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Towards a predicted anti-aging molecular targets of 
asiaticoside based on bioinformatics analysis

Skin, the outermost and largest organ, serves as a protec-
tive layer for underlying tissue from microbial infection 

and contributes as an essential barrier against environmental 
damage [1–5]. The human skin is the first organ that exhibits 
obvious signs of aging, undergoing progressive changes in 
both morphology and physiology with age [6]. Awareness 
about skin aging has expanded lately as society becomes 
more conscious of beauty. Thus, numerous studies on the fac-
tors and strategies to slow skin aging have gained popularity 
in cosmetic medicine nowadays [7]. The global facial rejuvena-
tion market is predicted to elevate significantly from $24.6 bil-

lion to approximately $44.5 billion by 2030 due to the increase 
in aging populations. Thus, technological innovations have 
greatly improved public interest in beauty and skin health, 
and attempts to delay skin aging are growing rapidly [8].
Skin aging refers to a natural, multifaceted, and complicated 
biological degenerative process [6, 7, 9, 10]. Three skin lay-
ers—epidermis, dermis, and subcutaneous—experience 
degenerative alterations due to aging, with dermal changes 
being the most obvious [11]. Skin aging is identified by fea-
tures including skin laxity, wrinkles, elasticity loss, and a 
rough-looking texture [10]. Its aging process is accelerated by 
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a combination of endogenous and exogenous factors more 
than in any other body organ [6, 12, 13]. The endogenous 
factors are characterized by a reduced ability to regenerate, 
decreased stratum corneum permeability, epidermal atrophy 
that mostly affects the stratum spinosum, as well as a reduc-
tion in fibroblast and collagen levels in the dermis [5, 12]. Col-
lagen is a protein that provides tensile strength, firmness, and 
elasticity and supports skin integrity [14]. Exogenous factors, 
mainly resulting from exposure to ultraviolet (UV) rays, lead to 
progressive skin damage and play a role in the aging process 
known as photoaging [5, 15–17]. Chronic UV exposure on hu-
man skin activates the expression of matrix metalloproteases 
(MMPs), impacting collagen and elastin fibers in the dermis 
and ultimately resulting in solar elastosis. Both endogenous 
and exogenous factors decrease collagen, the primary factor 
associated with aging skin, which encourages extracellular 
matrix (ECM) degradation, skin laxity, deep wrinkle formation, 
and hyperpigmentation [10, 16, 18]. The skin aging process 
increases dryness, dullness, coarseness, sagging, and loss of 
elasticity due to a decrease in skin surface hydration [19, 20].
The utilization of biologically active compounds continues to 
be a rising trend in the 21st century, marked by the growth of 
the global natural cosmetics market [21]. Biologically active 
compounds with pharmaceutical properties, often referred to 
as cosmeceuticals, represent the latest advancement in beauty 
care products aimed at reducing wrinkles [22]. There are abun-
dant botanical products that have been clinically proven to 
prevent the skin aging process. Among them, Centella asiat-
ica contains natural products such as asiaticoside, madecas-
soside, asiatic acid, and madecassic acid [10, 23]. Asiaticoside 
and madecassoside are the two major terpenoid glycosides 
that have demonstrated anti-skin-aging effects [24, 25].
Asiaticoside (AS) (Fig. 1a) is a major pentacyclic triterpene glyco-
side (saponin) with similar sugar chains (Glu-Glu-Rha) bonded to 
its carboxyl groups [10, 26, 27]. Asiaticoside (AS) is synthesized 
through glycosylation followed by a rhamnosylation reaction 
of asiatic acid, catalyzed by UDP-glucosyltransferases (UGTs), 
which initially attach a glucose molecule to the carboxyl group 
at C-28 [27]. It increased normal human skin cell migration, ad-
hesion, and proliferation [28]. In addition, AS, an active main 
secondary metabolite in Centella asiatica, induces anti-aging 
properties by promoting collagen levels and encouraging the 
growth of normal dermal fibroblasts [29–31]. Nevertheless, it is 
commonly used for cosmetic purposes in topical applications 
[32]. Previous studies have proven that AS possesses anti-aging 
properties by inducing collagen synthesis in dermal fibroblasts 
via the activation of TGF-β signaling pathways [33]. However, 
the precise mechanisms by which it interferes with skin aging 
at the molecular level remain uncertain. Since asiaticoside and 
madecassoside are major biomarkers of triterpenoid glycosides 
in Centella asiatica [34, 10], this study further analyzed both 
compound combinations for skin anti-aging.
This investigation outlined a molecular pathway related to 
bioinformatics assessments of AS’s effects on skin aging. Over 
the past few years, bioinformatics analysis has been widely 

