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A B S T R A C T

Background: Aeromonas infections pose a significant threat associated with high mortality rates. This study in-
vestigates the potential of mitomycin C (MMC), an anticancer drug, as a novel antimicrobial agent against 
Aeromonas infections.
Methods: We evaluated the minimum inhibitory concentrations (MICs) of MMC and antibiotics against clinical 
Aeromonas isolates using broth microdilution. Synergistic effects of MMC with antibiotics were determined via 
time-kill studies. MMC’s intracellular killing effects were analyzed using a representative Aeromonas isolate. 
Efficacy of combined therapies was assessed in a neutropenic mouse model. MMC-induced SOS response was 
evaluated using cell elongation method, and RNA extraction and quantitative real-time PCR.
Results: Combining 1/8⨯ MIC of mitomycin C (MMC) with either 1⨯ or 1/2⨯ MIC of LVX demonstrated significant 
synergistic effects over 24 h in vitro. In a neutropenic mouse model, the combination of MMC (2 mg/kg or 1 mg/ 
kg) with LVX achieved survival rates of 100 % and 80 %, respectively, compared to 0 % survival with mono-
therapy. MMC induced marked cell elongation and division inhibition in response to escalating doses. However, 
the combination therapy’s enhancement did not surpass the effects of individual drug treatments. Notably, 
combination therapy reduced recA activator levels below those observed with either drug alone, suggesting rapid 
bacterial cell death curtailed further expression of recA and lexA. Alternatively, extensive DNA damage may have 
overwhelmed bacterial DNA repair mechanisms, rendering them ineffective.
Conclusions: These findings suggest that MMC may serve as a potential antimicrobial agent, particularly when 
used in combination with antibiotics. The integration of MMC with antibiotic therapy offers a promising 
approach for the treatment of Aeromonas infections and holds potential for future clinical applications.

1. Introduction

Aeromonas, a common pathogen to both farm-raised and wild fish, 
poses a significant health threat, causing severe illnesses, including 
septic arthritis, diarrheal enteritis, skin and soft tissue infections, men-
ingitis, and bacteremia.1,2 In Southern Taiwan, the annual incidence of 
Aeromonas bacteremia averaged 76 cases per million inhabitants from 
2008 to 2010, exceeding rates in Western countries.3 A. hydrophila, 
A. caviae, and A. veronii biovar sobria are common etiological agents, 

with virulence factors including cytotoxins, proteases, hemolysins, li-
pases, adhesins, agglutinins, enterotoxins, and VacB.4,5 Early and 
aggressive surgical debridement and broad-spectrum antibiotics, 
including the combination of doxycycline (DOX) with either ciproflox-
acin (CIP) or ceftriaxone, is crucial.6

Given the slow pace of antimicrobial agent development, there is an 
urgent need for novel strategies to enhance antibiotic efficacy against 
Aeromonas infections. Mitomycin C (MMC), derived from Streptomyces 
caespitosus, disrupts DNA by inducing cross-linking and inhibiting 
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synthesis, showing the potential anti-bacterial effect.7 A previous study 
reported that MMC combined with a tobramycin-ciprofloxacin hybrid 
exhibits synergistic effects against multidrug-resistant (MDR) 
Gram-negative bacteria.8 Combining antibiotics with non-antibiotic 
compounds that enhance their activity is crucial for combating severe 
infectious diseases.

This study explored the repurposing of MMC in combination with 
antimicrobial agents to target Aeromonas species, aiming for minimal 
effective dosages to reduce side effects.

2. Materials and methods

2.1. Bacterial isolates

The thirty-one Aeromonas isolates, including 11 isolates of Aero-
monas hydrophila, 10 isolates of A. caviae, and 10 isolates of A. sobria, 
were identified by MALDI-TOF MS (Bruker Daltonik, Bremen, Germany) 
and rpoB sequencing.9,10 These isolates were isolated from clinical 
specimens, including blood, ascites, pus, and wound exudates from pa-
tients. The species were identified by DNA sequence matching of rpoD 
and gyrB (or rpoB if necessary). The sequences of amplified DNA prod-
ucts were compared with reference sequences available in the GenBank 
database using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). Isolates 
with a dissimilarity value of ≤1 % were considered the same species. 
These isolates were stored at − 80 ◦C in Protect Bacterial Preservers 
(Technical Service Consultants Limited, Heywood, UK) before 
investigation.

