiple-Choice Questions

Q.1 d Q.2 a Q.3 b Q.4 a

Q.5 b Q.6 a Q.7 b Q.8 b

Q.9 c Q.10 d Q.11 c Q.12 a

Stress scores of the

employees in different age

categories Gender

Age category (years)

<35 35–50 >50

Male 28 55 42

29 51 39

32 45 41

25 48 42

26 53 48

Female 28 51 55

32 45 58

35 49 61

29 43 52

31 48 50
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Chapter 9

Analysis of Covariance: Increasing Precision

in Comparison by Controlling Covariate

Learning Objectives

After completing this chapter, you should be able to do the following:

• Learn the concept of analysis of covariance.

• Know the application of analysis of covariance in different situation.

• Describe the concept of covariate and neutralize its effect from the treatment

effect.

• Know the model involved in the analysis of covariance.

• Understand the concept of adjusting treatment means for covariate using linear

regression.

• Understand the analysis of covariance graphically.

• Learn the method of using analysis of covariance.

• Understand as to why the analysis of covariance is efficient design in comparison

to one-way analysis of variance.

• To be able to formulate the hypotheses in analysis of covariance.

• Understand the assumptions used in analysis of covariance.

• Know the method of preparing data file for analysis in SPSS.

• Learn the steps involved in using SPSS for analysis of covariance.

• Interpret the output obtained in analysis of covariance.

• Learn the model way of writing the results of analysis.

Introduction

To compare the effectiveness of two or more treatments on certain criterion

variable, we use one-way analysis of variance technique. This technique has been

discussed in Chap. 7. In testing the comparative effectiveness of different

treatments, the subjects are selected in each experimental group by using the

J.P. Verma, Data Analysis in Management with SPSS Software,
DOI 10.1007/978-81-322-0786-3_9, # Springer India 2013
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principle of randomization. In a situation if the randomization is not possible,

groups are equated on the basis of one or more known parameters. The randomization

or matching is done in order to have the similar initial conditions so that whatever the

changes in criterion variable occurs in the treatment groups can be attributed due to

the treatments only. But in many situations, randomization of subjects or experimen-

tal units may not be possible as the experimenter may be forced to take the two or

more intact samples from different locations due to administrative or financial

constraints. For example, consider an experiment where it is desired to compare the

effect of different types of tariff incentives on the mobile recharge revenue. In this

situation, an experimenter does not have any choice to select the subjects randomly in

different experimental groups. Samples will have to be drawn from the predefined

clientele sets of different mobile companies. In such situations, groups are not

homogeneous initially. These subjects in intact groups may differ in so many ways

which might affect their behavior pattern. Thus, statistical control or indirect proce-

dure is necessary to reduce the experimental error which causes due to such initial

differences in the groups.

In experimental research, the individual variations that appear within the

measures on the criterion variable are potentially correlated with some extraneous

variable. If the criterion variable is a measure of how well subjects learn English

speaking under one or the other of the two methods of instructions, the potential

correlates are likely to include parameters such as prior knowledge of grammar,

motivation level, aptitude, age, and intelligence. These potential correlates are

known as covariates. Analysis of covariance can be used to compare the effective-

ness of these instructional methods on learning English speaking after removing the

effect of the identified covariates.

Introductory Concepts of ANCOVA

Analysis of covariance (ANCOVA) is a statistical technique that may be considered

as an extension of analysis of variance (ANOVA). Analysis of covariance combines

features of one-way analysis of variance with simple linear regression. It is so

because the treatment groups are compared like the way we do in analysis of

variance and we adjust the measurement on criterion variable on the basis of

covariate by using the concept of regression analysis.

In ANCOVA, we try to minimize the error variance by controlling the concomi-

tant variable which varies along with the criterion variable in all the experimental

groups. These concomitant variables are known as covariate. Typically, a covariate

is highly correlated with a criterion variable; that is, the covariate contains infor-

mation about the criterion variable and therefore possibly also explains the differ-

ence in the treatment groups. The purpose in the ANCOVA design is to isolate the

variability component due to covariate so that group difference if any may be solely

attributed to the treatments only. Analysis of covariance is used in a situation where

there is at least one categorical factor and one or more continuous covariates.
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Since ANCOVA is the combination of ANOVA and regression analysis, this

design can be used with any ANOVA model. One can do a completely randomized

design, randomized block design, a Latin square design, or any other design if a

covariate is put on it. All we need is one measurement for the covariate to go with

every observation. In this chapter, only completely randomized design shall be

discussed as an ANOVA model.

Graphical Explanation of Analysis of Covariance

In order to understand the ANCOVA model, let us first refresh our concept of

representing the line in the slope intercept form. You may recall that this line used

to be represented by

Y ¼ mXþ c (9.1)

where m is the slope and c is the intercept of the line on y-axis. Graphically this

equation can be represented by the Fig. 9.1.

Equation of line in any form may be converted to this slope intercept form for

comparing their slopes and intercepts.

The line shown in Fig. 9.1 is a regression line for estimating the value of Y if

the value of X is known. Now if you look at the vertical line over �x, it intersects
the regression line at (�x and �y). In other words, the point (�x, �y) actually lies on the

regression line. This concept shall be used to explain the analysis of covariance.

To understand ANCOVA, let us consider A and B represent the two treatments.

Further, YA and YB represent the value of criterion variable, whereas XA and XB

represent the value of covariate in the two treatment groups A and B respectively.

These two treatments are represented by the lines A and B in Fig. 9.2. If higher value

( x , y)
y

C Y= mX + c

x

Fig. 9.1 Regression equation

of Y on X
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of Y indicates better performance, then obviously treatment A would be better

treatment because the line A is higher everywhere than line B.

But sometimes corresponding to very low value of XB and very high value of XA,

the values ofYB is higher thanYA. This can mislead the researcher. If line B is always

higher than line A, then the sample means end up reversed. The difference observed

inY
0
s is not because of the treatments but due to the covariate means (X

0
s) which are

so apart.

In analysis of covariance, what we do is to compare the values of YA and YB at �X

(overall grand mean of XA and XB). Now the distance between the two curves is the

same because the lines are parallel. What we do here is to adjust both means so that

we are evaluating the points of the same X on the curves. In this way, we get a more

balanced comparison.

If treatments are compared without using ANCOVA, what may happen? Sup-

pose the above-mentioned lines A and B are exactly the same, still Yi ’s may be

different. This may be because the effect of one treatment is observed at higher

average covariate mean and the other treatment effect is measured with lower

average covariate mean. This fact may not be revealed if the analysis of covariance

is not done. Thus, in analysis of covariance, we compare the effect of treatments

mean (Yi’s) by adjusting them with the average covariate means ( �X).

Analysis of Covariance Model

If Yij represents the jth score of the criterion variable in the ith treatment group and

Xij represents the jth score of the covariate in the ith treatment group, then the one-

way ANCOVA model is represented as follows:

Yij ¼ mþ bðXij � �XÞ þ eij (9.2)

Fig. 9.2 Geometrical representation of two treatments (Y’s) with their covariates (X’s)
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where

m is the overall population mean (on criterion variable)

b is slope of the lines

�X is combined mean of the covariate in all the treatment groups

eij is unexplained error terms which are independent and normally distributed with

mean 0 and variance 1

One-way analysis of covariance fits a straight line to each treatment group of X-Y
data, such that the slopes of the lines are all equal. This fitted model may then be

used to test the following null hypothesis:

H0: The intercepts for each line are equal.

This hypothesis tests as to whether all the treatment group means are equal or not

after making the adjustment for X (covariate). Here, we assume that the slopes are

equal. It is so because there is no point of comparing the treatments effect if one of

the treatments produces positive effect whereas other induces negative effect.

Let us see how the treatment means are adjusted for covariate and are computed

for comparison. Adding both sides of Eq. (9.2) for j and dividing by n (number of

scores in each treatment group), we get

1

n

X
j

Yij ¼ mþ b
1

n

X
j

Xij � �X

 !
þ 1

n

X
j

eij

) Yi ¼ mþ bðXi � �XÞ þ �ei

Since mean of ei is zero, the equation becomes

Yi ¼ mþ bðXi � �XÞ (9.3)

where

Yi is mean of the criterion variable in the ith treatment group

m is the overall population mean (on criterion variable)

Xi is mean of the covariate (X data) in the ith treatment group

Other symbols have their usual meanings. If one-way ANCOVA model has two

treatment groups, then the model (9.3) will give rise to two straight lines as shown

in Fig. 9.2. Thus, by testing the hypothesis H0 in ANCOVA, we actually compare

the two treatments YA and YB after adjusting it for the covariates.
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Remark

1. If the slope of line A and B is equal it indicates that the effect of both the

treatments are in one direction only. Both the treatments will induce either

positive or negative effect.

2. By comparing the intercepts of the lines, we try to compare whether the effect of

all the treatments on the criterion variable is same or not.

What We Do in Analysis of Covariance?

In analysis of covariance, the purpose of the analysis is to compare the posttreat-

ment means of the groups by adjusting the initial variations in the grouping. The

statistical control is achieved by including measures on supplementary or concom-

itant variate (X) in addition to the variate of primary interest (Y) after implementing

the treatments. The concomitant variate that may not be of experimental interest is

called covariate and designated as X. Let us designate the variable which is of

interest in the experiment as Y, also known as criterion variable. Thus, in

ANCOVA, we have two observations (X and Y) from each subject. Measurements

on X (covariate) are obtained prior to the administration of treatments and are

primarily to adjust the measurements on Y (criterion). Covariate is the variable

which is assumed to be associated with the criterion variable. When X and Y are

associated, a part of the variability of Y is due to the variation in X. If the value of
covariate X is constant over the experimental units, there would be corresponding

reduction in the variance of Y.
Let us consider an example in which the analysis of covariance can be applied to

reduce the estimate of experimental error. Suppose an experiment is conducted to

study the effect of three different types of advertising campaign on the sale of a

product. Further, the experimenter is forced to use three intact groups of outlets from

three different states. However, there is a freedom to assign groups randomly to the

treatment conditions (types of advertisement). Out of three groups, one may serve as

control. Since the subjects cannot be assigned randomly to the treatment groups, the

possibility of initial differences (before administration of treatment) among the

groups always exist. Thus, one may decide to record the sale of each outlet (X)
before applying the treatments, which serves as a measure of covariate. This measure

of covariate is used to adjust the post advertisement sale figure (Y) in different outlets.
The Y is the sale of the product which is obtained after the implementation of the

treatments (advertisements).

Thus, the variates X and Y can be defined as follows:

X ¼ sale of the product on 15 consecutive days in each experimental groups before

treatments (advertisements).
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Y ¼ sale of the product on 15 consecutive days in each experimental groups after

treatments (advertisements).

In general, if Y measures (criterion) are substantially correlated with X
measures (covariate), the analysis of covariance will result in similar estimate

of experimental error than would be obtained from the analysis of variance.

Thus, in ANCOVA, the following null hypothesis is tested

H0 : mAdj Post Adv 1 ¼ mAdj Post Adv 2 ¼ mAdj Post Control

against the possible alternatives that at least one group mean differs

where

Adj_Post_Adv_1 is adjusted mean sale in the first treatment group (where first

advertisement campaign was used)

Adj_Post_Adv_2 is adjusted mean sale in the second treatment group (where

second advertisement campaign was used)

Adj_Post_Adv_3 is adjusted mean sale in the third treatment group (where no

advertisement campaign was used)

ANCOVA table generated in the SPSS output contains the value of F-statistics
along with their significance value. Thus, if F-value is significant, the null

hypothesis is rejected and the post hoc test is used to compare the adjusted

posttreatment means of different groups in pairs.

When to Use ANCOVA

The analysis of covariance is used to test the comparative effectiveness of two or

more treatments on the criterion variable after adjusting for their initial

differences due to covariate. The covariate should be identified before the experi-

ment, and its value should be measured on each of the experimental units. In many

situations, it is not possible to identify single covariate which affects the measure

on criterion variable during experimentation. In that case, initial testing (X) on the
criterion variable in each of the treatment group may be considered as covariate,

and the measure on the criterion variable after the treatment (Y) in all the

treatment groups is the one in which we are interested to investigate. The analysis

of covariance design should be used if the following things happen:

(a) The response on the criterion variable is continuous.

(b) There are one or more classification variables (treatment groups).

(c) There are one or more continuous independent variables (covariate).
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Assumptions in ANCOVA

In using the analysis of covariance design following assumptions are made:

1. The criterion variable must have the same variance in each of the treatment

groups.

2. The data on criterion variable must have been obtained randomly.

3. The interaction between the criterion variable and covariate is negligible. The

adjusted mean of the criterion variable in each of the treatment groups is

computed owing to this assumption. If this assumption is violated, then the

adjustment of the criterion variable to a common value of the covariate will be

misleading.

4. Since ANCOVA uses the concept of linear regression, the assumption of

linearity between independent and dependent variable must hold true.

5. The regression coefficients (slope) for each treatment groups must be homo-

geneous. If this assumption is violated, then the ANCOVA results will be

misleading.

Efficiency in Using ANCOVA over ANOVA

The ANCOVA design is more efficient in comparison to one-way ANOVA. It is

because of the fact that in ANCOVA, a part of the variability due to error

component is defined by the covariate and, hence, the error variance reduces

comprehensively in comparison to one-way ANOVA design. In one-way

ANOVA, the total variability is split into two components, that is, between groups

and within groups. Here, the variability due to covariate is confounded into error

component, and, hence, this design is inferior to ANCOVA in a situation where the

covariate effects the measurement on criterion variable. In fact, one-way ANOVA

should be used only in a situation where it is known that all the treatment groups are

homogenous in all respect and perfect control is observed during the entire period

of experimentation.

Solved Example of ANCOVA Using SPSS

Example 9.1 A study was planned to investigate the effect of different doses of

vitamin C in curing the cold. Forty five subjects who were suffering from cold

symptoms were divided into three groups. The first two groups were given a low

dose and high dose of vitamin C every day whereas the third group was given a

placebo. The number of days these subjects were suffering from cold before starting

the treatment was taken as the covariate whereas the curing time in each treatment

group was recorded as a dependent variable. The data so obtained on the subjects

are shown in the Table 9.1.
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Apply analysis of covariance to see as to which dose of vitamin C is more effective

in controlling cold. Test your hypothesis at 5% level of significance.

Solution In this example, the variables are as follows:

Treatments: The three treatments are as follows:

Treatment A: Administering high dose of vitamin C

Treatment B: Administering low dose of vitamin C

Treatment C: Administering placebo

Covariate: The number of days having cold symptoms before treatment.

Dependent Variable: Curing time of cold symptoms
Here, it is required to compare the average curing time among the three treat-

ment groups, that is, high dose of vitamin C, low dose of vitamin C, and placebo,

after adjusting for the covariate (average number of days having cold symptoms

before treatments).

Thus, the following null hypothesis needs to be tested

H0 : mAdj Days in Treatment A ¼ mAdj Days in Treatment B ¼ mAdj Days in Treatment C

against the alternative hypothesis that at least one group mean (adjusted) is different

Table 9.1 Data on cold duration before and during implementation of vitamin C in different

groups

Contents of vitamin C

S.N. High dose Low dose Placebo

Pre days Post days Pre days Post days Pre days Post days

1 0 2 14 12 1 10

2 10 3 16 13 10 8

3 11 5 5 8 5 14

4 15 9 12 10 6 9

5 6 3 0 1 10 13

6 12 8 8 4 5 11

7 9 7 12 9 12 15

8 13 7 5 10 13 15

9 1 6 19 10 6 10

10 8 13 14 8 19 20

11 7 12 6 11 8 12

12 6 10 8 11 8 14

13 4 3 5 8 6 12

14 3 2 2 6 5 9

15 4 3 4 6 8 14

Pre days: Cold duration before treatment

Post days: Cold duration during treatment
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where

mAdj Days in Treatment A is adjusted mean curing time in treatment group A

mAdj Days in Treatment B is adjusted mean curing time in treatment group B

mAdj Days in Treatment C is adjusted mean curing time in treatment group C

The SPSS output provides ANCOVA table along with pairwise comparison of

adjusted post means of different treatment groups. The pairwise comparison of

means is done only when the F-ratio is significant.

The analysis of covariance table generated in the SPSS output looks similar

to the one- way ANOVA table as only adjusted post means is compared here.

In the ANCOVA table, F-value is shown along with its significance value

(p-value). The F-value would be significant if its corresponding p-value is less

than .05, and in that case null hypothesis would be rejected. Once the F-value
is found to be significant, then a post hoc test is used to compare the paired

means. SPSS provides the choice of post hoc test to be used in the analysis.

In this example, since the sample sizes are equal, LSD test shall be used

as a post hoc test for comparing the group means. The SPSS output provides

the significance value (p-value) for each pair of difference of group

means. Thus, by looking at the values of means, the best treatment may be

identified.

Computations in ANCOVA Using SPSS

(a) Preparing data file
Before using SPSS commands to solve the problem of analysis of covariance, a

data file needs to be prepared. The following steps will help you prepare the

data file:

(i) Starting the SPSS: Follow the below-mentioned command sequence to start

SPSS:

Start ! Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

After clicking the Type in Data, you will be taken to the Variable View

option for defining variables in the study.

(ii) Defining variables
In this example, three variables, vitamin dose, cold duration before

treatment and cold duration during treatment need to be defined. The

procedure of defining these variables along with their characteristics is

as follows:
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1. Click the Variable View to define the variables and their properties.

2. Write short name of the variables as Vitamin_Dose, Pre_Days and

Post_Days under the column heading Name.

3. Under the column heading Label, define full name of these variables as

Vitamin dose, Cold duration before treatment, and Cold duration during
treatment. Other names may also be chosen for describing these

variables.

4. Under the column headingMeasure, select the option “Nominal” for the

variable Vitamin dose and “Scale” for the variables Cold duration before
treatment and Cold duration during treatment.

5. For the variable Vitamin dose, double-click the cell under the column

Values and add the following values to different labels:

Value Label

1 Treatment A

2 Treatment B

3 Treatment C

6. Use default entries in rest of the columns.

After defining the variables in variable view, the screen shall look as shown

in Fig. 9.3.

(iii) Entering data: After defining all the variables in the Variable View, click

Data View on the left corner in the bottom of the screen shown in Fig. 9.3 to

open the format for entering the data column wise. After entering the data,

the screen will look like Fig. 9.4. Save the data file in the desired location

before further processing.

Fig. 9.3 Defining variables and their characteristics
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Fig. 9.4 Screen showing

entered data for all the

variables in the data view

302 9 Analysis of Covariance: Increasing Precision in Comparison by Controlling. . .



(b) SPSS commands for ANCOVA
After preparing the data file, do the following steps for analysis of covariance:

(i) Initiating the SPSS commands for ANCOVA: In data view, click the follow-
ing commands in sequence:

Analyze ) General Linear Model ) Univariate

The screen shall look like Fig. 9.5.

(ii) Selecting variables for ANCOVA: After clicking the Univariate option,

you will be taken to the next screen as shown in Fig. 9.6 for selecting

variables. Select the variables as follows:

– Cold duration during treatment from left panel to the “Dependent

variable” section of the right panel.

– Vitamin dose from left panel to the “Fixed Factor(s)” section of the right

panel.

– Cold duration before treatment from the left panel to the “Covariate(s)”

section of the right panel.

(iii) Selecting the options for computation: After selecting the variables, dif-

ferent options need to be defined for generating the output in ANCOVA.

This shall be done as follows:

– Click the tag Model on the screen shown in Fig. 9.6 and do the

following:

– Select the sum of squares option as “Type I.”

– Press Continue.

Fig. 9.5 Sequence of SPSS commands for analysis of covariance
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The screen will look like Fig. 9.7.

– Click the tag Options in the screen shown in Fig. 9.6 and do the

following:

– Select the variables Overall and Vitamin_Dose from the left panel to

the “Display Means for” section of the right panel.

– Check the option “Compare main effects.”

– Check the option “Descriptive statistics.”

– Ensure “Significance level” as .05. This value is written by default;

however, you may write some other level of significance as .01 or .10,

etc.

– Click Continue.

The screen will look like Fig. 9.8.

– Click OK on the screen shown in Fig. 9.6.

(c) Getting the output
Clicking the option OK on the screen shown in Fig. 9.6 will take you to the

output window. Relevant outputs can be selected by using the right click of the

Fig. 9.6 Selecting variables for ANCOVA
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mouse and may be copied in the word file. The identified outputs shall be

rearranged for interpreting the findings. The details have been shown under the

heading Model Way of Writing the Results.

(d) SPSS output
The readers should note the kind of outputs to be selected from the output

window of SPSS for explaining the findings. The following four outputs have

been selected for discussing the results of ANCOVA:

1. Descriptive statistics

2. Adjusted estimates of the dependent variable

3. ANCOVA table

4. Post hoc comparison table

These outputs have been shown in Tables 9.2, 9.3, 9.4, and 9.5.

Fig. 9.7 Screen showing option for choosing sum of squares and model type
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Table 9.2 Descriptive

statistics
Vitamin dose Mean Std. deviation N

Treatment A 6.2000 3.62925 15

Treatment B 8.4667 3.18179 15

Treatment C 12.4000 3.11219 15

Total 9.0222 4.14778 45

Dependent variable: Cold duration during treatment

Table 9.3 Adjusted estimates

Vitamin dose Mean Std. error

95% Confidence interval

Lower bound Upper bound

Treatment A 6.508a .704 5.086 7.930

Treatment B 8.204a .703 6.784 9.625

Treatment C 12.355a .701 10.939 13.771

Dependent variable: Cold duration during treatment
aCovariates appearing in the model are evaluated at the following values: Cold duration before

treatment ¼ 8.0222

Fig. 9.8 Selecting options for ANCOVA output
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Model Way of Writing the Results of ANCOVA

and Their Interpretations

The above output generated by the SPSS can be shown in a much more user-

friendly format by modifying the relevant contents of the Tables 9.2, 9.3, 9.4, and

9.5. The below-mentioned edited outputs can directly be shown in the project,

dissertation, or thesis. These modified outputs shall be used to discuss the findings

of ANCOVA.

(a) Descriptive Statistics of the Data Obtained on the Criterion Variable
The mean and standard deviation of the criterion variable in different treatment

groups have been shown in Table 9.6. Entries in this table have been copied

from Table 9.2. If you are interested in computing different descriptive statistics

for the covariate (Number of days having cold symptoms before treatment)

also, the same be computed by using the procedure discussed in Chap. 2.

However, the SPSS does not generate these statistics during ANCOVA

analysis.

Look at the table heading which can be used in writing the final results in

your study.

Table 9.4 Tests “between-subjects” effects

Source Type I sum of squares df Mean square F Sig.

Corrected model 454.761a 3 151.587 20.565 .000

Intercept 3,663.022 1 3,663.022 496.941 .000

Pre_Days 183.993 1 183.993 24.961 .000

Vitamin_Dose 270.768 2 135.384 18.367 .000

Error 302.217 41 7.371

Total 4,420.000 45

Corrected total 756.978 44

Dependent variable: Cold duration during treatment
aR squared ¼ .601 (adjusted R squared ¼ .572)

Table 9.5 Pairwise comparisons

(I) Vitamin dose (J) Vitamin dose Mean diff. (I–J) SE Sig.a

95% Confidence interval for

differencea

Lower bound Upper bound

Treatment A Treatment B �1.697 .999 .097 �3.714 .321

Treatment C �5.847* .994 .000 �7.855 �3.839

Treatment B Treatment A 1.697 .999 .097 �.321 3.714

Treatment C �4.151* .992 .000 �6.155 �2.146

Treatment C Treatment A 5.847* .994 .000 3.839 7.855

Treatment B 4.151* .992 .000 2.146 6.155

Dependent variable: Cold duration during treatment

Based on estimated marginal means

*The mean difference is significant at the .05 level
aAdjustment for multiple comparisons: Least significant difference (equivalent to no adjustments)
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From Table 9.6, it can be seen that average time taken to cure the cold

symptoms is highest in treatment group C whereas the least time is in treatment

group A. Treatment C signifies the placebo, whereas treatment A is the high

dose of vitamin C. The next question is to see whether this difference is

significant or not after adjusting for the covariate (number of days having

cold symptoms before treatment).

(b) Descriptive Statistics of the Data Obtained on the Criterion Variable after
Adjusting for Covariate
The adjusted mean and standard error of the criterion variable in different

treatment groups have been shown in Table 9.7. The mean of criterion variable

has been obtained in all the three treatment groups after adjusting for the

covariate (Number of days having cold symptoms before treatment). These

data have been taken from Table 9.3. Readers may note that these values are

different from that of the unadjusted values shown in Table 9.6. The advantage

of using the ANCOVA is that the differences in the posttesting means are

compensated for the initial differences in the scores. In other words, it may be

said that the effect of covariate is eliminated in comparing the effectiveness of

treatments on the criterion variable.

Kindly note the heading of the table which may be used for writing the final

results of ANCOVA.

(c) ANCOVA Table for the Data on Criterion Variable (Number of Days Having
Cold Symptoms During Treatment)
The main ANCOVA table may be reproduced by deleting some of the

unwanted details of Table 9.4. The final results of ANCOVA have been

shown in Table 9.8. The “significance” (Sig.) value has been named as p-
value. In most of the scientific literature, p-value is used instead of term

significance value.

Table 9.6 Mean and

standard deviation of cold

duration in different groups

during treatment

Vitamin dose Mean Std. deviation N

Treatment A 6.2 3.6 15

Treatment B 8.5 3.2 15

Treatment C 12.4 3.1 15

Total 9.0222 4.14778 45

Values have been rounded off

Table 9.7 Adjusted mean and standard error for the data on cold duration in different groups

during treatment

Vitamin dose Mean Std. error

95% Confidence interval

Lower bound Upper bound

Treatment A 6.5a .70 5.09 7.93

Treatment B 8.2a .70 6.78 9.63

Treatment C 12.4a .70 10.94 13.77
aCovariates appearing in the model are evaluated at the following values:

Cold duration before treatment ¼ 8.0222

Values have been rounded off
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Table 9.8 shows the F-value for comparing the adjusted means of the criterion

variable in three Vitamin_Dose groups (treatment A, treatment B, and treatment

C). You can note that F-statistic computed for Vitamin_Dose is significant

because p -value associated with it is .000 which is less than .05. Thus, the null

hypothesis of no difference among the adjusted means for the data on criterion

variable (number of days having cold symptoms during treatment) in three

treatment groups may be rejected at 5% level.

Remark: You can see that the F-value for Pre_Days (covariate) is also signifi-

cant. It shows that the initial conditions of the experimental groups are not

same, and that is why we are applying ANCOVA after adjusting mean values of

the criterion variable for the covariate.

(d) Post Hoc Comparison for the Group Means in Post-measurement Adjusted
with the Initial Differences
Since F-statistic is significant, post hoc comparison has been made for the

adjusted means of the three treatment groups, which is shown in Table 9.9.

This, table has been obtained by deleting some of the information from

Table 9.5. It may be noted here that p-value for the mean difference between

treatments A and C as well between treatments B and C is .000. Since p value is
less than .05, both these mean differences are significant at 5% level. Thus, the

following conclusions can be drawn:

(i) There is a significant difference between the adjusted means of criterion

variable (Number of days having cold symptoms during treatment) in

treatment A (High vitamin C dose) and treatment C (Placebo).

Table 9.8 ANCOVA table for the data on cold duration in different groups during treatment

Source Sum of squares df Mean square F (p-value) Sig.

Pre_Days 183.993 1 183.993 24.961 .000

Vitamin_Dose 270.768 2 135.384 18.367 .000

Error 302.217 41 7.371

Corrected total 756.978 44

Table 9.9 Pairwise comparisons

(I) Vitamin dose (J) Vitamin dose Mean diff. (I–J) (p-value) Sig.a

Treatment A Treatment B �1.697 .097

Treatment C �5.847* .000

Treatment B Treatment A 1.697 .097

Treatment C �4.151* .000

Treatment C Treatment A 5.847* .000

Treatment B 4.151* .000

Dependent variable: Cold duration during treatment

Based on estimated marginal means

*The mean difference is significant at the .05 level
aAdjustment for multiple comparisons: Least significant difference (equivalent to no adjustments)
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(ii) There is a significant difference between the adjusted means of criterion

variable (Number of days having cold symptoms during treatment) in

treatment B (Low vitamin C dose) and treatment C (Placebo).

(iii) There is no significant difference between the adjusted means of criterion

variable (Number of days having cold symptoms during treatment) in

treatment A (High vitamin C dose) and treatment B (Low vitamin dose).

In order to find as to which treatment is the best, one can see the adjusted mean

values of criterion variable in different treatment groups given in Table 9.7. Club-

bing these adjusted means with the three conclusions mentioned above, one may get

the answer. However, this task becomes much easier if Table 9.10 is developed.

This table can be created by using the values of different adjusted group means from

Table 9.7 and using p-values of mean differences from Table 9.9. In this table,

the adjusted means of the criterion variable in different treatment groups have

been shown in the descending order. If the difference between any two group

means is significant (which can be seen from Table 9.10), nothing is done, and if

the mean difference is not significant, an underline is put below both the group

means.

Thus, it may be concluded that the average curing time in high and low vitamin

groups was same. Further, the average curing time in both these groups was

significantly less than that of placebo group.

Hence, it may be inferred that high vitamin dose as well as low vitamin dose are

equally effective in curing the cold symptoms in comparison to that of placebo.

Summary of the SPSS Commands

(i) Start the SPSS by using the following commands:

Start ! Programs ! IBM SPSS Statistics ! IBM SPSS Statistics 20

Table 9.10 Post hoc

comparison of adjusted means

in different groups for the data

on cold duration during

treatment with graphics

Treatment C Treatment B Treatment A

12.4 8.2 6.5

“ ” represents no significant difference between the means

Treatment A: Administering high dose of vitamin C

Treatment B: Administering low dose of vitamin C

Treatment C: Administering placebo
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(ii) Click Variable View tag and define the variables Vitamin_Dose as nominal

variable and Pre_Days and Post_Days as scale variables.
(iii) Under the column heading Values against the variable Vitamin_Dose,

define “1” for Treatment A, “2” for Treatment B, and “3” for Treatment C.
(iv) After defining the variables, type the data for these variables by clicking

Data View.

(v) In the data view, follow the below-mentioned command sequence for

ANCOVA:

Analyze ) General Linear Model ) Univariate

(vi) Select the variables Cold duration during treatment, Vitamin dose, and Cold
duration before treatment from left panel to the “Dependent variable”

section, “Fixed Factor(s)” section, and “Covariate(s)” section of the right

panel, respectively.

(vii) Click the tagModel and select the Sum of Squares option as “Type I.” Press

Continue.
(viii) Click the tag Options and select the variables Overall and Vitamin_Dose

from the left panel to the “Display Means for” section of the right panel.

Check the option “Compare main effects” and “Descriptive statistics.”

Ensure the value of significance as .05 or .01 as the case may be. Press

Continue.
(ix) Click OK for output.

Exercise

Short Answer Questions

Note:Write answer to each of the following questions in not more than 200 words.

Q1. What do you mean by the covariate? How it is controlled in ANCOVA? Give

a specific example.

Q2. Describe an experimental situation where ANCOVA can be applied. Construct

null hypothesis and all possible alternative hypotheses.

Q3. Thirty boys were selected for direct marketing of a vacuum cleaner in three

similar cities. In each of the city, 10 boys were sent for direct marketing for a

month. Three different kinds of incentives, namely, conveyance allowance,

two percent bonus, and gifts were offered to these sales agents in these three

cities on completing the target. To compare the effectiveness of three different

incentives on sale, which statistical technique should be used?

Q4. If two treatment groups are to be compared on some criterion variable, how do

you interpret if the slopes of the two regression lines are same? Further, if the

intercepts are equal, what it conveys? Explain by means of graphical

representation.
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Q5. Explain the statement “the analysis of covariance is a mix of one-way ANOVA

and linear regression.”

Q6. Why the observed mean of criterion variable is adjusted in ANCOVA? How

this adjustment is done?

Q7. What are the various assumptions used in analysis of covariance?

Q8. Which design is more efficient and why among one-way ANOVA and

ANCOVA?

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. In designing an experiment, if the randomization is not possible, control

is observed by matching the groups. This matching is done on the variable

which is

(a) Independent

(b) Extraneous

(c) Dependent

(d) Any variable found suitable

2. Covariate is a variable which is supposed to be correlated with

(a) Criterion variable

(b) Independent variable

(c) Dependent variable

(d) None of the above

3. In ANCOVA, while doing post hoc analysis, which group means are

compared?

(a) Pretest group means

(b) Posttest group means

(c) Pretest adjusted group means

(d) Posttest adjusted group means

4. In ANCOVA, if the slopes of the regression lines in different treatment groups

are same, one can infer that

(a) Some of the treatments will show the improvement where the other

treatments may show the deterioration.

(b) All the treatments will show either deterioration or improvement but with

varying degrees.

(c) One cannot tell about the improvement or deterioration due to different

treatments.

(d) All treatments will have the same amount of improvement in the criterion

variable.

5. In ANCOVA, if intercepts of the regression lines in the two treatment groups

are same, then it may be inferred that
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(a) One treatment is better than other.

(b) One cannot say which treatment is more effective.

(c) Both the treatments are equally effective.

(d) No conclusion can be drawn.

6. In ANCOVA model, the error component is independently and identically

normally distributed with

(a) Mean 0 and variance 1

(b) Mean 1 and variance 0

(c) Equal mean and variance 1

(d) Mean 0 and equal variance

7. In ANCOVA, the adjusted mean m in the ith treatment group is obtained from

the formula

(a) m ¼ Yi þ bðXi � �XÞ
(b) m ¼ Yi � bðXi � �XÞ
(c) m ¼ Yi � bð �X � XiÞ
(d) m ¼ Yi þ bþ ðXi � �XÞ

8. In analysis of covariance, the criterion variable should be

(a) Continuous

(b) Nominal

(c) Ordinal

(d) Dichotomous always

9. One of the assumptions in using ANCOVA is

(a) The data on criterion variable must have been obtained by stratified

sampling.

(b) The regression coefficients for each treatment groups must be

heterogeneous.

(c) The interaction between the criterion variable and covariate is significant.

(d) The criterion variable must have the same variance in each of the treatment

groups.

10. Choose the correct statement.

(a) The ANCOVA is more efficient than ANOVA because part of the error

variance is explained by the covariate.

(b) ANOVA is more efficient than ANCOVA if the initial conditions are not

same.

(c) ANOVA and ANCOVA are equally effective, and it is the matter of choice

as to which analysis is to be used.

(d) All the above statements are correct.

11. In order to compare the effectiveness of three training programs on financial

knowledge, an experiment was planned. Three groups of employees were
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tested for their financial knowledge before and after the training program.

While using SPSS for ANCOVA, three variables, namely, Pre_Knowledge

Drib, Post_Knowledge, and Treatment_Group, need to be defined. Choose

the correct types of each variable.

(a) Pre_Knowledge and Post_Knowledge are Scale and Treatment_Group is

Ordinal.

(b) Pre_Knowledge and Post_Knowledge are Nominal and Treatment_Group

is Scale.

(c) Pre_Knowledge and Treatment_Group are Scale and Post_Knowledge is

Nominal.

(d) Pre_Knowledge and Post_Knowledge are Scale and Treatment_Group is

Nominal.

