
INTERNATIONAL JOURNAL OF 

MEDICAL BIOCHEMISTRY

Address for correspondence: Ferhat Demirci, MD. Department of Medical Biochemistry, University of Health Sciences, Tepecik Training 
and Research Hospital, Izmir, Türkiye
Phone: +90 541 571 61 26 E-mail: drdemirci05@gmail.com ORCID: 0000-0002-5999-3399 
Submitted: April 12, 2025 Accepted: June 01, 2025 Available Online: June 17, 2025
OPEN ACCESS  This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Machine learning-assisted prediction of positive urine 
cultures using urinalysis and hemogram data: 
A retrospective cohort study

Urinary tract infections (UTIs) are among the most prev-
alent bacterial infections encountered in clinical prac-

tice, particularly affecting women. They impose a significant 
burden on both individual health and healthcare systems 
worldwide. If left untreated or inadequately managed, UTIs 
can lead to serious complications, including kidney damage 
and sepsis, while also contributing to the rise in antimicrobial 
resistance (AMR) rates [1, 2].

The diagnosis of UTIs involves a combination of clinical eval-
uation, laboratory tests, and advanced diagnostic techniques. 
Patients commonly present with symptoms such as dysuria, in-
creased urinary frequency, urgency, and, in some cases, hema-
turia. Initial assessment typically includes microscopic urinal-
ysis and dipstick testing, which together constitute standard 
urinalysis (UA). Although widely used, microscopic urinalysis is 
time-consuming and prone to human error. When combined 
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with dipstick tests—specifically leucocyte esterase and nitrite 
assessments—diagnostic accuracy improves significantly [3, 4]. 

Despite the utility of these methods, urine culture remains the 
gold standard for UTI diagnosis. However, it requires a minimum 
turnaround time of 24 hours, and culture positivity is observed 
in only 50–80% of suspected UTI cases. This variability results 
from multiple factors, including symptom severity and dura-
tion, patient characteristics, sample quality, etiological diversi-
ty, and methodological differences in testing [5–7]. Additional-
ly, urine cultures are often unavailable in primary care settings 
and are typically limited to hospital microbiology laboratories. 
Consequently, empirical antibiotic therapy is frequently initi-
ated based on clinical presentation and urinalysis results, with 
treatment adjustments made following culture outcomes [8].

The emergence of artificial intelligence (AI) holds promise for 
enhancing diagnostic accuracy and efficiency, potentially re-
ducing delays in UTI diagnosis. While traditional diagnostic 
methods remain essential, the integration of AI could revolu-
tionize the field by delivering more rapid and precise results. 
Importantly, AI-based diagnostics should complement—not 
replace—standard laboratory approaches to ensure compre-
hensive patient care [9]. These models leverage parameters 
such as patient age, bacterial presence, and specific analytical 
markers to accurately classify negative samples, thereby op-
timizing laboratory workflows and potentially reducing diag-
nostic costs by up to €40,000 annually [10].

This study aims to apply machine learning algorithms to uri-
nalysis data in order to predict the necessity of urine culture 
testing. By doing so, we seek to minimize unnecessary culture 
requests and improve the accuracy of treatment decisions, 
ultimately contributing to more efficient and cost-effective 
management of UTIs.

Materials and Methods
Study population / subjects 
This study was conducted at Tepecik Education and Research 
Hospital. Patients who presented to this center and its affiliat-
ed hospital (AH) between January 1, 2023, and December 31, 
2023, and underwent first-time urinalysis (UA), urine culture, 
complete blood count (CBC), and C-reactive protein (CRP) 
testing were included. The baseline characteristics of the study 
population are presented in Table 1. Patients with incomplete 
test results, missing sub-parameters, or urine cultures identify-
ing non-bacterial agents were excluded from the study.

Urinalysis samples were analyzed using the Zybio Corpora-
tion U2610 (Chongqing, China), CBC samples with the Sysmex 
Corporation XN-1000 (Kobe, Japan), and CRP testing with the 
Beckman Coulter AU-5800 (California, USA). 

