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ةيبرعلاةكلمملايفةجرحلاةياعرلابطيفيعانطصلااءاكذلامادختساربتعي
فادهأنمةاقستسملايدوعسلايحصلالوحتلاتاردابموفادهأنمةيدوعسلا

،يحصلاعاطقلالوحتجمانربنمءزجك.2030ةيدوعسلاةيبرعلاةكلمملاةيؤر
ريسنيسحتو،ىضرملاجئاتننيسحتىلإيعانطصلااءاكذلاتاينقتجمدفدهي
تاقيبطتلالمشت.ةزكرملاةيانعلاتادحولةيليغشتلاةءافكلانيسحتو،لمعلا
روهدتلانعركبملافشكللةيؤبنتلاتلايلحتلاو،يللآايريرسلاقيثوتلاةيسيئرلا
ةعشلأاةءارقلثم،يعانطصلااءاكذلاةدعاسمبريوصتلاتاينقتو،يريرسلا
نمءابطلأاتاراكتبلااهذهمعدتلا.ةيتوصلاقوفتاجوملاوردصللةينيسلا

تقولايفلخدتلانماضيأمهنكمتلب،بسحفمهيلعيرادلإاءبعلاليلقتللاخ
متي،كلذىلإةفاضلإاب.دراوملاةدودحملمعلاتائيبيفاميسلابسانملا
ءاكذلابةموعدملادعبُنعةزكرملاةيانعلاةدحوةدايقزكارمفاشكتسا
قطانمعيمجىلإةجرحلاةياعرلاةربخقاطنعيسوتلةليسوكيعانطصلاا
يقلي.ةصصختملاةياعرلاىلإلداعلالوصولازيزعتوةيدوعسلاةيبرعلاةكلمملا

ةدحوتايلمعليكشتةداعلإيعانطصلااءاكذلاتاناكمإىلعءوضلاثحبلااذه
ةيبرعلاةكلمملاةيؤرمعدو،رارقلاعنصةيلمعزيزعتو،ةزكرملاةيانعلا
.ايجولونكتلاىلعمئاقمدقتمةيحصةياعرماظنلةيدوعسلا
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Abstract

This narrative review explores the integration of artificial

intelligence (AI) within critical care settings in KSA in

alignment with the goals outlined in Saudi Vision 2030.

As part of the Health Sector Transformation Program,

the incorporation of AI technologies aims to enhance

patient outcomes, optimize workflows, and improve the

operational efficiency of intensive care units (ICUs). Key

applications include automated clinical documentation,

predictive analytics for early detection of clinical deteri-

oration, and AI-assisted imaging techniques, such as

chest X-ray and ultrasound interpretation. These in-

novations can support clinicians by reducing their

administrative burden as well as enabling timely in-

terventions, particularly in resource-constrained envi-

ronments. In addition, AI-powered tele-ICU command

centers are explored to extend critical care expertise to

underserved regions and enhance equitable access to

specialized care. This review was conducted using a

structured narrative approach by synthesizing peer-

reviewed literature, national policy documents, and

expert perspectives from ICU physicians in KSA, Can-

ada, and other international settings.
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Introduction

Saudi Vision 2030 outlines a transformative framework

aimed at enhancing quality of life, driving economic diver-
sification, and advancing national development. A key pillar
of this vision is the modernization of KSA’s healthcare sector

to ensure equitable, efficient, and high-quality medical ser-
vices for its population of over 33 million people. The Health
Sector Transformation Program, one of the Vision Realiza-

tion Programs, is central to these efforts, emphasizing the
integration of digital health solutions, artificial intelligence
(AI), and data-driven decision making to improve healthcare
accessibility and clinical outcomes.1

KSA has already made major strides in digital health
innovation through platforms such as Seha Virtual Hospital,
Sehhaty, and Mawid. Seha, launched in 2022, connects over

220 hospitals and has become the world’s largest virtual
hospital, offering remote consultations and subspecialty
services at scale.2 Sehhaty and Mawid support appointment

scheduling, virtual triage, and access to test results,
expanding the reach of healthcare beyond traditional
hospital infrastructure.3