12. While using SPSS for ANCOVA, the three variables, namely, Pre_Test, Post_-

Test, and Treatment_Group, are classified as

(a) Post_Test as Dependent variable whereas Pre_Test and Treatment_Group

as Fixed Factor(s)

(b) Post_Test as Dependent variable, Pre_Test as Covariate, and

Treatment_Group as Fixed Factor

(c) Treatment_Group as Dependent variable, Pre_Test and Post_Test as Fixed

Factor(s)

(d) Treatment_Group as Dependent variable, Post_Test as Covariate, and

Pre_Test as Fixed Factor

13. Choose the correct sequence of commands in SPSS for starting ANCOVA.

(a) Analyze ! Univariate ! General Linear Model

(b) Analyze ! General Linear Model ! Multivariate

(c) Analyze ! General Linear Model ! Univariate

(d) Analyze ! General Linear Model ! Repeated Measures

Assignments

1. In a psychological experiment 60, subjects were randomly divided into three

equal groups. These groups were taught with audiovisual aid, traditional method,

and need-based methods. Prior to the treatments, learning motivation of all the

subjects was assessed. After 4 weeks, improvement in academic achievements

was noted. The data so obtained on academic achievements is shown in the

Table A-1.

Apply analysis of covariance to see as to which methodology of teaching is more

effective for academic achievement. Test your hypothesis at .05 as well as .01

level of significance.

2. A study was conducted to know the impact of gender on life optimism. Since age

is considered as factor effecting life optimism, it was considered as covariate.
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Table A-1 Scores on academic achievements and learning motivation in three types of teaching

methods

S.N. Audiovisual group Traditional group Need-based group

Motivation Achievement Motivation Achievement Motivation Achievement

1 2 5 2 3 1 12

2 1 10 3 3 3 18

3 3 12 1 9 2 11

4 0 14 1 13 6 25

5 1 14 4 13 3 9

6 5 16 5 13 5 18

7 3 18 6 13 3 12

8 4 18 1 15 4 10

9 4 18 2 15 3 11

10 5 18 4 17 6 16

11 2 22 6 17 7 18

12 3 22 5 21 4 14

13 7 28 2 22 3 17

14 4 24 5 22 2 10

15 6 24 5 22 5 19

16 3 26 5 22 3 14

17 4 26 5 22 2 16

18 4 26 6 20 3 15

19 8 26 9 22 4 16

20 3 29 4 24 5 15

Table A-2 Data on age

and life optimism of the

male and female S.N.

Male Female

Age Life optimism Age Life optimism

1 53 18 20 26

2 38 26 24 15

3 18 20 18 16

4 26 27 38 17

5 39 19 35 16

6 38 29 25 24

7 30 15 17 10

8 60 23 19 18

9 22 22 21 19

10 31 14 19 19

11 21 14 18 21

12 25 23 38 13

13 22 23 37 15

14 20 19 21 11

15 27 23 20 11

16 24 20 20 14

17 29 18 41 16

18 27 19 40 17

19 32 13 28 17

20 17 14 99 8

Exercise 315



A questionnaire was administered on 20 male and 20 female subjects to know

their life optimism. Their age was also noted. The data so obtained are listed in

the Table A-2.

Apply analysis of covariance and discuss your findings to compare the life

optimism among male and female adjusted for their age. Test your hypothesis at

5% as well as at 1% level.

Answers to Multiple-Choice Questions

Q.1 b Q.2 a Q.3 d

Q.4 b Q.5 c Q.6 d

Q.7 b Q.8 a Q.9 d

Q.10 a Q.11 d Q.12 b

Q.13 c
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Chapter 10

Cluster Analysis: For Segmenting the Population

Learning Objectives

After completing this chapter, you should be able to do the following:

• Understand the concept of cluster analysis.

• Know the different terminologies used in cluster analysis.

• Learn to compute different distances used in the analysis.

• Understand different techniques of clustering.

• Describe the assumptions used in the analysis.

• Explain the situations where cluster analysis can be used.

• Learn the procedure of using cluster analysis.

• Know the use of hierarchical cluster analysis and K-means cluster analysis.

• Describe the situation under which two-step cluster should be used.

• Understand various outputs of cluster analysis.

• Know the procedure of using cluster analysis with SPSS.

• Understand different commands and its outcomes used in SPSS for cluster

analysis.

• Learn to interpret the outputs of cluster analysis generated by the SPSS.

Introduction

Market analysts are always in search of strategies responsible for buying behavior.

The whole lot of customers can be grouped on the basis of their buying behavior

patterns. This segmentation of customers helps analysts in developing marketing

strategy for different products in different segments of customers. These segments

are developed on the basis of buying behavior of the customers in such a way so

that the individuals in the segments are more alike but the individuals in different

segments differ to a great extent in their characteristics. The concept of segmenting

may be used to club different television serials into homogeneous categories on

the basis of their characteristics. An archaeological surveyor’s may like to cluster

different idol excavated from archaeological digs into the civilizations from which

J.P. Verma, Data Analysis in Management with SPSS Software,
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they originated. These idols may be clustered on the basis of their physical and

chemical parameters to identify their age and civilization to which they belong.

Doctors may diagnose a patient for viral infection and determine whether distinct

subgroups can be identified on the basis of a clinical checklist and pathological

tests. Thus, in different fields several situations may arise where it is required to

segment the subjects on the basis of their behaviour pattern so that an appropriate

strategy may be formed for these segments separately. Segmenting may also be

done for the objects based on their similarity of features and characteristics. Such

segmenting of objects may be useful for making a policy decision. For instance, all

the cars can be classified into small, medium and large segments depending upon

their features like engine power, price, seating capacity, luggage capacity, and fuel

consumption. Different policy may be adopted to promote these segments of

vehicle by the authorities.

The problem of segmentation shall be discussed in this chapter by means of

cluster analysis. The more emphasis has been given on understanding various

concepts of this analysis and the procedure used in it. Further, solved example

has been discussed by means of using SPSS for easy understanding of readers. The

reader should note as to how different outputs generated in this analysis by the

SPSS have been interpreted.

What Is Cluster Analysis?

Cluster analysis is a multivariate statistical technique for grouping cases of data

based on the similarity of responses to several variables/subjects. The purpose of

cluster analysis is to place subjects/objects into groups, or clusters, suggested by the

data, such that objects in a given cluster are homogenous in some sense, and objects

in different clusters are dissimilar to a great extent. In cluster analysis, the groups

are not predefined but are rather suggested on the basis of the data. The cluster

analysis can also be used to summarize data rather than to find observed clusters.

This process is sometimes called dissection.

Terminologies Used in Cluster Analysis

Distance Measure

In cluster analysis, cases/objects are clustered on the basis of dissimilarities

(similarities) or distances between cases/objects. These distances (similarities)

can be based on a single or multiple parameters where each parameter represents

a rule or condition for grouping cases/objects. For example, if we were to cluster the

songs, we may take into account the song length, singer, subjective ratings of the
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listeners, etc. The simplest way of computing distances between cases in a multidi-

mensional space is to compute Euclidean distances. There are many methods

available for computing distances and it is up to the researcher to identify an

appropriate method according to the nature of the problem. Although plenty of

methods are available for computing distances between the cases, we are discussing

herewith the five most frequently used methods. These methods for computing the

distances shall be discussed later in this chapter by using some data.

Consider the data in Table 10.1 where age, income, and qualification are the

three different parameters on which employees need to be grouped into different

clusters. We will see the computation of distances between the two employees

using different distance method.

Squared Euclidean Distance

A Euclidean distance is a geometric distance between two cases or objects. This is

the most natural way of computing a distance between two samples. It computes the

difference between two samples directly on the basis of the changes in magnitude in

the sample levels. Euclidean distance is usually used in a situation where data sets

are suitably normalized. It is computed by taking the square root of the sum of the

squared difference on each of the variable measurements between the two cases.

The formula for its computation is given by

deij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðXik � XjkÞ2
s

(10.1)

where

Xik is the measurement of ith cases on kth variable

Xjk is the measurement of jth cases on kth variable

n is number of variables

Let us compute the Euclidean distance between first and second employee by

using their profile as shown in Table 10.1.

Table 10.1 Employees’

profile
Age Income Qualification

Employee 1 2.5 2.4 2.4

Employee 2 2.3 2.1 1.9

Employee 3 1.2 1.9 �0.9

Employee 4 1.5 �0.4 1.3

Terminologies Used in Cluster Analysis 319



The squared Euclidean distance between employee 1 and employee 2 can be

obtained by using the formula 10.1. The computation has been shown in the

Table 10.2.

Thus; Squared Euclidean space between first and second employee

¼ 0:04þ 0:09þ 0:25 ¼ 0:38

Since Euclidean distance is the square root of the squared Euclidean distance,

Euclidean distance between first and second employee ¼ de12 ¼
ffiffiffiffiffiffiffiffiffi
0:38

p ¼ 0:62:
In computing the Euclidean distance, each difference is squared to find the absolute

difference on each of the variables measured on both the employees. After adding all

of the squared differences, we take the square root. We do it because by squaring the

differences, the units of measurements are changed, and so by taking the square root,

we get back the original unit of measurement.

If Euclidean distances are smaller, the cases are more similar. However, this

measure depends on the units of measurement for the variables. If variables are

measured on different scales, variables with large values will contribute more to the

distance measure than the variables with small values. It is therefore important to

standardize scores before proceeding with the analysis if variables are measured on

different scales. In SPSS, you can standardize variables in different ways.

Manhattan Distance

TheManhattan distance between the two cases is computed by summing the absolute

distances along each variable. The Manhattan distance is also known as city-

block distance and is appropriate when the data set is discrete. By using the data of

Table 10.1 the Manhattan distance between first and second employee has been

computed in the Table 10.3.

Thus, the Manhattan distance between first and second employees ¼ dm ¼
0.2 + 0.3 + 0.5 ¼ 1.00.

Table 10.3 Computation of

Manhattan distance between

employees 1 and 2

Age Income Qualification

Employee 1 2.5 2.4 2.4

Employee 2 2.3 2.1 1.9

Absolute difference 0.2 0.3 0.5

Table 10.2 Computation of

Euclidean space between

employees 1 and 2

Age Income Qualification

Employee 1 2.5 2.4 2.4

Employee 2 2.3 2.1 1.9

Difference 0.2 0.3 0.5

Squared difference 0.04 0.09 0.25
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Chebyshev Distance

The Chebyshev distance between the two cases are obtained by finding the

maximum absolute difference in values for any variable. This distance is computed

if we want to define two cases as “different” if they differ on any one of the

dimensions. The Chebyshev distance is computed as

Chebyshev distance x; yð Þ ¼ dc ¼ Max xi � yij j (10.2)

In Table 10.1, the Chebyshev distance between the first and fourth employees

would be 2.8 as this is the maximum absolute difference of these two employees on

income variable.

Mahalanobis (or Correlation) Distance

The Mahalanobis distance is based on the Pearson correlation coefficient which is

computed between the observations of two cases or subjects. This correlation

coefficient is used to cluster the cases. This is an important measure as it is a

scale invariant. In other words, it is not affected by the change in units of the

observations. Thus, the Mahalanobis distance (dm) between first and second

employees can be obtained by computing the correlation coefficient between the

observations 2.5, 2.4, 2.4 and 2.3, 2.1, 1.9.

Pearson Correlation Distance

The Pearson distance (dp) is also based on the Pearson correlation coefficient

between the observations of the two cases. This distance is computed as dp ¼ 1�r
and lies between 0 and 2. Since the maximum and minimum values of r can be +1

and �1, respectively, the range of the Pearson distance (dp) can be from 0 to 2. The

zero value of dp indicates that the cases are alike, and 2 indicates that the cases are

entirely distinct.

Clustering Procedure

In cluster analysis, each case/object is considered to be a single cluster. The

distances between these objects are computed by the chosen distance measure.

On the basis of these distances computed in the proximity matrix, several objects

are linked together. After having done so, how do we determine the distances

between these new clusters? In other words, we need to have a linkage or amal-

gamation criteria to determine when two clusters are sufficiently similar to be

linked together. There are various protocols: for example, we may link two clusters
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together on the basis of the smallest distance between the two objects, one from

each of the two different clusters. Similarly the two clusters may be linked together

on the basis of the maximum distance between the two objects, one from each

cluster. There are different ways the objects can be clustered together. The entire

clustering procedures can be broadly classified in three different categories, that is,

hierarchical clustering, nonhierarchical clustering, and two-step clustering. These

procedures shall be discussed in detail under various headings in this section. The

details of various classification procedures have been shown graphically in

Fig. 10.1.

Hierarchical Clustering

In hierarchical clustering, objects are organized into a hierarchical structure.

It creates a hierarchy of clusters which may be represented in a treelike structure

known as dendrogram. Objects are grouped into a tree of clusters by using the

distance (similarity) matrix as clustering criteria. In this tree structure, the root

consists of a single cluster containing all observations, whereas the leaves refer to

the individual observations. Hierarchical clustering is the best for small data sets

because in this procedure a proximity matrix of the distance/similarity is computed

for each pair of cases in the data set.

Hierarchical clustering can be either agglomerative or divisive. In agglomerative

clustering, one starts at the individual objects and successively merges clusters

together. On the other hand, in the divisive clustering, one starts with all the objects

as one cluster and recursively splits the clusters. We shall now discuss various types

of clustering protocols of these two types of hierarchical clustering in detail.

Clustering Procedure

Hierarchical clustering

Agglomerative clustering Divisive clustering

Centroid methods

Variance methods

Linkage methods

Ward’s procedure

Single linkage Complete linkage Average linkage

Sequential Threshold method

Parallel Threshold method

Optimizing Partitioning method

Two-step clusterNon-Hierarchical clustering
(K means clustering)

Fig. 10.1 Different clustering procedures
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Agglomerative Clustering

In agglomerative clustering, all the individual objects/cases are considered as a

separate cluster. These objects (atomic clusters) are successively merged into bigger

and bigger clusters using specified measure of similarity between the pair of objects.

The choice of which clusters to merge is determined by a linkage criteria. Thus, in

agglomerative clustering, we start at the leaves and successively clusters are merged

together to form the dendrogram. The clusters shall keepmergingwith each other until

all of the objects are in a single cluster or until certain termination conditions are

satisfied. The termination condition is decided by the researcher which depends upon

the number of clusters required to be formed. One of the criteria in deciding the

number of clusters to be formed depends upon whether some meanings can be

attached to these clusters or not. Consider the following raw data in Fig. 10.2. Each

data is a case/object and is considered to be the independent cluster. Depending upon

the distances, these clusters are merged in different steps, and finally we get a single

cluster. The formation of these clusters at different stages is shown in Fig. 10.3.

Fig. 10.2 Raw data showing

the distances between the

objects

Fig. 10.3 Formation of clusters at different stages in agglomerative clustering
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In agglomerative clustering, different methods are used to form the clusters.

These methods are discussed below.

Centroid Method

In this method, clusters are merged on the basis of the Euclidean distance between

the cluster centroids. Clusters having least Euclidean distance between their

centroids are merged together. In this method, if two unequal sized groups are

merged together, then larger of the two tends to dominate the merged cluster. Since

centroid methods compare the means of the two clusters, outliers affect it less than

most other hierarchical clustering methods. However, it may not perform well in

comparison to Ward’s method or average linkage method (Milligan 1980). Linkage

of clusters using centroid method is shown in Fig. 10.4.

Variance Methods

In this method, clusters are formed that minimize the within cluster variance. In other

words, clusters are linked if the variation within the two clusters is least. This is done

by checking the squared Euclidean distance to the center mean. The method used in

checking the minimum variance in forming clusters is known as Ward’s minimum

variance method. This method tends to join the clusters having small number of

observations and is biased towards producing clusters with same shape and with

nearly equal number of observations. The variance method is very sensitive to the

outliers. If “a” to “g” represents seven clusters then cluster formation using Ward’s

method can be shown graphically in Fig. 10.5.

Linkage Methods

In agglomerative clustering, clusters are formed on the basis of three different types

of linkage methods.

Fig. 10.4 Linkage of clusters using centroid method
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1. Single Linkage Method: In this method, clusters are formed on the basis of

minimum distance between the closest members of the two clusters. This is also

known as nearest neighbor rule. This kind of linkage can be seen in Fig. 10.6.

2. Complete Linkage Method: In this method, clusters are formed on the basis of

minimum distance between the farthest members of the two clusters. This is also

known as furthest neighbor rule. Complete linkage can be shown by Fig. 10.7.

3. Average Linkage Method: This procedure uses the minimum average distance

between all pairs of objects (in each pair one member must be from a different

cluster) as the criteria to make the next higher cluster. Average linkage can be

shown by Fig. 10.8.

Fig. 10.5 Linkage of clusters using variance method

Fig. 10.6 Clusters based on

single linkage

Fig. 10.7 Clusters based on

complete linkage

Fig. 10.8 Clusters based on

average linkage
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Divisive Clustering

In divisive clustering, we start by considering all individual objects/cases as one

cluster (called as root) and recursively splits into smaller and smaller clusters owing

to any of the distance criteria, until each object forms a cluster on its own or until it

satisfies certain termination conditions which depend upon the number of clusters

to be formed. Here, data objects are grouped in a top down fashion. Thus, in

divisive clustering, we start at the root and reaches to leaves. Divisive clustering

is just the reverse of agglomerative clustering. Cluster formation in divisive clus-

tering schedule can be seen in Fig. 10.9.

Nonhierarchical Clustering (K-Means Cluster)

Unlike hierarchical clustering, in K-means clustering, a number of clusters are

decided in advance. Solutions cannot be obtained for a range of clusters unless

you rerun the analysis every time for different number of clusters. In K-means

clustering, the first step is to find the K-centers. We start with an initial set of

K-means and classify cases/objects based on their distances to the centers. Next, the

cluster means are computed again using the cases/objects that are assigned to the

cluster. After this, we reclassify all cases/objects based on the new set of means.

This iterative process keeps going until cluster means do not change much between

successive steps. Once the stability of cluster means is achieved, the means of the

clusters are calculated once again and all the cases are assigned to their permanent

clusters. If one can have a good guesses for the initial K-centers, those can be used

as initial starting points; otherwise, let the SPSS find K cases that are well separated

and use these values as initial cluster centers.

In hierarchical clustering, distance or similarity matrix between all pair of cases is

required to be computed. This matrix becomes voluminous if the number of cases

Fig. 10.9 Formation of clusters at different stages in divisive clustering
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is in thousands. Because of this, so much processing is required, and even with the

modern computer, one needs to wait for some time to get the results. On the other hand,

k-means clustering method does not require computation of all possible distances.

Nonhierarchical clustering solution has three different approaches, that is, sequen-

tial threshold method, parallel threshold, and optimizing partitioning method.

The sequential threshold method is based on finding a cluster center and then

grouping all objects that are within a specified threshold distance from the center.

Here, one cluster is created at a time.

In parallel threshold method, several cluster centers are determined simulta-

neously and then objects are grouped depending upon the specified threshold

distance from these centers. These threshold distances may be adjusted to include

more or fewer objects in the clusters.

The optimizing partitioning is similar to other two nonhierarchical methods

except it allows for reassignment of objects to another cluster depending on some

optimizing criterion. In this method, a nonhierarchical procedure is run first, and

then objects are reassigned so as to optimize an overall criterion.

Precautions: K-means clustering is very sensitive toward the outliers because

they will usually be selected as initial cluster centers. If outlier exists in the data,

this will result in outliers forming clusters with small number of cases. Therefore, it

is important for the researcher to screen the data for outliers and remove them

before starting the cluster analysis.

Two-Step Cluster

Two-step clustering procedure is an exploratory statistical tools used for identifying

the natural grouping of cases/objects within a large data set. It is an efficient

clustering procedure in a situation where the data set is very large. This procedure

has an ability to create clusters if some of the variables are continuous and others

are categorical. It provides automatic identification of number of clusters present in

the data.

There are two assumptions in this analysis: first, the variables are independent,

and, second, each continuous variable follows a normal distribution whereas each

categorical variable has a multinomial distribution. The two-step cluster analysis

procedure provides solution in two steps which are explained as follows:

Step 1: Pre-cluster Formation

Pre-clusters are the clusters of original cases/objects that are used in place of raw

data to reduce the size of the distance matrix between all possible pair of cases.

After completing the pre-clustering, the cases in the same pre-cluster are treated as

a single entity. Thus, the size of the distance matrix depends upon the number of

pre-clusters instead of cases. Hierarchical clustering method is used on these pre-

clusters instead of the original cases.

Terminologies Used in Cluster Analysis 327



Step 2: Clustering Solutions Using Pre-clusters

In the second step, the standard hierarchical clustering algorithm is used on the pre-

clusters for obtaining the cluster solution. The agglomerative clustering algorithm

may be used to produce a range of cluster solutions. To determine which number of

clusters is the best, each of these cluster solutions may be compared using either

Schwarz’s Bayesian criterion (BIC) or the Akaike information criterion (AIC) as

the clustering criterion. The readers are advised to read about these procedures from

some other texts.

Standardizing the Variables

Cluster analysis is normally used for the data measured on interval scale and rarely

used for ratio data. In cluster analysis, distances are computed between the pair of

cases on each of the variables. And if the units of measurement for these variables

are different, then one must be worried about its impact on these distances.

Variables having larger values will have a larger impact on the distance com-

pared to variables that have smaller values. In that case, one must standardize the

variables to a mean of 0 and a standard deviation of 1.

If the variables are measured on interval scale and range of scale is same for each

of the variable, then standardization of variables is not required, but if its range of

measurement scale is different for different variables or if they are measured on

ratio scale, then one must standardize the variables in some way so that they all

contribute equally to the distance or similarity between cases.

Icicle Plots

It is the plotting of cases joining to form the clusters at each stage. You can see in

Fig. 10.10 what is happening at each step of the cluster analysis when average

linkage between groups is used to link the clusters. The figure is called an icicle plot
because the columns representing cases look like icicles hanging from eaves. Each

column represents one of the case/object you are clustering. Each row represents a

cluster solution with different numbers of clusters.

If you look at the figure from bottom up, the last row (not shown) is the first step of

the analysis. Each of the cases is a cluster of its own. The number of clusters at that

point is 6. The five-cluster solution arises when the cases “a” and “b” are joined into a

cluster. It is so because they had the smallest distance of all pairs. The four-cluster

solution results from the merging of the cases “d” and “e” into a cluster. The three-

cluster solution is the result of combining the cases “c” with “de.” Going similarly,

for the one cluster solution, all of the cases are combined into a single cluster.
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Remarks

1. When pairs of cases are tied for the smallest distance to form a cluster, an arbitrary

selection is made. And, therefore, if cases are sorted differently, you might get a

different cluster solution. But that should not bother you as there is no right or

wrong answer to a cluster analysis. Many groupings are equally viable.

2. In case of large number of cases in cluster analysis, icicle plot can be developed

by taking cases as rows. You must specify the “Horizontal” on the Cluster Plots

dialog box.

The Dendrogram

The dendrogram is the graphical display of the distances on which clusters are com-

bined. The dendrogram can be seen in Fig. 10.22 and is read from left to right. Vertical

lines show joined clusters. The position of the line on the scale represents the distance at

which clusters are joined. The observed distances are rescaled to fall into the range of

1–25, and hence you do not see the actual distances; however, the ratio of the rescaled

distanceswithin the dendrogram is the same as the ratio of the original distances. In fact,

the dendrogram is the graphical representation of the information provided by the

agglomeration schedule.

The Proximity Matrix

Consider the data of four employees on three different parameters age, income, and

qualification as shown in the Table 10.4. Let us see how the proximity matrix is

developed on these data.

The proximity matrix is the arrangement of squared Euclidean distances in rows and

columns obtained between all pairs of cases. The squared Euclidean distances shall be

computed by adding the squared differences between the two employees on each of the

three variables.

a b c d e f

Number 1 X X X X X X X X X X X X
of 2 X X X X X X X X X X X
Clusters 3 X X X X X X X X X

4 X X X X X X X X
5 X X X X X X X

Fig. 10.10 Vertical icicle plot
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The distance between employees 1 and 2 ¼ (2.5�2.3)2 + (2.4�2.1)2 +

(2.4�1.9)2 ¼ .04 + .09 + .25 ¼ 0.38

The distance between employees 1 and 4 ¼ (2.5–1.5)2 + (2.4 + 0.4)2 +

(2.4�1.3)2 ¼ 1.00 + 7.84 + 1.21 ¼ 10.05

The distance between employees 2 and 3 ¼ (2.3�1.2)2 + (2.1�1.9)2 +

(1.9 + 0.9)2 ¼ 1.21 + 0.04 + 1.00 ¼ 2.25

This way, all distances can be computed which are shown in Table 10.5. This

table is known as the proximity matrix.

All the entries in the diagonal are 0 because an employee does not differ with

himself. The smallest difference between two employees is 0.38, the distance

between the employee 1 and employee 2. The largest distance, 12.83, occurs

between employee 1 and employee 3. The distance matrix is symmetric, and,

therefore, you can see that the distance between the first and third employee is

same as the distance between the third and first employee.

What We Do in Cluster Analysis

In using cluster analysis, one needs to follow different steps to get the final results.

You may not understand all the steps at this moment but use it as a blueprint of the

analysis and proceed further, and I am sure by the time you finish reading the entire

chapter, you will have a fairly good idea about its application. Once you understand

different concepts of cluster analysis discussed in this chapter, you will be taken to a

solved example by using SPSS, and this will give you practical knowledge of using

this analysis to your data set with SPSS. Below are the steps which are used in

cluster analysis:

1. Identify the variables on which subjects/objects need to be clustered.

Table 10.4 Employees’

profile
Age Income Qualification

Employee 1 2.5 2.4 2.4

Employee 2 2.3 2.1 1.9

Employee 3 1.2 1.9 �0.9

Employee 4 1.5 �0.4 1.3

Table 10.5 Proximity matrix

Squared Euclidean Distance

Cases Employee 1 Employee 2 Employee 3 Employee 4

Employee 1 0 0.38 12.83 10.05

Employee 2 0.38 0 2.25 7.25

Employee 3 12.83 2.25 0 10.22

Employee 4 10.05 7.25 10.22 0
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2. Select the distance measure for computing distance between cases. One can

choose any of the distance measures like squared Euclidean distance, Manhattan

distance, Chebyshev distance, or Mahalanobis (or correlation) distance.

3. Decide the clustering procedure to be used from the wide variety of clustering

procedure available in the hierarchical or nonhierarchical clustering sections.

4. Decide on the number of clusters to be formed. The sole criteria in deciding the

number of clusters is based on the fact that one should be able to explain these

clusters on the basis of their characteristics.

5. Map and interpret clusters using illustrative techniques like perceptual maps,

icicle plots, and dendrograms and draw conclusions.

6. Assess reliability and validity of the obtained clusters by using any one or more

of the following methods:

(i) Apply the cluster analysis on the same data by using different distance

measure.

(ii) Apply the cluster analysis on the same data by using different clustering

technique.

(iii) Split the same data randomly into two halves and apply the cluster analysis

separately on each part.

(iv) Repeat cluster analysis on same data several times by deleting one variable

each time.

(v) Repeat cluster analysis several times, using a different order each time.

Assumptions in Cluster Analysis

Following assumptions need to be satisfied in cluster analysis:

1. The cluster analysis is usually used for the data measured on interval scale.

However, it can be applied for any type of data. If the variable set includes

continuous as well as categorical, then two-step cluster should be used.

2. The variables in the cluster analysis should be independent with each other.

3. Inter-object similarity is often measured by Euclidean distance between pairs of

objects.

4. The data needs to be standardized if the range or scale of measurement of one

variable is much larger or different from the range of others.

5. In case of nonstandardized data, Mahalanobis distance is preferred as it

compensates for intercorrelation among the variables.

6. In applying two-step cluster with continuous as well as categorical variables, it is

assumed that the continuous variables are normally distributed whereas categor-

ical variables have multinomial distribution.
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Research Situations for Cluster Analysis Application

Cluster analysis can be applied to a wide variety of research problems in the area of

management, psychology, medicine, pharmaceuticals, social sciences, etc. Follow-

ing are the situations where this technique can be applied:

1. Cluster analysis can be used to classify the consumer population into market

segments for understanding the requirements of potential customers in different

groups. Such studies may be useful in segmenting the market, identifying the

target market, product positioning, and developing new products.

2. In a big departmental store, all inventories may be clustered into different groups

for placing them in same location or giving the similar code for enhancing sale

and easy monitoring of the products.

3. In the field of psychiatry, the cluster analysis may provide the cluster of

symptoms such as paranoia and schizophrenia, which is essential for successful

therapy.

4. In educational research, all schools of a district can be classified into different

clusters on the basis of the parameters like number of children, teacher’s

strength, total grant, school area, and location to develop and implement the

programs and policies effectively for each of these groups separately.

5. In the area of mass communication, television channels may be classified into

homogenous groups based on certain characteristics like TRP, number of

programs televised per week, number of artists engaged, coverage time,

programs in different sectors, advertisements received, and turnover. Different

policies may be developed for different groups of channels by the regulatory

body.

6. In medical research, cluster analysis may provide the solution for clustering of

diseases so that new drugs may be developed for different clusters of diseases.

This analysis may also be useful in clustering the patients on the basis of

symptoms for easy monitoring of drug therapy on mass scale.

Steps in Cluster Analysis

By learning terminologies involved in cluster analysis and the guidelines discussed

in the heading “What We Do in Cluster Analysis?”, you are now in a better position

to understand the procedure of its use for addressing your objectives. The cluster

analysis is usually done in two stages. The whole analysis is carried out in two

stages, the details of which have been discussed in the following steps:

Stage 1

1. The first step in cluster analysis is to apply the hierarchical cluster analysis in

SPSS to find the agglomerative schedule and proximity matrix for the data

obtained on each of the variables for all the cases. To form clusters, you need
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to select a criterion for determining similarity or distance between cases and a

linkage criterion for merging clusters at successive steps. After doing so, the

SPSS output provides proximity matrix which shows the distances (similarity)

between all the cases/objects and agglomerative schedule which is used to find

the number of clusters present in the data on the basis of fusion coefficients. The

detailed discussion as to how to do it shall be made while discussing the solved

example of cluster analysis using SPSS.

2. Prepare icicle plot and dendrogram of the data. These two figures can be

obtained by providing options in the SPSS. The icicle plot is the visual represen-

tation of the agglomerative schedule whereas the dendrogram plot shows how

distant (or close) cases are when they are combined.

Stage 2

3. The second step in cluster analysis is to apply the K-means cluster analysis in

SPSS. The process is not stopped in the first stage just because of the fact that

K-means analysis provides much stable clusters due to interactive procedure

involved in it in comparison to the single-pass hierarchical methods. The K-
means analysis provides four outputs, namely, initial cluster centers, case listing

of cluster membership, final cluster centers, and analysis of variance for all the

variables in each of the clusters.

4. The case listing of cluster membership is used to describe as to which case

belongs to which of the clusters.

5. The final cluster centers are obtained by doing iteration on the initial cluster

solutions. It provides the final solution. On the basis of final cluster centers, the

characteristics of different clusters are explained.

6. Finally, ANOVA table describes as to which of the variables is significantly

different across all the identified clusters in the problem.

The detailed discussion of the above-mentioned outputs in cluster analysis shall

be done by means of the results obtained in the solved example using SPSS.

Solved Example of Cluster Analysis Using SPSS

Example 10.1 A media company wants to cluster its target audience in terms of

their preferences toward quality, contents, and features of FM radio stations.

Twenty randomly chosen students were selected from a university who served the

sample for the study. Below-mentioned 14 questions were finally selected by their

research team after the content and item analysis which measured many of the

variables of interest. The respondents were asked to mark their responses on a 5-

point scale where 1 represented complete disagreement and 5 complete agreement.

The responses of the respondents on all the 12 questions that measured different

dimensions of FM stations are shown in Table 10.6.
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Questions on quality, contents, and features of FM stations

1. The FM station should provide more old Hindi songs.

2. FM stations must help an individual in solving their personal problems.

3. The presentation style of RJs helps popularizing an FM station.

4. An FM station should provide some kind of prizes/incentives to its listeners.

5. The station must telecast latest songs more often.

6. The FM stations must contain more entertaining programs.

7. Popularity of RJs depends upon their humor and ability to make program

interesting.

8. FM station should provide more opportunity to listeners to talk to celebrities.

9. RJs voice must be clear and melodious.

10. FM channels should play 24 � 7.

11. FM stations should give information for other sports along with cricket.

12. FM stations should provide information regarding educational/professional

courses available in the city.

13. FM stations should provide information regarding different shopping offers

available in the city.

14. RJs should speak in an understandable language, preferably in local language.

Solution In earlier chapters, you have seen the procedure of applying different

statistical techniques by using SPSS. By now, you must have been well acquainted

with the procedure of starting the SPSS on the system, defining variables and their

Table 10.6 Response of students on the questions related to quality, contents, and features of FM

radio stations

SN Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

1 5 4 2 5 1 3 5 2 1 4 3 4 3 4

2 1 4 4 2 5 2 3 5 2 3 4 2 2 3

3 2 2 3 3 2 4 2 3 4 4 2 2 4 4

4 5 3 3 4 4 4 5 3 2 5 2 5 3 5

5 4 1 2 4 1 1 5 4 2 4 3 4 2 4

6 4 2 3 4 2 5 2 1 5 2 1 3 5 3

7 2 3 2 2 3 4 3 4 4 3 4 3 5 2

8 5 2 2 5 2 4 5 2 2 4 1 5 1 4

9 2 4 4 2 5 3 4 4 3 3 5 2 2 2

10 3 4 4 2 4 3 2 5 2 4 3 3 2 2

11 4 5 4 3 5 4 4 4 1 1 5 4 3 2

12 2 4 5 1 4 2 2 4 2 4 3 4 4 3

13 2 5 4 2 5 3 3 5 3 2 5 3 3 2

14 1 5 4 5 4 3 2 5 3 3 5 4 4 2

15 2 5 5 3 4 2 3 4 4 3 4 3 3 3

16 5 3 2 4 5 2 4 4 3 5 2 5 2 5

17 5 2 3 5 2 3 5 2 4 5 3 4 4 4

18 5 2 2 2 2 4 4 3 4 2 2 2 4 1

19 4 3 3 3 4 5 2 3 5 4 3 2 5 2

20 3 4 4 1 2 4 4 2 4 2 3 4 4 3
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characteristics and preparing data file, and, therefore, these steps shall be skipped in

this chapter. In case of any clarification, readers are advised to go through Chap. 1

for detailed guidelines for preparing the data file.

The steps involved in using SPSS for cluster analysis shall be discussed first, and

then the output obtained from the analysis shall be shown and explained. The whole

scheme of cluster analysis with SPSS is as follows:

Stage 1

First of all, the hierarchical cluster analysis shall be done by using the sequence of

SPSS commands. The following outputs would be generated in this analysis:

(a) Proximity matrix of distances (similarity) between all the cases/objects

(b) Agglomerative schedule

(c) Icicle plot

(d) Dendrogram

On the basis of fusion coefficients in the agglomerative schedule, the number of

clusters (say K) is decided.