used for generating diverse datasets that analyze protein and 
gene expression levels, identifying various genes involved in 
pathways associated with skin aging [20]. Furthermore, bioin-
formatics assists in determining the molecular mechanisms un-
derlying specific clinical alterations rapidly and precisely [7]. As 
a result, 10 top genes were ranked as the most influential genes 
using three network scoring methods: MCC (Maximal Clique 
Centrality), DMNC (Density of Maximum Neighborhood Com-
ponent), and MNC (Maximum Neighborhood Component). Th-
ese algorithms measure centrality by predicting and exploring 
the distance from the direct neighborhood of a vertex [20, 35].
This study employs molecular docking and simulation ap-
proaches for protein-ligand interactions to facilitate the dis-
covery of innovative skin aging treatments. Thus, AS interacts 
with key molecular pathways associated with skin aging, which 
can be computationally predicted and validated by molecular 
docking and bioinformatics tools. Asiaticoside, by acting on 
MMP-2/9, plays a crucial role in the degradation of the extra-
cellular matrix, making it a promising agent for skin rejuvena-
tion. Furthermore, the combination of asiaticoside and made-
cassoside targeted metabolic enzymes such as CYP and UGT to 
protect the skin aging process from environmental oxidative 
stress. In conclusion, our research has outlined how asiatico-
side targets various molecular pathways such as interleukins, 
growth regulators, metabolic enzymes, and matrix metallo-
proteinases, all of which are involved in inhibiting skin aging 
activities. Furthermore, this prediction of molecular pathways 
should be further verified by in vitro and in vivo experiments.

Materials and Methods
Data mining and collection
Key proteins and genes involved in the skin aging mechanism 
were retrieved from public biomedical databases, including 
PubMed (www.ncbi.nlm.nih.gov), OMIM (www.omim.org), and 
GeneCards (www.genecards.org), as a preliminary step in the 
analysis. The targets of asiaticoside, encompassing both direct 
and indirect influences on these biomolecules, were identified 
via www.stitch.embl.de. An interactive Venn diagram tool (www.
interactivenn.net) was applied to identify the specific proteins 
and genes influenced by asiaticoside in relation to skin aging [36].

Construction of protein interaction networks and gene 
clustering
The construction of a protein-protein interaction (PPI) network 
and gene clustering involved mapping the dynamic, complex 
interactions among multiple proteins. Direct and indirect 
protein interactions were extracted using STRING-DB v11.5 
(https://string-db.org), forming the basis of the interaction 
network. Subsequently, gene analysis was performed with Cy-
toscape 3.10.1 (https://cytoscape.org/), a platform designed 
to visualize molecular interaction networks effectively [20].

Analysis of hub gene expression levels
The study employed MNC and Degree algorithms from the 
CytoHubba plugin to identify the top 10 genes with the 
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highest correlation within the PPI network. These genes, 
identified as hub genes, are closely associated with skin ag-
ing. The bioinformatics analysis was conducted on a system 
equipped with an 11th Gen Intel Core i3-1115G4 processor at 
3.00 GHz and 8 GB of RAM.