All primers utilized in PCR/qPCR assays must be accompanied by 
either their reference citations or complete sequence information 
(Supplementary appendix 1). PCR amplicons were sequenced on an ABI 
PRISM 3730 sequence analyzer (Applied Biosystems, Foster City, CA, 
USA).

2.2. Antimicrobial susceptibility testing

Standard amikacin (AMK), aztreonam (ATM), cefazolin (CZ), cef-
metazole (CMZ), cefotaxime (CTX), cefpirome (CPO), chloramphenicol 
(CHL), CIP, DOX, fosfomycin (FOS), gentamicin (GM), imipenem (IPM), 
levofloxacin (LVX), meropenem (MEM), minocycline (MIN), tigecycline 
(TGC), and MMC were used for antimicrobial susceptibility testing.

Antibiotic MICs were determined by the broth microdilution 
method, and the interpretation criteria were based on the recommen-
dations of the Clinical and Laboratory Standards Institutes (CLSI, 
2023)11 or the US Food and Drug Administration (FDA).12 The normal 
inoculum 5 ⨯ 105 CFU/mL and high inoculum 5 ⨯ 107 CFU/mL were 
detected by this method. Quality control testing was performed using 
Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, and 
Pseudomonas aeruginosa ATCC 27853.13

2.3. Combination killing method

Eight A. hydrophila isolates were randomly selected for in vitro 
measurement of the inhibitory effect of combination regimens, modified 
as reported by Tang et al.14 In brief, bacterial suspensions were diluted 
to 5 ⨯ 107 CFU/mL in fresh Mueller–Hinton broth. The drug concen-
trations of CIP, LVX, or TGC were adjusted to 1⨯ MIC, 1/2⨯ MIC, 1/4⨯ 
MIC, and 1/8⨯ MIC combined with 1⨯ MIC, 1/2⨯ MIC, 1/4⨯ MIC, and 
1/8⨯ MIC of MMC. Bacterial counts were measured at 24 h by 
enumerating the colonies in 10-fold serially diluted specimens of 100-μL 
aliquots plated on the nutrient agar ((Difco™ Laboratories, Sparks, MD, 
USA) at 37 ◦C. All experiments were performed in duplicate. The sta-
tistical significances were compared with that of each drug alone and no 
drug control:*P < 0.05, **P < 0.01, and ***P < 0.001.

2.4. Cell cytotoxicity test

The PrestoBlue assay was used to evaluate cytotoxicity.15 Briefly, 
RAW 264.7 cells were seeded in 24-well plates at a density of 5 ⨯ 105 

cells/well for 24 h. After the culturing medium was removed, the cells 
were washed with PBS twice prior to treatment with MMC of different 
concentrations (1⨯, 1/2⨯ and 1/4⨯ MIC) for 0, 2, 4, 24 h. After removing 
the medium, the cells were treated with 10 % PrestoBlue reagent 
(Invitrogen Corporation, San Diego, USA) for 2 h. The absorbance 
wavelengths at 570 nm and 600 nm were measured. The cell survival 
rate of the control treatment was set at 100 %. The experiments were 
conducted in three independent repeats, and all data were presented as 
the mean ± S.D.

2.5. Assessment of the intracellular antibacterial activity of antibiotics

RAW 264.7 cells diluted to 5 ⨯ 105 CFU/mL cells in 24-well culture 
plates. The cells were incubated with 5 ⨯ 106 CFU/mL well of Aeromonas 
strain Aero01-243. Thus, the ratio of viable bacteria to cells was 10:1. 
One hour later, the culture plates were incubated with 8 μg/mL genta-
micin for 2 h at 37 ◦C to kill the extracellular bacteria and then washed 
twice with phosphate-buffered saline (PBS). The drug concentration of 
MMC and LVX were adjusted to those of 1/2⨯, and 1/4⨯ MIC. Each drug 
alone and the combination of LVX were test. At selected time intervals 
(0, 2, 4, 24 h), bacterial loads in the wells were counted. The cells were 
washed with ice-cold PBS. Resuspension the bacteria in 0.5 mL of 1 % 
Triton X-100 in PBS, and the lysates with released bacteria were serially 
diluted (1:10 in PBS), plated on MH agar plates, and cultured overnight 
prior to bacterial counting. The limit of detection via plate counting of 
bacterial loads was about 10 CFU/mL.16–18