Stage 2

After deciding the number of clusters in the hierarchical cluster analysis, the data is

again subjected to K-means cluster analysis in SPSS. Using this analysis, the

following outputs would be generated:

(a) Initial cluster centers

(b) Case listing of cluster membership

(c) Final cluster centers

(d) Analysis of variance for comparing the clusters on each of the variables

Stage 1: SPSS Commands for Hierarchical Cluster Analysis

(a) Data file After defining variable names and their labels, prepare the data file for

the responses of the students on all the variables shown in Table 10.2. The data

file shall look like as shown in Fig. 10.11.

(b) Initiating command for hierarchical cluster analysis: After preparing the data
file, start the hierarchical analysis in SPSS by the following command sequence

(Fig. 10.12):

Analyze ! Classify ! Hierarchical Cluster
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Fig. 10.12 Sequence of SPSS commands for hierarchical cluster

Fig. 10.11 Showing data file for all the variables in SPSS
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(i) Selecting variables for analysis: After clicking the Hierarchical Cluster

option, you will be taken to the next screen for selecting variables. Select the

variables as follows:

– Select all the variables and bring them in the “Variable(s)” section.

– Ensure that in the “Display” section, the options “Statistics” and “Plots” are

checked. These are selected by default.

– In case if a variable denoting label of each cases is defined in the variable

view while preparing the data file, then bring that variable under the section

“Label Cases by.” While defining the variable for label in the variable view,

define its variable type as String under the column heading Type. However,

for the time being, you can skip the process of defining the variable for label

and leave the option “Label Cases by” blank.

The screen will look like as shown in Fig. 10.13.

(ii) Selecting options for computation: After selecting the variables, you need to

define different options for generating all the four outputs of hierarchical

analysis. Take the following steps:

– Click the tag Statistics in the screen shown in Fig. 10.13 and take the

following steps:

– Ensure that the “Agglomerative schedule” is checked. By default, it is

checked.

Fig. 10.13 Selecting variables for hierarchical analysis
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– Check “Proximity matrix.”

– Leave other options by default and click Continue.

The screen will look like Fig. 10.14.

– Click the tag Plots in the screen shown in Fig. 10.13 and take the following

steps:

– Check the option “Dendrogram.”

– Ensure that the option “All clusters” is checked in the “icicle plot”

section. This is checked by default.

– Ensure that the option “Vertical” is checked in the “Orientation section.”

This is also checked by default. The option “Vertical” is selected if the

number of cases is small. However, if the number of cases is large, then

select “Horizontal.”

– Click Continue.

The screen will look like Fig. 10.15.

– Click the tagMethod in the screen shown in Fig. 10.13 and do the following

steps:

– Select the option “Ward’s method” as cluster method. You can choose

any other linkage method. For details read the methods under the heading

Fig. 10.14 Screen showing option for generating agglomerative schedule and proximity matrix
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Distance Method discussed earlier. Personally I prefer the Ward’s

method as it depends upon the minimum variance concept and gives

the clusters which are more homogenous within itself.

– Select the option “Squared Euclidean distance” as an interval measure.

However, you can choose any other method as a distance measure like

Euclidean distance, Pearson correlation method, or Chebyshev method.

But generally squared Euclidean method is used to find the distance in the

proximity matrix.

– Select the option “None” in the “Transform Values” section. This is so

because in our example, the units of measurement for all the variables are

same. However, if the units of measurements are different, one needs to

standardize the variables. The most popular transformation is “Z-scores”

which needs to be selected if the measurement units are different for all

the variables.

– Check the option “Absolute values” in the “TransformMeasures” option.

This option transforms the values generated by the distance measure.

This option is not required for squared Euclidean distance.

Fig. 10.15 Selecting options for dendrogram and icicle plot
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– Click Continue. You will be taken back to the screen shown in Fig. 10.13.

The screen will look like as shown in Fig. 10.16.

– Click OK

(c) Getting the output: Clicking the option OK shall generate lot of outputs in the

output window. The four outputs that would be selected are Proximity matrix,

Agglomerative schedule, Icicle plot, and Dendrogram. These outputs have been

shown in Tables 10.7, 10.8 and Fig. 10.21, 10.22.

Stage 2: SPSS Commands for K-Means Cluster Analysis

Stage 1 was the explorative process where number of initial clusters was identified.

These initial clusters were identified on the basis of fusion coefficients in the

agglomerative schedule. After deciding the number of clusters, apply the K-
means cluster analysis in stage 2. In stage 1, three clusters were identified on the

basis of the agglomeration schedule in Table 10.8 (for details, see Interpretation of

Findings). This shall be used to find the final solution in the K-means cluster

Fig. 10.16 Selecting options for cluster method and distance measure criteria
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analysis. The data file developed for the hierarchical analysis is also used for the

K-means cluster analysis. Follow these steps in stage 2.

(i) Initiating command for K-means cluster analysis: Start the K-means analysis by

using the following command sequence (Fig. 10.17):

Analyze ! Classify ! K-Means Cluster Analysis

(ii) Selecting variables for analysis: After clicking the K-Means Cluster Analysis

option, you will be taken to the next screen for selecting variables. Select the

variables as follows:

– Select all the variables and bring them in the “Variable(s)” section.

– Write number of clusters as 3. This is so because only three clusters were

identified from the hierarchical analysis.

– Click the option Iterate and ensure that the minimum iteration is written as

10. In fact, this is done by default. If you want to have more than 10

maximum iterations, it may be mentioned here.

– Click Continue.

Fig. 10.17 Sequence of SPSS commands for K-means cluster
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The screen shall look like Fig. 10.18.

– Click the tag Save and take the following steps:

– Check the option “Cluster membership.”

– Check the option “Distance from cluster center.”

– Click Continue.

The screen shall look like Fig. 10.19.

– Click the tag Options and take the following steps:

– Ensure that the option “Initial cluster centers” is checked. In fact, this is

checked by default.

– Check the option “ANOVA table.”

– Check the option “Cluster information for each case.”

– Click Continue.

The screen would look like Fig. 10.20.

– Click OK.

Fig. 10.18 Screen showing selection of variables for K-means analysis
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Fig. 10.19 Screen showing option for getting cluster memberships and distance from cluster

center

Fig. 10.20 Screen showing options for cluster information and ANOVA



Interpretations of Findings

Stage 1: The agglomerative cluster analysis done in stage 1 provided the outputs

shown in Tables 10.7 and 10.8 and in Figs. 10.21 and 10.22. The agglomerative

analysis is explorative in nature. Its primary purpose is to identify the initial cluster

solution. Therefore, one should take all possible parameters to identify the clusters

so that important parameters are not left out. We shall now discuss the results

generated in the agglomerative analysis in stage 1.

Proximity Matrix: To Know How Alike (or Different) the Cases Are

Table 10.7 is a proximity matrix which shows distances between the cases. One can

choose any distance criterion like squared Euclidean distance, Manhattan distance,

Chebyshev distance, Mahalanobis (or correlation) distance, or Pearson correlation

distance. In this example, the squared Euclidean distance was chosen as a measure

of distance. The minimum distance exists between the 9th and 13th cases which is

6.00, whereas the maximum distance is observed between the 8th and 13th cases

which is 87.00. The minimum distance means that these two cases would combine

at the very first instance. This can be seen from Table 10.8 where 9th and 13th cases

are combined into a single cluster in the very first stage. Similarly, the 8th and 13th

cases are in the extreme clusters which can be seen in the dendrogram shown in

Fig. 10.22.

Agglomerative Schedule: To Know How Should Clusters Be Combined

Table 10.8 is an agglomerative schedule which shows how and when the clusters

are combined. The agglomerative schedule is used to decide the number of clusters

present in the data and one should identify the number of clusters by using the

column labeled “Coefficients” in this table. These coefficients are also known as

fusion coefficients. The values under this column are the distance (or similarity)

statistic used to form the cluster. From these values, you get an idea as to how the

clusters have been combined. In case of using dissimilarity measures, small

coefficients indicate that those fairly homogenous clusters are being attached to

each other. On the other hand, large coefficients show that the dissimilar clusters are

being combined. In using similarity measures, the reverse is true, that is, large

coefficients indicate that the homogeneous clusters are being attached to each other,

whereas small coefficients reveal that dissimilar clusters are being combined.

The value of fusion coefficient depends on the clustering method and the

distance measure you choose. These coefficients help you decide how many

clusters you need to represent the data. The process of cluster formation is stopped

when the increase (for distance measures) or decrease (for similarity measures) in
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Table 10.8 Agglomeration schedule

Stage

Cluster combined

Coefficients

Stage cluster first appears

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Next stage

1 9 13 3.000 0 0 2

2 2 9 7.333 0 1 5

3 4 16 12.333 0 0 17

4 10 12 17.833 0 0 12

5 2 15 24.000 2 0 12

6 7 19 31.000 0 0 8

7 1 8 39.000 0 0 9

8 3 7 48.000 0 6 15

9 1 17 58.000 7 0 11

10 18 20 69.500 0 0 13

11 1 5 81.500 9 0 17

12 2 10 94.333 5 4 14

13 6 18 107.500 0 10 15

14 2 14 121.667 12 0 16

15 3 6 137.000 8 13 18

16 2 11 153.750 14 0 18

17 1 4 172.417 11 3 19

18 2 3 261.524 16 15 19

19 1 2 389.800 17 18 0

Fig. 10.21 Vertical icicle plot using Ward’s linkage
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the coefficients between the two adjacent steps is large. In this example, the process

can be stopped at the three cluster solution, after stage 17. Let us see how it is done?

We should look for the coefficients from the last row upward because we want

the lowest possible number of clusters due to economy and its interpretability.

Stage 20 represents a one cluster solution where all the cases are combined into one

cluster, and, therefore, it is not shown in Table 10.8. The largest difference

(389.800–261.524) exists in the coefficients between stages 18 and 19, which

means we have to stop the process of cluster formation after stage 19; this would

result in only two-cluster solution. However, we may not be interested to represent

the data by two clusters only; therefore, we will look for the next larger difference

of (261.524–172.417) which is equal to 89.107 (between stage 18, the three-cluster

solution, and stage 17, the four-cluster solution). The next one after that is

(172.417–153.750), only 18.667, between stages 17 and 16. Thereafter, the differ-

ence keeps decreasing. So we decide to stop the cluster formation at stage 18 which

is a three-cluster solution.

Thus, in general, the strategy is to first identify the largest difference in the

coefficients and identify the stage of the lowest coefficient as the cluster solution.

However, it is up to the researcher to decide the number of clusters depending upon

its interpretability. You can see from the dendrogram shown in Fig. 10.22 that three

clusters are clearly visible in this case.

Fig. 10.22 Dendrogram using Ward linkage
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The agglomeration schedule starts off using the case numbers that has smallest

distance as shown by the icicle plot in Fig. 10.21. The cluster is formed by adding

cases. The number of the lowest case becomes the number of this newly formed

cluster. For example, if a cluster is formed by merging cases 3 and 6, it would be

known as cluster 3, and if the clusters are formed by merging cases 3 and 1, then it

would be known as cluster 1.

The columns labeled “Stage Cluster First Appears” shows the step at which each

of the two clusters that are being joined first appear. For example, at stage 9 when

clusters 1 and 17 are combined, it tells you that cluster 1 was first formed at stage 7

and cluster 17 is a single case, and that the resulting cluster (known as 1) will see

action again at stage 11 (under the column “Next stage”). If number of cases are

small then the icicle plot explains step-by-step clustering summary better than the

agglomeration schedule.

The Icicle Plot: Summarizing the Steps

Figure 10.21 is the icicle plot which is a graphical representation of agglomerative

schedule. It tells you how the clusters are formed at each stage. The figure is called

an icicle plot because the columns look like icicles hanging from eaves. Each

column represents one of the objects you are clustering. Each row shows a cluster

solution with different number of clusters. You see the figure from the bottom up.

The last row (not shown) is the first step of the analysis. Each of the cases is a

cluster of itself. The number of clusters at this point is 20. The nineteen-cluster

solution arises when cases 9 and 13 are joined into a cluster. It happened because

they had the smallest distance among all pairs. The eighteen-cluster solution results

from the merging of case 2 with cluster 9 into a cluster. This will go on till all the

clusters are combined into a single cluster.

Remark: In case of large number of cases, icicle plot can be developed by

showing cases as rows. For this, specify Horizontal in the Cluster Plots dialog

box in SPSS.

The Dendrogram: Plotting Cluster Distances

Figure 10.22 shows the dendrogram which is used to show the plotting of cluster

distances. It provides a visual representation of the distance at which clusters are

combined. We read the dendrogram from left to right. A vertical line represents the

joined clusters. The position of the line on the scale shows the distance at which

clusters are joined. The computed distances are rescaled in the range of 1–25, and,

therefore, actual distances cannot be seen here; however, the ratio of the rescaled

distances within the dendrogram is the same as the ratio of the original distances.

The first vertical line, corresponding to the smallest rescaled distance, is for the

case 9 and case 13. The next vertical line is at the next smallest distance for the

cluster 9 and case 2. It can be seen from Table 10.8 that the lowest coefficient is
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3.000, which is for cases 9 and 13. The next smallest distance is shown by the

coefficient as 7.333 which is for cluster 9 and case 2. Thus, what you see in this plot

is what you already know from the agglomeration schedule.

Remark: While reading the dendrogram, one should try to determine at what stage

the distances between clusters that are combined is large. You look for large

distances between sequential vertical lines. In this case, large distance between

the vertical lines suggests a three-cluster solution.

Stage 2 With the help of hierarchical cluster analysis, the number of cluster was

decided to be three. After this, K-means cluster analysis was applied to get the final

solution of the cluster means. The SPSS generated the outputs in the form of

Tables 10.9, 10.10, 10.11, 10.12, 10.13, and 10.14. We shall now explain these

outputs and discuss the cluster characteristics.

Table 10.9 Initial cluster centers

Variables

Cluster

1 2 3

1. The FM station should provide more old Hindi songs 5.00 2.00 4.00

2. FM stations must help an individual in solving their personal problems 3.00 5.00 2.00

3. The presentation style of RJs helps popularizing an FM station 2.00 4.00 3.00

4. An FM station should provide some kind of prizes/incentives to its

listeners

4.00 2.00 4.00

5. The station must telecast latest songs more often 5.00 5.00 2.00

6. The FM stations must contain more entertaining programs 2.00 3.00 5.00

7. Popularity of RJs depends upon their humor and ability to make program

interesting

4.00 3.00 2.00

8. FM station should provide more opportunity to listeners to talk to

celebrities

4.00 5.00 1.00

9. RJs’ voice must be clear and melodious 3.00 3.00 5.00

10. FM channels should play 24 � 7 5.00 2.00 2.00

11. FM stations should give information for other sports along with cricket 2.00 5.00 1.00

12. FM stations should provide information regarding educational/professional

courses available in the city

5.00 3.00 3.00

13. FM stations should provide information regarding different shopping

offers available in the city

2.00 3.00 5.00

14. RJs should speak in an understandable language, preferably in local

language

5.00 2.00 3.00

Table 10.10 Iteration historya

Iteration Change in cluster centers

1 2 3

1 3.375 1.753 2.953

2 .000 .480 .566

3 .000 .000 .000
aConvergence achieved due to no or small change in cluster centers. The maximum absolute

coordinate change for any center is .000. The current iteration is 3. The minimum distance between

initial centers is 7.483
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Initial Cluster Centers

The first step in K-means clustering was to find the K-centers. This is done

iteratively. Here, the value of K is three because three clusters were decided on

the basis of agglomerative schedule. We start with an initial set of centers and keep

modifying till the changes between two iterations are small enough. Although one

can also guess these centers which can be used as initial starting points, it is

advisable to let SPSS find K cases that are well separated and use these values as

initial cluster centers. In our example, Table 10.9 shows the initial centers.

Once the initial cluster centers are selected by the SPSS, each case is assigned to

the nearest cluster, depending upon its distance from the cluster centers. After

assigning all the cases to these clusters, the cluster centers are once again

recomputed on the basis of its member cases. Again, all the cases are assigned by

using the recomputed cluster centers. This process keeps on going till no cluster

center changes appreciably. Since the number of iteration is taken as 10 by default

in SPSS (see Fig. 10.18), this process of assigning cases and recomputing cluster

centers will keep repeating to a maximum of ten times. In this example, you can see

from Table 10.10 that the three iterations were sufficient.

Table 10.11 Final cluster centers

Statements

Cluster

1 2 3

1. The FM station should provide more old Hindi songs 4.83a 2.13 3.33

2. FM stations must help an individual in solving their personal problems 2.50 4.50a 2.67

3. The presentation style of RJs helps popularizing an FM station 2.33 4.25a 2.83

4. An FM station should provide some kind of prizes/incentives to its

listeners

4.50a 2.50 2.50

5. The station must telecast latest songs more often 2.50 4.50a 2.50

6. The FM stations must contain more entertaining programs 2.83 2.75 4.33a

7. Popularity of RJs depends upon their humor and ability to make program

interesting

4.83a 2.88 2.83

8. FM station should provide more opportunity to listeners to talk to

celebrities

2.83 4.50a 2.67

9. RJs’ voice must be clear and melodious 2.33 2.50 4.33a

10. FM channels should play 24 � 7 4.50a 2.88 2.83

11. FM stations should give information for other sports along with cricket 2.33 4.25a 2.50

12. FM stations should provide information regarding educational/

professional courses available in the city

4.50a 3.13 2.67

13. FM stations should provide information regarding different shopping

offers available in the city

2.50 2.88 4.50a

14. RJs should speak in an understandable language, preferably in local

language

4.33a 2.38 2.50

aShows strong agreement toward response
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Final Cluster Centers

Table 10.11 shows the final cluster centers after iteration stops, and cases are

reassigned to the clusters. Using these final cluster centers, cluster characteristic

are described.

Each question in this example is responded on a 1–5 scoring scale, where 5

stands for total agreement and 1 stands for total disagreement. Thus, if any score

shown in Table 10.11 is more than 2.5, it indicates the agreement toward the

statement, and if it is less than 2.5, it reflects disagreement. Thus, owing to these

Table 10.12 ANOVA table

Cluster Error

F
Sig. p-
value

Mean

square df

Mean

square df

1. The FM station should provide more old Hindi

songs

12.579 2 .885 17 14.217 .000

2. FM stations must help an individual in solving

their personal problems

8.858 2 .637 17 13.901 .000

3. The presentation style of RJs helps popularizing

an FM station

7.042 2 .333 17 21.125 .000

4. An FM station should provide some kind of prizes/

incentives to its listeners

8.400 2 1.000 17 8.400 .003

5. The station must telecast latest songs more often 9.600 2 1.118 17 8.589 .003

6. The FM stations must contain more entertaining

programs

5.042 2 .686 17 7.346 .005

7. Popularity of RJs depends upon their humor

and ability to make program interesting

8.204 2 .620 17 13.230 .000

8. FM station should provide more opportunity to

listeners to talk to celebrities

7.392 2 .716 17 10.328 .001

9. RJs’ voice must be clear and melodious 7.667 2 .745 17 10.289 .001

10. FM channels should play 24 � 7 5.671 2 .777 17 7.299 .005

11. FM stations should give information for other

sports along with cricket

8.108 2 .843 17 9.617 .002

12. FM stations should provide information regarding

educational/professional courses available in the

city

5.546 2 .571 17 9.711 .002

13. FM stations should provide information regarding

different shopping offers available in the city

6.938 2 .699 17 9.932 .001

14. RJs should speak in an understandable language,

preferably in local language

7.646 2 .512 17 14.926 .000

The F-tests should be used only for descriptive purposes because the clusters have been chosen to

maximize the differences among cases in different clusters. The observed significance levels are

not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means

are equal
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criteria, the characteristics of these three clusters of cases were as follows (refer to

the question details in Example 10.1):

Cluster 1

FM listeners belonging to this cluster were of the strong opinion that channels

should provide more old Hindi songs (Q.1) and provide some incentives to the

listeners (Q.4). They strongly feel that the humor and ability to deliver interesting

programs make RJs more popular (Q.7). The channel should play 24 � 7 (Q.10)

and must air information regarding educational opportunity available in the city

(Q.12), and the RJ must speak in local dialect (Q.14).

Further, listeners belonging to this cluster feel that FM channels should air more

entertaining programs (Q.6) and should provide more opportunity to listeners to

talk to the celebrities (Q.8).

Table 10.13 Cluster

membership
Case number Cluster Distance

1 1 2.953

2 2 2.378

3 3 2.887

4 1 2.461

5 1 3.424

6 3 3.367

7 3 2.828

8 1 2.779

9 2 2.325

10 2 2.580

11 2 3.828

12 2 3.226

13 2 1.705

14 2 3.487

15 2 2.215

16 1 3.375

17 1 2.838

18 3 3.162

19 3 2.708

20 3 3.317

Table 10.14 Number of

cases in each cluster
Cluster 1 6.000

2 8.000

3 6.000

Valid 20.000

Missing .000
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Cluster 2

Listeners belonging to this cluster strongly felt that FM channels must provide

solutions to personal problems (Q.2), RJs presentation skill to be important for the

channels (Q.3), channels to provide more often the latest songs (Q.5), channels to

arrange more dialogues between celebrities and their audience (Q.8), and should air

information about sports other than cricket also (Q.11).

Further, listeners to this cluster also felt that FM channels should air more

entertaining programs (Q.6). Humor and ability to deliver interesting programs

make RJs more popular (Q.7). The channels must play 24 � 7 (Q.10) and should

provide information regarding educational opportunity (Q.12) and shopping offers

(Q.13) available in the city.

Cluster 3

Listeners in this cluster were strongly of the view that the FM channels must contain

more entertaining programs (Q.6), RJs voice must be very clear and melodious

(Q.9), and channels should provide information regarding shopping offers available

in the city (Q.13).

Further, listeners in this cluster were also of the view that channels should air

more old Hindi songs (Q.1), provide solution to the personal problems (Q.2), and

believe RJs to be the key factor in popularizing the FM channels (Q.3). They were

of the view that the humorous RJs make programs more interesting (Q.7). Channels

should provide more opportunity to listeners to talk to the celebrities (Q.8), they

should operate 24 � 7 (Q.10) and, at the same time, must air the information

regarding educational opportunities available in the city (Q.12).

ANOVA: To Know Differences Between Clusters

Table 10.12 shows ANOVA for the data on all the 14 variables. The F-ratios
computed in the table describe the differences between the clusters. F-ratio is

significant at 5% level if the significance level (p-value) associated with it is less

than .05. Thus, it can be seen in Table 10.12 that F-ratios for all the variables are

significant at 5% level as their corresponding p-values are less than .05.

Remark

1. There is a divided opinion on the issue of using ANOVA analysis for comparing

the clusters on each of the parameters. The footnote in Table 10.12 warns that the

observed significance levels should not be interpreted in the usual fashion

because the clusters have been selected to maximize the differences between

clusters.
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2. It is up to the researcher to decide about using ANOVA for determining the

significance of variables. If ANOVA is used, then the interpretation of clusters

should be made on the basis of those variables which are significantly different

across clusters at any predefined level of significance.

Cluster Membership

Table 10.13 shows the cluster membership of the cases. You can see that six cases

belong to cluster 1, eight cases to cluster 2, and six cases to cluster 3.

Table 10.14 is a summary of Table 10.13. You do not like to see clusters with

very few cases unless they are really different from the remaining cases.

Exercise

Short Answer Questions

Q.1. Discuss a research situation where cluster analysis can be applied.

Q.2. Write the steps involved in cluster analysis.

Q.3. What is squared Euclidean distance? What impact it will have if the variables

are measured on different units? Suggest the procedure in that situation.

Q.4. When should you use Chebyshev distance and Mahalanobis distance? How

these distances are computed?

Q.5. How hierarchical clustering is different than K-means clustering?

Q.6. What is the difference between single linkage and average linkage method?

Q.7. What do you mean by Ward’s minimum variance method?

Q.8. What is the difference between agglomerative and divisive clustering? Can

both these clustering be shown in a single graph? If yes, how?

Q.9. In what situation two-stage clustering is done? Explain the steps in brief.

Q.10. Why hierarchical clustering is known as explorative technique? Explain

briefly the advantage of using this method.

Q.11. In cluster analysis, when do we need to standardize the variable and why?

Q.12. What do you mean by icicle plot and what it conveys? Show it by sketch.

Q.13. What is the purpose of proximity matrix? Develop a proximity matrix by

using any set of data on three cases measured on four variables.

Q.14. Discuss the assumptions used in cluster analysis.

Q.15. How the properties of clusters are explained?

Q.16. Would you agree to use ANOVA in cluster analysis? If yes, how clusters

should be explained, and, if not, why?

Q.17. In using SPSS for K-means cluster analysis, what output would be generated

if the option “Cluster interaction for each case” is chosen?
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Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

Answer Q.1 to Q.4 on the basis of the following information. In a cluster

analysis, if the data on two cases are as follows:

Case 1 14 8 10

Case 2 10 11 12

1. The squared Euclidean distance shall be

(a) 27

(b) 29

(c) 28

(d)
ffiffiffiffiffi
29

p

2. The Manhattan distance shall be

(a) 81

(b) 9

(c) 3

(d)
ffiffiffi
9

p

3. The Chebyshev distance shall be

(a) 4

(b) 3

(c) 2

(d) 9

4. The Euclidean distance shall be

(a) 29

(b) 30

(c)
ffiffiffiffiffi
29

p
(d) 28

5. Cluster analysis is a(n)

(a) Explorative analysis

(b) Descriptive analysis

(c) Deductive analysis

(d) Predictive analysis
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6. When cluster is formed in agglomerative clustering by joining case 3 with

case 7, then the resultant cluster would be known as

(a) Cluster 7

(b) Cluster 3

(c) Cluster 3,7

(d) Cluster 7,3

7. In Ward’s method, any two clusters are joined to form a new cluster if

(a) The variation within each cluster is same

(b) The variation within one cluster is minimum than other

(c) The variation within the two clusters is least

(d) The variation between both the clusters is maximum

8. In complete linkage method, the clusters are formed on the basis of

(a) Minimum distance between the closest members of the two clusters

(b) Minimum average distance between all pairs of objects (in each pair, one

member must be from a different cluster)

(c) Minimum square Euclidean distances between any two clusters

(d) Minimum distance between the farthest members of the two clusters

9. The number of clusters is decided on the basis of fusion coefficients in

agglomerative schedule. In doing so, if distance matrix is considered, then

(a) We look for the largest difference in the coefficients

(b) We look for the smallest difference in the coefficients

(c) We look for the equality of the coefficients

(d) It is up to the researcher to decide any criteria

10. In cluster analysis, the characteristics of the clusters are decided on the basis of

(a) Initial cluster solution

(b) Final cluster solution

(c) Cluster membership

(d) ANOVA table

Assignments

1. The data on five nutritional contents of different food articles are shown in

Table-A. Identify the suitable clusters of food articles based on these five

nutritional contents. Use centroid clustering method and squared Euclidean

distances to find the clusters. Apply hierarchical clustering and then K-means

clustering method to find the final solution for clusters. Explain your findings

and discuss the characteristics of different clusters.

2. Ratings were obtained on different brands of car for their six parameters shown

in the Table-B. These cars are in specific prize range. The rating 1 indicates

complete agreement and 5 indicates complete disagreement. Apply cluster

analysis to discuss the characteristics of identified clusters of cars. Use Ward’s

method of clustering and squared Euclidean distance measure for cluster forma-

tion. Use the label cases option in SPSS.
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Table-B Ratings on

different cars on their

characteristics

S.N. Car 1 2 3 4 5 6

1 Logan 4 2 2 4 4 4

2 Renault Logan Edge 4 3 3 4 3 3

3 Mahindra-Renault Logan Edge 3 2 4 2 4 3

4 Mahindra Verito 4 4 2 3 3 3

5 Swift Dzire 3 3 3 2 2 3

6 Maruti Swift Dzire 4 2 2 3 3 4

7 Chevrolet Beat 4 3 1 4 2 5

8 Tata Venture 5 2 2 3 4 2

9 Chevrolet Aveo 4 3 3 2 3 1

10 Tata Sumo Spacio 2 4 2 3 3 2

11 Skoda New Fabia 3 5 3 5 4 4

12 Hyundai i10 4 4 3 4 3 3

13 Tata Indigo e-CS 3 3 4 3 3 2

14 Maruti Suzuki Swift 4 4 3 2 4 4

15 Maruti Suzuki A-Star 2 5 2 4 2 1

16 Maruti Suzuki Ritz Genus 3 4 3 5 5 2

17 Premier Rio 1 3 4 2 3 2

18 Nissan Micra 2 2 4 3 3 4

19 Volkswagen Polo 3 3 4 5 5 5

20 Skoda Fabia 4 1 5 4 4 5

21 Mahindra-Renault Logan 3 3 4 3 2 4

22 Tata Sumo Victa 2 2 5 3 3 3

23 Tata Sumo Grande 3 4 4 2 2 2

24 Tata Indigo Marina 4 2 5 3 3 1

Table-A Nutritional components of different food articles

Food article Carbohydrates Protein Fat Iron Vitamin

1 354 20 28 10 2.4

2 89 13 3 38 1.7

3 375 20 33 8 2.6

4 192 23 11 17 3.7

5 116 21 13 12 1.8

6 169 24 8 12 1.5

7 160 18 10 115 2.5

8 320 24 16 9 2.9

9 220 8 31 12 2.5

10 158 25 6 11 5.9

11 202 19 15 7 2.5

12 263 21 21 9 2.8

13 280 21 29 10 2.8

14 72 12 3 83 6

15 46 8 6 74 5.4

16 415 14 40 7 2

17 132 18 4 14 3.5

18 204 20 12 6 1

19 125 11 40 12 2.3

20 342 21 27 8 2.5

21 189 22 10 9 2.7

22 136 23 5 22 2.8

(Hint: Transform your data into Z-scores by using the commands in SPSS)



Parameters of the Car

1. The leg space in the car is comfortable.

2. Car space is big enough to keep my luggage during outing.

3. The car is giving the same mileage as mentioned in the brochure.

4. Driving is very comfortable.

5. Security feature of the car is good.

6. Accessories provided in the car are of good quality.

Besides explaining the characteristics of clusters, also answer the following:

(a) What are the minimum and maximum distances between the cases?

(b) How many clusters you would like to identify and what is the maximum

distance between the fusion coefficients?

(c) What criteria you would adopt to discuss the properties of the clusters?

(d) Explain cluster characteristics on the basis of ANOVA and see if it is different

than what you have explained earlier.

(e) How many cases/cars are in each cluster?

Answers to Multiple-Choice Questions

Q.1 b Q.2 b Q.3 a Q.4 c

Q.5 a Q.6 b Q.7 c Q.8 d

Q.9 a Q.10 b
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Chapter 11

Application of Factor Analysis: To Study

the Factor Structure Among Variables

Learning Objectives

After completing this chapter, you should be able to do the following:

• Understand the factor analysis and its application.

• Learn the difference between exploratory and confirmatory factor analysis.

• Know the use of factor analysis in developing test batteries.

• Interpret different terms involved in factor analysis.

• Explain the situations where factor analysis can be used.

• Know the procedure of retaining the factors and identifying the variables in it.

• Explain the steps involved in factor analysis.

• Understand the steps involved in using SPSS for factor analysis.

• Discuss the outputs obtained in factor analysis.

• Learn to write the results of factor analysis in standard format.

Introduction

Buying decision of an individual depends upon large number of product

characteristics. But the market strategy cannot be developed on the basis of all

those parameters of a product that affect the buying behavior of an individual. The

factor analysis, a multivariate technique, comes to our rescue in solving such

problems. The factor analysis technique reduces the large number of variables

into few underlying factors to explain the variability of the group characteristics.

The concept used in factor analysis technique is to investigate the relationship

among the group of variables and segregate them in different factors on the basis of

their relationship. Thus, each factor consists of those variables which are related

among themselves and explain some portion of the group variability. For example,

personality characteristics of an individual can be assessed by the large number of

parameters. The factor analysis may group these variables into different factors

J.P. Verma, Data Analysis in Management with SPSS Software,
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where each factor measure some dimension of personality characteristics. Factors

are so formed that the variables included in it are related with each other in some

way. The significant factors are extracted to explain the maximum variability of the

group under study.

In marketing research, application of factor analysis provides very useful inputs

to the decision makers to focus on few factors rather than a large number of

parameters in making their products more acceptable in the market. For instance,

consider an automobile company is interested to know as to what makes their

customer to choose a particular model of the car. Several issues like mileage, easy

loan facility, roof height, leg space, maintenance, road clearance, steering function-

ality, brakes, lighting, and luggage space may be investigated by taking the

responses from the consumers. There may be endless issues on which the opinion

of the customers can be taken. But by using the factor analysis, these variables may

be clubbed in different factors like economy (mileage, easy loan facility), comfort
(roof height, leg space, maintenance, luggage space), and technology (steering

functionality, brakes, lighting, and road clearance). Thus, instead of concentrating

on so many parameters, the authorities will make a strategy to optimize these three

factors for the growth of their business. Further, these factors may be used to

construct the perceptual maps and other product positioning.

Thus, in factor analysis, few factors are extracted out of the large set of variables.

Since variables in each of the factors are associated among themselves, therefore

they represent the same phenomenon. In this way, instead of studying all the

parameters, few extracted factors are studied. These factors so extracted explain

much of the variations of the group characteristics.

Factor analysis is used for both exploratory as well as confirmatory studies.

In exploratory study, we do not know anything about the number of factors to be

extracted, the number of variables included in each factor and percentage of variability

explained by these extracted factors. The researcher takes all those variables under

study which are suggested by the review studies or guided by the researchers own

knowledge or experts opinion. Exploratory studies are just like mining important

variables from a large number of variables to form factors. Unimportant variables do

not figure in any of the identified factors. Such variables are excluded on the basis of

their low communality. The process will be discussed later in the book. Thus, through

exploratory study, a researcher can extract the factors underlying all prospective

variables which have been selected on the pretext that they explain some or other

dimension of the group behavior. Such study also reveals the number of variables

which loads on each factor significantly and the percentage variability explained by

each factor toward the group characteristics.

On the other hand in confirmative factor analysis, it is required to test the

existing factor model. In other words, before starting the experiments, it is assumed

that the factor analysis will produce only specified number of factors and specific

number of variables are loaded on each factor and that the how much variability

shall be explained by the identified factors. Thus, a factor model developed in an

exploratory study is being tested in the confirmatory study to have its validity.

The factor analysis can be used to develop test battery for assessing group

characteristics. To assess employee’s performance, several variables like timeliness,
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cost-effectiveness, absenteeism, tardiness, creativity, quality, adherence to policy,

gossip and other personal habits, personal appearance, manager’s appraisal, self-

appraisal, and peer appraisal are usually measured. By using factor analysis, these

variables can be clubbed into different factors. On the basis of variable’s loading and

their explainability, one or two variables from each factor can be selected to form the

test battery. However, to validate the test battery, the confirmatory factor analysis

must be done on similar but different sample groups.

Another application of factor analysis is in developing of a questionnaire. While

doing item analysis, unimportant questions are removed from the questionnaire.

Factor analysis may be used to indicate the loss in the measurement of variability in

removing the unimportant questions from the final questionnaire. Further, it helps

in classifying the questions into different parameters in the questionnaire.

What Is Factor Analysis?

Factor analysis is a multivariate statistical technique used to identify the factors

underlying the variables by means of clubbing related variables in the same factor.