Molecular docking
The structures IL1B (6Y8I), MMP9 (1GKC), and CYP3A5 
(7LAD) were sourced from the RCSB Protein Data Bank 
(www.rcsb.org), and the ligand preparation was carried 
out using BIOVIA Discovery Studio 2021. The study utilized 
the native ligand as a control, followed by re-docking us-
ing AS. The ligand was protonated with Gasteiger charges, 

while Kollman charges were assigned to the macromolecule 
using AutoDockTools 1.5.7. The AS compounds were ob-
tained from PubChem (https://pubchem.ncbi.nlm.nih.gov). 
Molecular docking employed a genetic algorithm with 100 
GA runs. For the 6Y8I complex, the ligand was positioned at 
coordinates x=7.425, y=25.105, z=7.064, and for the 1GKC 
complex at x=65.607, y=31.083, z=117.697, using a grid box 
size of 40×40×40 and a spacing of 0.375 Å. The complexes 
were visualized in 3D and superimposed post-docking us-
ing BIOVIA Discovery Studio 2021. Docking accuracy was 
evaluated by calculating the RMSD value, which was 2.0 Å. 
The results of docking were applied to predict binding ener-
gies and protein-ligand interactions.

Figure 1. Asiaticoside’s top target proteins and genes related to skin aging. (a) Asiaticoside’s structure, (b) venn diagram of asiaticoside (AS) 
and skin aging (SA) interfered genes, (c) protein-protein interaction (PPI) network of the intersecting genes.
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Results
AS (Fig. 1a) is a saponin glycoside with sugar molecules (glu-
cose-glucose-rhamnose) that are attached to the triterpene 
group [37]. Using the specified screening criteria, two data 
sets were generated through the Venn diagram tool. A total 
of 19,608 genes involved in the skin aging process were com-
pared with 68 genes that interacted with AS. Venn diagram 
analysis identified 86 genes associated with asiaticoside that 
are linked to skin aging (Fig. 1b). The PPI network showed that 
86 gene targets of AS interact with each other to produce two 
major interconnected networks (Fig. 1c). Since asiaticoside 
coexists with madecassoside in plant extract, we further con-
ducted bioinformatics and molecular docking analysis of both 
compounds in the skin aging process.

Madecassoside (MS) is a triterpenoid saponin (Appendix 1a), 
which has been studied for its anti-inflammatory and wound-
healing properties [10]. AS, in combination with MS, targets 
21 genes related to the skin aging process, all of which are 
metabolic enzymes such as cytochrome P450 (CYP), arachi-
donate 5-lipoxygenase (ALOX5), UDP-glucuronosyltrans-
ferases (UGTs), cytochrome P450 oxidoreductase (POR), and 
peptidylprolyl isomerase G (PPIG) (Appendix 1b, c). Further-
more, the MCC, DMNC, and MNC methodologies quantify 
gene interactions based on interaction degree, with each 
approach identifying the highest-ranking genes within the 

top 10 results of the analysis. The ranks, shown in Figure 2, 
sequence the genes most affected by AS that contribute to 
skin aging. There was only one independent cluster based 
on each algorithm. The genes targeted by AS with the high-
est scores based on the MCC algorithm are CYP2E1 and 
CYP2C9 (Fig. 2a). Meanwhile, based on the DMNC algorithm: 
UGT1A7, UGT1A6, UGT1A4, and CYP3A5 were identified (Fig. 
2b), and based on the MNC algorithm, there are IL-1β, JUN, 
and TGF-β1 (Fig. 2c). The biological functions of the genes 
related to skin aging, based on MNC data, are presented and 
analyzed in Table 1. When combined with MS, the top tar-
get genes based on MCC, DMNC, and MNC are subclasses of 
CYPs (CYP3A5, CYP1A2) (Appendix 2).
Molecular docking studies were conducted to predict the 
potential binding of AS, and further studies were carried out 
to investigate the relationship between anti-aging-related 
genes and AS. We selected IL-1B and MMP-9 as target genes 
for molecular docking with AS. MMP-9 and AS showed eight 
H-bonds to Pro421, His401, His411, Leu397, Leu418, Glu402, 
Leu188, and Ala189 (Fig. 3). UGTs are seen to have multiple 
hydrophobic bonds with Leu110 at IL-1B and Leu188, Val398, 
and Tyr423 at MMP9. In this process, AS showed lower binding 
energy at MMP-9, which is –8.16 kcal/mol, compared to –5.57 
kcal/mol at IL-1B (Table 2), where AS has Van der Waals inter-
actions with Asp12, Asn108, and Lys109 on IL-1B, as well as 
with Phe110, Ala191, His190, His405, Tyr420, Met422, Leu187, 