Despite these achievements in general healthcare access,
critical care medicine presents unique challenges that demand
targeted innovation. Intensive care units (ICUs) are among
the most complex and resource-intensive environments in

modern healthcare, requiring continuous monitoring, rapid
interventions, and highly specialized medical expertise to
manage critically ill patients.4 These environments generate

massive streams of real-time data ranging from vital signs
and ventilator settings to laboratory trends and imaging re-
sults, which must be rapidly synthesized to guide clinical de-

cisions. Manually interpreting these data in real time imposes
significant cognitive and operational demands on clinicians,
contributing to potential delays in recognizing deterioration
and increasing the risk of adverse outcomes.5e7 This cognitive

overload has been linked to increased error rates, burnout,
and reduced responsiveness to early warning signs.6,7

AI-driven technologies provide promising solutions to

these ICU-specific demands.4,8 AI tools enable automated
real-time data integration, predictive analytics, and clinical
decision support to assist overburdened teams in managing

complex ICU workflows. Applications include imaging
interpretation through convolutional neural networks; pre-
dictive modeling for sepsis, acute respiratory distress syn-

drome (ARDS), and cardiac arrest; remote monitoring, and
tele-ICU platforms to expand access and workflow automa-
tion for tasks such as documentation and staff allocation.9e13

As part of its healthcare transformation, KSA has

implemented the Saudi Model of Care (MOC) as a frame-
work designed to enhance patient-centered care across all
healthcare levels.14 A key priority of MOC is strengthening

emergency and critical care services, ensuring that life-
threatening conditions are identified and managed
efficiently.15
AI-driven systems further optimize ICU operations by
automating real-time patient monitoring, reducing clinician

workloads, and ensuring continuous high-quality care, partic-
ularly in high-demand ICU settings.16 In addition, AI-powered
tele-ICU capabilities can extend critical care expertise to rural

hospitals andunderstaffedmedical centers, improvingaccess to
specialist consultations.17 AI also enhances ICU resource
management by automating documentation and optimizing

the allocation of staff, equipment, and ICU beds.18

Moreover, AI plays an essential role in early warning
systems, detecting conditions such as sepsis, ARDS, and
cardiac arrest before severe clinical deterioration occurs,

enabling timely medical intervention.11,19,20

Given KSA’s robust digital infrastructure and ongoing
investment in AI-driven healthcare applications, the country

is well positioned to lead the integration of AI in ICU set-
tings.21 To position KSA as a pioneer in implementing AI
across ICUs, further research, validation, and refinement

are needed to maximize its transformative potential. This
narrative review explores how AI can address the unique
challenges of critical care medicine, with a specific focus on
its applications in ICU workflow automation, remote

monitoring, predictive modeling, and imaging diagnostics.22

Materials and Methods

This narrative review was based on a targeted search of
peer-reviewed literature and policy documents published

between 2017 and 2025. Sources were identified using
PubMed, Scopus, and Google Scholar with keywords such as
“AI,” “ICU,” “critical care,” “machine learning,” and
“KSA.” Government publications, including Vision 2030

and Ministry of Health reports, were included to align with
national healthcare priorities. Relevant articles were selected
based on clinical applicability to ICU settings, with expert

input from practicing intensivists in KSA and Canada to
guide topic selection and ensure clinical relevance.

Intersection of the Saudi health transformation and AI in

critical care

Revolutionizing ICU workflow and clinical documentation

AI-powered clinical documentation and decision support

Maintaining detailed clinical documentation is one of
the most time-consuming aspects of ICU care, and it often

diverts the attention of clinicians from direct patient man-
agement.13,23 AI-driven natural language processing tools
have the potential to address this challenge by automating

real-time transcription and structuring of clinical notes,
thereby reducing the administrative burden and improving
the accuracy of documentation.13,23 AI-enabled documen-

tation systems can integrate seamlessly with electronic
health record platforms, minimizing manual data entry and
allowing clinicians to focus on critical decision making and
patient care.13 By streamlining record keeping and

optimizing information retrieval, AI-powered documenta-
tion has the potential to improve the ICU workflow effi-
ciency, ensuring that patient data are both accessible and

actionable.13,18,23

http://creativecommons.org/licenses/by-nc-nd/4.0/
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AI-enhanced ICU command centers and remote monitoring

KSA’s investment in smart hospitals and digital health

solutions presents an opportunity to establish AI-driven ICU
command centers, consolidating real-time patient data into a
single, interpretable dashboard.2 These AI-powered systems

could assist in ventilator management, medication titration,
and fluid balance optimization, ensuring evidence-based de-
cision making in real time.8,16 These systems have the
potential to extend expert ICU support to hospitals with

limited intensivist availability by integrating remote
monitoring capabilities within centralized platforms. AI
algorithms can analyze trends, detect deviations from

baseline physiological parameters, and issue early alerts of
physiological instability, assisting clinicians in making
timely, evidence-based treatment adjustments.10,17,24 By

leveraging predictive analytics, these command centers
could also anticipate workflow bottlenecks, optimize staff
workload distribution, and enhance resource allocation.
Based on this approach, AI has the potential to support a

more proactive and scalable model of ICU care.