It is a dimension reduction technique which reduces the large number of variables

into few factors without sacrificing much, the power of explained variability by the

variables. Variables are clubbed into different factors on the basis of their interre-

lation. In initial solution of factor analysis, variables may belong to more than one

factor. But by using the factor rotation technique, these factors may be made

mutually exclusive. Thus, instead of defining the group characteristics by the

large number of variables, a few factors may do this job. The number of factors is

identified by means of the criterion known as eigenvalue. The magnitude of

variable’s loading on the factor is used as a criterion for retaining that variable in

the factor. Sufficient number of data set is required to run the factor analysis. As a

thumb rule, number of data set should be at least five per variable. Thus, if there are

15 variables in the problem, the sample must be approximately 75. However, there

is a procedure of testing the adequacy of sample size in running the factor analysis.

This is done by using the KMO test. We shall discuss it in detail later in this chapter.

Terminologies Used in Factor Analysis

To understand the factor analysis technique, it is essential to know the meaning of

various terms involved in it. It is assumed that the readers are familiar with the basic

logic of statistical reasoning and the concepts of variance and correlation; if not, it is

advised that they should read the basic statistics topic at this point, from the earlier

chapters discussed in this book.
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Principal Component Analysis

Principal component analysis (PCA) is closely related to factor analysis. It is used

to reduce the large number of variables into smaller number of principal

components that will account for most of the variance in the observed variables.

In this method, the factor explaining the maximum variance is extracted first.

Principal component analysis method is used when the data on large number of

variables are obtained and some of the variables are redundant. Here, redundancy

means that some of the variables are correlated with one another, possibly because

they are measuring the same construct. Because of this redundancy, one believes

that it should be possible to reduce the observed variables into a smaller number of

principal components that will account for most of the variance in the observed

variables. In fact, principal component analysis is similar to the procedure used in

exploratory factor analysis

One must understand that the principal component analysis and factor analysis

are not same. In PCA, one performs a variance-maximizing rotation of the variable

space, and it takes into account all variability in the variables. On the other hand,

factor analysis is the procedure of estimating the amount of variability explained

due to common factors (communality). These two methods become same if the

error terms in the factor analysis model (the variability not explained by common

factors) can be assumed to have the same variance.

Factor Loading

Factor loading can be defined as the correlation coefficient between the variable and

factor. Just like Pearson’s r, the squared factor loading of a variable indicates the

percentage variability explained by the factor in that variable. As a rule of thumb,

0.7 or higher factor loading represents that the factor extracts sufficient variance

from that variable. The percentage variance explained in all the variables accounted

for by each factor can be computed by dividing the sum of the squared factor

loadings for that factor divided by the number of variables and multiplied by 100.

Communality

The communality can be defined as the sum of the squared factor loadings of a

variable in all the factors. It is the variance in that variable accounted for by all the

factors. The communality of variable is represented by h2. It measures the percent-

age of variance in a given variable explained by all the factors jointly and may be

considered as the reliability of the variable. Low communality of a variable

indicates that the variable is not useful in explaining the characteristics of the
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group and the factor model is not working well for that variable. Thus, variables

whose communalities are low should be removed from the model as such variables

are not related to each other. Any variable whose communality is <.4 should

usually be dropped. However, the communalities must be interpreted in relation

to the interpretability of the factors. For instance a communality of .80 may seem to

be high but becomes meaningless, unless the factor on which the variable is loaded

is interpretable, normally it usually will be. On the other hand a communality of .25

may look to be low but becomes meaningful if the variable can well define the

factor.

Hence, it is not the value of communality of a variable that is important, but the

variable’s role in interpretation of the factor is the important consideration. How-

ever, the variable whose communality is very high usually explain the factor well.

If the value of communality is more than 1, then one must expect that something is

wrong with the solution. Such situation indicates that either sample is too small or

the researcher has identified too many or too few factors.

Eigenvalue

The eigenvalue for a given factor measures the variance in all the variables which is

accounted for by that factor. It is also called as characteristics root. The sum of the

eigenvalues of all the factors is equal to the number of variables. The decision about

the number of factors to be retained in the factor analysis is taken on the basis of

eigenvalues. If a factor has a low eigenvalue, then it is contributing little to the

explanation of variances in the variables and may be dropped. Eigenvalues measure

the amount of variation in the total sample accounted for by each factor.

Kaiser Criteria

While applying the factor analysis one needs to decide as to how many factors

should be retained. As per the Kaiser’s criteria only those factors having eigenvalue

>1 should be retained in the factor analysis. Initially each variable is supposed to

have its eigenvalue 1. Thus, it may be said that unless a factor extracts at least as

much as the equivalent of one original variable, it is dropped. This criterion was

proposed by Kaiser and is the most widely used by the researchers.

The Scree Plot

The scree plot is a graphical representation of the factors plotted along X-axis

against their eigenvalues, on the Y-axis. As one moves toward the X-axis (factors),

the eigenvalues drop. When the drop ceases and the curve makes an elbow toward
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less steep decline, Cattell’s scree test says to drop all further components after the

one starting the elbow. Thus, the factors above the elbow in the plot are retained.

The scree test was developed by Cattell. “Scree” is a term used in geology. The

scree is the rubble at the bottom of a cliff. In scree test, if a factor is important, it will

have a large variance. The scree plot may look like Fig. 11.1.

Varimax Rotation

Unrotated factor solution obtained after applying the principal component analysis

is rotated by using any of the rotational technique to enhance the interpretability of

factors. The varimax rotation is the most widely used rotation technique in factor

analysis. It is an orthogonal rotation of the factor axes to maximize the variance of

the squared loadings of a factor on all the variables in a factor matrix, which has the

effect of relocating the original variables into extracted factor. After varimax

rotation, each factor will tend to have either large or small loadings of any particular

variable and thus facilitates a researcher to identify each variable in one and only

one factor. This is the most common rotation option. Other rotational strategies are

quartimax, equamax, direct oblimin, and promax methods which are not much used

by the researcher.
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Fig. 11.1 Scree plot for the factors
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What Do We Do in Factor Analysis?

The factor analysis involves different steps which are discussed below. You may

not understand all the steps at a glance but do not lose heart and continue to read.

After reading these steps, once you go through the solved example discussed later in

this chapter, a full clarity of the concepts can be achieved. The steps discussed

below cannot be done manually but may be achieved by using any statistical

package. So try and relate these steps with the output of factor analysis.

1. Compute descriptive statistics for all the variables. Usually mean and standard

deviation are provided by the standard statistical packages while running the

factor analysis. However, you may run descriptive statistics program to compute

other descriptive statistics like skewness, kurtosis, standard error, and coefficient

of variability to understand the nature of the variables under study.

2. Prepare correlation matrix with all the variables taken in the study.

3. Apply KMO test to check the adequacy of data for running factor analysis. The

value of KMO ranges from 0 to 1. The larger the value of KMOmore adequate is

the sample for running factor analysis. As a convention, any value of KMOmore

than .5 signifies the adequacy of sample for running the factor analysis. A value

of 0 indicates that the distinct factors cannot be made and hence, the sample is

not adequate. On the other hand, if its value is approaching 1, then the factor

analysis yields distinct and reliable factors. Kaiser recommends accepting values

>0.5 as acceptable (values below this should lead you to either collect more data

or rethink which variables to include). Further, the values between 0.5 and 0.7

are mediocre, values between 0.7 and 0.8 are good, values between 0.8 and 0.9

are great, and values above 0.9 are superb (Hutcheson and Sofroniou 1999).

4. Apply Bartlett’s test of sphericity for testing the hypothesis that the correlation

matrix is not an identity matrix. If the correlation matrix is an identity matrix, the

factor analysis becomes inappropriate. Thus, if the Bartlett’s test of sphericity is

significant, it is concluded that the correlation matrix is not an identity matrix

and the factor analysis can be run.

5. Obtain unrotated factor solution by using principal component analysis. This will

provide you the number of factors along with their eigenvalues. We retain only

those factors whose along with their eigenvalues. This can also be shown

graphically by scree plot. This solution also provides the factor loadings of the

variables on different factors, percentage variability explained by each factor, and

the total variability explained by all the factors retained in the model.

6. Thus, this primary factor analysis solution can tell you the percentage of

variability explained by all the identified factors together. However, it is not

possible to identify the variables included in each factor because some of the

variables may belong to more than one factor. This problem is sorted out by

choosing the appropriate rotation technique.
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7. Obtain final solution by using the varimax rotation option, available in SPSS.

Thiswill solve the problemof redundancy of variables in different factors. As a rule

of thumb, if the factor loading of any variable on a factor is equal or more than 0.7,

then it should belong to that factor. The reason for choosing 0.7 factor loading as a

cut off point is that because factor loading represents correlation coefficient hence

at least 49% (= 0.72) variability of the variable must be explained by the factor to

which it belongs. However, other variables whose loadings are <0.7 can also be

identified in that factor on the basis of its explainability.

8. Identified factors in step 6 are given names depending upon the nature of

variables included in it.

9. If the purpose of the factor analysis is to develop a test battery also, then one or

two variables from each factor may be selected on the basis of their magnitude

of loadings. These variables so selected may form the test battery. Each

variable in the test battery is assigned weight. The weights assigned to the

variable in the test battery depend upon the percentage variability explained by

the factor from which it belongs. Usually, the first factor explains the maxi-

mum variance, and therefore two or three variables may be kept from it

depending upon the nature of the variables and its explainability. From rest

of the factors, normally one variable per factor is selected, as the sole purpose

of the factor analysis is to reduce the number of variables so that the maximum

variance in the group may be explained.

Assumptions in Factor Analysis

While using the factor analysis, the following assumptions are made:

1. All the constructs which measure the concepts have been included in the study.

2. Sufficient sample size has been taken for factor analysis. Normally sample size

must be equal to 5–20 times the number of variables taken in the study.

3. No outlier is present in the data.

4. Multicollinearity among the variables does not exist.

5. Homoscedasticity does not exist between the variables because factor analysis is

a linear function of measured variables. The meaning of homoscedasticity

between the variables is that the variance around the regression line is the

same for all values of the predictor variable (X).

6. Variables should be linear in nature. Nonlinear variables may also be used after

transforming it into linear variables.

7. Data used in the factor analysis is based on interval scale or ratio scale.
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Characteristics of Factor Analysis

Following are some of the important features of factor analysis:

• The variables used in the factor analysis may be objective or subjective provided

subjective variables can be expressed into scores.

• The factor analysis extracts the hidden dimensions among the variables which

may not be observable from direct analysis.

• This analysis is simple and inexpensive to perform.

Limitations of Factor Analysis

Although the factor analysis is very useful multivariate statistical technique, how-

ever, it has some limitations as well.

• Much of the advantage of factor analysis technique can be achieved only if the

researcher is able to collect a sufficient set of product attributes. If some of the

important attributes are missed out, the results of factor analysis will not be

efficient.

• If majority of the variables are highly related to each other and distinct from

other items, factor analysis will assign a single factor to them. This will not

reveal other factors that capture more interesting relationships.

• Naming the factors may require researcher’s knowledge about the subject matter

and theoretical concepts, because often multiple attributes can be highly

correlated for no apparent reason.

Research Situations for Factor Analysis

Since factor analysis is used to study the group characteristics by means of

identified factors out of the large number of variables, it has tremendous application

in management, social sciences, and humanities. Few research applications are

discussed below:

1. To understand the buying behavior of a particular product, several parameters

like customer’s age, education, job status, salary, exposure to product advertise-

ment, and availability are responsible. Factor analysis may help the market

analysts to identify few factors instead of large number of parameters to develop

the marketing strategy for launching the product.

2. In a mall, it is interesting to see the buying behaviour of the customers. On the

basis of the customer’s purchase history, the articles may be clubbed together

and kept in nearby counters to enhance the sale.
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3. In an educational institution, the administration may be interested to know the

factors that are responsible for enhancing the status of the institution. Such

accomplishment can be achieved by controlling a large number of parameters.

The factor analysis may extract the underlying factors like academic curriculum,

student’s facilities, counseling procedure, and placement opportunity on which

the administration may concentrate to improve its image instead of large number

of parameters.

4. To evaluate a product, a survey technique can be used to identify various

parameters. Based on it, factor analysis can identify few factors on which

management can take decisions to promote their product.

5. Factor analysis may be used to create a lifestyle questionnaire for evaluating the

quality of life. After dropping the questions from the questionnaire on the basis

of item analysis, factor analysis provides the insight as to how much efficiency

has been sacrificed due to it.

Solved Example of Factor Analysis Using SPSS

Example 11.1

An industrial researcher wanted to investigate the climate of an organization. A set

of 12 questions were developed to measure different parameters of the climate. The

subject could respond these questions on five-point scale with 5 indicating strongly

agree and 1 strongly disagree attitude towards the question. The responses obtained

on the questionnaire are shown in Table 11.1 along with the description of the

questions. Apply factor analysis technique to study the factor structure and suggest

the test battery that can be used for assessing the climate of any industrial organi-

zation. Also apply the scree test for retaining factors graphically and KMO test for

testing the adequacy of data.

Statements

1. Employees are encouraged to attend training programs organized by outside

agencies.

2. Any employee can reach up to the top level management position during their

carrier.

3. Employees are praised by the immediate boss for doing something useful in the

organization

4. Medical facilities for the employees and their families are excellent

5. Employees are given preference in jobs announced by the group of companies.

6. For doing some creative work or working creatively, employees get incentives

7. Employee’s children are honored for their excellent performance in their

education.

8. Employees are cooperative in helping each other to solve their professional

problems

9. Fees of employees children are reimbursed during their schooling
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10. Employees get fast promotion if their work is efficient and consistence

11. Senior managers are sensitive to the personal problems of their employees.

12. Employees get cheaper loan for buying vehicles.

Solution
By applying the factor analysis following issues shall be resolved:

1. To decide the number of factors to be retained and the total variance explained

by these factors

2. To identify the variables in each factor retained in the final solution, on the basis

of its factor loadings

3. To give names to each factor retained on the basis of the nature of variables

included in it

4. To suggest the test battery for assessing the climate of any industrial

organization

5. To test the adequacy of sample size used in factor analysis

Table 11.1 Data on the

parameters of organizational

climate

S.N S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1 3 2 4 1 3 5 4 2 2 4 3 4

2 3 3 5 2 3 4 5 1 3 5 4 5

3 5 3 4 2 2 5 5 2 3 4 3 4

4 3 4 4 1 3 4 4 1 2 5 3 4

5 4 3 4 2 2 5 4 2 3 4 2 4

6 3 2 5 2 3 4 5 1 4 5 5 5

7 5 3 4 2 2 4 4 2 3 4 2 4

8 4 4 5 1 1 4 4 1 2 4 3 2

9 5 3 4 2 3 4 4 3 3 3 2 4

10 5 3 5 2 2 5 5 2 4 4 4 5

11 4 4 4 1 3 5 5 2 3 4 3 3

12 4 2 5 2 4 5 4 1 2 5 2 2

13 3 2 4 1 3 4 4 1 3 2 3 3

14 5 3 5 2 2 5 4 2 3 5 2 4

15 4 3 4 1 3 4 5 1 2 4 3 4

16 4 2 4 3 2 4 5 2 3 3 2 5

17 2 3 4 2 3 4 4 2 4 4 3 3

18 4 2 5 2 4 5 4 3 3 5 2 4

19 3 3 4 1 3 3 4 2 2 4 3 4

20 4 3 4 2 2 4 5 3 3 3 2 5

21 5 4 4 1 3 4 5 2 2 4 3 3

22 4 3 5 2 4 5 4 1 3 5 4 4

23 3 2 4 1 3 5 4 2 2 5 3 5

24 4 3 4 2 2 4 4 1 3 4 2 4

25 5 2 5 3 3 5 5 2 4 5 3 3
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These objectives will be achieved by generating the output of factor analysis in

SPSS. Thus, the procedure of using SPSS for factor analysis in the given example

shall be discussed first, and thereafter the output shall be explained in the light of

the objectives to be fulfilled in this study.

SPSS Commands for the Factor Analysis

Before running the SPSS commands for factor analysis, a data file needs to be

prepared. By now, you must have been familiar in preparing the data file. If not, you

may go through the procedure discussed in Chap. 1 in this regard. Do the following

steps for generating outputs in factor analysis:

(i) Data file: In this problem, all 12 statements are independent variables. These

variables have been defined as ‘Scale’ variable because they were measured on

interval scale. Variables measured on interval as well as ratio scales are treated

as scale variable in SPSS. After preparing the data file by defining variable

names and their labels, it will look like Fig. 11.2.

(ii) Initiating command for factor analysis: Once the data file is prepared, click the
following command sequence in the Data View:

Fig. 11.2 Screen showing data file for the factor analysis in SPSS
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Fig. 11.3 Screen showing SPSS commands for factor analysis

Fig. 11.4 Screen showing selection of variables for factor analysis

Solved Example of Factor Analysis Using SPSS 371



Analyze ! Dimension Reduction ! Factor

The screen shall look like as shown in Fig. 11.3.

(iii) Selecting variables for factor analysis: After clicking the Factor option, the

SPSS package will take you to the next screen for selecting variables. Select all

the variables from left panel to the “Variables” section of the right panel. The

screen will look like Fig. 11.4.

(iv) Selecting options for computation: After selecting the variables, various options
need to be defined for generating the output in factor analysis. Do the following:

• Click the tag Descriptives in the screen shown in Fig. 11.5 and

– Check the option “Univariate descriptive” and ensure that the option

“Initial Solution” is checked in the Statistics section by default.

– Check the option “Coefficients,” “Significance levels,” and “KMO and

Bartlett’s test of sphericity” in “Correlation Matrix” section.

The screen will look like Fig. 11.5.

– Press Continue. This will again take you back to the screen shown in

Fig. 11.4.

• Now click the tag Extraction and then check “Scree plot.” Let other options

remain as it is by default.

Fig. 11.5 Screen showing option for correlation matrix and initial factor solution
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Fig. 11.6 Screen showing option for unrotated factor solution and scree plot

Fig. 11.7 Screen showing option for factor rotation



The screen shall look like Fig. 11.6.

• Press Continue. This will again take you back to the screen shown in

Fig. 11.4.

• Now click the tag Rotation and then check “Varimax” rotation option. Let

other options remain as it is by default.

– The screen shall look like Fig. 11.7.

– Press Continue to go back to the main screen.

• Press OK for output.

(v) Getting the output: After pressing OK in the screen shown in Fig. 11.4, the

SPSS will generate the outputs in the output window. These outputs can be

selected by using the right click of the mouse and may be pasted in the word

file. The SPSS shall generate many outputs, but the following relevant outputs

have been selected for the discussion:

(a) Descriptive statistics

(b) Correlation matrix

(c) KMO and Bartlett’s test

(d) Communalities of all the variables

(e) Total variance explained

(f) Scree plot

(g) Component matrix: unrotated factor solution

(h) Rotated component matrix: varimax-rotated solution

In this example, all the outputs so generated by the SPSS are shown in

Tables 11.2–11.7 and Fig. 11.8.

Interpretation of Various Outputs Generated in Factor Analysis

The above-mentioned outputs generated in this example by the SPSS shall be

discussed to provide the answers to various issues related to model developed in

this study.

1. Table 11.2 shows the mean and SD for all the variables in the study. You may

add some more statistics like coefficient of variation, skewness, kurtosis, and

range to study the nature of variables. However, in that case, you have to use the

SPSS option of Descriptive discussed in Chap. 2 of this book.

2. Table 11.3 is the correlation matrix of all the variables. This is the first step in

factor analysis on the basis of which variables are grouped into factors. The

SPSS provides significance value (p value) for each correlation coefficient.

However, values of correlation coefficient required for its significance at 1%

as well as 5% can be seen from Table A.3 in the Appendix. Meaningful

conclusions can be drawn from this table for understanding relationships

among variables.
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3. Table 11.4 shows the result of KMO test, which tells whether sample size taken

for the factor analysis was adequate or not. It tests whether the partial

correlations among variables are small. The value of KMO ranges from 0 to 1.

The closer the value of KMO to 1, the more adequate is the sample size to run the

factor analysis. Usually the value of KMO more than 0.5 is considered to be

sufficient for doing factor analysis reliably. In this case, KMO value is 0.408,

which is <.5; hence, the sample size is not adequate, and more samples should

be taken for the analysis. Since this is a simulated example developed to make

the procedure clear, hence less number of data set was taken.

Further, Bartlett’s test of sphericity is used to test the null hypothesis that the

correlation matrix is an identity matrix. Since significance value (p value) of

Bartlett’s test is .002 in Table 11.4, which is<.01, hence it is significant, and the

correlation matrix is not an identity matrix. Thus, it may be concluded that the

factor model is appropriate.

4. Table 11.5 shows the communalities of all the variables. Higher communality of

a variable indicates that the major portion of its variability is explained by all the

identified factors in the analysis. If communality of variable is <.4, it is

considered to be useless and should normally be removed from the model.

From Table 11.5, it can be seen that the communalities of all the variables are

more than .4; hence, all the variables are useful in the model.

Table 11.2 Descriptive statistics for the parameters of organizational climate

Mean

Std.

deviation N

1 Employees are encouraged to attend training programs organized by

outside agencies

3.9200 .86217 25

2 Any employee can reach up to the top level management position

during their carrier

2.8400 .68799 25

3 Employees are praised by the immediate boss for doing something

useful in the organization

4.3600 .48990 25

4 Medical facilities for the employees and their families are excellent 1.7200 .61373 25

5 Employees are given preference in jobs announced by the group of

companies

2.7200 .73711 25

6 For doing some creative work or working creatively, employees get

incentives

4.4000 .57735 25

7 Employee’s children are honored for their excellent performance in

their education

4.4000 .50000 25

8 Employees are cooperative in helping each other to solve their

professional problems

1.7600 .66332 25

9 Fees of Employees children are reimbursed during their schooling 2.8400 .68799 25

10 Employees get fast promotion if their work is efficient and

consistence

4.1600 .80000 25

11 Senior managers are sensitive to the personal problems of their

employees

2.8400 .80000 25

12 Employees get cheaper loan for buying vehicles 3.8800 .88129 25
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Table 11.4 KMO and Bartlett’s test

Kaiser-Meyer-Olkin measure of sampling adequacy .408

Bartlett’s test of sphericity Approx. chi-square 105.281

df 66

Sig. .002

Table 11.5 Communalities of all the variables

Initial Extraction

1 Employees are encouraged to attend training programs organized by

outside agencies

1.000 .810

2 Any employee can reach up to the top level management position during

their carrier

1.000 .761

3 Employees are praised by the immediate boss for doing something useful

in the organization

1.000 .764

4 Medical facilities for the employees and their families are excellent 1.000 .756

5 Employees are given preference in jobs announced by the group of

companies

1.000 .597

6 For doing some creative work or working creatively, employees get

incentives

1.000 .602

7 Employee’s children are honored for their excellent performance in their

education

1.000 .635

8 Employees are cooperative in helping each other to solve their

professional problems

1.000 .613

9 Fees of employees children are reimbursed during their schooling 1.000 .665

10 Employees get fast promotion if their work is efficient and consistence 1.000 .680

11 Senior managers are sensitive to the personal problems of their employees 1.000 .868

12 Employees get cheaper loan for buying vehicles 1.000 .548

Table 11.6 Total variance explained

Component

Initial eigenvalues

Extraction sums of

squared loadings

Rotation sums of

squared loadings

Total

% of

variance

cumulative

% Total

% of

variance

cumulative

% Total

% of

variance

cumulative

%

1 2.721 22.677 22.677 2.721 22.677 22.677 2.312 19.266 19.266

2 2.360 19.668 42.345 2.360 19.668 42.345 2.232 18.601 37.867

3 1.728 14.403 56.748 1.728 14.403 56.748 2.083 17.355 55.222

4 1.488 12.397 69.144 1.488 12.397 69.144 1.671 13.923 69.144

5 .951 7.929 77.073

6 .740 6.165 83.238

7 .589 4.907 88.145

8 .558 4.646 92.791

9 .371 3.089 95.880

10 .278 2.320 98.200

11 .143 1.191 99.390

12 .073 .610 100.000

Extraction method: Principal component analysis
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Table 11.7 Component matrixa unrotated factor solution

Component

1 2 3 4

1 Employees are encouraged to attend training programs

organized by outside agencies

0.303 0.549 �0.285 0.58

2 Any employee can reach up to the top level management

position during their carrier

�0.467 0.057 0.172 0.715

3 Employees are praised by the immediate boss for doing

something useful in the organization

0.681 �0.429 �0.15 0.306

4 Medical facilities for the employees and their families

are excellent

0.763 0.4 �0.048 �0.109

5 Employees are given preference in jobs announced by

the group of companies

0.156 �0.567 �0.282 �0.414

6 For doing some creative work or working creatively,

employees get incentives

0.539 �0.071 �0.535 0.139

7 Employee’s children are honored for their excellent

performance in their education

0.386 0.21 0.601 0.285

8 Employees are cooperative in helping each other to

solve their professional problems

0.131 0.689 �0.25 �0.243

9 Fees of employees children are reimbursed during their

schooling

0.712 0.251 0.297 �0.082

10 Employees get fast promotion if their work is efficient

and consistence

0.444 �0.615 �0.25 0.205

11 Senior managers are sensitive to the personal problems

of their employees

0.279 �0.615 0.631 0.119

12 Employees get cheaper loan for buying vehicles 0.321 0.217 0.505 �0.377

Extraction method: Principal component analysis
aFour components extracted

Component Number
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Fig. 11.8 Scree plot for the factors



5. Table 11.6 shows the factors extracted and the variance explained by these

factors. It can be seen that after rotation, the first, second, third, and fourth

factors explain 19.266, 18.601, 17.355, and 13.923% of the total variance,

respectively. Thus, all these four factors together explain 69.144% of the total

variance.

The eigenvalues for each of the factor are shown in Table 11.6. Only those

factors are retained whose eigenvalues are 1 or more than 1. Here, you can see

that the eigenvalue for the first four factors are >1; hence, only four factors have

been retained in this study.

Figure 11.8 shows the scree plot which is obtained by plotting the factors (along

X-axis) against their eigenvalues (along Y-axis). This plot shows that only four

factors have eigenvalues above elbow bent; hence, only four factors have been

retained in this study.

6. Table 11.7 shows the first initial unrotated solution of the factor analysis. Four

factors have been extracted in this study. The factor loadings of all the variables

on each of the four factors have been shown in this table. Since this is an

unrotated factor solution, and therefore some of the variables may show their

contribution in more than one factor. In order to avoid this situation, the factors

are rotated. Varimax rotation has been used in this example to rotate the factors,

as this is the most popular method used by the researchers due to its efficiency.

7. After using the varimax rotation, the final solution so obtained is shown in

Table 11.8. Clear picture emerges in this final solution about the variables

explaining the factors correctly. The rotation facilitates the variable to appear

in one and only factor.

Variables are usually identified in a factor if their loading on that factor is 0.7 or

more. This ensures that the factor extracts sufficient variance from that variable.

However, one may reduce this threshold value if sufficient variables cannot be

identified in the factor. In this problem, the variables have been retained in a

factor in which its loadings are greater than or equal to 0.6. Owing to this

criterion variables have been grouped in each of the four factors, namely,

welfare, motivation, interpersonal relation, and career which are shown in

Tables 11.9, 11.10, 11.11, and 11.12.

Factor 1 in Table 11.9 contains variables that measure the welfare of employees

in an organization, and therefore it may be termed as “Welfare Factor.” On the

other hand, all items mentioned in Table 11.10 measure the motivation of

employees; hence, factor 2 is named as “Motivation Factor.” Similarly the

items in Tables 11.11 and 11.12 are related with measuring relationships

among employees and career-related issues; hence, factor 3 and factor 4 may

be termed as “interpersonal relation factor” and “career factor,” respectively.
In order to develop a test battery to measure the climate of an organization, one

may choose variables from these identified factors. Since percentage contribu-

tion of each factor in the measurement of total variability are more or less same,

hence one variable from each factor having highest loadings on the factor may

be picked up to develop the test battery for measuring the climate of an organi-

zation. Thus, the test battery so developed is shown in Table 11.13. One may
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choose more than one variable from one or two factors also, depending upon

their explainability.

Readers are advised to run the confirmatory factor analysis with more data set to

these questions before using this instrument to measure the organizational

climate because this was a simulated study.

Table 11.8 Rotated component matrixa: varimax-rotated solution

Component

1 2 3 4

1 Employees are encouraged to attend training programs

organized by outside agencies

0.124 0.385 �0.482 0.644

2 Any employee can reach up to the top level management

position during their carrier

�0.382 �0.153 0.23 0.734

3 Employees are praised by the immediate boss for doing

something useful in the organization

0.19 0.809 0.271 �0.021

4 Medical facilities for the employees and their families

are excellent

0.689 0.365 �0.385 �0.016

5 Employees are given preference in jobs announced by

the group of companies

�0.15 0.291 0.164 �0.68

6 For doing some creative work or working creatively,

employees get incentives

0.038 0.722 �0.268 �0.084

7 Employee’s children are honored for their excellent

performance in their education

0.621 �0.01 0.256 0.429

8 Employees are cooperative in helping each other to

solve their professional problems

0.252 �0.114 �0.732 0.012

9 Fees of employees children are reimbursed during their

schooling

0.785 0.214 �0.051 0.025

10 Employees get fast promotion if their work is efficient

and consistence

�0.079 0.725 0.339 �0.185

11 Senior managers are sensitive to the personal problems

of their employees

0.307 0.125 0.87 �0.048

12 Employees gets cheaper loan for buying vehicles 0.671 �0.261 0.055 �0.159

Extraction method: Principal component analysis

Rotation method: Varimax with Kaiser normalization
aRotation converged in seven iterations

Table 11.9 Factor 1: welfare

Items Loadings

4 Medical facilities for the employees and their families are excellent 0.689

7 Employee’s children are honored for their excellent performance in their

education

0.621

9 Fees of employees children are reimbursed during their schooling 0.785

12 Employees get cheaper loan for buying vehicles 0.671
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Summary of the SPSS Commands for Factor Analysis

(i) Start SPSS and prepare data file by defining the variables and their properties

in Variable View and typing the data column-wise in Data View.

(ii) In the data view, follow the below-mentioned command sequence for factor

analysis:

Analyze ! Dimension Reduction ! Factor

(iii) Select all the variables from left panel to the “Variables” section of the right

panel.

(iv) Click the tag Descriptives and check the options “Univariate descriptives,”

“Initial Solution,” “Coefficients,” “Significance levels,” and “KMO and

Bartlett’s test of sphericity.” Press Continue.
(v) Click the tag Extraction and then check “Scree plot.” Let other options

remain as it is by default. Press Continue.

Table 11.10 Factor 2: motivation

Items Loadings

3 Employees are praised by the immediate boss for doing something useful in the

organization

0.809

6 For doing some creative work or working creatively, employees get incentives 0.722

10 Employees get fast promotion if their work is efficient and consistence 0.725

Table 11.11 Factor 3: interpersonal relation

Items Loadings

8 Employees are cooperative in helping each other to solve their professional

problems

�0.732

11 Senior managers are sensitive to the personal problems of their employees 0.87

Table 11.12 Factor 4: career

Items Loadings

1 Employees are encouraged to attend training programs organized by outside

agencies

0.644

2 Any employee can reach up to the top level management position during their

carrier

0.734

5 Employees are given preference in jobs announced by the group of companies �0.68

Table 11.13 Test battery for measuring the climate of an organization

Items Loadings

9 Fees of employees children are reimbursed during their schooling 0.785

10 Employees get fast promotion if their working is efficient and consistence 0.725

11 Senior managers are sensitive to the personal problems of their employees 0.87

2 Any employee can reach up to the top level management position during their

carrier

0.734
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(vi) Click the tag Rotation and then check “Varimax” rotation option. Let other

option remains as it is by default. Press Continue.
(vii) Click OK for output.

Exercise

Short Answer Questions

Note: Write answer to each of the following questions in not more than 200 words.

Q.1. What do you mean by a factor? What is the criterion of retaining a factor in a

study and identifying the variables in it?

Q.2. How the factor analysis is useful in understanding the group characteristics

Q.3. Describe an experimental situation in which the factor analysis can be used.

Q.4. How factor analysis can be useful in developing a questionnaire?

Q.5. Discuss the procedure of developing a test battery to assess the lifestyle of

employees of an organization.

Q.6. What is principal component analysis and how it is used in factor analysis?

Q.7. What do you mean by eigenvalue? How the Kaiser’s criterion works in

retaining factors in the model?

Q.8. What do you mean by scree test? How is it useful in identifying the factors to

be retained through graph?

Q.9. What is the importance of communality in factor analysis?

Q.10. What is the significance of factor loadings? How it is used to identify the

variables to be retained in the factors?

Q.11. Why the factors are rotated to get the final solution in factor analysis? Which

is the most popular rotation method and why?

Multiple-Choice Questions

Note: Question no. 1–10 has four alternative answers for each question. Tick marks

the one that you consider the closest to the correct answer.

1. Factor analysis is a technique for

(a) Correlation analysis

(b) Dimension reduction

(c) Finding the most important variable

(d) Comparing factors

2. Principal component analysis extracts the maximum variance in the

(a) Last extracted factor

(b) Second extracted factor

(c) First extracted factor

(d) Any extracted factor
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3. In exploratory factor analysis,

(a) The factors are identified among the large number of variables

(b) The variables are clubbed into the factors

(c) The variables that do not contribute to the factor model are removed

(d) Factor model is tested

4. The sample is adequate in factor analysis if the value of KMO is

(a) <0.5

(b) �0.0.5

(c) 0

(d) 1

5. The variable’s variability is considered to be measured by the identified factors

if its communality is

(a) �0.3

(b) �0.6

(c) �0.4

(d) 1

6. Choose the correct sequence of SPSS commands for factor analysis

(a) Analyze ! Dimension Reduction ! Factor

(b) Analyze ! Factor ! Dimension Reduction

(c) Factor ! Dimension Reduction ! Analyze

(d) Dimension Reduction ! Factor ! Analyze

7. Owing to Kaiser’s criteria the factor is retained if its eigenvalue is

(a) Less than 1

(b) Equal to 1

(c) More than 2

(d) More than 1

8. Scree test is the graph between

(a) Eigenvalues and factors

(b) Percentage variance explained and factors

(c) Maximum factor loadings in the factors and factors

(d) Communality and factor

9. Conventionally a variable is retained in a factor if its loading is greater than or

equal to

(a) 0.4

(b) 0.5

(c) 0.7

(d) 0.2
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10. Varimax rotation is used to get the final solution. After rotation

(a) Factor explaining maximum variance is extracted first

(b) All factors whose eigenvalues are more than 1 are extracted

(c) Three best factors are extracted

(d) Non overlapping of variables in the factors emerges

11. Eigen value is also known as

(a) Characteristics root

(b) Factor loading

(c) Communality

(d) None of the above

12. KMO test in factor analysis is used to test whether

(a) Factors extracted are valid or not?

(b) Variables identified in each factor are valid or not?

(c) Sample size taken for the factor analysis was adequate or not?

(d) Multicolinearity among the variables exists or not?