2.6. Murine infection model

Female BALB/c mice (18–20 g, 6–8 weeks old, National Science 
Council, Taipei, Taiwan) were used. This study was approved by the Chi- 
Mei Medical Center Institutional Animal Care and Use Committee and 
conducted per National Research Council recommendations and were 
provided food and water ad libitum. Mice were rendered neutropenic by 
intraperitoneal injections with 100 and 250 mg/kg of body weight of 
cyclophosphamide (Sigma-Aldrich, St. Louis, MO, USA) given one and 
four days prior to inoculation, respectively.19 The Aeromonas strain was 
cultured centrifuged, and adjusted to the desired turbidity for intra-
muscular injection (0.05 mL) into ten mice. Antimicrobials were initi-
ated 2 h after inoculation for 48 h.

Mice received MMC (2 mg/kg every 24 h) and LVX (20 mg/kg every 
12 h). The selection of the 2 mg/kg MMC dosage in vivo was based on 
converting the clinically administered human dose (10 mg/m2) to the 
mouse-equivalent dose.20 Low MMC doses (1 and 0.5 mg/kg) were also 
tested. Survival was recorded at 8-h intervals for 7 days.

2.7. Cell elongation method

Aeromonas strains were grown in Mueller-Hinton broth (MHB) me-
dium at 37 ◦C for 90min, then diluted to a 0.5 McFarland standard. 
Bacteria were incubated at 37 ◦C with MMC (at 1/2⨯, 1/4⨯, or 1/8⨯ 
MICs) for 180 min in a final volume of 3 mL. Fluid samples were Gram 
stained to evaluate cell length. Slides were treated with crystal violet for 
60 s, Gram iodine for 60 s, decolorized with 95 % ethyl alcohol for 5–10 
s, and counterstained with safranin for 45 s. This protocol produced 
clear images, facilitating accurate assessment of cell morphology.21

2.8. RNA extraction and quantitative real-time PCR (Q-PCR)

Bacteria were grown overnight in MHB at 37 ◦C then the mild-log 
phase cultures were adjusted to match the turbidity standard of 0.5 
McFarland. This experiment was performed different MMC 
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concentrations (1/2⨯, 1/4⨯, 1/8⨯ MICs) at 2 h. Treated and untreated 
cultures were extracted total RNA using Bioanalysis, DNA, RNA, protein 
purification Kit (Macherey-Nagel, Düren, Germany). 250 ng of total 
RNA from each sample were reverse transcribed to cDNA using Rever-
tAid H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scien-tific, 
Vilnius, Lithuania). qPCR was carried out in triplicate on each sample 
using Applied Biosystems™ Fast SYBR™ Green Master Mix (Thermo 
Fisher Scientific, Vilnius, Lithuania) in a StepOnePlus™ Real-Time PCR 
Systems (Thermo Fisher Scientific). Forward and reverse primers for 
recA, lexA, uvrB, uvrA, umuD and umuC were designed with an amplicon 
length of about 200 bp from NCBI Reference Sequence (accession 
number: NZ_BAFL01000032.1). The expression levels of target genes 
were normalized using the 16 S rRNA housekeeping genes as endoge-
nous controls (Supplementary appendix 2).22

3. Results

3.1. MIC results for various antibiotics and mitomycin C

Overall susceptibility rates exceeding 90 % under normal inoculum 
conditions (5 ⨯ 105 CFU/mL) were observed for AMK, GM, ATM, CTX, 
CPO, CIP, LVX, MIN, TGC, FOS, and MEM. However, susceptibility rates 
fell below 90 % for CZ, CMZ, CHL, DOX, and IPM (Table 1). Notably, 
only three antibiotics—CIP, LVX, and TGC—maintained susceptibility 
rates above 90 % under high inoculum conditions (5 ⨯ 107 CFU/mL). 
Additionally, differential susceptibility rates for Aeromonas hydrophila, 
A. caviae, and A. sobria were observed with AMK, CPO, and MEM 
(Supplementary Appendix 3).