For urine culture, midstream samples were collected in sterile 
containers concurrently with urinalysis and processed follow-
ing standard microbiological procedures. Samples with no 
growth signal after 24 hours were incubated for an additional 
48 hours. If no growth was observed, the result was reported 

as “no growth.” All reagents and calibrators used were certified 
and obtained from their respective manufacturers. Quality 
control materials were sourced from Bio-Rad (California, USA).

Study design
Ethical approval was obtained from the Tepecik Training and 
Research Hospital Ethics Committee prior to study initiation 
(No: 2024/07-13, Date: 19/08/2024). This study was performed 
in accordance with the ethical standards set by the Declara-
tion of Helsinki. Patient identifiers were anonymized, and a 
dataset including age, sex, CRP, CBC, urinalysis, and urine cul-
ture results from 13,475 patients (12,085 from the main build-
ing and 1,390 from the affiliated hospital) was compiled using 
Microsoft Excel 2021 (USA).
After applying exclusion criteria, the final dataset included 
12,433 patients (11,189 from the main hospital and 1,244 from 
the affiliated hospital).
In dipstick testing, semi-quantitative parameters were encod-
ed as follows: ‘negative’=0, ‘trace’=0.5, and values 1, 2, or 3 
for increasing levels of positivity. Urine color and appearance 
variables were also recategorized by merging similar classes 
to enhance data standardization.
The cleaned dataset was randomly divided into training and 
testing sets using an 80:20 ratio with stratified sampling to 
preserve class distribution. An additional external test set was 
used to evaluate model generalizability. The subject flow is 
outlined in the Standards for Reporting Diagnostic Accuracy 
(STARD) diagram (Fig. 1).

Data preprocessing and training of machine learning 
algorithms
Patient results were first exported to Microsoft Excel for initial 
preprocessing. Cases with missing values were excluded. Urine 
cultures with bacterial growth exceeding 10,000 colony-form-
ing units/mL (CFU/mL) were classified as positive. Mixed flora, 
colonization, or growth below this threshold were labeled neg-
ative. Outcomes were binary coded: Negative (0), Positive (1).
Dipstick test results—such as glucose, protein, and nitrite—
were converted into binary values. The final dataset was 
analyzed in Python 3.10 using the H2O AutoML framework 
(version 3.46) [11]. AutoML was chosen due to its ability to au-
tomate complex processes such as feature engineering, mod-
el selection, and hyperparameter tuning—especially valuable 
when the user lacks deep data science expertise. Despite its 
growing relevance, AutoML has rarely been applied in clinical 
laboratory contexts [12]. 
Fifteen machine learning algorithms were evaluated (Appen-
dix 1). The model with the highest AUC (area under the curve) 
was selected. The final model was trained on the following 
variables:
• Demographic variables: Age, sex,
• Hematologic variables: WBC (white blood cells), neutro-

phil, lymphocyte, monocyte, eosinophil, basophil, hemo-
globin,
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Table 1. Characteristics of the study population (no analysis was performed for semi-quantitative tests)

Characteristics Units Central Hospital Affiliated Hospital Reference 
   (n=11189) (n=1244) interval 
   Mean±SD Mean±SD 

Age (years)  38.30±27.55 38.18±28.11 
 Male (min-max)  40.11±28.86 (0–99) 38.74±29.26 (0–95)
     Female (min-max)  37.27±26.72 (1–104) 27.85±27.42 (1–95)
Sex, n (%)    
 Male  4065 (36.3) 462 (37.1) 
 Female  7124 (63.7) 782 (62.9) 
WBC 103/µL 8.56±5.35 8.45±3.28 3.91–8.77
Neutrophil 103/µL 5.07±3.58 5.08±2.95 1.78–5.38
Lymphocyte 103/µL 2.56±3.68 2.46±1.34 0.85–3.0
Monocyte 103/µL 0.68±0.44 0.67±0.31 0.2–0.8
Eosinophil 103/µL 0.21±0.24 0.20±0.20 0.1–0.4 
Basophil 103/µL 0.04±0.06 0.04±0.04 0.02–0.1
Hemoglobin g/dL 12.23±1.89 12.19±1.86 11.9–15.4
Urine density --- 1018±0.007 1016±0.007 1010–1030
pH (urine) --- 5.96±0.77 5.99±0.77 5–9
Bacteria (urine) /HPF 39.89±152.94 39.15±150.01 0–5 
Leucocyte (urine) /HPF 48.79±230.56 51.41±257.35 0–4 
Yeast (urine) /HPF 0.47±7.53 0.47±4.61 0
C-reactive protein mg/L 10.42±40.57  8.40±33.88 0–5
Urine culture results Train (+/-) 6700/2003 (77/23%)  
  Test (+/-)  1913/573 (77/23%) 958/286 (77/23%) 