13. Bartlett’s test in factor analysis is used for testing

(a) Same adequacy

(b) Whether correlation matrix is identity matrix

(c) Usefulness of variable

(d) Retaining the factors in the model

14. While using factor analysis certain assumptions need to be satisfied. Choose the

most appropriate assumption

(a) Data used in the factor analysis is based on interval scale or ratio scale

(b) Multicolinearity among the variables exist

(c) Outlier is present in the data

(d) Size of the sample does not affect the analysis.

Assignments

1. It is decided to measure the personality profile of the senior executives in a

manufacturing industry. Eleven personality characteristics were measured on 30

senior executives chosen randomly from an organization. Marks on each of these

characteristics were measured on a ten-point scale. The meaning for each of these

characteristics is described below the table. The data so obtained are shown in the

following table. Apply factor analysis using varimax rotation. Discuss your

findings and answer the following questions:

(a) Whether data is adequate for factor analysis?

(b) Whether sphericity is significant?

(c) How many factors have been extracted?

(d) In your opinion, what should be the name of the factors?

(e) What factor loadings you suggest for a variable to qualify in a factor?

(f) Can you suggest the test battery for screening the personality characteristics

of an executive?
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Explanation of Parameters

(a) Friendliness: Being friendly with others and try to be networked all the time.

(b) Achievement: Doing one’s best or difficult tasks and achieving recognition

(c) Orderliness: Doing work systematically

(d) Autonomy: Lead your life the way you feel like.

(e) Dominance: Always ready to assume the leadership

(f) Sensitiveness: Understand the other’s point of view in analyzing the

situation.

Data on personality characteristics obtained on senior executives

S.

N. Friend Achiev Order Auto Domi Sensit Exhibit End Need Help_Tem Le_change

1 6 3 5 8 7 6 8 4 7 9 8

2 7 4 4 6 8 7 7 5 8 8 7

3 6 5 5 7 9 8 8 3 9 8 9

4 7 4 4 6 8 8 7 5 7 7 8

5 8 3 5 8 7 7 8 4 8 8 7

6 6 4 4 6 8 7 9 4 9 6 8

7 7 4 5 6 9 6 8 5 8 7 9

8 7 5 3 6 8 7 7 3 9 8 8

9 8 4 3 7 9 8 8 3 7 7 7

10 6 5 4 8 8 7 7 4 7 8 8

11 8 4 3 6 7 7 8 5 8 7 9

12 6 5 4 7 8 6 7 4 9 8 7

13 7 3 5 6 7 7 8 3 8 7 7

14 6 4 3 7 8 7 7 4 7 8 8

15 7 4 5 7 9 8 8 5 8 7 9

16 8 5 4 6 7 7 7 3 7 8 8

17 5 4 4 8 8 6 8 4 8 7 7

18 6 3 4 6 7 7 9 5 9 8 8

19 7 4 5 7 9 6 8 3 9 7 7

20 6 5 3 6 8 7 6 4 8 9 8

21 8 4 4 6 7 6 8 5 7 7 7

22 7 3 3 8 8 7 7 4 8 8 6

23 8 4 4 6 9 6 8 3 7 7 7

24 7 5 5 6 8 6 9 4 8 9 8

25 6 4 5 7 7 7 8 5 7 7 9

26 5 5 3 5 8 8 9 4 8 8 8

27 7 4 4 7 7 6 7 5 7 7 7

28 8 3 3 8 8 7 7 4 8 8 8

29 7 4 5 7 7 6 8 4 9 9 9

30 8 5 5 6 8 8 7 5 8 7 8

Friend Friendliness, Achiev Achievement, Order Orderliness, Auto Autonomy, Domi Dominance,

Sensit Sensitiveness, Exhibit Exhibition, End Endurance, Need Neediness, Help_Tem Helping

temperament, Le_change Learn to change
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(g) Exhibition: To showcase one’s self by appearance, speech, and manner for

attracting others.

(h) Endurance: Being focus toward work until it is completed and being able to

work without being distracted.

(i) Neediness: Always ready to take support of others with grace and remains

obliged for that.

(j) Helping temperament: Always ready to help the needy and less fortunate.

(k) Learn to change: Always ready to change due to change environment.

2. A researcher wants to know the factors that are responsible for people to choose

the Rajdhani Express at different routes in India. Twenty respondents who

recently traveled from this train were selected for getting their responses.

These subjects were given a questionnaire consisting of ten questions mentioned

below. They were asked to give their opinion on a seven-point scale where 1

indicates complete agreement and seven complete disagreements. The responses

so obtained are shown in the following table.

Apply factor analysis and use varimax rotation to discuss your findings. Explain

the factors so extracted in the study.

Questionnaire includes

1. The attendants are caring

2. The bedding provided in the train is neat and clean.

Response data obtained from the passengers on the services provided during journey in the train

S.

N.

1.

Caring

2.

Bedding

3.

Courteous

4.

Food

5.

Spray

6.

Toilets

7.

Timeliness

8.

Seats

9.

Clean

10.

Snacks

1 2 2 1 2 3 4 2 2 4 1

2 3 1 2 3 2 5 4 2 5 2

3 4 2 4 4 3 6 4 3 6 3

4 1 1 2 3 2 4 3 2 4 2

5 2 2 3 4 2 4 4 3 3 3

6 3 2 2 3 3 3 3 2 3 2

7 4 1 3 6 2 5 5 1 5 5

8 5 1 5 5 3 6 5 2 6 4

9 5 1 2 2 2 5 3 2 5 1

10 3 2 3 2 2 5 3 3 5 2

11 6 1 4 4 2 4 4 2 6 3

12 6 2 6 3 3 6 3 3 6 2

13 2 5 3 4 6 5 4 6 4 3

14 1 2 3 3 3 4 4 3 2 2

15 3 1 2 4 3 5 5 2 3 3

16 4 5 3 4 5 4 5 6 4 3

17 2 2 2 1 3 3 3 3 5 1

18 2 1 3 3 2 3 4 2 6 2

19 1 2 2 3 3 4 3 3 2 2

20 3 1 1 1 4 2 2 2 3 1

386 11 Application of Factor Analysis: To Study the Factor Structure Among Variables



3. The ticket checkers are very courteous.

4. The quality of food is good.

5. To done away the foul smell fresheners are sprayed.

6. Toilets are always clean.

7. Foods are provided timely during the journey.

8. Seats are very comfortable.

9. Surroundings are clean all the time clean.

10. Vendors keep providing fresh and hot snacks all the time.

Answers of Multiple-Choice Questions

Q.1 b Q.2 c Q.3 c Q.4 b

Q.5 c Q.6 a Q.7 d Q.8 a

Q.9 c Q.10 d Q.11 a Q.12 c

Q.13 b Q.14 a
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Chapter 12

Application of Discriminant Analysis:

For Developing a Classification Model

Learning Objectives

After completing this chapter, you should be able to do the following:

• Understand the importance of discriminant analysis in research.

• List down the research situation where discriminant analysis can be used.

• Understand the importance of assumptions used in discriminant analysis.

• Know the different concepts used in discriminant analysis.

• Understand the steps involved in using SPSS for discriminant analysis.

• To interpret the output obtained in discriminant analysis.

• Explain the procedure in developing the decision rule using discriminant model.

• Know to write the results of discriminant analysis in standard format.

Introduction

Often we come across a situation where it is interesting to know as to why the two

naturally occurring groups are different. For instance, after passing the school, the

students can opt for continuing further studies, or they may opt for some skill-

related work. One may be interested to know as to what makes them to choose their

course of action. In other words, it may be desired to know on what parameters

these two groups may be distinct. Similarly one may like to identify the parameters

which distinguish the liking of two brands of soft drink by the customers or which

make the engineering and management students different. Thus, to identify the

independent parameters responsible for discriminating these two groups, a statisti-

cal technique known as discriminant analysis (DA) is used. The discriminant

analysis is a multivariate statistical technique used frequently in management,

social sciences, and humanities research. There may be varieties of situation

where this technique can play a major role in decision-making process. For

instance, the government is very keen that more and more students should opt for

the science stream in order to have the technological advancement in the country.
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Therefore, one may investigate the factors that are responsible for class XI students

to choose commerce or science stream. After identifying the parameters responsible

for discriminating a science and commerce student, the decision makers may focus

their attention to divert the mindset of the students to opt for science stream.

Yet another application where discriminant analysis can be used is in the food

industry. In launching the new food product, much of its success depends upon its

taste, and, therefore, product formulation must be optimized to obtain desirable

sensory quality expected by consumers. Thus, the decision maker may be interested

to know the parameters that distinguish the existing similar product and new

proposed product in terms of the product properties like sensory characteristics,

percent of ingredients added, pricing, and contents. In this chapter, the discriminant

analysis technique shall be discussed in detail along with its application with SPSS.

What Is Discriminant Analysis?

Discriminant analysis is a multivariate statistical technique used for classifying a

set of observations into predefined groups. The purpose is to determine the predictor

variables on the basis of which groups can be determined. The discriminant model

is built on the basis of a set of observations for which the groups are known. This set

of observation is the past data on the basis of which discriminant analysis technique

constructs a set of linear functions of the predictors, known as discriminant func-

tion, such that

Z ¼ cþ b1X1 þ b2X2 þ . . . . . . bnXn (12.1)

where

c is a constant
b’s are the discriminant coefficients

X’s are the predictor variables

Only those independent variables are picked up which are found to have

significant discriminating power in classifying a subject into any of the two groups.

The discriminant function so developed is used for predicting the group of a new

observation set.

The discriminant analysis is actually known as discriminant function analysis

but in short one may use the term discriminant analysis. In discriminant analysis,

the dependent variable is a categorical variable, whereas independent variables are

metric. The dependent variable may have more than two classes, but the discrimi-

nant analysis is more powerful if it has two classifications. In this text, the

discriminant analysis shall be discussed only for two-group problem.

After developing the discriminant model, for a given set of new observation the

discriminant function Z is computed, and the subject/object is assigned to first

group if the value of Z is less than 0 and to second group if more than 0. This

390 12 Application of Discriminant Analysis: For Developing a Classification Model



criterion holds true if an equal number of observations are taken in both the groups

for developing a discriminant function. However, in case of unequal sample size,

the threshold may vary on either side of zero.

The main purpose of a discriminant analysis is to predict group membership

based on a linear combination of the predictive variables. In using this technique,

the procedure starts with a set of observations where both group membership and

the values of the interval variables are known. The end result of the procedure is a

model that allows prediction of group membership when only the interval variables

are known.

A second purpose of the discriminant analysis is to study the relationship

between group membership and the variables used to predict group membership.

This provides information about the relative importance of independent variables in

predicting group membership.

Discriminant function analysis is similar to the ordinary least square (OLS)

regression analysis. The only difference is in the nature of dependent variable.

In discriminant function analysis, the dependent variable is essentially a categorical

(preferably dichotomous) variable, whereas in multiple regression it is a continuous

variable. Other differences are in terms of the assumptions being satisfied in using

discriminant analysis which shall be discussed later in this chapter.

Terminologies Used in Discriminant Analysis

Discriminant analysis provides discriminant function which is used to classify an

individual or cases into two categories on the basis of the observations on the

predictor variables. If the discriminant model developed in the analysis is robust for

a set of data, the percentage of correct classification of cases in the classification

table increases. To understand the application of discriminant analysis using SPSS

on any data set, it is essential to know its basics.

Variables in the Analysis

In discriminant analysis, the dependent variable is categorical in nature. It may have

two or more categories. The procedure used in discriminant analysis becomes very

complicated if the dependent variable has more than two categories. Further the

efficiency of the model also decreases in that case. The model becomes very

powerful if the dependent variable has only two categories. The dependent variable

is also known as criterion variable. In SPSS, dependent variable is known as

grouping variable. It is the object of classification on the basis of independent

variables.

The independent variables in the discriminant analysis are always metric.

In other words, the data obtained on the independent variables must be measured
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either on interval or ratio scale. The independent variables in discriminant analysis

are also known as predictor variables.

Discriminant Function

A discriminant function is a latent variable which is constructed as a linear

combination of independent variables, such that

Z ¼ cþ b1X1 þ b2X2 þ . . .þ bnXn

where

b1, b2,. . ., bn are discriminant coefficients

X1, X2,. . ., Xn are discriminating variables

c is a constant

The discriminant function is also known as canonical root. This discriminant

function is used to classify the subject/cases into one of the two groups on the basis

of the observed values on the predictor variables.

Classification Matrix

In discriminant analysis, the classification matrix serves as a yardstick in measuring

the accuracy of a model in classifying an individual/case into one of the two groups.

The classification matrix is also known as confusion matrix, assignment matrix, or

prediction matrix. It tells us as to what percentage of the existing data points are

correctly classified by the model developed in discriminant analysis. This percent-

age is somewhat similar to R2 (percentage of variation in dependent variable

explained by the model).

Stepwise Method of Discriminant Analysis

Discriminant function can be developed either by entering all independent
variables together or in stepwise depending upon whether the study is confirmatory

or exploratory. In confirmatory data analysis, discriminant function is developed on

the basis of all the independent variables selected in the study, whereas in explor-

atory study the independent variables are selected one by one. In stepwise discrimi-

nant analysis, a variable is retained in the model if its regression coefficient is

significant at 5% level and removed from the model if it is not significant at 10%

level.
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Power of Discriminating Variables

After developing the model in discriminant analysis based on selected independent

variables, it is important to know the relative importance of the variables so

selected. This relative importance of the variable is determined by the coefficient

of the discriminating variable in the discriminant function. SPSS provides these

coefficients in the output and are named as standardized canonical discriminant

function coefficients. The higher the value of coefficient, the better is the discrimi-

nating power.

Box’s M Test

While applying ANOVA, one of the assumptions was that the variances are

equivalent for each group, but in DA the basic assumption is that the variance-

covariance matrices are equivalent. By using Box’s M tests, we test a null hypothe-

sis that the covariance matrices do not differ between groups formed by the

dependent variable. The researcher would not like this test to be significant so

that the null hypothesis that the groups do not differ can be retained. Thus, if the

Box’s M test is insignificant, it indicates that the assumptions required for DA holds

true.

However, with large samples, a significant result of Box’s M is not regarded as

too important. Where three or more groups exist, and Box’s M is significant, groups

with very small log determinants should be deleted from the analysis.

Eigenvalues

Eigenvalue is the index of overall model fit. It provides information on each of the

discriminant functions (equations) produced. In discriminant analysis, the maxi-

mum number of discriminant functions produced is the number of groups minus 1.

In case dependent variable has two categories, only one discriminant function shall

be generated. In DA, one tries to predict the group membership from a set of

predictor variables. If the dependent variable has two categories and there are n
predictive variables, then a linear discriminant equation, Zi ¼ cþ b1X1 þ b2X2 þ
. . .þ bnXn, is constructed such that the two groups differ as much as possible on Z.
Here, one tries to choose the weights b1, b2,. . ., bn in computing a discriminant

score (Zi) for each subject so that if an ANOVA on Z is done, the ratio of the

between groups sum of squares to the within groups sum of squares is as large as

possible. The value of this ratio is known as eigenvalue.

Thus, eigenvalue is computed with the data on Z and is a quantity maximized by

the discriminant function coefficients.
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Eigenvalue ¼ SSBetween groups

SSWithin groups

(12.2)

The larger the eigenvalue, the better is the model in discriminating between the

groups.

The Canonical Correlation

The canonical correlation in discriminant analysis is equivalent to eta in an

ANOVA and is equal to the point biserial correlation rb between group and Z.
Square of the canonical correlation indicates the percentage of variation explained

by the model in the grouping variable and is similar to R2. The canonical correlation

is computed on Z which is as follows:

Canonical correlation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSBetween groups

SSTotal

r
(12.3)

Wilks’ Lambda

It is used to indicate the significance of discriminant function developed in the

discriminant analysis. The value of Wilks’ lambda provides the proportion of total

variability not explained by the discriminant model. For instance, if the value of

Wilks’ lambda is 0.28, it indicates that 28% variability is not explained by the

model. The value of Wilks’ lambda ranges from 0 to 1, and low value of it (closer to

0) indicates better discriminating power of the model. Thus, the Wilks’ lambda is

the converse of the squared canonical correlation.

What We Do in Discriminant Analysis

Different steps that are involved in discriminant analysis have been discussed in this

section. Initially you may not understand all the steps clearly but continue to read

this chapter, and once you complete reading the solved example using SPSS

discussed in this chapter, your understanding level about this topic shall be

enhanced. All the steps discussed below cannot be performed manually but may

be achieved by using any statistical package. So go through these steps and try

understanding the outputs of your discriminant analysis.
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1. The first step in the discriminant analysis is to identify the independent variables

having significant discriminant power. This is done by taking all the independent

variables together in the model or one by one. The option for these two methods

can be seen in SPSS as “Enter independents together” and “Use stepwise
method,” respectively.
In stepwise method, an independent variable is entered in the model if its

corresponding regression coefficient is significant at 5% level and excluded at

subsequent stages until and unless it is significant at 10% level. Thus, in

developing discriminant function, the model will enter only significant indepen-

dent variables. The model so developed is required to be tested for its robustness.

2. In the second step, a discriminant function model is developed by using the

discriminant coefficients of the predictor variables and the value of constant

shown in the “Unstandardized canonical discriminant function coefficients”
table generated in the SPSS output. This is similar to developing of regression

equation. This way, the function so generated may be used to classify an

individual into any of the two groups. The discriminant function shall look

like as follows:

Z ¼ cþ b1X1 þ b2X2 þ . . . . . . ::þ bnXn

where

Z is the discriminant function

X’s are predictor variables in the model

c is the constant
b’s are the discriminant constants of the predictor variables

3. After developing discriminant model, the Wilks’ lambda is computed in the third

step for testing the significance of discriminant function developed in the model.

This indicates the robustness of discriminant model. The value of Wilks’ lambda

ranges from 0 to 1, and the lower value of it close to 0 indicates better discrimi-

nating power of the model. Further, significant value of chi-square indicates that

the discrimination between the two groups is highly significant.

After selecting independent variables as predictors in the discriminant model,

the model is tested for its significance in classifying the subjects/cases correctly

into groups. For this, SPSS generates a classification matrix. This is also known

as confusion matrix. This matrix shows the number of correct and wrong

classification of subjects in both the groups. High percentage of correct classifi-

cation indicates the validity of the model. The level of accuracy shown in the

classification matrix may not hold for all future classification of new subjects/

cases.

4. In the fourth step, the relative importance of predictor variables in discriminating

the two groups is discussed. The SPSS generates the “Standardized canonical
discriminant function coefficients” table. The variable with higher coefficient in

the table is the most powerful in discriminating the two groups, whereas the

variable having least coefficient indicates low discriminating power.
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5. Finally, a criterion for classification is developed on the basis of the midpoint of

the mean value of the transformed groups obtained in the table titled “Functions
at group centroids” generated in the SPSS output. If the value of the function Z
computed on the basis of the equation developed in step 2 is less than this

midpoint, the subject is classified in one group and if it is more than it is

classified in second group.

Assumptions in Using Discriminant Analysis

While applying discriminant analysis, one should test the assumptions used in this

analysis. Following are the assumptions which are required to be fulfilled while

using this analysis:

1. Each of the independent variables is normally distributed. This assumption can

be examined by the histograms of frequency distributions. In fact, violations of

the normality assumption are usually not serious because in that case the

resultant significance tests are still reliable. One may use specific tests like

skewness and kurtosis for testing the normality in addition to graphs.

2. All variables have linear and homoscedastic relationships. It is assumed that the

variance/covariance matrices of variables are homogeneous in both the groups.

Box M test is used for testing the homogeneity of variances/covariances in both

the groups. However, it is sensitive to deviations from multivariate normality

and should not be taken too seriously.

3. Dependent variable is a true dichotomy. The continuous variable should never

be dichotomized for the purpose of applying discriminant analysis.

4. The groups must be mutually exclusive, with every subject or case belonging to

only one group.

5. All cases must be independent. One should not use correlated data like before-

after and matched pair data.

6. Sample sizes of both the groups should not differ to a great extent. If the sample

sizes are in the ratio 80:20, logistic regression may be preferred.

7. Sample size must be sufficient. As a guideline, there should be at least five to six

times as many cases as independent variables.

8. No independent variables should have a zero variability in either of the groups

formed by the dependent variable.

9. Outliers should not be present in the data. To solve this problem, inspect

descriptive statistics.

Research Situations for Discriminant Analysis

The discriminant analysis is used to develop a model for discriminating the future

cases/objects into one of the two groups on the basis of predictor variables. Hence,

it is widely used in the studies related to management, social sciences, humanities,
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and other applied sciences. Some of the research situations where this analysis can

be used are discussed below:

1. In a hospitality firm, the data can be collected on employees in two different job

classifications: (1) customer support personnel and (2) back office management.

The human resources manager may like to know if these two job classifications

require different personality types. Each employee may be tested by a battery of

psychological test which consists of a measure of socialization trait,

extrovertness, frustration level, and orthodox approach.

The model can be used to priorities the predictor variable which can be used to

identify the employees in different category during selection process. Further,

the model may be helpful in developing the training program for future

employees recruited in different categories.

2. A college authority might divide a group of past graduate students into two

groups: students who finished the economics honors program in 3 years and

those who did not. The discriminant analysis could be used to predict successful

completion of the honors program based on the independent variables like SAT

score, XII maths score, and age of the candidates. Investigating the prediction

model might provide insight as to how each predictor individually and in

combination predicted completion or noncompletion of the economics honors

program at the undergraduate level.

3. Amarketingmanagermay like to develop amodel on buying two different kinds of

toothpaste on the basis of the product and customer profiles. The independent

variables may consist of age and sex of the customer and contained quantity, taste,

price of the products, etc. The insight from the developed model may provide the

decisionmakers in the company to develop andmarket their products with success.

4. A social scientist may like to know the predictor variable which is responsible

for smoking. The data on variables like the age at which the first cigarette was

smoked and other reasons of smoking like self-image, peer pressure, and frus-

tration level can be studied to develop a model for classifying an individual into

smoker and nonsmoker. The knowledge so accrued from the developed model

may be used to start the ad campaign against smoking.

5. In medical research, one may like to predict whether patient would survive from

burn injury based on the combinations of demographic and treatment variables.

The predictor variables might include burn percentage, body parts involved, age,

sex, and time between incident and arrival at hospital. In such situations, the

discriminant model so developed would allow a doctor to assess the chances of

recovery based on predictor variables. The discriminant model might also give

insight into how the variables interact in predicting recovery.

Solved Example of Discriminant Analysis Using SPSS

Example 12.1 The marketing division of a bank wants to develop a policy for

issuing visa gold card to its customers through which one can shop and withdraw up
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to Rs. 100,000 at a time for 30 days without any interest. Out of several customers,

only a handful number of customers are required to be chosen for such facility.

Thus, a model is required to be made on the basis of the existing practices for

issuing similar card to the customers on the basis of the following data. The data

was collected on 28 customers in the bank who were either issued or denied similar

card earlier. Apply discriminant analysis to develop a discriminant function for

issuing or denying the golden visa card to the customers on the basis of their profile.

Also test the significance of the model so obtained. Discuss the efficiency of

classification and relative importance of the predictor variables retained in the

model (Table 12.1).

Solution
Here it is required to do the following:

1. To develop a discriminant function for deciding whether a customer be issued a

golden credit card

Table 12.1 Account details of the customers

S.

N.

Credit

card

Average daily

balance last

1 year

Number of days

balance <50,000 last

1 year

Annual

income in

lakh

Family

size

Average number

of transaction/

month

1 Issued 68,098 2 36.52 4 8

2 Denied 43,233 12 26.45 3 13

3 Issued 50,987 0 25.6 5 11

4 Denied 39,870 31 26.85 5 12

5 Denied 37,653 51 25.65 6 11

6 Denied 35,347 48 28.45 5 14

7 Issued 65,030 1 22.45 2 4

8 Issued 72,345 0 42.34 5 6

9 Denied 34,534 32 31.9 4 8

10 Issued 87,690 1 30.45 6 15

11 Denied 43,563 4 28.45 5 10

12 Denied 50,879 6 24.8 6 9

13 Denied 58,034 1 24.45 5 12

14 Issued 76,345 0 29.45 6 3

15 Issued 69,067 3 34.24 4 11

16 Denied 43,008 5 54.45 4 8

17 Issued 75,437 2 28.76 8 20

18 Denied 34,009 8 34.25 4 14

19 Issued 52,409 4 31.45 4 7

20 Denied 51,654 4 31.8 3 13

21 Issued 64,065 2 25.67 5 10

22 Denied 49,003 4 33.45 2 7

23 Issued 65,030 1 25.63 4 15

24 Issued 59,024 2 32.52 5 12

25 Issued 75,007 0 28.45 3 8

26 Denied 46,342 12 34.54 5 15

27 Denied 56,803 1 32.76 4 17

28 Issued 59,034 3 26.87 3 8
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2. To identify the predictor variable in developing the model and find their relative

importance

3. To test the significance of the model

4. To explain the efficiency of classification

These issues shall be discussed with the output generated by the SPSS in this

example. Thus, the procedure of using SPSS for discriminant analysis in the

given example shall be explained first, and thereafter the output shall be discussed

in the light of the objectives of the study.

SPSS Commands for Discriminant Analysis

In order to perform discriminant analysis with SPSS, a data file needs to be prepared

first. Since the initial steps in preparing the data file has been explained in earlier

chapters, it will not be repeated here again. In case of difficulty, you may go through

the procedure discussed in Chap. 1 in this regard. Take the following steps for

generating the outputs in discriminant analysis:

(i) Data file: Here, five independent variables and one dependent variable need to

be defined. The dependent variable Card_decision is defined as a nominal

variable, whereas all five independent variables as scale variables in SPSS.

After preparing the data file by defining variable names and their labels, the

screen will look like as shown in Fig. 12.1.

(ii) Initiating command for discriminant analysis: After preparing the data file,

click the following command sequence in the Data View:

Analyze ! Classify ! Discriminant

The screen shall look like Fig. 12.2.

(iii) Selecting variables for discriminant analysis: After clicking the Discriminant

option, the SPSS will take you to the window where variables are selected.

– Select the dependent variable Card_Decision from left panel to the “Group-

ing Variable” section of the right panel. Define minimum and maximum

range of the grouping variable as “1” and “2” and click continue.

– Select all independent variables from left panel and bring them to the

“Independents” section of the right panel.

– Check the option “Use stepwise method” if you have many independent

variables and the effort is to identify the relevant predictive variables. Such

studies are known as explorative studies. Whereas if you want to go for

confirmatory analysis, check the option “Enter independents together.”

Here, the model is built on all the independent variables; hence, the option

“Enter independents together” is checked. In this case, the effort is to test
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the model. Such studies are known as confirmatory studies. In this example,

all the variables have been selected to build the model. The screen will look

like Fig. 12.3.

(iv) Selecting the option for computation: After selecting variables, different

option needs to be defined for generating the output in discriminant analysis.

Take the following steps:

– Click the tag Statistics in the screen shown in Fig. 12.3. and

– Check the option of “Means” and “Box’s M” in the “Descriptives” section.

Fig. 12.1 Screen showing partial data file for the discriminant analysis in SPSS
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– Check the options “Fisher’s” and “Unstandardized” in the “Function

Coefficients” section. The screen showing these options shall look like as

shown in Fig. 12.4.

– Press Continue. This will take you back to the screen shown in Fig. 12.3.

– Click the tag Classify in the screen as shown in screen 12.3. and

– Check the option “Summary table” in the Display section.

– Check the option “Casewise results” if you want to know wrongly classified

cases by the model.

The screen for these options shall look like Fig. 12.5.

– Click Continue.
– Click OK for output.

(v) Getting the output: After clicking the OK option in Fig. 12.3, the output in the

discriminant analysis shall be generated in the output window. Selected outputs

can be copied in the word file by using the right click of the mouse over

identified area of the output. Out of many outputs generated by the SPSS, the

following relevant outputs have been picked up for discussion:

1. Group statistics including mean and standard deviation

Fig. 12.2 Screen showing SPSS commands for discriminant analysis
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Fig. 12.3 Screen showing selection of variables for discriminant analysis

Fig. 12.4 Screen showing the options for descriptive statistics and discriminant coefficients
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2. Unstandardized canonical discriminant function coefficients table

3. Eigen values and canonical correlation

4. Wilks’ lambda and chi-square test

5. Classification matrix

6. Standardized canonical discriminant function coefficients

7. Functions at group centroids

These outputs so generated by the SPSS are shown in Tables 12.2–12.8 and

Fig. 12.6.

Interpretation of Various Outputs Generated in Discriminant
Analysis

The above-mentioned output so generated by the SPSS will now be discussed to

answer the issues raised in the example.

1. Table 12.2 shows descriptive statistics containing mean and standard deviation

for all the variables in both the groups, that is, card issued group and card denied

Fig. 12.5 Screen showing the options for classification matrix
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group. The readers may draw relevant conclusions as per their objectives from

this table.

2. Table 12.3 reveals the value of unstandardized discriminant coefficients which

are used in constructing discriminant function. Since all independent variables

were included to develop the model, the discriminant coefficients of all the five

independent variables are shown in Table 12.3.

Thus, discriminant function can be constructed by using the values of constant

and coefficients of these five independent variables as shown in Table 12.3.

Z ¼ �4:253� :002� X2 � :028� X3 þ :017� X4 � :099� X5

where

X2 is number of balance less than 5,000 in last 1 year

X3 is annual income in lakh

X4 is family size

X5 is average transaction per month

Table 12.2 Group statistics: mean and standard deviation of all independent variables in different

groups

Issue decision Mean SD

Card issued Average daily balance in last 1 year 67,112.00 9989.74

Number of balance less than 5,000 in last 1 year 1.509 1.29

Annual income in lakh 30.03 5.19

Family size 4.57 1.50

Average transaction per month 9.86 4.62

Card denied Average daily balance in last 1 year 44,566.57 7923.67

Number of balance less than 5,000 in last 1 year 15.64 17.38

Annual income in lakh 31.30 7.56

Family size 4.36 1.15

Average transaction per month 11.64 2.95

Total Average daily balance in last 1 year 55,839.29 14,493.43

Number of balance less than 5,000 in last 1 year 8.5714 14.08

Annual income in lakh 30.67 6.39

Family size 4.46 1.32

Average transaction per month 10.75 3.91

Table 12.3 Unstandardized canonical discriminant function coefficients

Variables selected Function 1

Average daily balance in last 1 year (X1) .000

Number of balance less than 5,000 in last 1 year (X2) �.002

Annual income in lakh (X3) �.028

Family size (X4) .017

Average transaction per month (X5) �.099

Constant �4.253
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3. The canonical correlation is 0.815 as shown in Table 12.4. This indicates that

approximately 66% of the variation in the two groups is explained by the

discriminant model.

Since the Wilks’ lambda provides the proportion of unexplained variance by the

model, the lesser its value, the better is the discriminant model. The value of

Wilks’ lambda lies in between 0 and 1. Its value here is 0.336 as shown in

Table 12.5; hence, the model can be considered good because only 33.6%

variability is not explained by the model. To test the significance of Wilks’

lambda, the value of chi-square is calculated which is shown in Table 12.5. Since

the p value associated with it is .000 which is less than .05, it may be inferred that

the model is good.

4. Table 12.6 is a classification matrix which shows the summary of correct and

wrong classification of cases in both the groups on the basis of the developed

discriminant model. This table shows that out of 14 customers whom credit card

was issued, 12 were correctly classified by the developed model and 2 were

wrongly classified in the card denied group. On the other hand, out of 14

customers whom card was denied, 13 were classified by the model correctly in

the card denied group and only 1 customer was wrongly classified in the card

issued group. Thus, out of 28 cases, 25 (89.3%) cases were correctly classified by

the model which is quite high; hence, the model can be considered as valid.

Since this model is developed on the basis of a small sample, the level of

accuracy shown in the classification matrix may not hold for all future classifi-

cation of new cases.

5. Table 12.7 shows the standardized discriminant coefficients of the independent

variables in the model. The magnitude of these coefficients indicates the dis-

criminating power of the variables in the model. The variable having higher

Table 12.4 Eigenvalues

Function Eigenvalue % of variance Cumulative % Canonical correlation

1 1.975a 100.0 100.0 .815
aFirst 1 canonical discriminant functions were used in the analysis

Table 12.5 Wilks’ lambda

and chi-square test
Test of function(s) Wilks’ lambda Chi-square df Sig.

1 .336 25.618 5 .000

Table 12.6 Classification resultsa

Predicted group membership

Issue decision Card issued Card denied Total

Original count Card issued 12 2 14

Card denied 1 13 14

% Card issued 85.7 14.3 100.0

Card denied 7.1 92.9 100.0
a89.3% of original grouped cases correctly classified
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magnitude of the absolute function value is more powerful in discriminating the

two groups. Since absolute function value of the variable average daily balance
in last one year is .988 which is higher than that of the variable average
transaction per month (.382), average daily balance is having more discriminat-

ing power than the average transaction per month. By careful examination, you

may notice that the coefficient of average daily balance is the maximum, and in

fact it is very large in comparison to other variables; hence, it may be concluded

that this is the most important variable in taking a decision to issue or not to issue

the golden visa card.

Remark: You may run the discriminant analysis on the same data by using the

option “Use stepwise method” in order to ascertain the fact, whether the variable

average daily balance gets selected in the model. You may also check as to how

much accuracy is reduced in the model if some of the independent variables are

dropped from the model.

6. One of the purposes of running discriminant analysis in this example was to

develop a decision model for classifying a customer into two categories, that is,

card issued and card denied. Table 12.8 shows the means for the transformed

group centroids. Thus, the new mean for group 1 (card denied) is�1.354 and for

group 2 (card issued) is +1.354. This indicates that the midpoint of these two is 0.

These two means can be plotted on a straight line by locating the midpoint as

shown in Fig. 12.6.

Figure 12.6 defines the decision rule for classifying any new customer into any

of the two categories. If the discriminant score of any customer falls to the right of

the midpoint (Z > 0), he/she is classified into the card issue category, and if it falls

to the left of the midpoint (Z < 0), he/she is classified into card denied category.

Table 12.7 Standardized

canonical discriminant

function coefficients

Variables selected Function 1

Average daily balance in last 1 year .988

Number of balance less than 5,000 in last 1 year �.019

Annual income in lakh �.184

Family size .023

Average transaction per month �.382

Table 12.8 Functions at group centroids

Issue decision Function 1

Card issued 1.354

Card denied �1.354

Unstandardized canonical discriminant functions evaluated at group means
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Summary of the SPSS Commands for Discriminant Analysis

(i) After preparing the data file, follow the below-mentioned command sequence

for discriminant analysis:

Analyze Classify Discriminant

(ii) Select the dependent variable Card_Decision from left panel to the “Grouping

Variables” section of the right panel and define its minimum and maximum

range as “1” and “2.” Further, select all independent variables from the left

panel to the “Independents” section of the right panel. Check the option “Enter

independents together.”

(iii) Click the tag Statistics and check options for “Means,” “Fisher’s,” and

“Unstandardized” in it. Click Continue.
(iv) Click the tag Classify and check option for “Summary table.” Press Continue.
(v) Press OK for output.

Exercise

Short Answer Questions

Note:Write answer to each of the following questions in not more than 200 words.

Q.1. Explain a research situation where discriminant analysis can be used and

discuss its utility.

Q.2. In discriminant analysis, what dependent variable refers to? What is the data

type of dependent variable in SPSS?