Figure 2. The clustering of the top 10 genes of AS related to skin aging according to MCC (a), 
DMNC (b), and MNC algorithm (c) in CytoHubba.
AS: Asiaticoside; MCC: Maximal clique centrality; DMNC: Density of maximum neighborhood component; MNC: 
Maximum neighborhood component.
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Tyr393, and Gly186 on MMP9 (Fig. 3). This study is consid-
ered valid based on the calculation of RMSD control, where 
the value for IL1B was 1.74 Å and for MMP9 was 1.65 Å. These 
results allow the specific binding of AS to MMP9, where the 
genes play important roles in the anti-aging pathway.

Furthermore, we conducted molecular docking of AS and 
MS to CYP3A5 as one of the possible molecular targets 
based on MCC, DMNC, and MNC algorithms. AS indicated a 
lower binding energy of –11.82 kcal/mol than MS to CYP3A5 
(–10.43 kcal/mol). AS has Van der Waals interactions with 
Leu108, Ser107, Leu120, Phe220, Gly306, Thr309, Thr310, 
Val313, Phe367, Pro368, Ala447, Met451, and Leu481. It 
also formed hydrogen bonds with Arg106, Phe213, Val369, 
and Glu374. On the other hand, MS interacts with CYP3A5 
through hydrogen bonding at Arg106, Ser107, Gly109, 
Ala305, Thr309, Glu308, Phe304, and Phe434. It binds con-

siderably to Arg105, Leu108, Ser119, Leu120, Phe210, 
Ile303, Gly306, Tyr307, Val369, Ala370, Arg372, Leu373, 
Glu374, Arg375, Pro433, Arg439, Asn440, Cys441, Gly435, 
and Leu481 through Van der Waals interactions (Appendix 
3, 4). These findings are validated by confirming the binding 
energy of clobetasol propionate as the control, with a bind-
ing energy value of 8.11 kcal/mol.

Through a literature review, this study predicted the molecular 
cascade pathway illustrated in Figure 4. TGF-β1 (Transforming 
Growth Factor-β1), VEGFA (Vascular Endothelial Growth Fac-
tor A), EGF (Epidermal Growth Factor), and CCL-2 (Chemokine 
(C-C motif ) ligand 2) bind to their respective receptors, trig-
gering a molecular cascade within the cytoplasm. This cas-
cade eventually leads to the phosphorylation of MMP-2/9 in 
the ECM, resulting in collagen degradation. AS is predicted to 
interact with certain molecules, inhibiting skin aging.

Table 1. Top 10 proteins network interaction ranked by MNC algorithm

No

1

2

3

4

5

6

7

8

9

10

Gene 
symbol

IL-1β

JUN

TGF-β1

CCL-2

MMP-9

STAT-3

MAPK-3

CXCL-8

MMP-2

KDR

Gene/protein 
name/abbreviation

Interleukin 1β

c-Jun

Transforming 
Growth Factor β1

Chemokine (C-C 
motif ) ligand 2

Matrix 
metalloproteinase 9

Signal Transducer 
and Activator of 
Transcription 3
Mitogen-Activated 
Protein Kinase 3

Chemokine (C-X-C 
motif ) ligand 8
Matrix 
Metalloproteinase 2

Kinase insert 
Domain Receptor

Reference

[70–74]

[39, 45]

[50, 54, 58]

[75–77]

[18, 44, 52, 78–81]

[66, 73, 76, 82]

[15, 17]

[67, 77, 83, 84]

[18, 42, 52, 78–81]

[46, 85, 86]