SD: Standard deviation; min: Minimum, max: Maximum; WBC: White blood cells; HPF: High power field.

Figure 1. The standards for reporting diagnostic accuracy diagram.
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• Urine dipstick variables: Appearance, urobilinogen, biliru-
bin, nitrite, ketone, leucocyte esterase, glucose, protein, pH, 
blood,

• Other urinalysis variables: Urine color, urine density, cylin-
der, mucus, 

• Flow cytometry variable: Bacteria count, leucocyte count, 
yeast count.

Following model training, performance evaluation was con-
ducted using the test dataset.

Performance evaluation
Scikit-learn, Pandas, NumPy, Shap, StatsModels, H20.automl 
and Matplotlib/Seaborn—among Python’s most robust li-
braries for machine learning and statistical analysis—were 
employed in this project. The modeling process underwent 
comprehensive evaluation, including hyperparameter tuning 
and model selection through internal cross-validation. Model 
performance was assessed using multiple evaluation metrics. 
The following criteria were used for classification:
1. Classification performance metrics

• Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC),

• Area Under the Precision-Recall Curve (AUC-PR),
• Confusion matrix analysis,
• Sensitivity, Specificity, Positive Predictive Value (PPV), 

and Negative Predictive Value (NPV), Positive Likeli-
hood Ratio (PLR), Negative Likelihood Ratio (NLR) F1 
score, odds ratio.

2. Model interpretability metrics
• Feature importance analysis,
• SHAP (Shapley Additive Explanations) graphs.

3. Validation results of the predictive models were analyzed 
to ensure a comprehensive assessment. This structured 
and multifaceted evaluation approach provides a robust 
framework for predicting treatment modality outcomes 
based on laboratory-derived data. The algorithm was fur-
ther validated using data from the affiliated hospital (ex-
ternal test set), which, while functioning as a distinct clini-
cal site, operates under the same institutional umbrella as 
the central hospital. This approach aligns with the IFCC rec-
ommendations for assessing model generalizability across 
internal institutional subpopulations [13]. 

Results
Dataset description and data pre-processing
The dataset used in this study included a total of 11.189 re-
cords, consisting of 8.703 entries in the training set, 2.486 in 
the internal test set, and an additional 1.244 records in the 
external set. All datasets contained urinalysis and hemogram 
parameters alongside demographic data, allowing for com-
prehensive baseline characterization.
Baseline demographic characteristics of the study popula-
tion are presented in Table 1. The mean age was 38.30±27.63 

years in the training set, 38.33±27.28 years in the internal test 
set, and similar in the external test set at 38.18±28.11 years 
(p>0.05). When stratified by sex, male participants were slight-
ly older than female participants within each subset (p>0.05).
Regarding sex distribution, males comprised 36.2% of the 
training set, 36.7% of the internal test set, and 37.1% of the 
external test set, while females made up 63.8%, 63.3%, and 
62.9%, respectively. These differences were not statistically 
significant (p=0.783), indicating a relatively balanced gender 
distribution across the subsets.
Descriptive statistics for hemogram and urinary biomarkers 
are presented in Table 1. Most variables showed no statisti-
cally significant differences between the Central and Affili-
ated Hospital datasets—including blood WBC, neutrophil, 
monocyte, eosinophil, basophil, hemoglobin, CRP, urine 
density, pH, bacteria count, urinary leucocytes, and yeast (all 
p>0.05). Although a statistically marginal difference in lym-
phocyte counts was observed (p=0.046), the magnitude of 
difference was too small to be clinically meaningful. Over-
all, this observed homogeneity across subsets supports the 
robustness and comparability of subsequent analyses and 
model validation.
The performance of H2O AutoML was comparatively evaluat-
ed based on predictive capabilities, classification metrics, and 
interpretability. Classification metrics such as F1 score, sensi-
tivity, specificity, and AUC-ROC were used to assess the mod-
els' ability to discriminate between classes.