Q.3. Discuss situations in which the discriminant analysis uses the two different

methods like “Enter independents together” and “Use stepwise method” for
developing the discriminant model.

Q.4. What do you mean by discriminating variables? What is its significance in

discriminant analysis?

Q.5. What is the significance of Box’s M test in discriminant analysis? What does

the magnitude of Box’s M signify?

Q.6. What do you mean by eigenvalues? Explain its importance.

Q.7. Explain the significance of canonical correlation. What does it convey?

Mean of group 1 Mean of group 2
(Card denied) (Card issued)

_____________________________________________

-1.354 0 +1.354

Value of  Z

Fig. 12.6 Means of the transformed group centroids
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Q.8. Explain the role of Wilks’ lambda in discriminant analysis. Comment on the

models if its values are 0, 0.5, and 1 in three different situations.

Q.9. Explain the purpose of classification matrix in discriminant analysis. How

the percentage of correct classification is similar to R2?

Q.10. What is discriminant function and how it is developed? How this function is

used in decision-making?

Q.11. One of the conditions in discriminant analysis is that “All variables have linear

and homoscedastic relationships.” Explain the meaning of this statement.

Q.12. What do you mean by the discriminating power of the variables? How will

you asses it?

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers. Tick mark the

one that you consider the closest to the correct answer.

1. In discriminant analysis, independent variables are treated as

(a) Scale

(b) Nominal

(c) Ordinal

(d) Ratio

2. In discriminant analysis, dependent variable is measured on the scale known as

(a) Grouping

(b) Ordinal

(c) Nominal

(d) Criterion

3. Discriminant function is also known as

(a) Eigenvalue

(b) Regression coefficient

(c) Canonical root

(d) Discriminant coefficient

4. Confusion matrix is used to denote

(a) Correctly classified cases

(b) Discriminant coefficients

(c) F-values
(d) Robustness of different models

5. The decision criteria in discriminant analysis are as follows:

Classify in first group if Z < 0

Classify in second group if Z > 0

The above criteria hold true

(a) If size of the samples in both the groups are equal

(b) If size of the samples in both the groups are nearly equal

(c) If size of the samples in both the groups are in the proportion of 4:1

(d) In all the situations
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6. In stepwise method of discriminant analysis, a variable is included in the model

if it is found significant at

(a) 2% level

(b) 1% level

(c) 10% level

(d) 5% level

7. The Wilks’ lambda indicates

(a) Percentage variability in the two groups explained by the model

(b) Robustness of the model

(c) Proportion of total variability not explained by the discriminant model

(d) Significance of discriminant coefficients

8. One of the assumptions in discriminant analysis is that

(a) All variables have curvilinear and homoscedastic relationships.

(b) All variables have linear and non-homoscedastic relationships.

(c) All variables have curvilinear and non-homoscedastic relationships.

(d) All variables have linear and homoscedastic relationships.

9. Correct sequence of commands in SPSS for discriminant analysis is

(a) Analyze ! Discriminant ! Classify

(b) Analyze ! Classify ! Discriminant

(c) Discriminant ! Analyze ! Classify

(d) Discriminant ! Classify ! Analyze

10. Value of Wilks’ lambda ranges from

(a) �1 to +1

(b) 0 to 1

(c) �1 to 0

(d) �2 to 2

11. Discriminant function is developed on the basis of

(a) Standardized coefficients

(b) Unstandardized coefficients

(c) Classification matrix

(d) Functions at group centroids

12. The power of discrimination of an independent variable is determined by

(a) Unstandardized canonical coefficients

(b) Wilks’ lambda

(c) Standardized canonical coefficients

(d) Eigenvalues
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13. In explorative discriminant analysis,

(a) All the independent variables are taken in the study.

(b) Only those variables which are known to have sufficient discriminating

power are taken in the study.

(c) Maximum number of relevant independent variables are taken in the study.

(d) It is up to researcher to identify the independent variables in the study.

14. Choose the correct statement in discriminant analysis.

(a) Dependent variable is an ordinal variable.

(b) The groups should not be mutually exclusive.

(c) Sample sizes should differ to a great extent.

(d) No independent variables should have a zero variability in either of the

groups formed by the dependent variable.

15. In discriminant analysis, the square of the canonical correlation is an indicator

of

(a) Relationship among the independent variables

(b) Efficiency of the predictor variables

(c) Discriminating power of the independent variables

(d) The percentage of variability explained by the predictor variables in the

two groups

Assignments

1. A study was conducted to know the variables responsible for selection in the

bank probationary officers examination. Thirty candidates who appeared in the

examination were identified for the study, and following data were obtained on

them.

Results of the examination and subject’s profile

S.N. Bank examination result IQ English Numerical aptitude Reasoning

1 Successful 78 56 65 78

2 Successful 76 76 76 89

3 Not successful 74 52 63 93

4 Not successful 65 49 62 90

5 Successful 83 71 82 85

6 Successful 79 80 86 84

7 Not successful 91 54 52 89

8 Not successful 64 65 53 84

9 Not successful 53 69 54 85

10 Successful 60 78 75 92

11 Not successful 65 69 63 83

12 Successful 86 73 83 83

13 Not successful 53 65 67 83

14 Successful 74 69 80 78

15 Successful 60 68 81 74

16 Successful 75 75 78 85

(continued)
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(continued)

Results of the examination and subject’s profile

S.N. Bank examination result IQ English Numerical aptitude Reasoning

17 Not successful 56 73 75 83

18 Not successful 65 64 56 84

19 Not successful 56 58 64 86

20 Successful 95 68 78 82

21 Successful 92 80 74 83

22 Not successful 45 73 71 91

23 Successful 85 56 89 74

24 Successful 68 45 83 85

25 Not successful 64 73 64 84

26 Not successful 70 71 56 86

27 Successful 78 74 84 94

28 Not successful 64 70 55 86

29 Not successful 42 67 51 76

30 Successful 82 67 90 83

Develop a discriminant model. Test the significance of the developed model and

find the relative importance of the independent variables in the model. Compare

the efficiency of the two discriminant function models obtained by taking all the

variables at once and stepwise methods.

2. A branded apparel company wanted to reward its loyal customers by means of

incentives in the form of 60% discount in the first week of New Year. The

company had a loose policy of identifying a customer into loyal or disloyal on

the basis of certain criterion which was more subjective. However, the manage-

ment was interested to develop a more scientific approach to build up a model of

classifying a customer into loyal and disloyal group. A sample of 30 customers

were chosen from the database, and their purchase details were recorded which

are shown in the following table:

Apply discriminant analysis to build up a classification model which can be used

for the existing and future customers to reward as per the company policy. Test

Purchase data of the customers of the apparel company

S.

N.

Customer

classification

No. of purchases/

year in a year

Purchase

amount in a

year

No. of kids’ wear

apparel/year

No. of ladies

apparel/year

No. of

gents

1 Loyal 6 109,870 23 12 2

2 Disloyal 8 27,000 4 8 18

3 Loyal 11 135,000 22 23 11

4 Loyal 15 12,340 12 5 4

5 Disloyal 9 54,000 20 23 8

6 Disloyal 4 34,000 12 8 20

7 Loyal 8 98,000 16 9 22

8 Loyal 8 80,002 23 25 3

9 Disloyal 4 71,000 25 15 19

10 Loyal 8 180,000 35 24 12

(continued)
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the significance of discriminant function, explain the percentage of correct

classification by the model, and discuss the relative importance of independent

variable. Find out the percentage of variability explained by the discriminant

model in both the situations when all the variables are included in the model and

when the variables are identified using stepwise procedure.

Hint: In Assignment 2, since the number of scores in loyal and disloyal customer

groups are not same, you may not get mean of Z as 0. In this example, you will get the

new mean for group 1 (Disloyal group) as �1.603 and new mean for group 2 (Loyal

group) as 1.403. Thus,midpoint of these groupswould be�.1 instead of 0.A customer

would be classified as disloyal or loyal depending upon Z < �.1 or Z > �.1.

Answers to Multiple-Choice Questions

Q.1 a Q.2 c

Q.3 c Q.4 a

Q.5 a Q.6 d

Q.7 c Q.8 d

Q.9 b Q.10 b

Q.11 b Q.12 c

Q.13 c Q.14 d

Q.15 d

(continued)

S.

N.

Customer

classification

No. of purchases/

year in a year

Purchase

amount in a

year

No. of kids’ wear

apparel/year

No. of ladies

apparel/year

No. of

gents

11 Disloyal 6 34,012 3 2 15

12 Loyal 12 67,000 12 8 5

13 Loyal 5 92,008 20 12 9

14 Disloyal 4 12,000 6 2 8

15 Loyal 10 71,540 6 15 8

16 Disloyal 4 13,450 1 2 15

17 Loyal 14 125,000 24 15 8

18 Loyal 20 80,000 5 20 7

19 Disloyal 5 56,021 15 10 15

20 Loyal 9 170,670 21 25 12

21 Disloyal 6 1,012 1 1 1

22 Disloyal 7 54,276 13 8 15

23 Loyal 15 100,675 25 25 5

24 Loyal 12 106,750 30 15 4

25 Disloyal 11 3,500 2 2 3

26 Disloyal 5 2,500 2 1 3

27 Loyal 10 89,065 14 21 8

28 Loyal 9 80,540 15 19 16

29 Disloyal 7 12,000 4 4 6

30 Disloyal 3 5,056 4 2 3
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Chapter 13

Logistic Regression: Developing a Model

for Risk Analysis

Learning Objectives

After completing this chapter, you should be able to do the following:

• Learn the difference between logistic regression and ordinary least squares

regression.

• Know the situation where logistic regression can be used.

• Describe the logit transformation used in the analysis.

• Understand different terminologies used in logistic regression.

• Explain the steps involved in logistic regression.

• Understand the assumptions used in the analysis.

• Know the SPSS procedure involved in logistic regression.

• Understand the odds ratio and its use in interpreting the findings.

• Interpret the outputs of logistic regression generated by the SPSS.

Introduction

Logistic regression is a useful statistical technique for developing a prediction

model for any event that is binary in nature. A binary event can either occur or

not occur. It has only two states which may be represented by 1(occurrence) and 0

(nonoccurrence). Logistic regression can also be applied in a situation where the

dependent variable has more than two classifications. The logistic regression can

either be binary or multinomial depending upon whether the dependent variable is

classified into two groups or more than two groups, respectively. In this chapter, the

discussion shall be made only for binary logistic regression.

Logistic regression is useful in a situation where we are interested to predict the

occurrence of any happening. It has vast application in the area of management,

medical and social researches because in all these discipline occurrence of a

phenomenon depends upon the independent variables that are metric as well as

categorical in nature. Logistic regression can be used for developing model for
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financial prediction, bankruptcy prediction, buying behavior, fund performance,

credit risk analysis, etc. We have witnessed the failure of high-profile companies in

the recent past. This has generated an interest among the industrial researcher to

develop a model for bankruptcy prediction. Such model can also be made for retail

and other firms on the basis of the accounting variables such as inventories,

liabilities, receivables, net income (loss), and revenue. On the basis of such

model, one can estimate the risk of bankruptcy of any organization.

In hilly regions, there is always a fear of landslide which causes heavy damage to

the infrastructure and human lives. The logistic regression model can be used to find

out the landslide susceptibility in such areas. The model can identify more probable

areas prone to landslides. On the basis of such information, appropriate measures may

be taken to reduce the risk from potential landslide hazard. In developing the logistic

model for landslide susceptibility, the remote sensing and geographic information

system (GIS) data may be used as independent variables.

In product marketing, it is required to identify those customers on whom adver-

tisement should be focused. Consider a situation in which a company has introduced

an herbal cream costing Rs. 520 and wishes to identify the parameters responsible for

the customers to buy this product. The data on the parameters like age, gender,

income, and family size may be collected on the customers who have inspected the

cream at the counter in few stores. Here the dependent variable is the buying decision

of the customer (1 if the cream is purchased and 0 if not), whereas the independent

variables are the mix of ratio (age, income, family size) and categorical variable

(gender). Since the dependent variable is the dichotomous variable and independent

variables have a combination of ratio and categorical variables, the logistic regression

can be applied to identify the variables that are responsible for the buying behavior of

the customers. Further, the relative importance of the independent variable can also

be known by this analysis, and therefore, decision maker may focus on those

variables which maximize the chances of buying the product.

In the financial sector, financial companies may be interested to find the attributes

of the financial managers responsible for fund performance. One may investigate by

using logistic model as to which of the independent variables out of educational

background, gender, and seniority of the fund managers are related with the fund

performance.

Due to large number of listed companies on the bourses, there is always a fear of

credit issues and frequent credit crises. The logistic model may be developed for

credit risk analysis which may provide the monitoring agency a system of identifying

corporate financial risk which works as an effective indicator system. In developing

such model, the past data is usually taken on the identified parameters.

What Is Logistic Regression?

Logistic regression is a kind of predictive model that can be used when the

dependent variable is a categorical variable having two categories and independent

variables are either numerical or categorical. Examples of categorical variables are
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buying/not buying a product, disease/no disease, cured/not cured, survived/not

survived, etc. The logistic regression is also known as logit model or logistic model.

The dependent variable in the logit model is often termed as outcome or target

variable, whereas independent variables are known as predictive variables. A logistic

regression model is more akin to nonlinear regression such as fitting a polynomial to a

set of data values. By using the logistic model, the probability of occurrence of an

event is predicted by fitting data to a logit function or a logistic curve.

Important Terminologies in Logistic Regression

Before getting involved into serious discussion about the logistic regression, one

must understand different terminologies involved in it. The terms which are

required in understanding the logistic regression are discussed herewith.

Outcome Variable

Outcome variable is that variable in which a researcher is interested. In fact it is a

dependent variable which is binary in nature. The researcher is interested to know

the probability of its happening on the basis of several risk factors. For example, the

variables like buying decision (buying ¼ 1, not buying ¼ 0), survival (surviving

¼ 1, not surviving ¼ 0), bankruptcy (bankruptcy of an organization ¼ 1, no bank-

ruptcy ¼ 0), and examination results (pass ¼1, fail ¼ 0) are all outcome variables.

Natural Logarithms and the Exponent Function

The natural log is the usual logarithmic function with base e. The natural log of X is

written as log(X) or ln(X). On the other hand, the exponential function involves the

constant “e” whose value is equal to 2.71828182845904 (�2.72). The exponential

of X is written as exp(x) ¼ ex. Thus, exp(4) equals to 2.724 ¼ 54.74.

Since natural log and exponential function are opposite to each other,

E4 ¼ 54:74

) ln 54:74ð Þ ¼ 4
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Odds Ratio

If probability of success (p) of any event is 0.8, then the probability of its failure is

(1 � p) ¼ 1�0.8 ¼ 0.2. The odds of the success can be defined as the ratio of the

probability of success to the probability of failure. Thus, in this example, odds of

success is 0.8/0.2 ¼ 4. In other words, the odds of success is 4 to 1. If the

probability of success is 0.5, then the odds of success is 1 and it may be concluded

that the odds of success is 1 to 1.

In logistic regression, odds ratio can be obtained by finding the exponential of

regression coefficient, exp(B), and is sometimes written as eB. If the regression

coefficient B is equivalent to 0.80, then the odds ratio will be 2.40 because exp

(0.8) ¼ 2.4.

The odds ratio of 2.4 indicates that the probability of Y equals to 1 is 2.4 times as

likely as the value of X is increased by one unit. If an odds ratio is .5, it indicates that

the probability of Y ¼ 1 is half as likely with an increase of X by one unit (here

there is a negative relationship between X and Y). On the other hand, the odds ratio

1.0 indicates that there is no relationship between X and Y.
The odds ratio can be better understood if both variables Y and X are dichoto-

mous. In that case, the odds ratio can be defined as the probability that Y is 1 when X
is 1 compared to the probability that Y is 1 when X is 0. If the odds ratio is given,

then B coefficient can be obtained by taking the log of the odds ratio. It is so because

log and exponential functions are opposite to each other.

The transformation from probability to odds is a monotonic transformation.

It means that the odds increases as the probability increases or vice versa. Proba-

bility ranges from 0 to 1, whereas the odds ranges from 0 to positive infinity.

Similarly the transformation from odds to log of odds, known as log transforma-

tion, is also a monotonic transformation. In other words, the greater the odds, the

greater is the log of odds and vice versa. Thus, if the probability of success

increases, the odds ratio and log odds both increase and vice versa.

Maximum Likelihood

Maximum likelihood is the method of finding the least possible deviation between

the observed and predicted values using the concept of calculus specifically

derivatives. It is different than ordinary least squares (OLS) regression where we

simply try to find the best-fitting line by minimizing the squared residuals.

In maximum likelihood (ML) method, the computer uses different “iterations”

where different solutions are tried for getting the smallest possible deviations or

best fit. After finding the best solution, the computer provides the final value for the

deviance, which is denoted as “�2 log likelihood” in SPSS. Cohen et al. (2003)

called this deviance statistic as�2LL, whereas some other authors like Hosmer and

Lemeshow (1989) called it D. This deviance statistic follows the chi-square

distribution.
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The likelihood ratio test, D, is used as goodness-of-fit. This test is referred in

SPSS by “chi-square.” The significance of this test can be seen by looking to its

value in the chi-square table in the appendix using degrees of freedom equal to the

number of predictors.

Logit

The logit is a function which is equal to the log odds of a variable. If p is a

probability that Y ¼ 1(occurrence of an event), then p/(1 � p) is the corresponding
odds. The logit of the probability p is given by

LogitðpÞ ¼ log
p

1� p

� �
(13.1)

In logistic regression, logit is a special case of a link function. In fact, this logit

serves as a dependent variable and is estimated from the model.

Logistic Function

A logistic curve is just like sigmoid curve and is obtained by the logistic function

given by

p ¼ f ðzÞ ¼ eZ

1þ eZ
(13.2)

The shape of the curve is like a letter “S.” In logistic function, the argument z is
marked along horizontal axis and the value of the function f(z) along the vertical

axis (Fig. 13.1).

The main feature of this logistic function is that the variable Z can assume any

value from minus � 1 to + 1, but the outcome variable p can have the values

only in the range 0–1. This function is used in logistic regression model to find the

probability of occurring the target variable for a given value of independent

variables.

Logistic Regression Equation

The logistic regression equation is similar to the ordinary least squares (OLS)

regression equation with the only difference that the dependent variable here is
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the log odds of the probability that the dependent variable Y ¼ 1. It is written as

follows:

logit ¼ ln
p̂

1� p̂

� �
¼ B0 þ B1X1 þ B2X2 þ ::::::::: þ BnXn (13.3)

where B0 is an intercept and B1, B2. . ..Bn are the regression coefficients of X1, X2

. . ...,Xn, respectively. The dependent variable in logistic regression is log odds,

which is also known as logit.

Since in logistic regression log odds acts as a dependent variable which is

regressed on the basis of the independent variables, interpretation of regression

coefficients is not as easy as in case of OLS regression. In case of OLS regression,

the regression coefficient b represents the change in Y with one unit change in X.
This concept is not valid in case of logistic regression equation; instead the

regression coefficient b is converted into odds ratio to interpret the happening of

outcome variable. The interpretation of odds ratio has been discussed above in

detail under the heading “Odds Ratio.”

Judging the Efficiency of the Logistic Model

In case of OLS regression equation, R2 used to be the measure of efficiency in

assessing the suitability of the model. But in case of logistic regression, this statistic

is no longer valid indicator of model robustness, because of the fact that the

dependent variable here is a binary variable. Thus, to assess the suitability of the

logistic model, we use the concept of deviance. In logistic regression, the chi-square

Fig. 13.1 Shape of the

logistic function
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is used as a measure of model fit instead of R2. It tells you about the fit of the

observed values (Y) to the expected values ( Ŷ ). If the difference between the

observed values from the expected values increases, the fit of the model becomes

poorer. Thus, the effort is to have the deviance as small as possible. If more relevant

variables are added to the equation, the deviance becomes smaller, indicating an

improvement in fit.

Understanding Logistic Regression

In logistic regression, the approach of prediction is similar to that of ordinary least

squares (OLS). However, in logistic regression, a researcher predicts the probability

of an occurrence of a dependent variable which is binary in nature. Another

difference in logistic regression is that the independent variables can be a mix of

numerical and categorical. Due to dichotomous nature of the dependent variable,

assumptions of OLS that the error variances (residuals) are normally distributed are

not satisfied. Instead, they are more likely to follow a logistic distribution.

In using logistic distribution, one needs to make an algebraic conversion to

arrive at usual linear regression equation. In logistic regression, no standard solu-

tion is obtained and no straightforward interpretation can be made as is done in case

of OLS regression. Further, in logistic model, there is no R2 to measure the

efficiency of the model; rather a chi-square test is used to test how well the logistic

regression model fits the data.

Graphical Explanation of Logistic Model

Let us first understand the concept of logistic regression with one independent

variable. Consider a situation where we try to predict whether a customer would

buy a product(Y) depending upon the number of days(X) he saw the advertisement

of that product. It is assumed that the customers who watch the advertisement for

many days will be more likely to buy the product. The value of Y can be 1 if the

product is purchased by the customer and 0 if not.

Since the dependent variable is not a continuous, hence the goal of logistic

regression is to predict the likelihood that Y is equal to 1 (rather than 0) given

certain values of X. Thus, if there is a positive linear relationship between X and Y,
then the probability that a customer will buy the product (Y ¼ 1) will increase with

the increase in the value of X (number of days advertisement seen). Hence, we are

actually predicting the probabilities instead of value of the dependent variable.
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In this simulated experiment in investigating the behavior of 100 customers in

terms of buying the product of more than Rs. 1,000, their range of viewing the

advertisement for the number of days was from 0 to 15 days. We may plot the

probability that Y ¼ 1 with the increase in the value of X in terms of the graph. To

make it more convenient, let us club the number of advertisement-viewing days into

the categories 0–3, 4–6, 7–9, 10–12, and 13–15. Computing the mean score on Y
(taking the average of 0s and 1s) for each category, the data would look like as

shown in Table 13.1.

If we plot these data, the graph would look like as shown in Fig. 13.2.

If we look at this graph, it looks like an S-shaped graph. If there is a strong

relationship between X and Y, the graph would be closer to perfect S-shaped unlike

the OLS regression where you get the straight line.

Table 13.1 Mean score for each category

No. of days advertisement viewing Probability that Y ¼ 1 (average of 0s and 1s in each category)

0–3 .17

4–6 .40

7–9 .50

10–12 .56

13–15 .96
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Fig. 13.2 Graphical representation of the probability of buying versus number of days advertise-

ment seen
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Logistic Model with Mathematical Equation

If Y is the target variable (dependent) and X is the predictive variable and if the

probability that Y ¼ 1 is denoted asp
_
, then the probability that Y is 0 would be1� p

_
.

The logistic model for predicting p
_
would be given by

ln
p̂

1� p
_

� �
¼ B0 þ B1X (13.4)

where ln p̂
1�p̂

� �
is the log of the odds ratio and is known as logit and B0 is the

constant and B1 is the regression coefficient.

In effect, in logistic regression this logit, ln p̂
1�p̂

� �
, is the dependent variable

against which independent variables are regressed.

From Eq. (13.4), the probability ( p
_
) that Y ¼ 1 can be computed for a given

value of X.
Let us assume that

Z ¼ ln
p̂

1� p
_

� �
¼ B0 þ B1X (13.5)

)
_
p

1� p
_
¼ eZ

Or

p
_ ¼ eZ

1þ eZ
¼ eB0þB1X

1þ eB0þB1X
(13.6)

Thus, in the logistic regression, first a logit or log of odds ratio, that is, ln p̂
1�p̂

� �
,

is computed for a given value of X, and then the probability (p
_
) that Y ¼ 1 is

computed by using formula (13.6). In fact (13.6) gives the logistic function as

f ðzÞ ¼ eZ

1þ eZ
(13.7)

This function if plotted by taking z on horizontal axis and f(z) on vertical axis

looks like as shown in Fig. 13.3.
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Interpreting the Logistic Function

In logistic regression, the logistic function shown in Fig. 13.3 is used for estimating

the probability of an event happening (Y ¼ 1) for different values of X. Let us see
how it is done.

In the logistic function shown in (13.7), the input is z and output is f(z). The
value of z is estimated by the logistic regression Eq. (13.5) on the basis of the

value of X. The important characteristics of the logistic function are that it can

take any value from negative infinity to positive infinitive, but the output will

always be in the range of 0–1.

If there are n independent variables, then the value of z or logit or log of odds

shall be estimated by the equation:

Z ¼ logit ¼ ln
p̂

1� p̂

� �
¼ B0 þ B1X1 þ B2X2 þ :::::::::þ BnXn (13.8)

where B0 is an intercept and B1, B2. . ..Bn are the regression coefficients of X1, X2

. . ...,Xn, respectively.

The variable Z is estimated from (13.8) for a given value of Xs. It is a measure of

the total contribution of all the independent variables used in the model.

If the outcome variable is the risk factor for happening of an event say

bankruptcy of an organization, then each of the regression coefficients shows

the contribution toward the probability of that outcome. If the regression coeffi-

cient is positive, it indicates that the explanatory variable increases the probability

Fig. 13.3 Logistic function for finding the probability of Y ¼ 1
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of the outcome, whereas in case of negative regression coefficient, it decreases the

probability of that outcome. On the other hand, a large regression coefficient

means that the corresponding variable is a high risk factor which strongly

influences the probability of that outcome, whereas a near-zero regression coeffi-

cient indicates that the corresponding variable is not an important risk factor and

has little influence on the probability of that outcome.

Assumptions in Logistic Regression

Following are the assumptions used in the logistic regression:

1. The target variable is always binary. If by nature it is continuous, a criterion may

be defined to convert it into binary.

2. The predictor variables can either be numerical or categorical. In case the

categorical variable has more than two categories, a dummy variable D (it

may have the variable name as well) is created and different categories may

be denoted by code 1, 2, 3, etc. Care should be taken that the highest code should

refer the reference category. By default, the SPSS assumes the highest coding as

reference category and marks it 0. For instance, if the qualification is taken as

categorical variable, then this variable D may be coded as follows:

D ¼ 3, if the subject’s qualification is XII standard or less.

D ¼ 2, if the subject is graduate.

D ¼ 1, if the subject’s qualification is postgraduation or more.

In SPSS the highest coding is taken as the reference category by default, and

therefore, you will find that in the output, XII or less qualification category is

represented by 0 and the interpretation is made with reference to this category

only. However, SPSS does provide the facility to change the reference category

to the lowest code as well.

3. It is assumed that the logit transformation of the outcome variable has a linear

relationship with the predictor variables.

4. Many authors suggested that a minimum of ten events per predictive variables

should be taken in the logistic regression. For example, in a study where cure is

the target variable of interest and 100 out of 150 patients get cured, the

maximum number of independent variables one can have in the model

is 100/10 ¼ 10.

Important Features of Logistic Regression

1. The logistic regression technique is more robust because the independent

variables do not have to be normally distributed or have equal variance in each

group.
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2. The independent variables are not required to be linearly related with the

dependent variable.

3. It can be used with the data having nonlinear relationship.

4. The dependent variable need not follow normal distribution.

5. The assumption of homoscedasticity is not required. In other words, no homo-

geneity of variance assumption is required.

Although the logistic regression is very flexible and can be used in many situations

without imposing so many restrictions on the data set, the advantages of logistic

regression come at a cost. It requires large data set to achieve reliable and meaningful

results. Whereas in OLS regression and discriminant analysis, 5 to 10 data per

independent variable is considered to be minimum threshold, logistic regression

requires at least 50 data per independent variable to achieve the reliable findings.

Research Situations for Logistic Regression

Due to the flexibility about its various assumptions, the logistic regression is widely

used in many applications. Some of the specific applications are discussed below:

1. A food joint chain may be interested to know as to what factors may influence

the customers to buy big-size Pepsi in the fast-food center. The factors may

include the type of pizza (veg. or non-veg.) ordered, whether French fries

ordered, the age of the customer, and their body size (bulky or normal). The

logistic model can provide the solution in identifying the most probable

parameters responsible for buying big-size Pepsi in different food chains.

2. A study may investigate the parameters responsible for getting admission to MBA

program in Harvard Business School. The target variable is a dichotomous

variable with 1 indicating the success in getting admission, whereas 0 indicates

failure. The parameters of interest may be working experience of the candidates in

years, grades in the qualifying examination, TOEFL and GMAT scores, and

scores on the testimonials. By way of logistic model, the relative importance of

the independent variables may be identified and the probability of success of an

individual may be estimated on the basis of the known values of the independent

variables.

3. A market research company may be interested to investigate the variables

responsible for a customer to buy a particular life insurance cover. The target

variable may be 1 if the customer buys the policy and 0 if not. The possible

independent variables in the study may be the age, gender, socioeconomic

status, family size, profession (service/business), etc. By knowing the most

likely causes for getting success in selling the policy, the company may target

the campaign toward the target audience.

424 13 Logistic Regression: Developing a Model for Risk Analysis



4. Incidence of HIV infection may be investigated by using the logistic model,

where the independent variables may be identified as person’s movement

(frequent or less frequent), age, sex, occupation, personality type, etc. The

strategy may be developed by knowing the most dominant causes responsible

for HIV infection, and accordingly mass campaign may be initiated for differ-

ent sections of the society in an efficient manner. One of the interesting facts in

such studies may be to investigate the important factors of the HIV incidences

in different sections of the society due to different dynamics.

5. The incidence of cardiac death may be investigated based on the factors like

age, sex, activity level, BMI, and blood cholesterol level of the patients by

fitting the logit model. The odds ratio will help you find the relative magnitude

of risk involved with different factors.

Steps in Logistic Regression

After understanding the concepts involved in logistic regression, now you are ready

to use this analysis for your problem. The detailed procedure of this analysis using

SPSS shall be discussed by using a practical example. But before that, let us

summarize the steps involved in using the logistic regression:

1. Define the target variable and code it 1 if the event occurs and 0 otherwise. The

target variable should always be dichotomous.

2. Identify the relevant independent variables responsible for the occurrence of

target variable.

3. In case if any independent variable is categorical having more than two

categories, define the coding for different categories as discussed in the

“Assumptions” section.

4. Develop a regression model by taking dependent variable as log odds of the

probability that target variable Y ¼ 1. Logistic regression model can be devel-

oped either by using forward/backward step methods or by using all the inde-

pendent variables in the model. Forward/backward step methods are usually

used in explorative study where it is not known whether the independent variable

has some effect on the target variable or not. On the other hand, all the

independent variables are used in developing a model if the effect of indepen-

dent variables is known in advance and one tries to authenticate the model.

Several options for forward/backward methods are available in the SPSS, but

“Forward:LR” method is considered to be the most efficient method. On the

other hand, for taking all the independent variables in the model, the SPSS

provides a default option with “Enter” command.

5. After choosing the method for binary logic regression, the model would look like

as follows where p̂ is the probability that the target variable Y ¼ 1:
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ln
p̂

1� p̂

� �
¼ Z ¼ B0 þ B1X1 þ B2X2 þ :::::::::þ BnXn

The variables have their usual meanings. The log odds ln p̂
1�p̂

� �
is also known as

logit.

6. The estimated probability of occurring the target variable can be estimated for a

given set of values of independent variables by using the following formula:

p
_ ¼ eZ

1þ eZ
¼ eB0þB1X1þB2X2:::::BnXn

1þ eB0þB1X1þB2X2þ::::::BnXn

The above-mentioned equation gives rise to the logistic curve which is S-shaped

as shown in Fig. 13.3. The probability can also be computed from this curve by

computing the value of Z.
7. Exponential of the regression coefficient is known as odds ratio. These odds

ratios are used to find the relative contribution of all the independent variables

toward the occurrence of target variable. Thus, the odds ratio corresponding to

each of the regression coefficients is computed for investigating the relative

contribution of independent variables toward the occurrence of dependent vari-

able. For example, the odds ratio of 3.2 for the variable X1 indicates that the

probability of Y (dependent variable) equals to 1 is 3.2 times as likely as the

value of X1 is increased by one unit. And if an odds ratio for the variable X3 is .5,

it indicates that the probability of Y ¼ 1 is half as likely with an increase of X3 by

one unit (here there is a negative relationship between X3 and Y). On the other

hand, if the odds ratio for the variable X2 is 1.0, it indicates that there is no

relationship between X2 and Y.

Solved Example of Logistics Analysis Using SPSS

Example 13.1 A researcher wanted to investigate the factors responsible for

getting the job of coin note examiner in banks. The data was obtained by the

recruitment agency that was responsible for appointment of bank employees. The

investigator collected the data on the outcome variable (appointed or not appointed)

and independent variables like education (number of years of college education),

sex, experience, age, metro/nonmetro status, and marital status. These data are

shown in Table 13.2. Apply logistic regression by using SPSS to develop a model

for estimating the probability of success in getting the job on the basis of

candidate’s profiles. Further, discuss the comparative importance of these indepen-

dent variables in getting success during an interview for the job. The coding for the

categorical variables is shown below the table.
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Solution
The above-mentioned problem can be solved by using SPSS. The steps involved in

getting the outputs shall be discussed first and then the output so generated shall be

explained to fulfill the objectives of the study.

The logistic regression in SPSS is run in two steps. The outputs generated in these

two sections have been discussed in the following two steps:

First Step

Block 0: Beginning Block

The first step, called Block 0, includes no predictors and just the intercept. This

model is developed by using only constant and no predictors. The logistic regres-

sion compares this model with a model having all the predictors to assess whether

the later model is more efficient. Often researchers are not interested in this model.

In this part, a “null model,” having no predictors and just the intercept, is described.

Table 13.2 Data on the candidate’s profile along with success status

S.N. Job success Education Sex Experience in years Age Metro Marital status

1 1 16 1 7 23 1 1

2 0 15 1 5 25 0 0

3 1 16 1 5 27 1 1

4 1 15 1 2 26 1 0

5 0 16 0 3 28 0 0

6 1 15 1 2 26 0 1

7 0 13 1 3 33 1 1

8 0 12 0 2 32 0 1

9 1 12 1 3 26 1 1

10 0 13 0 3 30 0 0

11 1 12 0 1 28 1 1

12 0 12 0 2 28 0 0

13 1 15 1 6 32 1 1

14 1 12 1 3 38 0 1

15 0 16 0 2 23 0 0

16 1 15 1 3 22 1 0

17 1 16 1 7 23 0 1

18 0 15 1 5 25 0 0

19 1 16 1 5 27 1 1

20 1 12 0 2 28 0 1

21 1 16 1 4 28 1 0

22 1 15 1 3 28 0 1

23 0 12 0 2 26 1 0

24 0 14 0 5 29 0 0

Job success : 0 : Failure 1 : Success

Sex : 0 : Female 1 : Male

Metro : 0 : Nonmetro resident 1 : Metro resident

Marital status : 0 : Unmarried 1 : Married
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Because of this, all the variables entered into the model will figure in the table titled

“Variables not in the Equation.”

Second Step

Block 1: Method ¼ Forward:LR

The second step, called Block 1, includes the information about the variables that

are included and excluded from the analysis, the coding of the dependent variable,

and coding of any categorical variables listed on the categorical subcommand. This

section is the most interesting part of the output in which generated outputs are used

to test the significance of the overall model, regression coefficients, and odds ratios.