Biological function related to skin aging

IL-1β is an inflammatory mediator that is induced by main mediators 
in the inflammatory responses (CCL-2), activating signaling activities 
of STAT-3. The maturation and release of IL-1β is regulated by an 
inflammatory signaling platform called inflammasome.
Activated by ERK pathways. Combines with c-Fos to form the 
transcription factor AP-1 which stimulates MMP-2/9 transcription. 
Increased MMP transcription accelerates the degradation of collagen.
TGF-β1 is a one of TGF-β isoform that induced Smad 2 and Smad 3 
phosphorylation which function as a transcriptional activator to induced 
MMP-2/ 9 transcription.
Also known as monocyte chemotactic/chemoattractant protein 1 
(MCP). CCL-2 is an inflammatory chemokine secreted by macrophage 
that induces activation to promote inflammation after binding to its 
ligand CCR-2. CCL-2 activates a series of downstream signals such as JAK 
which then activates phosphorylation STAT 3/5 which then activates 
phosphorylation IL-1β/CXCL-8.
MMP-9 is known as gelatinase B. The expression of MMP-9 is stimulated 
by AP-1 and produced by keratinocytes. MMP-9 can degrade gelatin 
types I and V, collagen types IV and V, fibronectin in dermal fibroblast cells 
located in the ECM thereby stimulating skin aging.
Activated by CCL-2 which then lead to upregulation expression of MMP-
2/9. The STAT-3 pathway is activated in response to several cytokines, 
including IL-1β and CXCL-8.
Also known as extracellular signal-regulated kinases (ERKs), it is present 
in the cytoplasm and translocated into the nucleus. MAPK-3 (JNK, ERK, 
and p38) transfers extracellular signals to the nucleus, thereby activating 
transcription factors and inducing AP-1 as a downstream activator of 
MAPK, which then induced and regulates the transcription of MMP 2/9.
Also known as IL-8, activated by CCL-2 signaling pathway which then 
activates the phosphorylation of JAKs and STAT3.
MMP-2 is known as gelatinase A. The expression of MMP-2 is stimulated 
by AP-1 and produced by keratinocytes. MMP-2 can degrade gelatin type 
I, collagen types IV, V, VII, X in dermal fibroblast cells located in the ECM 
thereby stimulating skin aging.
Also referred to as VEGFR-2, VEGF receptor is bound by VEGF-A, activating 
downstream pathways like MAPK1/3, which then regulates transcription 
factors AP-1 (c-Jun, c-Fos).

MNC: Maximum neighborhood component.
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Discussion
This study is the first to explore AS's impact on molecular path-
ways associated with skin aging, examining upstream and 
downstream elements within these routes (Fig. 4). The gene 
targets obtained in this study differed from previous bioinfor-
matics studies of AS in skin aging due to the use of different 
databases such as PharmMapper, SwissTargetPrediction, CTD, 
and BATMAN, as well as analysis tools. While Huang and col-
leagues' study demonstrated that AS targeted apoptosis and 
inflammation-related signaling pathways [38], our findings 
suggest that AS targeted both inflammation-related signaling 
pathways and ECM degradation enzymes.

Skin aging is a complex biological phenomenon linked to the 
increased expression of genes that contribute to ECM break-
down [11, 39]. Comprising an adaptable, three-dimensional 
network of macromolecules, the ECM provides both biochem-
ical and structural support to neighboring cells, while its spe-
cialized biochemical and biomechanical properties regulate 
key physiological activities such as cell growth, migration, and 
homeostasis [40, 41]. One of the cell types that secrete com-
ponents in the ECM is glycoproteins, which contain proteogly-
cans, collagen, fibronectin, elastin, and laminins [42].

As the predominant structural protein within the extracellular 
matrix, collagen is present in substantial quantities and is sus-
ceptible to degradation, which then triggers the downregula-
tion of the ECM [43]. Collagen degradation is primarily driven 
by extrinsic factors, particularly UV radiation [11, 14, 41, 44, 
45]. However, even in the absence of sunlight exposure, aging 
leads to a decline in collagen production, attributed to genet-
ically regulated apoptosis, mitochondrial dysfunction, and di-
minished antioxidant defense mechanisms [46]. These factors 
lead to an upregulation of enzymes that break down the ECM 
[14, 41]. This is due to differences in MMP concentrations and 
the four protease inhibitors, known as tissue inhibitors of ma-
trix metalloproteinases (TIMPs), that modulate MMP activity 
[47]. Specifically, MMP expression increases, while the expres-
sion of TIMPs decreases [6, 48]. MMPs represent an extensive 
group of zinc-dependent endopeptidases capable of breaking 
down ECM proteins [11, 14, 45, 49, 50]. Among them, MMP-2 
and MMP-9 are key ECM enzymes essential for ECM degrada-
tion, a process driven by endopeptidase activity [11, 40, 48, 51].
The activation of MMPs is triggered by various factors such as 
TGF-β, VEGF, and epidermal growth factor (EGF) [52]. EGF binds 
to its receptor (EGFR) on the cell surface and then combines 
with the Src homology 2 (SH2) domain of the growth-factor-