Comparison of classification performance metrics
The H2O AutoML framework was employed to systematically 
explore a wide range of algorithms and hyperparameter con-
figurations. Among the candidate models generated, a Gradi-
ent Boosting Machine (GBM) emerged as the most performant, 
striking an optimal trade-off between discrimination and 
calibration metrics—specifically AUC-ROC and log loss. The 
selected model (ID: GBM_1_AutoML_12_20250410_211225) 
achieved an AUC-ROC of 0. 0.818 and a log loss of 0.399, in-
dicating both high classification accuracy and well-calibrated 
probabilistic outputs.
The performance metrics of the internal test set was summa-
rized in Tables 2 and Figure 2a–c. The model achieved balanced 
classification performance with a sensitivity and specificity of 
73.8%, and a high negative predictive value (NPV) of 90.4%, 
indicating strong reliability in ruling out negative cases. The 
positive predictive value (PPV) was 45.8%, and the resulting 
odds ratio of 7.95 further supported its overall discriminative 
capacity. Accuracy reached 73.8%, with an F1 score of 0.565, 
reflecting a moderate balance between precision and recall.
As visualized in Figure 2a, the model demonstrated an AUC-
ROC of 0.822 and an AUC-PR of 0.649, confirming strong dis-
criminative ability, particularly under class imbalance. The 
confusion matrix (Fig. 2c) further supports this consistent per-
formance, underscoring the model’s applicability in clinical 
diagnostic settings.
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External test set results of the models
In accordance with the International Federation of Clinical 
Chemistry and Laboratory Medicine (IFCC) recommenda-
tions, model validation was performed using data from the 
affiliated hospital to assess generalizability across institu-

tional subpopulations. The results, summarized in Table 2 
and Figure 2b, c, were consistent with the test sets, support-
ing the model’s robustness and external applicability. Sen-
sitivity and specificity were 73.8% and 73.5%, respectively, 
with a PPV of 45.3% and NPV of 90.4%, reflecting balanced 

Table 2. Performance metrics of internal test set and external test set

Set Sensitivity Specificity Positive Negative Positive Negative Odds Accuracy F1 
   predictive predictive likelihood likelihood ratio  score 
   value value ratio ratio   

Internal test set 0.738 0.738 0.458 0.904 2.819 0.355 7.948 0.738 0.565
External test set 0.738 0.735 0.453 0.904 2.783 0.357 7.798 0.736 0.562

Figure 2. Performance outputs for our model. (a) AUC-ROC and AUC-PR graph for internal test 
set. (b) AUC-ROC and AUC-PR graph for external test set. (c) Confusion matrixes for internal and 
external test sets.
AUC: Area under the curve; ROC: Receiver operating characteristic; PR: Precision-recall.

a

b

c
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classification and reliable identification of negative cases. 
The odds ratio (7.80), accuracy (73.6%), and F1 score (0.562) 
reinforced overall diagnostic utility.

As shown in Figure 2b, the model achieved an AUC-ROC of 
0.824 and an AUC-PR of 0.674, slightly outperforming the test 
set and confirming its strong discriminative power. The con-
fusion matrix (Fig. 2c) reflected similar prediction patterns, 
underscoring the model’s consistency, generalizability, and 
clinical relevance within real-world healthcare settings.