The above-mentioned outputs in two steps are generated by the SPSS through a

single sequence of commands, but the outputs are generated in two different

sections with the headings “Block 0: Beginning Block” and “Block 1.” You have

the liberty to use any method of entering independent variables in the model out of

different methods available in SPSS. These will be discussed while explaining

screen shots of logistic regression in the next section.

The procedure of logistic regression in SPSS shall be defined first and then

relevant outputs shall be shown with explanation.

SPSS Commands for the Logistic Regression

To run the commands for logistic regression, a data file is required to be prepared. The

procedure for preparing the data file has been explained inChap. 1. After preparing the

data file, do the following steps for generating outputs in logistic regression:

(i) Data file: In this problem, job success is a dependent variable which is binary in

nature. Out of six independent variables, three variables, namely, sex, metro,

and marital status, are binary, whereas remaining three, education, experience,

and age, are scale variables. In SPSS all binary variables are defined as nominal.

After preparing the data file by defining variable names and their labels, it will

look like as shown in Fig. 13.4.

(ii) Initiating command for logistic regression: After preparing the data file, click

the following commands in sequence (Fig. 13.5):

Analyze ! Regression ! BinaryeLogistic
(iii) Selecting variables for analysis: After clicking the Binary Logistic option,

you will get the next screen for selecting dependent and independent variables.

After selecting all the independent variables, you need to select the binary

independent variables included in it by clicking the option. The selection of

variables can be made by following the below-mentioned steps:
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– Select the dependent variable from the left panel to the “Dependent” section

in the right panel.

– Select all independent variables including categorical variables from left

panel to the “Covariates” section in the right panel.

– Click the command Categorical and select the categorical variables from

the “Covariates” section to the “Categorical Covariates” in the right panel.

The screen will look like Fig. 13.6.

– Click Continue.

Fig. 13.4 Screen showing data file for the logistic regression analysis in SPSS
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(iv) Selecting options for computation: After selecting the variables, you need to

define different options for generating the outputs in logistic regression. Do the

following steps:

– Click the tag Options in the screen shown in Fig. 13.6 for selecting outputs

related to statistics and plots. Do the following steps:

– Check “Classification Plots.”

– Check “Hosmer-Lemeshow goodness-of-fit.”

– Let all other default options be selected. The screen will look like Fig. 13.7.

– Click Continue.

(v) Selecting method for entering independent variables in logistic regression: You
need to define the method of entering the independent variables for developing the

model. You can choose any of the options like Enter, Forward:LR, Forward:Wald,

Backward:LR, orBackward:Wald. Entermethod is usually selectedwhen a specific

model needs to be tested or the contribution of independent variables toward the

target variable is known in advance. On the other hand, if the study is exploratory in

nature, then any of the forward or backward methods can be used. In this study, the

Forward:LR method shall be used because the study is exploratory in nature.

Fig. 13.5 Screen showing of SPSS commands for logistic regression
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The Forward:LR method is considered to be the most efficient method among

different forward and backward methods. Here LR refers to the likelihood ratio

method. In this method, the variables are selected in the model one by one based on

their utility. To select this method in the SPSS, do the following steps:

– Select the option “Forward:LR” by using the dropdown menu of the com-

mand Method in the screen shown in Fig. 13.6.

– Click OK.

(vi) Getting the output: Clicking the option OK shall generate lots of output in the

output window. These outputs may be selected from the output window by

using right click of the mouse and may be copied in the word file. The relevant

outputs so selected for discussion are shown in Tables 13.3–13.12. One must

understand the meaning of these outputs so that while writing thesis or project

report, they may be incorporated with proper explanation.

Interpretation of Various Outputs Generated in Logistic Regression

Descriptive Findings

Table 13.3 shows the number of cases (N) in each category (e.g., included in the

analysis, missing, and total) and their percentage. In logistic regression, a listwise

deletion of missing data is done by default in SPSS. Since there is no missing data,

Fig. 13.6 Screen showing selection of variables for logistic regression
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the number of missing cases is shown as 0. Table 13.4 shows the coding of the

dependent variable used in the data file, that is, 1 for success and 0 for failure in

getting the job.

Table 13.5 shows the coding of all the categorical independent variables along

with their frequencies in the study. While coding the categorical variables, highest

number should be allotted to the reference category because by default SPSS

considers the category with the highest coding as the reference category and

gives the code as 0. For instance, if you define the coding of the variable sex as

0 for “female” and 1 for “male,” then the SPSS will consider male as the reference

category and convert its code to 0 and the other category female as 1.

Fig. 13.7 Screen showing option for generating classification plots and Hosmer-Lemeshow

goodness-of-fit
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If you look into the coding of the independent categorical variables in the

Table 13.2, that is, sex (0:female, 1:male), metro (0:nonmetro resident, 1:metro

resident), and marital status (0:unmarried and 1:married), these coding have been

reversed by the SPSS as shown in the Table 13.5. It is because SPSS by default

considers the highest coding as the reference category and converts it into 0.

However, you can change the reference category as the lowest coding in SPSS

screen as shown in the Fig. 13.6.

Analytical Findings

The findings in this section are the most interesting part of the output. These

findings include the test of the overall model, significance of regression

coefficients, and the values of the odds ratios.

In this study, since the Forward:LR method has been chosen for logistic regres-

sion, you will get more than one model with different number of variables in it. The

results of the logistic regression shall be discussed in two blocks. In the first block, the

logistic regression model shall be developed by using the constant without using any

of the independent variables. This model may be used to compare the utility of the

model developed in block two by using the identified independent variables.

Table 13.3 Case processing summary

Unweighted casesa N Percent

Selected cases Included in analysis 23 100.0

Missing cases 0 .0

Total 23 100.0

Unselected cases 0 .0

Total 23 100.0
aIf weight is in effect, see classification table for the total number of cases

Table 13.4 Dependent

variable encoding
Original value Internal value

Failure 0

Success in getting job 1

Table 13.5 Categorical

variable coding
Frequency

Parameter coding

(1)

Marital status Unmarried 10 1.000

Married 13 .000

Metro Nonmetro 11 1.000

Metro 12 .000

Sex Female 7 1.000

Male 16 .000

Solved Example of Logistics Analysis Using SPSS 433



Block 0: Beginning Block

In Block 0, the results are shown for the model with only the constant included before

any coefficients (i.e., those relating to education, sex, experience, age, metro, and

marital) are entered into the equation. Logistic regression compares the model

obtained in Block 0 with a model including the predictors to determine whether the

latter model is more efficient. The Table 13.6 shows that if nothing is known about

the independent variables and one simple guesses that a person would be selected for

the job, we would be correct 58.3% of the time. Table 13.7 shows that the Wald

statistics is not significant as its significance value is 0.416 which is more than 0.05.

Hence, the model with constant is not worth and is equivalent to just guessing about

the target variable in the absence of any knowledge about the independent variables.

Table 13.8 shows whether each independent variable improves the model or not.

You can see that the variables sex, metro, and marital may improve the model as

they are significant with sex and marital slightly better than metro. Inclusion of

these variables would add to the predictive power of the model. If these variables

had not been significant and able to contribute to the prediction, then the analysis

would obviously be terminated at this stage.

Block 1 Method ¼ Forward:LR

In this block, results of the different models with different independent variables

shall be discussed.

Table 13.9 shows the value of �2 log likelihood (�2LL), which is a deviance

statistic between the observed and predicated values of the dependent variable.

If this deviance statistic is insignificant, it indicates that the model is good and there

is no difference between observed and predicted values of dependent variable. This

number in absolute term is not very informative. However, it can be used to

compare different models having different number of predictive variables. For

Table 13.6 Classification

tablea, b
Predicted

Job Percentage correct

Observed Failure Success

Step 0 Job Failure 0 10 0

Success 0 14 100.0

Overall Percentage 58.3
aConstant is included in the model
bThe cut value is .500

Table 13.7 Variables

in the equation
B S.E. Wald df Sig. Exp(B)

Step 0 Constant .336 .414 .660 1 .416 1.400
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instance, in Table 13.9, the value of�2LL has reduced from 24.053 to 18.549. This

indicates that there is an improvement in model 2 by including an additional

variable, sex. In fact, the value of �2LL should keep on decreasing if you go on

adding the significant predictive variables in the model.

Unlike OLS regression equation, there is no concept of R2 in logistic regression.

It is because of the fact that the dependent variable is dichotomous and R2 cannot be

used to show the efficiency of prediction. However, several authors have suggested

pseudo R-squares which are not equivalent to the R-square that is calculated in OLS

regression. Thus, this statistic should be interpreted with great caution. Two such

pseudo R-squares suggested by Cox and Snell and Nagelkerke are shown in

Table 13.9. As per Cox and Snell’s R2, 44.3% of the variation in the dependent

variable is explained by the logistic model. On the other hand, Nagelkerke’s R2

explains 59.7% variability of the dependent variable by the independent variables in

the model. Nagelkerke’s R2 is more reliable measure of relationship in comparison to

Cox and Snell’s R2. Nagelkerke’s R2 will normally be higher than Cox and Snell’s R2.

In order to find whether the deviance statistic �2 log likelihood is insignificant

or not, Hosmer and Lemeshow suggested the chi-square statistic which is shown in

Table 13.10. In order that the model is efficient, this chi-square statistic should be

insignificant. Since the p value associated with chi-square in Table 13.10 is .569 for
the second model, which is greater than .05, it is insignificant and it can be

interpreted that the model is efficient.

Table 13.11 is a classification table which shows the observed and predicted values

of the dependent variable in both themodels. In the secondmodel, it can be seen that out

of 10 candidates who did not get the success in getting the job, four were wrongly

predicted to get the job. Similarly out of 14 candidates who succeeded to get the job,

none was wrongly predicted to be failure. Thus, the model correctly classified 83.3%

cases. This can be obtained by (20/24) � 100.

Table 13.9 Model summary

Step �2 log likelihood Cox and Snell R-square Nagelkerke R-square

1 24.053a .300 .403

2 18.549b .443 .597
aEstimation terminated at iteration number 4 because parameter estimates changed by less than

.001
bEstimation terminated at iteration number 5 because parameter estimates changed by less than

.001

Table 13.8 Variables not in

the equation
Score df Sig.

Step 0 Variables Education 1.073 1 .300

Sex(1) 7.726 1 .005

Experience .728 1 .393

Age .174 1 .677

Metro(1) 4.608 1 .032

Marital(1) 8.061 1 .005

Overall statistics 14.520 6 .024

Solved Example of Logistics Analysis Using SPSS 435



Table 13.12 is the most important table which shows the value of regression

coefficients B, Wald statistics, its significance, and odds ratio exp(B) for each

variable in both the models. The B coefficients are used to develop the logistic

regression equation for predicting the dependent variable from the independent

variables. These coefficients are in log-odds units. Thus, the logistic regression

equation in the second model is given by log p
1�p ¼ 2:779� 2:666� Sexð1Þ � 2:7

11�Maritalð1Þwhere p is the probability of getting the job. The dependent variable
in the logistic regression is known as logit(p) which is equal to log(p/(1 � p)).

The estimates obtained in the above logistic regression equation explain the

relationship between the independent variables and the dependent variable, where

the dependent variable is on the logit scale. These estimates tell the amount of

increase (or decrease, if the sign of the coefficient is negative) in the estimated log

odds of “job success” ¼ 1 that would be predicted by a 1 unit increase (or decrease)

in the predictor, holding all other predictors constant.

Because regression coefficients B are in log-odds units, they are often difficult to

interpret; hence, they are converted into odds ratios which are equal to exp(B).
These odds ratios are shown in the last column of Table 13.12.

Significance of the Wald statistics indicates that the variable significantly

predicts the success in getting the bank job, but it should be used only in a situation

Table 13.10 Hosmer and

Lemeshow test
Step Chi-square df Sig.

1 .000 0 .

2 1.129 2 .569

Table 13.11 Classification tablea

Predicted

Job Percentage correct

Observed Failure Success

Step 1 Job Failure 8 2 80.0

Success 3 11 78.6

Overall percentage 79.2

Step 2 Job Failure 6 4 60.0

Success 0 14 100.0

Overall percentage 83.3
aThe cut value is .500

Table 13.12 Variables in the

equation
B S.E. Wald df Sig. Exp(B)

Step 1a Marital(1) �2.686 1.024 6.874 1 .009 .068

Constant 1.705 .769 4.918 1 .027 5.500

Step 2b Sex(1) �2.666 1.278 4.352 1 .037 .070

Marital(1) �2.711 1.253 4.682 1 .030 .066

Constant 2.779 1.146 5.886 1 .015 16.106
aVariable(s) entered on step 1: marital
bVariable(s) entered on step 2: sex
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where the sample size is quite large, preferably more than 500. In case of small

sample, the level of significance gets inflated and it does not give the correct

picture. Since in this problem the value of chi-square in Hosmer and Lemeshow

test as shown in Table 13.10 is insignificant, the model can be considered to be valid

for predicting the success in getting the bank’s job on the basis of the second model

with two independent variables, that is, marital and sex.

Explanation of Odds Ratio

In Table 13.12, the exp(B) represents the odds ratio for all the predictors. If the

value of the odds ratio is large, its predictive value is also large. Since the second

model is the final model in this study, the discussion shall be done for the variables

in this model only. Here both the independent variables, that is, sex and marital, are

significant. Since the sex(1) variable has a larger odds ratio .070, this is slightly a

better predictor in comparison to marital(1) variable in getting the bank’s job.

The value of exp(B) for the variable sex(1) is 0.070. It indicates that if the

candidate appearing in the bank exams is female, then there would be decrease in

the odds of 93% (.07–1.00 ¼ �.93). In other words, if a female candidate is

appearing in the bank examination, her chances of success would be 93% less

than the men candidate if other variables are kept constant. Similarly the exp(B)
value of the variable marital(1) is .066. This indicates that there would be decrease

in the odds of 93.4% (.066–1.000 ¼ �.934). It can be interpreted that if the

candidate appearing in the bank examination is unmarried, his/her chances of

success would be 93.4% less than the married candidate provided other variables

are kept constant.

Conclusion

To conclude, if the candidate is male and married, the chances of odds increases for

getting selected for a bank job in comparison to female and unmarried candidate.

Summary of the SPSS Commands for Logistic Regression

(i) Start SPSS and prepare the data file by defining the variables and their properties

in Variable View and typing the data column-wise in Data View.

(ii) In the Data View, follow the below-mentioned command sequence for factor

analysis:

Analyze Regression Binary Logistic
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(iii) Select the dependent variable from the left panel to the “Dependent” section in

the right panel and all independent variables including categorical variables

from left panel to the “Covariates” section in the right panel.

(iv) By clicking the Categorical command, select the categorical variables from

the “Covariates” section to the “Categorical Covariates” in the right panel and

click Continue.
(v) Click the tag Options and check “Classification Plots” and “Hosmer-

Lemeshow goodness-of-fit” and click Continue.
(vi) Ensure that the option Forward:LR is chosen by default and then clickOK for

output.

Exercise

Short Answer Questions

Note: Write answer to each questions in not more than 200 words.

Q.1. What is logit and how is it used to interpret the probability of success?

Q.2. What do you mean by odds ratio? Explain the monotonic transformation in

relation with odds ratio and log odds.

Q.3. Explain the logistic function and its characteristics.

Q.4. Why is the logit function used in logistic regression analysis?

Q.5. Explain the meaning of maximum likelihood and the significance of �2 log

likelihood.

Q.6. What is the difference between logic regression and OLS regression?

Q.7. How are the dummy variables created in a situation where an independent

categorical variable has more than two options?

Q.8. Write any four assumptions used in logistic regression.

Q.9. What are the advantages of using logistic regression analysis?

Q.10. Explain any one research situation in detail where logistic regression can be

applied.

Q.11. Write in brief the various steps involved in logistic regression.

Q.12. What is Hosmer and Lemeshow test? How is it used and what does it indicate?

Multiple-Choice Questions

Note: For each of the question, there are four alternative answers for each question.

Tick mark the one that you consider the closest to the correct answer.

1. Logistic regression is used when the dependent variable is

(a) Continuous

(b) Ordinal

(c) Binary

(d) Categorical

2. If exp(3) ¼ 20.12, then log(20.12) is

(a) 20.12

(b) 23.12
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(c) 17.12

(d) 3

3. If the probability of success is 0.6, then the odds of success is

(a) 0.4

(b) 1.5

(c) 2.4

(d) 0.75

4. In a logistic regression, if the odds ratio for an independent variable is 2.5, then

which of the following is true?

(a) The probability of the dependent variable happening is 0.25.

(b) The odds against the dependent variable happening is 2.5.

(c) The odds for the dependent variable happening is 2.5.

(d) The odds for the dependent variable happening is 2.5 against one unit

increase in the independent variable.

5. If p is the probability of success, then the logit of p is

(a) ln 1�p
p

(b) ln 1þp
p

(c) log p
1�p

(d) log p
1þp

6. The logistic function f(z) is equal to

(a) eZ

1þeZ

(b) 1þeZ

eZ

(c) eZ

1�eZ

(d) 1�eZ

eZ

7. In logistic regression, odds ratio is equivalent to

(a) Log(B)
(b) Exp(B)
(c) B coefficient

(d) p
1�p

8. Choose the correct statement.

(a) The independent variable is required to be linearly related with the depen-

dent variable.

(b) The independent variable is required to be linearly related with logit

transformation of the outcome variable.

(c) The dependent variable is always continuous.

(d) Probability of success in the outcome variable is equivalent to the log odds.
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9. Choose the correct command for starting logistic regression in SPSS.

(a) Analyze ! Regression ! Binary Logistic

(b) Analyze ! Regression ! Logistic Regression

(c) Analyze ! Binary Logistic ! Regression

(d) Analyze ! Logistic ! Binary Regression

10. In using the Hosmer-Lemeshow goodness-of-fit, model is considered to be

good if

(a) Chi-square is significant at any predefined level.

(b) Chi-square is not significant at any predefined level.

(c) Chi-square is equal to 100.

(d) All the regression coefficients are significant.

Assignments

1. Following are the scores of 90 candidates in different subjects obtained in a

MBA entrance examination. Apply the logistic regression to develop a model for

predicting success in the examination on the basis of independent variables.

Discuss the comparative importance of independent variables in predicting

success in the examination. For the variable MBA, coding 1 represents success

and 0 indicates failure in the examination. Similarly gender 1 indicates male and

2 indicates female.

MBA English Reasoning Math Gender MBA English Reasoning Math Gender

1 68 50 65 0 0 46 52 55 1

0 39 44 52 1 0 39 41 33 0

0 44 44 46 1 0 52 49 49 0

1 50 54 61 1 0 28 46 43 0

1 71 65 72 0 0 42 54 50 1

1 63 65 71 1 0 47 42 52 0

0 34 44 40 0 0 47 57 48 1

1 63 49 69 0 0 52 59 58 0

0 68 43 64 0 0 47 52 43 1

0 47 45 56 1 1 55 62 41 0

0 47 46 49 1 0 44 52 43 0

0 63 52 54 0 0 47 41 46 0

0 52 51 53 0 0 45 55 44 1

0 55 54 66 0 0 47 37 43 0

1 60 68 67 1 0 65 54 61 0

0 35 35 40 0 0 43 57 40 1

0 47 54 46 1 0 47 54 49 0

1 71 63 69 0 1 57 62 56 0

0 57 52 40 1 0 68 59 61 1

0 44 50 41 0 0 52 55 50 0

0 65 46 57 0 0 42 57 51 0

1 68 59 58 1 0 42 39 42 1

(continued)
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MBA English Reasoning Math Gender MBA English Reasoning Math Gender

1 73 61 57 1 1 66 67 67 1

0 36 44 37 0 1 47 62 53 0

0 43 54 55 0 0 57 50 50 0

1 73 62 62 1 1 47 61 51 1

0 52 57 64 1 1 57 62 72 1

0 41 47 40 0 0 52 59 48 1

0 50 54 50 0 0 44 44 40 1

0 50 52 46 1 0 50 59 53 1

0 50 52 53 0 0 39 54 39 0

0 47 46 52 0 1 57 62 63 1

1 62 62 45 1 0 57 50 51 1

0 55 57 56 1 0 42 57 45 0

0 50 41 45 1 0 47 46 39 0

0 39 53 54 1 0 42 36 42 1

0 50 49 56 0 0 60 59 62 0

0 34 35 41 0 0 44 49 44 0

0 57 59 54 1 0 63 60 65 1

1 65 60 72 0 1 65 67 63 1

1 68 62 56 0 0 39 54 54 0

0 42 54 47 0 0 50 52 45 1

0 53 59 49 1 1 52 65 60 0

1 59 63 60 1 1 60 62 49 1

0 47 59 54 1 0 44 49 48 0

2. In an assembly election, victory of a candidate depends upon many factors.

In order to develop a model for predicting the success of a candidate (1 if elected

and 0 if not elected) on the basis of independent variables, the data on 30

contestants were obtained on the variables like candidate’s age, sex (1 for male

and 0 for female), experience in politics, status in politics (1 for full time and 0 for

part time), education (in number of years), and elected history (1 if elected earlier

Profile data of the contestants in the assembly election

Election

result

Age (in

years) Sex

Experience (in

years)

Status in

politics

Education (no. of

years)

Election

history

1.00 48.00 1.00 10.00 1.00 15.00 1.00

1.00 42.00 1.00 16.00 1.00 18.00 1.00

1.00 46.00 1.00 12.00 1.00 15.00 .00

.00 42.00 .00 16.00 .00 16.00 1.00

.00 45.00 .00 20.00 1.00 18.00 1.00

1.00 47.00 1.00 18.00 .00 15.00 .00

.00 34.00 .00 28.00 .00 15.00 .00

.00 47.00 1.00 20.00 .00 12.00 1.00

.00 36.00 1.00 30.00 1.00 10.00 1.00

1.00 63.00 .00 35.00 .00 16.00 .00

.00 45.00 1.00 25.00 1.00 12.00 .00

1.00 54.00 .00 20.00 1.00 16.00 1.00

(continued)
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and 0 if not elected earlier). Apply the logistic regression and develop the model

for predicting success in assembly election.

Answers to Multiple-Choice Questions

Q.1 c Q.2 d Q.3 b Q.4 d

Q.5 c Q.6 a Q.7 b Q.8 b

Q.9 a Q.10 b

Election

result

Age (in

years) Sex

Experience (in

years)

Status in

politics

Education (no. of

years)

Election

history

1.00 58.00 1.00 34.00 .00 18.00 .00

.00 54.00 .00 38.00 .00 12.00 .00

.00 56.00 1.00 35.00 .00 10.00 1.00

1.00 55.00 .00 30.00 1.00 15.00 .00

1.00 54.00 .00 31.00 1.00 16.00 .00

1.00 58.00 1.00 34.00 .00 15.00 1.00

.00 37.00 1.00 35.00 .00 10.00 .00

1.00 45.00 1.00 22.00 .00 15.00 1.00

.00 34.00 1.00 5.00 1.00 12.00 1.00

.00 47.00 .00 9.00 .00 12.00 1.00

.00 42.00 1.00 8.00 .00 12.00 1.00

1.00 45.00 1.00 6.00 .00 15.00 .00

1.00 28.00 1.00 2.00 1.00 16.00 1.00

1.00 43.00 .00 12.00 1.00 16.00 1.00

.00 35.00 1.00 11.00 1.00 15.00 1.00

1.00 43.00 .00 18.00 1.00 15.00 .00

1.00 45.00 .00 17.00 .00 16.00 1.00

1.00 41.00 1.00 13.00 .00 15.00 1.00

.00 42.00 1.00 15.00 1.00 15.00 .00
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Chapter 14

Multidimensional Scaling for Product

Positioning

Learning Objectives

After completing this chapter, you should be able to do the following:

• Know the use of multidimensional scaling in market research.

• Understand the different terms used in multidimensional scaling.

• Learn the procedures used in multidimensional scaling.

• Able to identify the research situations where multidimensional scaling can be

used.

• Describe the SPSS procedure involved in multidimensional scaling.

• Explain the various outputs generated by the SPSS in this analysis.

Introduction

Multidimensional scaling (MDS) is a series of statistical techniques used for

identifying the key dimensions underlying respondents’ evaluations of objects

and keeping them in multidimensional space. MDS is widely used in marketing

research for positioning of brands. It would be desired for any company to know as

to how its brand of products is rated among other similar competing brands. While

assessing the brand image of any product, the respondents may rate it on the basis of

its overall image or on the basis of certain attributes. Thus, besides knowing the

relative positioning of the products, one may like to know the strength of the

product in comparison to other similar products on different dimensions. The

MDS can be used to solve varieties of problems in management research. For

example, it finds application in market segmentation, product life cycle, vendor

evaluation, and advertising media selection.

Though it is possible to use MDS with quantitative variables (i.e., on the basis of

price, aesthetics, color, size, shape, weight, etc.), but it is mostly used to compare

objects in a situation where the bases of comparison are not known. This approach

of the MDS is a philosophical perspective because every person experiences the
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world in their own way. From this perspective, MDS procedure based on the

predefined attributes is not completely satisfactory as it fails to take the individual

experience into account. One way to overcome this problem is to look at the

constructs an individual use to construe the world. Since the MDS is often used

to identify key dimensions underlying customer evaluations of products, services,

or companies, therefore once the data is at hand, multidimensional scaling can help

determine the following:

• While evaluating the objects, what dimensions are used by the respondents?

• The relative importance of each dimension.

• How the objects are placed in the perceptual map.

Thus, by using the multidimensional scaling methods, one can analyze their

current level of consumer satisfaction in the market and modify the marketing mix

based upon the current consumer preference and satisfaction.

What Is Multidimensional Scaling

Multidimensional scaling is a sequence of techniques for exploring similarities or

preferences among objects. These objects can be products, organizations, brands,

outlets, etc. In this technique, similarities or preferences of objects are measured on

some dimensions, and accordingly the objects are positioned in the multidimen-

sional space for understanding the brand positioning. Through multidimensional

technique, a researcher can get an idea about the respondent’s perceived relative

image of a set of objects. The multidimensional scaling is also known as perceptual

mapping. In this technique, we transform consumer judgments of overall similarity

or preferences into distances represented in multidimensional space.

Terminologies Used in Multidimensional Scaling

Objects and Subjects

In multidimensional scaling, the object refers to the products, organizations,

opinions, or other choices to be compared and positioned in multidimensional

space. The objects are also known as variables or stimuli. On the other hand, the

subject refers to the respondents who rate the objects in multidimensional scaling.

The subjects are the one who are picked up in the sample for conducting the

research study. Sometimes the subjects are termed as the “source,” and the objects

are termed as “target.”

444 14 Multidimensional Scaling for Product Positioning



Distances

Distance refers to the difference in the two objects on any one or more dimension as

perceived by a respondent. It is the fundamental measurement concept in MDS.

Distance may also be referred as similarity, preferences, dissimilarity, or proximity.

There exist many alternative distance measures, but all are functions of dissimilar-

ity/similarity or preference judgments.

Similarity vs. Dissimilarity Matrices

If the cells of matrix represent the degree of similarity between pairs represented by

the rows and columns of the matrix, then the matrix is said to be similarity matrix.

On the other hand, if cells of the matrix represent the extent to which one object is

preferred over other in the pair, then the matrix is said to be dissimilarity matrix.

Larger cell values represent greater distance. The algorithm used by SPSS in

multidimensional scaling is more efficient with dissimilarity/preference measures

than with similarity/proximity measures. For this reason, distance matrices are used

in SPSS instead of similarity matrices.

Stress

Stress (phi) is a goodness-of-fit test that measures the efficiency of the MDS

models. The smaller the stress, the better is the fit. Stress measures the difference

between interpoint distances in computed MDS space and the corresponding actual

input distances. High stress indicates measurement error, and also it may reflect

having too few dimensions. Stress is not much affected by sample size provided the

number of objects is appreciably more than the number of dimensions.

Perceptual Mapping

Perceptual mapping is a graphical representation of objects in multidimensional

space. In perceptual map, points are shown for both, that is, column as well as row

objects. In obtaining the perceptual map, the consumer’s views about a product are

plotted on a chart. Respondents are asked to give their preferences by showing each

of the pair of the objects by asking about their experience with the product in terms

of its performance, packaging, price, size, etc. These qualitative responses are

shown on a chart (called a perceptual map) using a suitable scale (such as the

Likert scale). The results of the perceptual mapping are used in improving the

product or developing a new product.
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Dimensions

While preparing dissimilarity matrix, the respondent may be asked to rate the two

objects/products on a particular characteristics such as color, look, energy effi-

ciency, and cost. These characteristics are said to be the dimension on which the

evaluation may take place. Usually the products are rated on two or more than two

dimensions. These dimensions may be predefined or may be perceived by the

respondents of their own.

What We Do in Multidimensional Scaling?

The multidimensional scaling technique can be applied by either using

dissimilarity-based approach or attribute-based approach. The methodologies

adopted in these two approaches shall be discussed in detail below. However,

solved example shall be discussed only for dissimilarity-based approach of multi-

dimensional scaling. The detail working of this approach with SPSS has been

shown in Example 14.1.

Procedure of Dissimilarity-Based Approach of Multidimensional
Scaling

The dissimilarity-based approach is very simple to understand and is very useful in

understanding the consumer behavior. In this approach, the respondents are asked

to rate different pairs of comparable objects on the basis of their experience. While

evaluating the pair of objects, the dissimilarity measure is noted on the basis of

some of the parameters that the respondents have in their mind. No predefined

attributes or objective criteria are given on the basis of which the respondent can

evaluate the two objects in the pair. Following steps are adopted in this approach:

Steps in Dissimilarity-Based Approach

1. Find the distance matrix among all the objects. It can be obtained by simply

ranking of distances between an object and all other objects by a consumer. This

matrix can be obtained by providing the consumer a card containing pair of

objects written on it, and the candidate needs to specify a number indicating the

difference between the two objects on any numerical scale which can represent

distance between the two objects. This process is repeated for all pairs of brands

being included in the study. In this process, no attributes are identified on which

the consumer is asked to decide on the difference. The distance measure so
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obtained for all the pair of objects can be compiled into a matrix as shown in

Table 14.1. This distance matrix serves the input data for the multidimensional

scaling.

2. After obtaining the distance matrix for each consumer, take the average of these

distances for each pair of objects to make the final distance matrix which is

normally used as an input data. However, multidimensional scaling can be used

for a single user as well.

3. Compute the value of “stress” for the solution in each dimension. Since the value

of stress represents a measure of lack of fit, therefore the intension is to get the

solution with an acceptably low value of a stress.

4. On the basis of the least value of the stress obtained in different solutions,

obtained in step 3, the number of dimensions is decided.

5. After deciding the number of dimensions, the objects are plotted on a map for

visual assessment of objects positioning.

6. Name these dimensions by keeping in mind the attributes of the brands like cost,

features, and look. The procedure would be clear by looking to the solved

Example 14.1.

Procedure of Attribute-Based Approach of Multidimensional
Scaling

In attribute-based approach, the respondents are required to assess each pair of

objects on the basis of the predefined criteria (i.e., color, weight, look, features,

cost, etc.). In this method, perceptual map of the objects is developed using

discriminant analysis. This perceptual map can be developed using the factor

analysis as well. However, there is a debate as to which method produces better

perceptual maps. In this chapter, we shall discuss only discriminant analysis

method for developing perceptual map. In Chap. 12, we have discussed the proce-

dure of discriminant analysis in detail for categorizing the customer into two groups

(issuing/not issuing the credit cards). In MDS, we may have as many groups as

there are objects/brands. Thus, in this case, mostly we will get more than one

Table 14.1 Matrix of dissimilarity scores

Alto Estilo Wagon R Swift Santro I-1o Ford Figo Tata Indica

Alto 0 1 3 7 4 2 4 1

Estilo 1 0 4 5 6 1 1 5

Wagon R 3 4 0 2 1 5 6 7

Swift 7 5 2 0 1 5 7 6

Santro 4 6 1 1 0 4 5 4

I-10 2 1 5 5 4 0 1 6

Ford Figo 4 1 6 7 5 1 0 3

Tata Indica 1 5 7 6 4 6 3 0
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discriminant function. For example, in case of three objects/brands, you could get

two functions, and with four objects, you may get up to three discriminant

functions. The solution of discriminant analysis gives the value of eigenvalue for

each discriminant function. This eigenvalue explains the amount of variance that is

explained by the discriminant function. This percentage variance explained by the

discriminant function is used to decide as to how many discriminant functions one

should use. If two discriminant functions are used, then they form two axes of the

perceptual map. Whereas if three discriminant functions are used, then you get

three perceptual maps, that is, function 1 vs. function 2, function 1 vs. function 3,

and function 2 vs. function 3. These discriminant functions represent the axes on

which the objects are first located and thereafter the attributes are located.

To find the number of dimensions and the perceptual map of different objects,

following steps are used:

1. Obtain consumers’ perceptions on different attributes on the different competing

brands. This serves as the input data for the discriminant analysis.

2. Run the discriminant analysis by taking all the independent variables together in

the model. The option for this method can be seen in SPSS as “Enter

independents together.”

3. The SPSS output shall generate the following results:

(a) Group statistics including mean and standard deviation

(b) Unstandardized canonical discriminant function coefficients table

(c) Eigen values and canonical correlation

(d) Wilks’ lambda and chi-square test

(e) Classification matrix

(f) Standardized canonical discriminant function coefficients

(g) Functions at group centroids

Remark: For generating the above-mentioned outputs for MDS, you can refer

back the solved Example 12.1 in Chap. 12.

4. The eigenvalue would decide as to how many discriminant function you want to

use.

5. Draw perceptual map (or maps) separately by using the standardized canonical

discriminant coefficients. This can be done by using Excel or any other graphic

package. The discriminant function denotes the axes on which the objects/brands

are first located, and then attributes are placed on the same graph.

Assumptions in Multidimensional Scaling

Following assumptions are made while performing the multidimensional scaling:

1. All respondents will rate the objects on the same dimensions.

2. Dimensions are orthogonal.
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3. The respondents have the same perception about the dimensionality in assessing

the distances among the objects.

4. Respondents will attach the same level of importance to a dimension, even if all

respondents perceive this dimension.

5. There is no change in the judgments of a stimulus in terms of either dimensions

or levels of importance over time.

Limitations of Multidimensional Scaling

Although MDS is widely used for positioning the brand image and comparing the

product characteristics, it has some limitations as well.

1. It is difficult to obtain the similarity and preferences of the respondents toward a

group of objects because perceptions of the subjects may differ considerably.

2. Because every product has lots of variant model having different characteristics

and therefore the group of objects taken for comparing their brand image may

itself differ on many counts. Due to this fact, true positioning may not be

possible.

3. Preferences change over time, place, and socioeconomic status and therefore

brand positioning obtained in a particular study may not be generalized.

4. The bias exists in the data collection.

5. In case of nonmetric data, all the MDS techniques are subject to the problem of

local optima and degenerate solutions.

6. Although metric MDS are more robust than nonmetric MDS and produce good

maps but the dimension interpretation, the main work of MDS is highly subjec-

tive and depends upon the questioning of the interviewers.

Solved Example of Multidimensional Scaling (Dissimilarity-

Based Approach of Multidimensional Scaling) Using SPSS

Example 14.1 Twenty customers were asked to rate 8 cars by showing the cards

bearing the name of a pair of cars. All possible pair of cars were shown, and the

customers were asked to rate their preferences of one car over other on an 8-point

scale. If the customer perceived that the two cars were completely dissimilar, a

score of 8 was given, and if the two cars were exactly similar, a score of 0 was

given. Following dissimilarity scores were obtained and are shown in Table 14.1.