Figure 3. The binding poses of AS in  IL1B and MMP-9 binding pocket in 2D and 3D view. Yellow, 
red, and white indicated carbon, oxygen, and hydrogen atoms. Yellow, blue, and green indicated 
hydrophobic bond, hydrogen bond, van der waals interaction.
IL1B: Interleukin 1β; MMP: Matrix metalloproteinase; AS: Asiaticoside.
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receptor-binding protein 2 (GRB2). Simultaneously, GRB2 binds 
to the ornithine conversion factor, Son of Sevenless (SoS), pro-
moting the activation of the Rat Sarcoma Virus (RAS) protein, 
a small GTPase. Upon activation, RAS recruits and activates 

downstream RAF (Rapidly Accelerated Fibrosarcoma) kinases 
[52, 53]. Subsequently, the activated RAF phosphorylates and 
triggers mitogen-activated protein kinase kinase (MAPKK) 
signaling [46]. Activated MAPKK phosphorylates mitogen-ac-

Figure 4. Predicted molecular cascade of AS in skin aging.
IL-1β: Interleukin 1β; JUN: c-Jun; TGF-β1: Transforming growth factor β1; CCL-2: Chemokine (C-C motif ) ligand 2; 
MMP-9: Matrix metalloproteinase 9; STAT-3: Signal transducer and activator of transcription 3; MAPK-3: Mitogen-
activated protein kinase 3; CXCL-8: Chemokine (C-X-C motif ) ligand 8; MMP-2: Matrix metalloproteinase 2; KDR: 
Kinase insert domain receptor; AS: Asiaticoside.

Table 2. Molecular docking of asiaticoside with IL-1β (6Y8I) and MMP-9 (1GKC)

Target Binding energy H-bond residues Hydrophobic Van der Waals 
protein (kcal/mol)  residues residues

IL-1β -5.57 Phe150, Met148, Arg11, Leu110 Asp12, Asn108, Lys109 
  Lys103, Thr147, Gln15, Gln149
MMP-9 -8.16 Pro421, His401, His411, Leu397,  Val398, Tyr423 Phe110, Ala191, His190, His405, Tyr420, 
  Leu418, Glu402, Leu188, Ala189  Met422, Leu187, Tyr393, Gly186