Interpretability and threshold-based diagnostic perfor-
mance of key variables 
SHAP value analysis in Figure 3 highlights the most influential 
features driving the model's predictions. Urinary leucocyte 
(URIN_LEU) levels and bacterial count ranked highest, with 

elevated values strongly associated with increased likelihood 
of a positive classification—consistent with their well-estab-
lished clinical importance in urinary tract infections. Age and 
nitrite also demonstrated substantial impact, particularly at 
higher levels. Moderate contributions were observed for sex, 
WBC, hemoglobin, and lymphocyte count, indicating context-
specific influence on prediction.
Features such as urine pH, CRP, basophil, and sediment pa-
rameters had lower SHAP importance, though they may hold 
relevance in certain clinical subgroups. The distinct SHAP dis-
tributions reinforce the model’s interpretability and alignment 
with biological plausibility.
Complementing SHAP analysis, Table 3 compares ROC-
based and model-based diagnostic metrics for key infec-
tion-related variables commonly referenced in clinical 

Figure 3. SHAP plot of our model.
SHAP: Shapley additive explanations.
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practice. Urinary leucocytes (URIN_LEU) demonstrated high 
ROC-based specificity (0.906) and PPV (0.781), alongside a 
strong model-based NPV (0.863), confirming its value in rul-
ing out infection.
Leucocyte esterase (URIN_LEU_CAL), a point-of-care proxy 
for white blood cells, achieved robust standalone diagnostic 
performance (ROC sensitivity 0.688, specificity 0.804) and re-
tained value in the model (NPV 0.877). Similarly, urinary bac-
teria showed high specificity (0.882) and consistent predictive 
power across both methods.
Although nitrite yielded an exceptionally high PPV (0.979) 
with ROC thresholds, its low sensitivity (0.198) and modest 
model contribution suggest it should be interpreted along-
side complementary features. Age demonstrated moderate 
discriminative performance but provided consistent support 
across methods.
Together, these findings emphasize that routinely used clin-
ical biomarkers—especially leucocyte esterase and urinary 
leucocytes—retain both individual and integrative predictive 
value within threshold-based and machine learning-driven di-
agnostic frameworks.

Discussion
This study evaluated the usability of machine learning mod-
els based on urinalysis in predicting the necessity of urine 
culture and classifying potential positive cases. The findings 
align with the literature supporting the clinical use poten-
tial of AI-based approaches in diagnosing urinary tract in-
fections (UTIs).
Although symptomatology was not available in the dataset, 
the classification approach using ≥10⁴ CFU/mL as the 
threshold for positive urine cultures proved effective in the 
context of microbiological diagnostics. Notably, the model 
demonstrated strong performance in differentiating cases 
based on laboratory parameters alone. The high predic-
tive contribution of urinary bacterial count suggests that 
the model could successfully identify patterns indicative of 
asymptomatic bacteriuria, catheter-associated infections, 
and uncomplicated cystitis. This outcome implies that even 
in the absence of clinical symptoms, machine learning algo-

rithms can leverage routine urinalysis to support diagnostic 
differentiation across varied patient subgroups.

AI-based urinalysis risk scores have been shown to acceler-
ate and improve diagnostic accuracy by predicting the need 
for culture testing, thereby reducing unnecessary diagnostics 
[14]. Integrating highly specific predictive models into clini-
cal practice may help rationalize empirical antibiotic use and 
support more targeted treatment strategies [15]. By assess-
ing key parameters such as leucocyte esterase, nitrite, and 
bacterial count, these systems offer significant cost savings 
for healthcare systems [16]. Future integration into clinical 
decision support systems is expected to enhance diagnostic 
workflows, improve patient safety, and contribute to infec-
tion control and the fight against antibiotic resistance. Re-
cently, machine learning algorithms—particularly logistic re-
gression, support vector machines, random forests, and deep 
learning—have shown promise in early UTI diagnosis by im-
proving accuracy and reducing false positives, thus limiting 
unnecessary antibiotic use [3, 6, 7, 10]. The class imbalance 
observed in the dataset—characterized by a predominance 
of negative urine cultures—is a common feature in clini-
cal laboratory data. To address this, stratified sampling was 
employed to ensure balanced class representation across all 
data splits. Furthermore, the use of H2O AutoML provided au-
tomated internal handling of imbalance-related challenges 
and hyperparameter optimization, supporting reliable model 
calibration without the need for external resampling tech-
niques. This workflow reflects real-world diagnostic settings 
and contributes to the model’s practical applicability. These 
attributes collectively make H2O AutoML an ideal framework 
for addressing the complexities of clinical laboratory data.