Early detection and prediction of clinical deterioration

AI-driven early warning systems and predictive models

AI-powered early warning systems have been demon-

strated to detect subtle physiological changes that precede
clinical deterioration by continuously analyzing real-time
data, such as vital signs, laboratory trends, and ventilator
settings.9,11,12,25,26 Several validated models, such as

DeepSOFA (deep learning), InSight (logistic regression and
random forest), and eCART (ensemble-based), exemplify
how AI is being operationalized in ICU prediction tasks.19

These tools have exhibited superior performance compared
with traditional scoring systems such as SOFA or
APACHE in predicting outcomes such as mortality, septic

shock, and ICU transfer.6,7,11,12,27 Machine learning
models can further enhance precision medicine by
dynamically updating risk estimates as patient conditions

evolve,10,14,28,29 thereby supporting the judgments of
clinicians by improving situational awareness and enabling
more data-informed decisions.18

In resource-constrained ICU settings, early and accurate

disease prognostication is critical for guiding clinical de-
cisions. AI has the potential to support healthcare providers
in making timely decisions regarding supportive care, do-

not-resuscitate orders, and even withdrawal of care within
hours of ICU admission. In particular, the Early Mortality
Prediction for Intensive Care Unit Patients Random Forest

model has exhibited superior performance in predicting
mortality compared with standard scoring systems, where
the area under the receiver operating characteristic (AUC)
curve indicated higher accuracy. This model can provide

reliable mortality predictions within the first 6 h of ICU
admission, offering an opportunity for earlier, more
informed discussions about patient care.27 Importantly, the

use of these predictive models is best framed as a
supplement to clinician expertise, particularly when
navigating ethically challenging decisions.22
Advancements in imaging and diagnostics

AI-assisted chest X-ray interpretation

Chest radiography is a cornerstone of diagnostic evalua-
tion in critically ill patients, but timely interpretation can be
challenging in high-volume ICUs.30 Deep learning models,

particularly convolutional neural networks (CNNs), have
demonstrated promising performance in automating chest
X-ray interpretation. Tools such as CheXNet, trained on

the NIH ChestX-ray14 data set (containing over 112,000
images), have achieved AUC values of 0.96 for pneumonia
and comparable performance to radiologists in detecting
pneumothorax and pulmonary edema.10 By expediting

image interpretation and prioritizing abnormal findings for
clinician review, AI can reduce reporting delays and ensure
timely treatment, particularly in resource-constrained ICUs

where radiologists are not readily available.30,31

AI-assisted lung ultrasound

Point-of-care ultrasound is essential for real-time pul-
monary assessment in ICU patients. AI has been leveraged to

enhance lung ultrasound interpretation, including detecting
pneumothorax by identifying lung sliding. In one study, a
CNN-based model obtained over 90% sensitivity and spec-

ificity in distinguishing the presence or absence of lung
sliding using annotated ultrasound clips.32 AI also supports
the quantification and classification of B-lines, ultrasound
artifacts indicative of interstitial fluid, enabling clinicians to

more accurately assess pulmonary edema. Furthermore,
models can differentiate between pleural effusions and
consolidations, informing fluid management and drainage

decisions.33

Cardiac ultrasound and echocardiography

AI-driven echocardiography has emerged as a valuable
tool for bedside cardiac evaluation in unstable ICU patients.

Deep learning algorithms can automatically estimate left
ventricular ejection fraction (LVEF), evaluate diastolic
function, and detect pericardial effusions, reducing the need

for formal echocardiography in urgent settings. For
example, the EchoNet-Dynamic model obtains strong cor-
relations with expert measurements of LVEF (Pearson’s
r ¼ 0.92) and can generate beat-to-beat predictions,

improving the accuracy of hemodynamic monitoring.34

These technologies can assist frontline clinicians with
limited echocardiography training by providing automated

interpretations that improve diagnostic confidence.35

AI-guided procedures

In addition to diagnostics, AI is being applied to pro-
cedural guidance in the ICU. Real-time ultrasound guid-

ance powered by AI can improve the safety and accuracy
of central venous catheter insertion, thoracentesis, and
paracentesis. By detecting key anatomical landmarks and

offering visual overlays, AI reduces the reliance on oper-
ator expertise and minimizes complications. Preliminary
studies suggest that AI-guided vascular access systems can
reduce needle passes and the procedural time, although
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further validation is needed before their widespread
adoption.36,37