3.2. Time-kill studies

The synergistic effects of MMC combined with antibiotics were 
investigated against eight Aeromonas hydrophila isolates with a high 
inoculum 5 ⨯ 107 CFU/mL. Broth microdilution methods were con-
ducted for 24 h using MMC at 1⨯, 1/2⨯, 1/4⨯, 1/8⨯, and 0⨯ MICs com-
bined with CIP, LVX, and TGC at similar MICs (Table 2). Significant 

synergistic effects were observed with MMC at 1⨯, 1/2⨯, and 1/4⨯ MICs 
combined with CIP at 1⨯ MIC (p < 0.001; Table 2A), and with MMC at 
1⨯, 1/2⨯, 1/4⨯, and 1/8⨯ MICs combined with LVX at 1⨯ MIC (p < 0.001; 
Table 2B). However, TGC exhibited a less effect with MMC (p < 0.001; 
Table 2C). Consequently, LVX was selected for further in vivo studies 
due to its superior synergistic performance with MMC.

3.3. Intracellular antibacterial activity of mitomycin C

Following a 24-h exposure to MMC at concentrations of 1⨯, 1/2⨯, 1/ 
4⨯, and 0⨯, the survival rates of RAW 264.7 cells were 87.6 %, 93.8 %, 
93.3 %, and 100 %, respectively, indicating a relatively low cytotoxicity 
associated with MMC.

The intracellular killing effects of MMC, LVX alone, and the combi-
nation of MMC and LVX against Aeromonas Aero01-243 are presented in 
Fig. 1. At 24 h, the combination of 1/2⨯ and 1/4⨯ MICs of MMC with 1/ 
2⨯ MIC of LVX resulted in no detectable Aeromonas Aero01-243 (P ≤
0.001), whereas 1/2⨯, 1/4⨯ MMC or 1/2⨯ LVX alone, as well as the 
control group, showed no inhibition, with bacterial counts exceeding log 
5. The combination of 1/2⨯ and 1/4⨯ MICs of MMC with 1/2⨯ MIC of 
LVX significantly reduced intracellular colony counts.

3.4. Animal study

Neutropenic mice were intramuscularly administered Aeromonas 
Aero01-243 at concentrations of 1.8 ⨯ 102, 1.8 ⨯ 103, 1.8 ⨯ 104, and 1.8 ⨯ 
105 CFU/mL (Fig. 2). The group with inoculum of 1.8 ⨯ 102 CFU/mL 
exhibited a 100 % survival rate (10/10) on day 1, 70 % (7/10) on day 2, 
60 % (6/10) on day 3, and 0 % (0/10) after day 4. The group inoculated 
with 1.8 ⨯ 103 CFU/mL exhibited a 100 % survival rate (10/10) on day 1, 
dropping to 0 % (0/10) after day 2. The 1.8 ⨯ 104 CFU/mL group 
exhibited a 0 % survival rate (0/10) on day 1. Remarkably, mice inoc-
ulated with 1.8 ⨯ 104 CFU/mL and treated with 2 mg/kg MMC main-
tained a 100 % survival rate (10/10) until day 7, whereas those with 1.8 
⨯ 105 CFU/mL treated with 2 mg/kg MMC exhibited a 30 % survival rate 
(3/10) on day 1 and 0 % (0/10) after day 2. The 1.8 ⨯ 104 CFU/mL group 
exhibited significantly higher survival rate compared to the other 
groups.