However, traditional studies have also reported significant 
findings on the diagnostic accuracy of urinalysis and microbi-
ological tests. Price et al. [5] demonstrated that 30% of urine 
culture-positive patients were initially misdiagnosed as neg-
ative using dipstick tests. Similarly, Williams et all.'s [6] meta-
analysis found that rapid urine tests had a sensitivity of 53–
65% and a specificity of 85–90%.

In our study, CRP testing did not emerge as one of the most 
valuable features. It is well known that CRP levels do not typi-

Table 3. Diagnostic metrics of key biomarkers

Variable ROC Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV 
 cut-off (ROC) (ROC) (ROC) (ROC) (model) (model) (model) (model)

Leucocyte count 12 0.561 0.906 0.781 0.776 0.563 0.819 0.482 0.863
(URIN_LEU) 
Bacteria count 12 0.469 0.882 0.703 0.736 0.552 0.841 0.510 0.863
Leucocyte esterase 1 0.688 0.804 0.677 0.812 0.668 0.706 0.404 0.877
(URIN_LEU_CAL) 
Nitrite 1 0.198 0.997 0.979 0.676 0.266 0.981 0.809 0.817
Age 57 0.535 0.784 0.57 0.739 0.528 0.722 0.362 0.837

ROC: Receiver operating characteristic; PPV: Positive predictive value; NPV: Negative predictive value.
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cally rise in lower urinary tract infections due to the absence of 
a systemic inflammatory response [17]. Since patients in this 
study were not grouped based on symptoms or diagnosis, this 
phenomenon could not be explicitly explained.

Comparison of model performance with traditional methods
The best-performing model, GBM_1_Au-
toML_12_20250410_211225, demonstrated strong predic-
tive performance on the test sets, with a sensitivity of 73.8%, 
specificity of 73.8%, positive predictive value (PPV) of 45.8%, 
negative predictive value (NPV) of 90.4%, positive likelihood 
ratio (PLR) of 2.82, negative likelihood ratio (NLR) of 0.36, an 
F1 score of 56.5%, and accuracy of 73.8%. The sensitivity of our 
model was lower compared to Heytens et al.'s [18] PCR-based 
analysis (70%).

In traditional studies, urinalysis-based diagnostic tests are of-
ten compared to urine cultures. Hooton et al. [19] reported 
that standard urinalysis in female patients had a sensitivity 
of 50–60% and specificity of 80–90%. Huysal et al. [20] found 
that routine laboratory tests had a sensitivity of 47% and spec-
ificity of 91.1%. Gupta et al. [21] indicated that dipstick tests 
were sufficient in terms of specificity for UTI diagnosis but had 
lower sensitivity (45–55%). These findings suggest that our 
model exhibits similar sensitivity to traditional methods but 
slightly lower performs them in specificity.

The reasons for these differences include the structural char-
acteristics of the dataset used, variations in the patient popu-
lation, and different preprocessing steps. Additionally, while 
traditional methods primarily employ univariate analyses, our 
model is based on multivariate analyses, which may result in 
higher sensitivity but lower specificity.