Use multidimensional scaling to find the number of dimensions the consumers use

in assessing different brands and name these dimensions. Develop perceptual map

and position these eight brands of cars in a multidimensional space.
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Solution In order to find the number of dimensions used by the consumers in

assessing these eight brands of car, the multidimensional scaling option of SPSS

shall be used to generate outputs showing stress value for the solutions of different

dimensions. Simultaneously dimensions for stimulus coordinates in different

solutions shall also be obtained which shall be used to place all the eight brands

of cars in the multidimensional map.

SPSS Commands for Multidimensional Scaling

The data file needs to be prepared before using SPSS commands to generate outputs

in multidimensional scaling. Following steps would be performed to get the rele-

vant outputs for further interpretation in the analysis.

(i) Data file: Here, eight variables need to be defined. All these variables shall be

defined as ordinal as the scores are the dissimilarity ratings. After preparing the

data file by defining variable names and their labels, it will look like Fig. 14.1.

(ii) Initiating command for multidimensional analysis: After preparing the data

file, click the following command sequence in the Data View:

Analyze ! Scale ! Multidimensional Scaling (ALSCAL)

The screen shall look like Fig. 14.2.

(iii) Selecting variables for discriminant analysis: After clicking the Multidimen-

sional Scaling option, the SPSS will take you to the window where variables

are selected.

• Select all the variables from left panel to the “Variables” section of the right

panel.

• Click the tag Model in the screen shown in Fig. 14.3.

– Write minimum and maximum dimension for which the solution is

required. Since, in this problem, there are eight brands, hence maximum

of up to three-dimensional solution shall be obtained. In case of more

number of brands, solutions of more dimensions may be investigated.

– Let other options are checked by default.

– Click Continue.

• Click the tag Option in the screen as shown in screen 14.3.

– Check the option “Group plots” in the Display section.

– Let other options are checked by default.

– Click Continue.

The screen for these options shall look like Fig. 14.4.

– Click OK for output.
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(iv) Getting the output: After clicking the OK option in Fig. 14.3, the output in the

multidimensional scaling shall be generated in the output window. Selected

outputs can be copied in the word file by using the right click of the mouse over

identified area of the output. Out of many outputs generated by the SPSS, the

following relevant outputs have been picked up for discussion:

Fig. 14.1 Screen showing data file for the multidimensional scaling in SPSS

Fig. 14.2 Screen showing SPSS commands for multidimensional scaling
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1. Iteration details for the three-dimensional solution, stress value of the

matrix, and stimulus coordinates (Tables 14.2 and 14.3)

2. Iteration details for the two-dimensional solution, stress value of the matrix,

and stimulus coordinates (Tables 14.4 and 14.5)

3. Iteration details for the one-dimensional solution, stress value of the matrix,

and stimulus coordinates (Tables 14.6 and 14.7)

4. Perceptual map of all the eight brands (Fig. 14.5)

These outputs so generated by the SPSS are shown in Tables 14.2, 14.3, 14.4,

14.5, 14.6, and 14.7 and Fig. 14.5.

Interpretation of Various Outputs Generated in Multidimensional
Scaling

From these outputs, it is required to determine the number of dimensions in which

you feel the best solution exists. This decision is based upon the stress value for the

solutions in different dimensions. Tables 14.2 and 14.3 show the three-dimensional

Fig. 14.3 Screen showing selection of variables and dimensions
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solution, and the stress value for these solutions is 0.07911. Tables 14.4 and 14.5

contain two-dimensional solutions along with the stress value as 0.16611. On the

other hand, the one-dimensional solutions are shown in Tables 14.6 and 14.7 along

with the stress value 0.42024.

Stress value shows the lack of fit, and therefore, it should be as close to zero as

possible. Owing to these criteria, the one-dimensional solution is not good at all as

this contains the maximum value of stress (0.42024). The two-dimensional solution

looks better as it is close to zero, but the three-dimensional solution is the best

because its stress value is the least.

Since in this problem there are only eight brands, therefore it is not possible to

get a solution in more than three dimensions. If you have more than 14 or 15 brands,

you may try some higher dimension solution. To find out the optimum solution, one

needs to have the trade-off between stress value and the number of dimensions.

Three-Dimensional Solution

Based on the stress value, the three-dimensional solution is the best as in that case

the stress value is the least and closest to zero. Therefore, the next task is to define

Fig. 14.4 Screen showing the options for perceptual mapping
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the names of these three dimensions. These dimensions are the attributes of these

brands drawn either through our experience or knowledge of the market through a

survey of the customers or a combination of these methods. Thus, the three

dimensions may be named as follows:

Dimension 1: Spacious

Dimension 2: Fuel economy

Dimension 3: Stylish

By looking to the scores on the three dimensions in Table 14.3, it may be

concluded that the brands like Wagon R, Swift, and Santro are spacious than

other brands of similar cars. Brands like Tata Indica and Alto are fuel economical

cars, whereas the brands like Ford Figo and Swift are more stylish cars.

Table 14.2 Iteration details for the three-dimensional solution Young’s S-stress formula 1 is used

Iteration S-stress Improvement

1 .14535

2 .12004 .02531

3 .11372 .00632

4 .11188 .00184

5 .11126 .00062

Iterations stopped because

S-stress improvement is <.001000

Stress and squared correlation (RSQ) in distances RSQ values are the proportion of variance of the

scaled data (disparities) in the partition (row, matrix, or entire data) which is accounted for by their

corresponding distances. Stress values are Kruskal’s stress formula 1.

For matrix,

Stress ¼ .07911 RSQ ¼ .92211

Configuration derived in three dimensions

Table 14.3 Stimulus coordinates

Stimulus number Stimulus name

Dimension

1 2 3

1 Alto .8774 .6086 �.9932

2 Estilo .9917 �1.0586 �.4867

3 Wagon_R �1.3459 �.1183 �1.2193

4 Swift �1.8536 �.0029 .8010

5 Santro �1.4590 .6055 .2352

6 I_10 .6751 �1.3468 .4928

7 Ford_Figo 1.2702 �.5423 .9944

8 Tata_Indica .8441 1.8548 .1759
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Two-Dimensional Solution

For the sake of understanding, the perceptual map shall be discussed for two-

dimensional solutions. If two-dimensional solutions would have been preferred

instead of three-dimensional solutions, then the perceptual map would be shown

by Fig. 14.5. Looking to this figure, the brands like Swift, Santro, and Wagon R are

perceived to be similar (spacious). Similarly the brands like Tata Indica and Alto

are perceived to be similar (fuel economy). In this case, we are losing information

on the third dimension which was “stylishness” in the three-dimensional solution.

This loss of information may be critical in some cases. It is therefore advisable to

analyze the data from a three-dimensional solution instead of a two-dimensional,

provided stress value warrants so.

Table 14.4 Iteration details for the two-dimensional solution Young’s S-stress formula 1 is used

Iteration S-stress Improvement

1 .22053

2 .19234 .02820

3 .17623 .01611

4 .16411 .01211

5 .15461 .00950

6 .14791 .00670

7 .14367 .00424

8 .14159 .00208

9 .14139 .00020

Iterations stopped because

S-stress improvement is <.001000

Stress and squared correlation (RSQ) in distances RSQ values are the proportion of variance of the

scaled data (disparities) in the partition (row, matrix, or entire data) which is accounted for by their

corresponding distances. Stress values are Kruskal’s stress formula 1.

For matrix,

Stress ¼ .16611 RSQ ¼ .87594

Configuration derived in two dimensions

Table 14.5 Stimulus

coordinates
Stimulus number Stimulus name

Dimension

1 2

1 Alto 1.0933 .7542

2 Estilo .9651 �.7312

3 Wagon_R �1.4408 .1261

4 Swift �1.4492 .2257

5 Santro �1.4133 .2052

6 I_10 .9121 �.8085

7 Ford_Figo .6121 �1.3142

8 Tata_Indica .7206 1.5429
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Table 14.6 Iteration details for the one-dimensional solution Young’s S-stress formula 1 is used

Iteration S-stress Improvement

1 .44444

2 .43243 .01201

3 .43185 .00057

Iterations stopped because

S-stress improvement is <.001000

Stress and squared correlation (RSQ) in distances RSQ values are the proportion of variance of the

scaled data (disparities) in the partition (row, matrix, or entire data) which is accounted for by their

corresponding distances. Stress values are Kruskal’s stress formula 1.

For matrix,

Stress ¼ .42024 RSQ ¼ .57334

Configuration derived in one dimension

Fig. 14.5 Perceptual map of different brands of car (two-dimensional output)

Table 14.7 Stimulus

coordinates
Stimulus number Stimulus name

Dimension

1

1 Alto �.8034

2 Estilo �.7738

3 Wagon_R 1.2367

4 Swift 1.4484

5 Santro 1.1694

6 I_10 �.6166

7 Ford_Figo �.8593

8 Tata_Indica �.8015



Summary of the SPSS Commands for Multidimensional Scaling

(i) Start SPSS and prepare the data file by defining the variables and their

properties in Variable View and typing the data column wise in Data View.

(ii) In the data view, follow the below-mentioned command sequence for multidi-

mensional scaling:

Analyze ! Scale ! Multidimensional Scaling (ALSCAL)

(iii) Select all the variables from left panel to the “Variables” section of the right

panel.

(iv) Click the tagModel and write minimum and maximum dimension for which the

solution is required. Let other options are checked by default. Click Continue.
(v) Click the tag Option in the screen and check the option “Group plots” in the

Display section. Let other options are checked by default. Click Continue.
Click OK for output.

Exercise

Short Answer Questions

Note: Write answer to each of the following questions in not more than 200 words.

1. Define multidimensional scaling and explain a situation in marketing where

this technique can be used.

2. Discuss the procedure used in dissimilarity-based approach of multidimen-

sional scaling.

3. What are the steps used in attribute-based approach of multidimensional

scaling?

4. What are the drawbacks of multidimensional scaling?

5. Explain the assumptions used in multidimensional scaling.

6. Describe any five terminologies used in multidimensional scaling.

7. What do you mean by stress score? What is its significance and how is it used in

deciding the solution in multidimensional scaling?

8. What are the various considerations in deciding the name of the dimensions?

9. What do you mean by a perceptual map? Explain by means of an example.

10. Explain the difference in attribute-based approach and dissimilarity-based

approach of multidimensional scaling.

Multiple-Choice Questions

Note: Question no. 1–10 has four alternative answers for each question. Tick mark

the one that you consider the closest to the correct answer.
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1. MDS refers to

(a) Multidimensional spaces

(b) Multidirectional spaces

(c) Multidimensional perceptual scaling

(d) Multidimensional scaling

2. Stress is a measure of

(a) Distance between the two brands

(b) Goodness of fit

(c) Correctness of the perceptual map

(d) Error involved in deciding the nomenclature of dimensions

3. Perceptual mapping is a

(a) Graphical representation of the dimensions in multidimensional space

(b) Graphical representation of objects in multidimensional space

(c) Graphical representation of the distances of the objects

(d) Graphical representation of brands in two-dimensional space

4. Dimensions refer to

(a) The brands on which clustering is made

(b) The characteristics of the brands which are clubbed for assessment

(c) The brands which have some attributes common in them

(d) The characteristics on which the evaluation may take place

5. In dissimilarity-based approach of multidimensional scaling, the input data are

(a) Nominal

(b) Ordinal

(c) Scale

(d) Ratio

6. The solution of multidimensional is accurate if the value of stress is

(a) Less than 1

(b) More than 1

(c) Closer to 0

(d) Closer to 0.5

7. In attribute-based approach of multidimensional scaling, the input data can be

(a) Interval

(b) Nominal

(c) Ordinal

(d) None of the above

8. One of the assumptions in multidimensional scaling is

(a) The respondents will not rate the objects on the same dimensions.

(b) Dimensions are orthogonal.
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(c) Respondents will not attach the same level of importance to a dimension,

even if all respondents perceive this dimension.

(d) Data are nominal.

9. Choose the correct sequence of commands in SPSS for multidimensional scaling.

(a) Analyze ! Scale ! Multidimensional Scaling (ALSCAL)

(b) Analyze ! Multidimensional Scaling (ALSCAL) ! Scale

(c) Analyze ! Scale ! Multidimensional Scaling (PROXSCAL)

(d) Analyze ! Multidimensional Scaling (PROXSCAL) ! Scale

10. Following solutions are obtained in the multidimensional scaling:

(i) One-Dimensional Solution with Stress score ¼ 0.7659

(ii) Two-Dimensional Solution with Stress score ¼ 0.4328

(iii) Three-Dimensional Solution with Stress score ¼ 0.1348

(iv) Four-Dimensional Solution with Stress score ¼ 0.0924

Which solution would you prefer?

(a) ii

(b) i

(c) iv

(d) iii

Assignments

1. A refrigerator company wanted to draw a perceptual map using its consumers’

perceptions regarding its own brand and five competing brands. These six brands

were Samsung, LG, Videocon, Godrej, Sharp, and Hitachi. The customers were

shown a card containing a pair of names of these brands and were asked to rate in

terms of dissimilarity between the two on an 8-point rating scale. The rating of

8 indicates that the two brands are distinctively apart, whereas 1 indicates that the

two brands are exactly similar as perceived by the customers. This exercise was

done on all the pair of brands. The average dissimilarity ratings obtained by all the

customers are shown in the following table. Apply the multidimensional scaling

and interpret your findings by plotting the perceptual map of these brands.

2. The authorities in a university wanted to assess its teachers as perceived by their

students on a seven-point scale by drawing the perceptual map. Six teachers,

Dissimilarity ratings obtained by the customers on the six brands of the refrigerators

Samsung LG Videocon Godrej Sharp Hitachi

Samsung 0 4 3 7 4 3

LG 0 3 8 3 2

Videocon 0 7 3 5

Godrej 0 6 8

Sharp 0 4

Hitachi 0
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Smith, Anderson, Clark, Wright, Mitchell and Johnson were rated by 25 students.

Score 7 indicated that the two teachers were distinctively apart, whereas the

score 1 represented that they were exactly similar as perceived by the students.

Following is the dissimilarity matrix obtained on the basis of the average

dissimilarity scores obtained on all the 25 students. By using the multidimen-

sional scaling technique, draw the perceptual map.

Answers of Multiple-Choice Questions

Q.1 d Q.2 b Q.3 b Q.4 d

Q.5 b Q.6 c Q.7 a Q.8 b

Q.9 a Q.10 d

Dissimilarity ratings obtained by the students on the teachers in the college

Smith Anderson Clark Wright Mitchell Johnson

Smith 0 4 3 1 5 6

Anderson 3 2 5 3 2

Clark 0 4 3 4

Wright 0 6 5

Mitchell 0 4

Johnson 0
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Appendix: Tables

Table A.1 The normal curve area between the mean and a given z value

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
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Table A.2 Critical values of ‘t’

Level of significance (a)

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

two-tail df 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768

24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674

29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551

60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460

80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390

1,000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

1 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table A.3 Critical values of

the correlation coefficient
Level of significance for two-tailed test

df (n�2) 0.10 0.05 0.02 0.01

1 0.988 0.997 0.9995 0.9999

2 0.900 0.950 0.980 0.990

3 0.805 0.878 0.934 0.959

4 0.729 0.811 0.882 0.917

5 0.669 0.754 0.833 0.874

6 0.622 0.707 0.789 0.834

7 0.582 0.666 0.750 0.798

8 0.549 0.632 0.716 0.765

9 0.521 0.602 0.685 0.735

10 0.497 0.576 0.658 0.708

11 0.476 0.553 0.634 0.684

12 0.458 0.532 0.612 0.661

13 0.441 0.514 0.592 0.641

14 0.426 0.497 0.574 0.623

15 0.412 0.482 0.558 0.606

16 0.400 0.468 0.542 0.590

17 0.389 0.456 0.528 0.575

18 0.378 0.444 0.516 0.561

19 0.369 0.433 0.503 0.549

20 0.360 0.423 0.492 0.537

21 0.352 0.413 0.482 0.526

22 0.344 0.404 0.472 0.515

23 0.337 0.396 0.462 0.505

24 0.330 0.388 0.453 0.496

25 0.323 0.381 0.445 0.487

26 0.317 0.374 0.437 0.479

27 0.311 0.367 0.430 0.471

28 0.306 0.361 0.423 0.463

29 0.301 0.355 0.416 0.456

30 0.296 0.349 0.409 0.449

35 0.275 0.325 0.381 0.418

40 0.257 0.304 0.358 0.393

45 0.243 0.288 0.338 0.372

50 0.231 0.273 0.322 0.354

60 0.211 0.250 0.295 0.325

70 0.195 0.232 0.274 0.303

80 0.183 0.217 0.256 0.283

90 0.173 0.205 0.242 0.267

100 0.164 0.195 0.230 0.254

df (n�2) 0.05 0.25 0.01 0.005

Level of significance for one tailed test
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Table A.4 F-table: critical values at .05 level of significance

n1=n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.71 8.70 8.69 8.68 8.67 8.67

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87 5.86 5.84 5.83 5.82 5.81

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.66 4.64 4.62 4.60 4.59 4.58 4.57

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96 3.94 3.92 3.91 3.90 3.88

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53 3.51 3.49 3.48 3.47 3.46

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24 3.22 3.20 3.19 3.17 3.16

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 2.99 2.97 2.96 2.95

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86 2.85 2.83 2.81 2.80 2.79

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74 2.72 2.70 2.69 2.67 2.66

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64 2.62 2.60 2.58 2.57 2.56

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55 2.53 2.51 2.50 2.48 2.47

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48 2.46 2.44 2.43 2.41 2.40

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 2.45 2.42 2.40 2.38 2.37 2.35 2.34

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37 2.35 2.33 2.32 2.30 2.29

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 2.35 2.33 2.31 2.29 2.27 2.26 2.24

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29 2.27 2.25 2.23 2.22 2.20

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.23 2.20 2.18 2.17 2.15 2.14

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17 2.15 2.13 2.11 2.10 2.08

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 2.15 2.13 2.11 2.09 2.07 2.05 2.04

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.12 2.09 2.07 2.05 2.03 2.02 2.00

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 2.09 2.06 2.04 2.02 2.00 1.99 1.97

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04 2.01 1.99 1.98 1.96 1.95

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.08 2.04 2.01 1.99 1.96 1.94 1.92 1.91 1.89

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95 1.92 1.90 1.89 1.87 1.85

45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 2.01 1.97 1.94 1.92 1.89 1.87 1.86 1.84 1.82

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.92 1.89 1.87 1.85 1.83 1.81 1.80

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.76

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.93 1.89 1.86 1.84 1.81 1.79 1.77 1.75 1.74

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.91 1.88 1.84 1.82 1.79 1.77 1.75 1.73 1.72

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85 1.82 1.79 1.77 1.75 1.73 1.71 1.69

200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80 1.77 1.74 1.72 1.69 1.67 1.66 1.64

500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.77 1.74 1.71 1.69 1.66 1.64 1.62 1.61

1,000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.80 1.76 1.73 1.70 1.68 1.65 1.63 1.61 1.60

>1,000 1.04 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.72 1.69 1.67 1.64 1.62 1.61 1.59

n1/n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

464 Appendix: Tables



20 22 24 26 28 30 35 40 45 50 60 70 80 100 200 500 1,000 >1,000 n1/n2

8.66 8.65 8.64 8.63 8.62 8.62 8.60 8.59 8.59 8.58 8.57 8.57 8.56 8.55 8.54 8.53 8.53 8.54 3

5.80 5.79 5.77 5.76 5.75 5.75 5.73 5.72 5.71 5.70 5.69 5.68 5.67 5.66 5.65 5.64 5.63 5.63 4

4.56 4.54 4.53 4.52 4.50 4.50 4.48 4.46 4.45 4.44 4.43 4.42 4.42 4.41 4.39 4.37 4.37 4.36 5

3.87 3.86 3.84 3.83 3.82 3.81 3.79 3.77 3.76 3.75 3.74 3.73 3.72 3.71 3.69 3.68 3.67 3.67 6

3.44 3.43 3.41 3.40 3.39 3.38 3.36 3.34 3.33 3.32 3.30 3.29 3.29 3.27 3.25 3.24 3.23 3.23 7

3.15 3.13 3.12 3.10 3.09 3.08 3.06 3.04 3.03 3.02 3.01 2.99 2.99 2.97 2.95 2.94 2.93 2.93 8

2.94 2.92 2.90 2.89 2.87 2.86 2.84 2.83 2.81 2.80 2.79 2.78 2.77 2.76 2.73 2.72 2.71 2.71 9

2.77 2.75 2.74 2.72 2.71 2.70 2.68 2.66 2.65 2.64 2.62 2.61 2.60 2.59 2.56 2.55 2.54 2.54 10

2.65 2.63 2.61 2.59 2.58 2.57 2.55 2.53 2.52 2.51 2.49 2.48 2.47 2.46 2.43 2.42 2.41 2.41 11

2.54 2.52 2.51 2.49 2.48 2.47 2.44 2.43 2.41 2.40 2.38 2.37 2.36 2.35 2.32 2.31 2.30 2.30 12

2.46 2.44 2.42 2.41 2.39 2.38 2.36 2.34 2.33 2.31 2.30 2.28 2.27 2.26 2.23 2.22 2.21 2.21 13

2.39 2.37 2.35 2.33 2.32 2.31 2.28 2.27 2.25 2.24 2.22 2.21 2.20 2.19 2.16 2.14 2.14 2.13 14

2.33 2.31 2.29 2.27 2.26 2.25 2.22 2.20 2.19 2.18 2.16 2.15 2.14 2.12 2.10 2.08 2.07 2.07 15

2.28 2.25 2.24 2.22 2.21 2.19 2.17 2.15 2.14 2.12 2.11 2.09 2.08 2.07 2.04 2.02 2.02 2.01 16

2.23 2.21 2.19 2.17 2.16 2.15 2.12 2.10 2.09 2.08 2.06 2.05 2.03 2.02 1.99 1.97 1.97 1.96 17

2.19 2.17 2.15 2.13 2.12 2.11 2.08 2.06 2.05 2.04 2.02 2.00 1.99 1.98 1.95 1.93 1.92 1.92 18

2.16 2.13 2.11 2.10 2.08 2.07 2.05 2.03 2.01 2.00 1.98 1.97 1.96 1.94 1.91 1.89 1.88 1.88 19

2.12 2.10 2.08 2.07 2.05 2.04 2.01 1.99 1.98 1.97 1.95 1.93 1.92 1.91 1.88 1.86 1.85 1.84 20

2.07 2.05 2.03 2.01 2.00 1.98 1.96 1.94 1.92 1.91 1.89 1.88 1.86 1.85 1.82 1.80 1.79 1.78 22

2.03 2.00 1.98 1.97 1.95 1.94 1.91 1.89 1.88 1.86 1.84 1.83 1.82 1.80 1.77 1.75 1.74 1.73 24

1.99 1.97 1.95 1.93 1.91 1.90 1.87 1.85 1.84 1.82 1.80 1.79 1.78 1.76 1.73 1.71 1.70 1.69 26

1.96 1.93 1.91 1.90 1.88 1.87 1.84 1.82 1.80 1.79 1.77 1.75 1.74 1.73 1.69 1.67 1.66 1.66 28

1.93 1.91 1.89 1.87 1.85 1.84 1.81 1.79 1.77 1.76 1.74 1.72 1.71 1.70 1.66 1.64 1.63 1.62 30

1.88 1.85 1.83 1.82 1.80 1.79 1.76 1.74 1.72 1.70 1.68 1.66 1.65 1.63 1.60 1.57 1.57 1.56 35

1.84 1.81 1.79 1.77 1.76 1.74 1.72 1.69 1.67 1.66 1.64 1.62 1.61 1.59 1.55 1.53 1.52 1.51 40

1.81 1.78 1.76 1.74 1.73 1.71 1.68 1.66 1.64 1.63 1.60 1.59 1.57 1.55 1.51 1.49 1.48 1.47 45

1.78 1.76 1.74 1.72 1.70 1.69 1.66 1.63 1.61 1.60 1.58 1.56 1.54 1.52 1.48 1.46 1.45 1.44 50

1.75 1.72 1.70 1.68 1.66 1.65 1.62 1.59 1.57 1.56 1.53 1.52 1.50 1.48 1.44 1.41 1.40 1.39 60

1.72 1.70 1.67 1.65 1.64 1.62 1.59 1.57 1.55 1.53 1.50 1.49 1.47 1.45 1.40 1.37 1.36 1.35 70

1.70 1.68 1.65 1.63 1.62 1.60 1.57 1.54 1.52 1.51 1.48 1.46 1.45 1.43 1.38 1.35 1.34 1.33 80

1.68 1.65 1.63 1.61 1.59 1.57 1.54 1.52 1.49 1.48 1.45 1.43 1.41 1.39 1.34 1.31 1.30 1.28 100

1.62 1.60 1.57 1.55 1.53 1.52 1.48 1.46 1.43 1.41 1.39 1.36 1.35 1.32 1.26 1.22 1.21 1.19 200

1.59 1.56 1.54 1.52 1.50 1.48 1.45 1.42 1.40 1.38 1.35 1.32 1.30 1.28 1.21 1.16 1.14 1.12 500

1.58 1.55 1.53 1.51 1.49 1.47 1.43 1.41 1.38 1.36 1.33 1.31 1.29 1.26 1.19 1.13 1.11 1.08 1,000

1.57 1.54 1.52 1.50 1.48 1.46 1.42 1.40 1.37 1.35 1.32 1.30 1.28 1.25 1.17 1.11 1.08 1.03 >1,000

20 22 24 26 28 30 35 40 45 50 60 70 80 100 200 500 1,000 >1,000 n1/n2
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Table A.5 F-table: critical values at .01 level of significance

n1/n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.13 27.05 26.98 26.92 26.87 26.83 26.79 26.75

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.45 14.37 14.31 14.25 14.20 14.15 14.11 14.08

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.96 9.89 9.82 9.77 9.72 9.68 9.64 9.61

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.66 7.61 7.56 7.52 7.48 7.45

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47 6.41 6.36 6.31 6.28 6.24 6.21

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67 5.61 5.56 5.52 5.48 5.44 5.41

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11 5.05 5.01 4.96 4.92 4.89 4.86

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 4.65 4.60 4.56 4.52 4.49 4.46

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 4.34 4.29 4.25 4.21 4.18 4.15

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 4.10 4.05 4.01 3.97 3.94 3.91

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.91 3.86 3.82 3.78 3.75 3.72

14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.75 3.70 3.66 3.62 3.59 3.56

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.61 3.56 3.52 3.49 3.45 3.42

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55 3.50 3.45 3.41 3.37 3.34 3.31

17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46 3.40 3.35 3.31 3.27 3.24 3.21

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37 3.32 3.27 3.23 3.19 3.16 3.13

19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.24 3.19 3.15 3.12 3.08 3.05

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 3.18 3.13 3.09 3.05 3.02 2.99

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.07 3.02 2.98 2.94 2.91 2.88

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 2.98 2.93 2.89 2.85 2.82 2.79

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96 2.90 2.86 2.82 2.78 2.75 2.72

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90 2.84 2.79 2.75 2.72 2.68 2.65

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 2.79 2.74 2.70 2.66 2.63 2.60

35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.80 2.74 2.69 2.64 2.60 2.56 2.53 2.50

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 2.61 2.56 2.52 2.48 2.45 2.42

45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.67 2.61 2.55 2.51 2.46 2.43 2.39 2.36

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.63 2.56 2.51 2.46 2.42 2.38 2.35 2.32

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.44 2.39 2.35 2.31 2.28 2.25

70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.59 2.51 2.45 2.40 2.35 2.31 2.27 2.23 2.20

80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.48 2.42 2.36 2.31 2.27 2.23 2.20 2.17

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43 2.37 2.31 2.27 2.22 2.19 2.15 2.12

200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27 2.22 2.17 2.13 2.09 2.06 2.03

500 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.28 2.22 2.17 2.12 2.07 2.04 2.00 1.97

1,000 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.27 2.20 2.15 2.10 2.06 2.02 1.98 1.95

>1,000 1.04 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.19 2.13 2.08 2.04 2.00 1.97 1.94

n1/n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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19 20 22 24 26 28 30 35 40 45 50 60 70 80 100 200 500 1,000 >1,000 n1/n2

26.72 26.69 26.64 26.60 26.56 26.53 26.50 26.45 26.41 26.38 26.35 26.32 26.29 26.27 26.24 26.18 26.15 26.13 26.15 3

14.05 14.02 13.97 13.93 13.89 13.86 13.84 13.79 13.75 13.71 13.69 13.65 13.63 13.61 13.58 13.52 13.49 13.47 13.47 4

9.58 9.55 9.51 9.47 9.43 9.40 9.38 9.33 9.29 9.26 9.24 9.20 9.18 9.16 9.13 9.08 9.04 9.03 9.02 5

7.42 7.40 7.35 7.31 7.28 7.25 7.23 7.18 7.14 7.11 7.09 7.06 7.03 7.01 6.99 6.93 6.90 6.89 6.89 6

6.18 6.16 6.11 6.07 6.04 6.02 5.99 5.94 5.91 5.88 5.86 5.82 5.80 5.78 5.75 5.70 5.67 5.66 5.65 7

5.38 5.36 5.32 5.28 5.25 5.22 5.20 5.15 5.12 5.09 5.07 5.03 5.01 4.99 4.96 4.91 4.88 4.87 4.86 8

4.83 4.81 4.77 4.73 4.70 4.67 4.65 4.60 4.57 4.54 4.52 4.48 4.46 4.44 4.42 4.36 4.33 4.32 4.32 9

4.43 4.41 4.36 4.33 4.30 4.27 4.25 4.20 4.17 4.14 4.12 4.08 4.06 4.04 4.01 3.96 3.93 3.92 3.91 10

4.12 4.10 4.06 4.02 3.99 3.96 3.94 3.89 3.86 3.83 3.81 3.78 3.75 3.73 3.71 3.66 3.62 3.61 3.60 11

3.88 3.86 3.82 3.78 3.75 3.72 3.70 3.65 3.62 3.59 3.57 3.54 3.51 3.49 3.47 3.41 3.38 3.37 3.36 12

3.69 3.66 3.62 3.59 3.56 3.53 3.51 3.46 3.43 3.40 3.38 3.34 3.32 3.30 3.27 3.22 3.19 3.18 3.17 13

3.53 3.51 3.46 3.43 3.40 3.37 3.35 3.30 3.27 3.24 3.22 3.18 3.16 3.14 3.11 3.06 3.03 3.01 3.01 14

3.40 3.37 3.33 3.29 3.26 3.24 3.21 3.17 3.13 3.10 3.08 3.05 3.02 3.00 2.98 2.92 2.89 2.88 2.87 15

3.28 3.26 3.22 3.18 3.15 3.12 3.10 3.05 3.02 2.99 2.97 2.93 2.91 2.89 2.86 2.81 2.78 2.76 2.75 16

3.19 3.16 3.12 3.08 3.05 3.03 3.00 2.96 2.92 2.89 2.87 2.83 2.81 2.79 2.76 2.71 2.68 2.66 2.65 17

3.10 3.08 3.03 3.00 2.97 2.94 2.92 2.87 2.84 2.81 2.78 2.75 2.72 2.71 2.68 2.62 2.59 2.58 2.57 18

3.03 3.00 2.96 2.92 2.89 2.87 2.84 2.80 2.76 2.73 2.71 2.67 2.65 2.63 2.60 2.55 2.51 2.50 2.49 19

2.96 2.94 2.90 2.86 2.83 2.80 2.78 2.73 2.69 2.67 2.64 2.61 2.58 2.56 2.54 2.48 2.44 2.43 2.42 20

2.85 2.83 2.78 2.75 2.72 2.69 2.67 2.62 2.58 2.55 2.53 2.50 2.47 2.45 2.42 2.36 2.33 2.32 2.31 22

2.76 2.74 2.70 2.66 2.63 2.60 2.58 2.53 2.49 2.46 2.44 2.40 2.38 2.36 2.33 2.27 2.24 2.22 2.21 24

2.69 2.66 2.62 2.58 2.55 2.53 2.50 2.45 2.42 2.39 2.36 2.33 2.30 2.28 2.25 2.19 2.16 2.14 2.13 26

2.63 2.60 2.56 2.52 2.49 2.46 2.44 2.39 2.35 2.32 2.30 2.26 2.24 2.22 2.19 2.13 2.09 2.08 2.07 28

2.57 2.55 2.51 2.47 2.44 2.41 2.39 2.34 2.30 2.27 2.25 2.21 2.18 2.16 2.13 2.07 2.03 2.02 2.01 30

2.47 2.44 2.40 2.36 2.33 2.31 2.28 2.23 2.19 2.16 2.14 2.10 2.07 2.05 2.02 1.96 1.92 1.90 1.89 35

2.39 2.37 2.33 2.29 2.26 2.23 2.20 2.15 2.11 2.08 2.06 2.02 1.99 1.97 1.94 1.87 1.83 1.82 1.81 40

2.34 2.31 2.27 2.23 2.20 2.17 2.14 2.09 2.05 2.02 2.00 1.96 1.93 1.91 1.88 1.81 1.77 1.75 1.74 45

2.29 2.27 2.22 2.18 2.15 2.12 2.10 2.05 2.01 1.97 1.95 1.91 1.88 1.86 1.82 1.76 1.71 1.70 1.69 50

2.22 2.20 2.15 2.12 2.08 2.05 2.03 1.98 1.94 1.90 1.88 1.84 1.81 1.78 1.75 1.68 1.63 1.62 1.60 60

2.18 2.15 2.11 2.07 2.03 2.01 1.98 1.93 1.89 1.85 1.83 1.78 1.75 1.73 1.70 1.62 1.57 1.56 1.54 70

2.14 2.12 2.07 2.03 2.00 1.97 1.94 1.89 1.85 1.82 1.79 1.75 1.71 1.69 1.65 1.58 1.53 1.51 1.50 80

2.09 2.07 2.02 1.98 1.95 1.92 1.89 1.84 1.80 1.76 1.74 1.69 1.66 1.63 1.60 1.52 1.47 1.45 1.43 100

2.00 1.97 1.93 1.89 1.85 1.82 1.79 1.74 1.69 1.66 1.63 1.58 1.55 1.52 1.48 1.39 1.33 1.30 1.28 200

1.94 1.92 1.87 1.83 1.79 1.76 1.74 1.68 1.63 1.60 1.57 1.52 1.48 1.45 1.41 1.31 1.23 1.20 1.17 500

1.92 1.90 1.85 1.81 1.77 1.74 1.72 1.66 1.61 1.58 1.54 1.50 1.46 1.43 1.38 1.28 1.19 1.16 1.12 1,000

1.91 1.88 1.83 1.79 1.76 1.73 1.70 1.64 1.59 1.56 1.53 1.48 1.44 1.41 1.36 1.25 1.16 1.11 1.05 >1,000

19 20 22 24 26 28 30 35 40 45 50 60 70 80 100 200 500 1,000 >1,000 n1/n2
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Table A.6 Critical values of Chi-square

Probability under H0 that w2r Chi-square

df 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 – – 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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