3.5. Synergy of mitomycin C with levofloxacin

In neutropenic mice, Aeromonas Aero01-243 was administered 
intramuscularly at 0.99 ⨯ 105 CFU/mL (Fig. 3 A) or 0.99 ⨯ 106 CFU/mL 
(Fig. 3 B), and treated with MMC, LVX, or a combination of both. At 0.99 
⨯ 105 CFU/mL, the control group exhibited a 0 % survival rate (0/10) by 
day 1, the MMC group declined to 0 % (0/10) by day 2, the LVX group 
exhibited 60 % (6/10) after day 4, and the combination group main-
tained 100 % survival rate (10/10) until day 7. At 0.99 ⨯ 106 CFU/mL, 
both the control and MMC groups had 0 % survival, while the LVX group 
had 0 % survival (0/10) after day 4, and the combination group main-
tained 100 % survival (10/10) until day 7. The combination of MMC and 
LVX demonstrated significant synergistic effects, achieving a 100 % 
survival rate at both bacterial concentrations, compared to 0 % survival 
with MMC alone and 60 % (at 0.99 ⨯ 105 CFU/mL) or 0 % (at 0.99 ⨯ 106 

CFU/mL) with LVX alone.

3.6. Efficacy of lower dosages of mitomycin C in combination with 
levofloxacin

Survival rates were assessed using a reduced dosage of MMC in 
combination with LVX against a higher inoculum (1.89 ⨯ 106 CFU/mL) 
of Aeromonas Aero01-243 (Fig. 4). On day 1, the control group showed 0 
% survival (0/10). The LVX group had 100 % survival (10/10) on day 1, 
20 % (2/10) on day 2, and 0 % (0/10) post day 3. The MMC group, 
combined with LVX, demonstrated survival rates of 20 % (2/10), 80 % 
(8/10), and 100 % (10/10) on day 7 at MMC doses of 0.5, 1, and 2 mg/ 

Table 1 
The minimum inhibitory concentrations (MICs) values were determined using 
broth microdilution for sixteen antimicrobial agents against 31 isolates of the 
Aeromonas species.

Normal inoculum High inoculum

MIC 
50, mg/ 

L

MIC 90, 

mg/L

susceptible MIC 50, 

mg/L

MIC 90, 

mg/L

susceptible

AMK 4 8 100 16 32 67.86
GM 1 2 96.42 4 8 71.43
ATM ≦0.03 0.25 100 1 16 85.71
CZ >128 >128 0 >128 >128 0
CMZ 16 >64 53.57 >64 >64 35.71
CTX 0.25 1 92.86 2 16 64.29
CPO 0.06 0.5 92.86 16 >32 39.29
CHL 1 4 89.29 2 8 89.29
CIP 0.12 0.5 96.42 0.25 1 92.86
LVX 0.12 0.25 100 0.25 0.5 100
DOX 4 8 71.43 8 16 25
MIN 2 4 100 4 8 75
TGC 1 2 100 1 2 96.42
FOS 4 16 100 16 64 89.29
MEM 0.12 1 96.42 32 >32 35.71
IPM 2 8 79.31 >64 >64 21.43
MMC 0.12 0.5 – 0.25 0.5 –

AMK, amikacin; GM, gentamicin; ATM, aztreonam; CZ, cefazolin; CMZ, cefme-
tazole; CTX, cefotaxime.
CPO, cefpirome; CHL, chloramphenicol; CIP, ciprofloxacin; LVX, levofloxacin; 
DOX, doxycycline; MIN.
Minocycline; TGC, tigecycline; FOS, fosfomycin; MEM, meropenem; IPM, imi-
penem; MMC, mitomycin C.
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kg, respectively.

3.7. Cell elongation induced by mitomycin C

Investigating the role of MMC, we examined MMC-induced SOS- 
related cell elongation. MMC treatment induced significant SOS-related 
cell elongation, with cell lengths measuring 7.23 ± 2.25 μm at 1/2⨯ 
MIC, 5.37 ± 2.30 μm at 1/4⨯ MIC, 3.99 ± 1.44 μm at 1/8⨯ MIC, 
compared to 1.06 ± 0.22 μm in the control group (mean ± SD). Cell 
counts were consistently lower in the MMC-treated groups than in 
controls (Fig. 5A). Significant increases in cell length were observed at 

1/2⨯ MIC versus 1/8⨯ MIC and control (p < 0.001), at 1/2⨯ MIC versus 
1/4⨯ MIC (p < 0.01), and at 1/4⨯ MIC versus 1/8⨯ MIC and control (p <
0.001), with 1/8⨯ MIC also showing significant elongation compared to 
control (p < 0.001) (Fig. 5B).