Comparison with other machine learning models
When compared with other machine learning models, Li 
et al.'s [22] machine learning-based models exhibited AUC-
ROC values ranging from 0.68 to 0.97, sensitivity between 
63–90%, and specificity between 69–86% [22]. The study 
by Burton et al. [23] in different patient groups reported an 
AUC-ROC value of 0.90, sensitivity ranging from 70–90.7%, 
specificity between 52–89%, accuracy of 63–85%, PPV of 
40–71%, and NPV of 90–97%.
Seheult et al. [24] conducted studies using decision tree 
algorithms in different age groups, reporting an AUC-ROC 
range of 0.79–0.48, with an average sensitivity of 82.4%, 
specificity between 52–89%, accuracy of 65.8%, PPV of 
46.3%, and NPV of 91.3%. 
Flores et al. [25] developed a model combining neural net-
works and random forest algorithms, achieving an AUC-ROC 
of 0.81–85, sensitivity of 78–87%, specificity of 83%, accuracy 
of 80–85%, PPV of 86–83%, NPV of 74–87%, PLR of 4.6–5.07, 
and NLR of 0.26–0.16. Yen et al. [26] found the AUC-ROC value 
to be 0.83, sensitivity 88%, specificity 59%, accuracy 69.1%, F1 
Score 65.2% in their study to identify high-risk patients with 
urinary tract infections that may cause critical outcomes in 

the emergency department. These studies had similar perfor-
mance metric rates to our study.

While the model demonstrated high negative predictive value 
(NPV≈90%), which supports its utility as a rule-out tool, the rel-
atively modest positive predictive value (PPV≈45%) indicates 
that a substantial number of predicted positive cases may not 
correspond to true infections. This imbalance raises important 
clinical considerations, particularly in the context of antibiotic 
stewardship and avoiding unnecessary interventions. Howev-
er, we would like to emphasize that, from a patient safety per-
spective, missing a true infection (undertreatment) is clinically 
more critical than administering antibiotics unnecessarily. The 
potential financial and antimicrobial burden associated with 
overtreatment may be considered an acceptable trade-off 
when weighed against the risk of clinical deterioration due to 
untreated urinary tract infections.
Given the model’s relatively modest positive predictive value 
(PPV≈45%) and moderate F1 score, its primary clinical utili-
ty may currently lie in ruling out infections rather than con-
firming them. The high negative predictive value (NPV≈90%) 
supports its role as a screening tool to exclude unnecessary 
culture testing in low-risk cases. Therefore, the model may 
be more effective as a "rule-out" aid in diagnostic workflows, 
helping reduce the burden of unwarranted laboratory proce-
dures and antibiotic prescriptions until further improvements 
increase its confirmatory strength.
This trade-off between high NPV and lower PPV is common 
in diagnostic screening tools and reflects the real-world 
prevalence and distribution of urinary tract infections. Fu-
ture improvements—such as threshold tuning, inclusion of 
symptom-based variables, or integration of additional inflam-
matory or microbiological markers—may enhance PPV with-
out significantly compromising sensitivity, thereby expanding 
the model’s practical applicability in clinical decision-making.
The model's interpretability, as assessed through SHAP 
analysis, revealed strong alignment with clinical intuition. 
Key variables such as urinary leucocytes, leucocyte ester-
ase, and bacteria—which are already central to UTI diag-
nosis—emerged as the top contributors to prediction out-
comes. Importantly, these features not only performed well 
in data-driven ML ranking but also retained their diagnostic 
strength under traditional ROC-based threshold analysis. This 
convergence highlights the potential of interpreting ML tools 
to bridge conventional clinical reasoning with algorithmic 
decision-making. The marginal performance of nitrite—de-
spite high PPV but low sensitivity—further illustrates the val-
ue of multivariate modeling, where limitations of individual 
biomarkers can be mitigated by their collective interactions. 
These findings underscore the feasibility of using ML not just 
for black-box prediction, but as a transparent, clinically syn-
ergistic tool to enhance diagnostic efficiency in routine care.
Although urinalysis parameters are traditionally the primary 
focus in urinary tract infection diagnostics, this study also in-
corporated hemogram data to evaluate its additive predictive 
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value. Variables such as white blood cell count, lymphocyte per-
centage, and hemoglobin contributed moderately to the mod-
el’s predictions according to SHAP analysis. While these param-
eters did not emerge as top-ranking features, their inclusion 
slightly improved the model’s performance and may reflect 
systemic inflammatory responses in certain patient subgroups.
Notably, hemogram data are rarely emphasized in prior ma-
chine learning models for UTI detection. Our findings sug-
gest that, although not dominant predictors, hematologic 
variables offer supplementary information that can enhance 
model robustness, particularly when urinalysis results are 
borderline or ambiguous. This reinforces the potential role of 
composite laboratory data in improving infection risk stratifi-
cation through interpretable AI.
In studies conducted in recent years, AUC-ROC range, PPV/
NPV, PLR/NLR balance were generally observed similar to our 
study. In contrast to this, although there are studies similar to 
the sensitivity/specificity balance in our study, there are stud-
ies that declare the opposite of these values. The main reasons 
for these differences include the variable selection of different 
machine learning models, hyperparameter optimization strat-
egies, and the scope of the dataset used to train the model. 
Some studies included more clinical variables, while our study 
used only specific biomarkers. Furthermore, while some stud-
ies turn to deep learning methods, our model is based on tra-
ditional machine learning algorithms.