IL-1β: Interleukin 1β; MMP-9: Matrix metalloproteinase 9; Phe: Phenylalanine; Met: Methionine; Arg: Arginine; Lys: Lysine; Gln: Glutamine; Leu: Leucine; Asp: Aspartatic acid; Asn: 
Asparagine; Pro: Proline; His: Histidine; Glu: Glutamic acid; Val: Valine; Tyr: Tyrosine.
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tivated protein kinases (MAPKs), such as MAPK-1/3, which sub-
sequently phosphorylate the JNK, ERK, and p38 signaling path-
ways [41, 54]. This leads to the phosphorylation of the AP-1 
complex (c-Fos and c-Jun), which translocates into the nucleus 
to directly regulate MMP-2/9 expression within the extracellular 
matrix (ECM) network [5, 39, 41, 44]. AP-1 indirectly suppresses 
collagen biosynthesis and promotes collagen degradation 
through multiple mechanisms. It alters the balance between 
MMPs and TIMPs, favoring MMP dominance. When MMPs pre-
vail over TIMPs, collagen and other fibrillar structures undergo 
degradation [48]. RAS downstream signaling pathways are also 
activated by VEGFA binding to its receptor, KDR [55].
Meanwhile, TGF-β1, TGF-β2, and TGF-β3, the three isoforms of 
the transforming growth factor (TGF-β) subfamily, play distinct 
roles in various biological processes [56]. TGF-β plays a cru-
cial role in regulating ECM synthesis and managing collagen 
breakdown through activation of the Smad signaling path-
way [11]. TGF-β1 modulates the expression of several MMPs, 
including MMP-2 and MMP-9, contributing to extracellular 
matrix remodeling. TGF-β1 increases the activation of MMP-
2/9 via phosphorylation of the transcription factors Smad-2/3 
(canonical Smad signaling) facilitated by its receptors (TGF-
βR1 and TGF-βR2), which assemble into homodimeric and 
heterodimeric complexes essential for signaling [48, 54, 57]. 
Smad-2/3 then complexes with Smad4 and translocates to the 
nucleus, inducing the expression of MMP-2/9 [50, 54, 58].
The upregulation of MMP-2/9 is further initiated by the activa-
tion of CCL-2 (MCP-1) [59–62]. CCL-2 plays a critical role in driv-
ing disease progression by enabling the attraction of immune 
cells like monocytes and macrophages to inflammatory sites, 
thereby enhancing immune cell infiltration and contributing to 
fibrotic tissue remodeling [62, 63]. Upon binding to its recep-
tor, C-C motif chemokine receptor 2 (CCR-2), CCL-2 activates 
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) 
and JAK/STAT pathways [62]. The PI3K/Akt pathway triggers 
NF-κB, which then moves into the cell nucleus to begin gene 
transcription, leading to the expression of factors like interleuk-
in-1β (IL-1β) and chemokine (C-X-C motif ) ligand 8 (CXCL-8), 
ultimately resulting in the production and release of these cy-
tokines [41, 52, 59, 63–65]. CCL-2/CCR-2 signaling also activates 
the JAK/STAT pathway through the stimulation of Janus kinase 
2 (JAK-2), which subsequently triggers downstream signaling 
cascades, including the activation of STAT3/5. This ultimately 
regulates the transcriptional activation of MMP-2/9, thereby 
exacerbating the detrimental effects on the skin [64, 66, 67].
Additionally, earlier research has shown that AS reduces TGF-β1 
expression by decreasing its mRNA synthesis [10, 29]. Beyond 
its anti-fibrotic actions, AS also possesses potent anti-inflam-
matory effects by blocking IL-1β production, further support-
ing its potential therapeutic role in skin aging and fibrosis [68]. 
In Figure 4, AS has been shown to inhibit several key molecular 
targets, including MMP-2/9, CXCL-8, KDR, c-Jun, CCL-2, STAT3, 
and MAPK3, demonstrating its potential therapeutic role in 
mitigating skin damage and fibrosis by modulating both up-
stream and downstream components of these pathways.

Since AS and MS are terpenoid saponins, AS often coexists 
with MS in plant extract. Both of them inhibit metabolic en-
zymes related to skin aging, mainly CYPs and UGTs. During the 
aging process, oxidative stress contributes to the propagation 
of ROS and reduces enzymatic protection [69]. CYP subclasses 
are expressed in different skin layers and are responsible for 
several vitamin metabolisms, including retinoid acid, which 
contributes to skin aging. One of CYP's AS and MS targets is 
CYP3A5, which is primarily expressed in the basal layer of the 
skin epidermis [10]. To date, the findings of this study have ini-
tiated further research to confirm in vitro and in vivo skin aging 
experiments with the help of network pharmacology analysis 
through bioinformatics and molecular docking.

Conclusion
Based on bioinformatics analysis, asiaticoside (AS) has been iden-
tified to target a wide range of key proteins involved in skin aging. 
These proteins function collaboratively within various molecular 
pathways, enhancing the therapeutic potential of AS in combat-
ing extracellular matrix (ECM) degradation and inflammation. AS 
modulates both upstream and downstream signaling mecha-
nisms, including those involving MMP-2/9, TGF-β1, IL-1β, CXCL-8, 
KDR, c-Jun, CCL-2, STAT3, and MAPK3, to inhibit processes that 
contribute to skin aging. These findings provide crucial founda-
tional data for further investigation into AS’s in vitro and in vivo 
activities. AS’s ability to regulate multiple molecular targets posi-
tions it as a promising candidate for anti-aging therapy. Further 
exploration of its clinical efficacy is warranted.
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