3.8. Modulation of SOS gene expression in response to mitomycin C 
therapy

The fold changes in gene expression at various concentrations are 

Table 2 
The 24- killing effect of the antibiotic combination on the 8 isolates of Aeromonas species with a high inoculum (5 ⨯ 107 CFU/mL) using broth methods with 1⨯, 1/2⨯, 1/ 
4⨯, 1/8⨯ and 0⨯ mitomycin C (MMC) in 1⨯, 1/2⨯, 1/4⨯, 1/8⨯ and 0⨯ minimum inhibitory concentrations (MICs) of ciprofloxacin (CIP) (A), levofloxacin (LVX) (B), and 
tigecycline (TGC) (C). Colony counts are shown as the log means ± standard deviations. P value was compared with that of each drug alone and no drug control. *: P <
0.05. **: P < 0.01. ***: P < 0.001.

A

24hr 1⨯ CIP 1/2⨯ CIP 1/4⨯ CIP 1/8⨯ CIP 0⨯ CIP

1⨯ MMC 0.83 ± 1.49 *** 3.14 ± 2.61 *** 6.46 ± 1.59 * 7.16 ± 0.81 7.51 ± 0.11
1/2⨯ MMC 2.24 ± 2.37 *** 5.00 ± 2.41 *** 7.14 ± 1.39 * 8.00 ± 0.40 8.11 ± 0.45
1/4⨯ MMC 3.70 ± 2.35 *** 5.68 ± 2.49 *** 7.78 ± 0.35 *** 8.14 ± 0.41 8.31 ± 0.35
1/8⨯ MMC 5.06 ± 2.45 ** 7.42 ± 0.57 *** 7.86 ± 0.37 *** 8.12 ± 0.41 8.36 ± 0.31
0⨯ MMC 7.18 ± 0.81 8.09 ± 0.39 8.40 ± 0.28 7.46 ± 2.91 8.59 ± 0.08

B

24hr 1⨯ LVX 1/2⨯ LVX 1/4⨯ LVX 1/8⨯ LVX 0⨯ LVX

1⨯ MMC 0.00 ± 0.00 *** 3.13 ± 2.25 *** 5.68 ± 2.40 * 5.87 ± 2.46 * 7.25 ± 0.43
1/2⨯ MMC 1.62 ± 1.69 *** 5.25 ± 2.25 *** 6.31 ± 2.50 * 7.45 ± 0.35 ** 7.86 ± 0.37
1/4⨯ MMC 3.09 ± 2.09 *** 6.46 ± 1.28 *** 7.51 ± 0.50 *** 7.90 ± 0.42 *** 8.45 ± 0.18
1/8⨯ MMC 3.83 ± 2.48 *** 7.43 ± 0.37 *** 8.15 ± 0.47 * 8.25 ± 0.47 8.57 ± 0.11
0⨯ MMC 6.31 ± 1.07 8.01 ± 0.45 8.34 ± 0.34 8.49 ± 0.27 8.68 ± 0.17

C

24hr 1⨯ TGC 1/2⨯ TGC 1/4⨯ TGC 1/8⨯ TGC 0⨯ TGC

1⨯ MMC 4.10 ± 2.67 *** 6.84 ± 0.81** 7.42 ± 0.56 7.69 ± 0.71 7.57 ± 0.51
1/2⨯ MMC 5.34 ± 2.36 ** 7.44 ± 0.70 ** 7.82 ± 0.41 7.90 ± 0.72 8.10 ± 0.46
1/4⨯ MMC 5.88 ± 2.49 * 7.89 ± 0.65 8.19 ± 0.46 8.09 ± 0.73 8.33 ± 0.40
1/8⨯ MMC 7.24 ± 0.71 8.17 ± 0.49 8.34 ± 0.46 8.25 ± 0.52 * 8.54 ± 0.16
0⨯ MMC 7.44 ± 0.59 8.27 ± 0.48 8.44 ± 0.34 8.63 ± 0.22 8.75 ± 0.16

Fig. 1. The intracellular killing effects of MMC, LVX against Aeromonas 
Aero01-243.