Limitations
This study has several limitations. First, as a retrospective anal-
ysis, the model’s performance may vary across demographic 
subgroups and disease severity levels. Notably, females ex-
hibited higher urine culture positivity rates than males across 
all subsets, as shown in Appendix 2, suggesting the need for 
future sex-stratified performance evaluations. Secondly, only 
urinalysis and basic hematologic data were used; clinical his-
tory, symptoms, and additional biomarkers were not included. 
Incorporating such features may improve model accuracy and 
applicability. Lastly, the integration of machine learning mod-
els into real-time clinical decision support systems and evalua-
tion of their clinical impact remain essential future steps.

Conclusion
Our study shows that machine learning-based models can 
be effective in the early diagnosis of urinary tract infections. 
Although the sensitivity of our model is lower compared to 
some studies, its specificity is quite high. This suggests that 
the model can prevent unnecessary antibiotic use by reduc-
ing false positives. Future studies should test the model in dif-
ferent patient groups, add symptomatic data and validate it 
in real-time clinical applications. The recommendations of the 
IFCC working group on the application of artificial intelligence 
in laboratory medicine also suggest cautious application of 
these technologies in a clinical context. In this context, addi-
tional studies are needed to improve the usability of machine 
learning models in the hospital setting.
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Appendix 2

Dataset-sex Negative (n) Positive (n) Negative (%) Positive (%)

Train set-male 2571.0 582.0 81.54 18.46
Train set-female 4129.0 1421.0 74.40 25.60
Internal test set-male 736.0 176.0 80.70 19.30
Internal test set-female 1177.0 397.0 74.78 25.22
External test set-male 374.0 88.0 80.95 19.05
Externa test set-female 584.0 198.0 74.68 25.32

Urine culture distribution by sex and dataset.

Appendix 1

 Model_id  AUC Logloss

1 GBM_1_AutoML_12_20250410_211225 0.818256 0.398633
2 GBM_5_AutoML_12_20250410_211225 0.816776 0.400571
3 GBM_2_AutoML_12_20250410_211225 0.816195 0.402202
4 XGBoost_grid_1_AutoML_12_20250410_211225_model_1 0.815258 0.400285
5 GBM_grid_1_AutoML_12_20250410_211225_model_1 0.811711 0.402868
6 GBM_3_AutoML_12_20250410_211225 0.809752 0.407616
7 DRF_1_AutoML_12_20250410_211225 0.809508 0.442237
8 XGBoost_3_AutoML_12_20250410_211225 0.808496 0.471458
9 XGBoost_grid_1_AutoML_12_20250410_211225_model_2 0.807497 0.409993
10 GBM_4_AutoML_12_20250410_211225 0.807266 0.415546
11 XGBoost_grid_1_AutoML_12_20250410_211225_model_3 0.805151 0.414008
12 GBM_grid_1_AutoML_12_20250410_211225_model_2 0.804209 0.419474
13 XRT_1_AutoML_12_20250410_211225 0.800781 0.445000
14 XGBoost_1_AutoML_12_20250410_211225 0.794679 0.475173
15 DeepLearning_grid_1_AutoML_12_20250410_211225_... 0.794134 0.434181

H2O AutoML models and performance metrics. AUC: Area under the curve.