Abdominal ultrasound

Abdominal ultrasound is frequently employed in ICU
trauma assessments and abdominal sepsis workups. AI tools
are being developed to identify free intraperitoneal fluid38 and

assess bowel motility, particularly in patients with suspected
ileus or mesenteric ischemia. Although still in the early
stages, models trained on labeled ultrasound data sets have

obtained high accuracy in identifying fluid pockets and
peristalsis patterns, which may expedite diagnosis and guide
interventions such as laparotomy or bowel rest protocols.39

Limitations and implementation challenges

There are considerable potential applications of AI in the

ICU but several important limitations and implementation
challenges must be addressed to ensure safe and effective
deployment. One major concern is the risk of over-reliance

on algorithmic outputs without appropriate clinical over-
sight, which may lead to misinterpretation or suboptimal
decision making, particularly when models are used outside
their validated context.40 Even when accuracy metrics are

high in research settings, real-world performance can vary
depending on patient complexity, data quality, and workflow
integration.41 In addition, operator training is critical,

especially for tools such as AI-assisted ultrasound, where
successful implementation depends on the clinician’s ability
to acquire technically sound images.40 Without this

foundation, even advanced models may yield inaccurate
results or add to the clinician burden. Moreover, most AI
systems have been trained using data from Western, high-
income healthcare settings, raising questions about their

generalizability across diverse populations.42 To address this
issue, local validation studies will be essential in the Saudi
context. Finally, integration with hospital infrastructure,

including electronic medical records and picture archiving
and communication systems, remains a key barrier.41

National initiatives such as Seha Virtual Hospital provide

a strong digital backbone but further investment in
interoperability, standardized implementation, and
governance frameworks will be necessary to support the

scalable use of AI in critical care.43

Conclusion and recommendations

The integration of AI into intensive care represents a
transformative opportunity for KSA as it advances toward
the goals of Vision 2030.1 This review summarizes the

possible applications of AI in critical care, including early
detection of clinical deterioration,20,25,26,28 automation of
documentation,13,23 advanced imaging interpretation,26e35

and remote monitoring through tele-ICU systems.17,28,29

These technologies have already proved valuable in
improving workflow efficiency,16 enabling earlier clinical
interventions,19 and supporting equitable access to

specialized care.17 Thus, they align with national priorities
to improve quality, efficiency, and equity in healthcare
delivery.
Despite these potential applications, several imple-
mentation challenges remain. Many AI models have been

developed mainly using data from Western settings, which
may limit their accuracy in KSA’s diverse clinical environ-
ments.42 Risks such as algorithmic bias, lack of transparency,

overreliance on AI recommendations, and data privacy
concerns must be managed through rigorous validation,
ethical oversight, and clear regulatory guidance.43

Technical challenges also persist, including integration with
electronic medical records and imaging systems, as well as
the need for consistent data standards.41 At the clinical
level, many healthcare professionals may lack the training

to use AI tools confidently or interpret their outputs
appropriately.40

To support safe and scalable implementation, national

strategies should emphasize the need for structured and in-
clusive deployment supported by strong governance. AI
models should be validated using local patient data to ensure

relevance and reliability. Policies must promote interopera-
bility and seamless integration into clinical systems, while
also safeguarding privacy and security. Equally important is
investment in clinician education. Clearly, ICU physicians,

nurses, and allied staff must be equipped with the skills to use
AI tools safely and effectively, and their feedback should
guide how these technologies are adapted for the local

context. Further research will be essential to guide respon-
sible scaling. In particular, prospective clinical studies, real-
world evaluations, and post-implementation audits are

needed to assess the performance of AI in local ICUs and
build an appropriate evidence base to support continued
adoption.

KSA is well positioned to become a global leader in the
application of AI in critical care due to its strong digital
infrastructure, growing investment in innovation, and
commitment to healthcare transformation. By focusing on

locally informed, ethically sound, and clinician-led imple-
mentation, AI can be used to enhance patient care as well as
to build a more proactive, efficient, and equitable critical care

system across the Kingdom.
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