Fig. 2. Survival rates of neutropenic mice infected Aeromonas Aero01-243 at 
various inoculum size treated with MMC compared to the control group.
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Fig. 3. Survival rates in neutropenic mice infected with a clinical isolate of Aeromonas Acro 01-243 at a normal inoculum (0.99⨯105 CFU/mL) (Fig. 3 A) or high 
inoculum (0.99⨯106 CFU/mL) (Fig. 3 B) treated with MMC, levofloxacin or a combination of MMC and levofloxacin.
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shown in Fig. 6. For recA, lexA, uvrA, and umuD, fold changes at 1⨯, 1/2⨯, 
1/4⨯, and 1/8⨯ MIC of MMC demonstrated significant increases 
compared to the control. For umuC, fold changes at 1⨯, 1/2⨯, and 1/4⨯ 
MIC of MMC also showed significant upregulation compared to the 
control. These findings suggest that the MMC-induced SOS response 
regulates the expression of recA, lexA, uvrA, umuD, and umuC. The fold 
changes in gene expression at 1/2⨯ MIC of MMC in combination with 1/ 
2⨯ MIC of LVX is presented in Fig. 7. For recA, lexA, uvrA, uumuD, and 
umuC, fold changes at 1/2⨯ MIC of MMC, 1/2⨯ MIC of LVX alone, or 1/2⨯ 
MIC of MMC combined with 1/2⨯ MIC of LVX exhibited significant in-
creases in gene expression compared to the control. These results sug-
gest that the MMC and LVX combination induces an SOS response that 
regulates the expression of recA, lexA, uvrA, umuD, and umuC.

4. Discussion

We found a notably low MIC of MMC against Aeromonas species: 
MIC50/MIC90 values were 0.12/0.5 mg/L at a normal inoculum of 5 ⨯ 
105 CFU/mL and 0.25/0.5 mg/L at a high inoculum of 5 ⨯ 107 CFU/mL. 
The inoculum effect for MMC was less pronounced than for other anti-
biotics. However, only CIP, LVX, TGC, and MMC maintained suscepti-
bility rates above 90 % at the high inoculum. Therefore, we investigated 
synergistic effect of combining MMC with three antibiotics under high 
inoculum in a time-kill assay. The results showed significant synergy 
when using 1/8⨯ MIC of MMC with 1⨯ MIC of LVX compared to each 
drug alone and a no-drug control (p < 0.001).

Intracellular survival of Aeromonas within host macrophages is 
crucial in infection outcomes due to complex biochemical mecha-
nisms.23 Intracellular bacteria, shielded from high extracellular anti-
biotic levels, elevate drug resistance risk. Additionally, eukaryotic cell 
efflux pumps reduce intracellular antibiotic concentrations, diminishing 
efficacy against intracellular bacteria.24,25 LVX demonstrated a 
remarkable 300-fold reduction in intracellular bacterial load at clini-
cally relevant concentrations.26 Our study demonstrated that the com-
bination of 1/2⨯ and 1/4⨯ MICs of MMC with 1/2⨯ MIC of LVX resulted 
in no detectable Aeromonas Aero01-243 (P ≤ 0.001) in vitro. Conse-
quently, LVX was selected for further investigation in combination with 

MMC in an animal study.
In immunocompromised individuals, including those with condi-

tions like diabetes, cancer, liver cirrhosis, or HIV, Aeromonas infections 
pose a serious threat, especially bloodstream infections, which can have 
mortality rates as high as 68 %.27,28 Treatment with MMC at a lower 
initial bacterial load (1.8 ⨯ 104 CFU/mL) resulted in 100 % survival, 
contrasting starkly with the 0 % survival seen at a higher initial load (1.8 
⨯ 105 CFU/mL). While monotherapy with MMC is effective for mild 
infections at low bacterial levels, its efficacy diminishes as the bacterial 
load increases. Although MMC has a short plasma half-life of approxi-
mately 20 min29 mainly due to its rapid hepatic clearance, adverse ef-
fects such as bone marrow suppression, renal and hepatic toxicity have 
rarely occurred after chemotherapy with large doses of this drug for 
bladder and peritoneal carcinomas.30 Considering that most adverse 
effects of MMC, such as myelosuppression, nausea, vomiting, diarrhea, 
stomatitis, cognitive impairment, and alopecia, are dose-dependent. The 
selection of the 2 mg/kg MMC dosage in vivo was based on converting 
the clinically administered human dose (10 mg/m2) to the 
mouse-equivalent dose. In a neutropenic mouse model, we evaluated the 
synergy of combining MMC with LVX against high bacterial inoculums 
(1.89 ⨯ 106 CFU/mL) of Aeromonas Aero01-243. Mice receiving 2 mg/kg 
MMC with 20 mg/kg LVX exhibited a 100 % survival rate, compared to 
0 % for MMC or LVX alone, indicating significant clinical potential for 
MMC-antibiotic combinations. Further, adjusting MMC doses to 1 
mg/kg and 2 mg/kg with LVX yielded survival rates of 80 % and 100 %, 
respectively.

MMC induces DNA cross-links, activating the bacterial SOS response, 
which regulates DNA damage. A key feature of this response is cellular 
elongation, dependent on protein synthesis. This intricate pathway is 
tightly controlled by the lexA repressor and the recA activator.31,32 RecA 
triggers umuD autolytic cleavage, yielding umuD′, which then complexes 
with umuC to form umuD′2C (Polymerase V). Concurrently, uvrA gene 
repression is swiftly lifted post-DNA damage, crucial for excision repair. 
In contrast, umuDC expression occurs later during SOS induction.33

MMC-induced SOS response produce the lexA-regulated gene exhibit a 
role of inhibition of cell division.34 In our study, escalating doses of 
MMC significantly increased cell elongation and inhibited cell division, 
indicating an amplified SOS response, as evidenced by the upregulation 
of recA, lexA, uvrB, uvrA, umuD, and umuC. MMC monotherapy 
demonstrated a 0 % survival rate at high concentrations of 0.99 ⨯ 105 

CFU/mL and 0.99 ⨯ 106 CFU/mL, likely due to the induction of the SOS 
response by MMC.

A prior study demonstrated that a range of moxifloxacin concen-
trations induced recA expression, with a peak observed at 2⨯ MIC (0.25 
μg/mL), rather than at higher concentrations of 8⨯ or 32⨯ MIC.35

Another investigation reported that susceptibility to fluoroquinolones is 
influenced by the cellular concentration of active topoisomerase mole-
cules and the extent of SOS response induction.36 Notably, the 
enhancement observed with combination therapy did not exceed the 
effects of either drug used individually. As shown in Fig. 7, the data 
demonstrates that the level of recA activator during combination ther-
apy was lower than that observed with either drug administered alone. 
This suggests that the bacteria may undergo rapid cell death under 
combination therapy, curtailing the further expression of recA and lexA. 
Alternatively, excessive DNA damage might overwhelm the bacterial 
DNA repair mechanisms, rendering them ineffective.

5. Conclusion

Our study reveals MMC’s inhibitory effect on intracellular colony 
counts. Notably, in neutropenic mice, administering MMC and LVX 
together resulted in 100 % survival, even with reduced dosages, main-
taining an impressive 80 % survival rate. These findings strongly support 
the synergistic efficacy of MMC and LVX against Aeromonas species, 
observed both in vitro and in vivo. Combining MMC with antibiotics for 
the treatment of Aeromonas infections represents a promising 

Fig. 4. Survival rates in neutropenic mice infected with Aeromonas Aero01- 
243 at a higher inoculum (1.89⨯106 CFU/mL) with various doses of MMC in 
combination with levofloxacin.
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therapeutic strategy and may hold potential for future clinical 
applications.
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