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A B S T R A C T

Phytochemicals, have long been studied for various severe metabolic illnesses and degenerative diseases like 
heart disease and cancer because of their significant therapeutic effects. In animal cells, cholesterol serves a 
critical role being a component of cell membranes and essential for the normal functioning of precursor cells to 
some steroid hormones. Three-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) is converted into mevalonate 
by the HMG-CoA Reductase (HMGCR) enzyme to produce cholesterol. However, when cholesterol levels are 
high, it may result in atherosclerosis. Statins, also known as synthetic drugs which decrease cholesterol, are 
therefore designed to work by targeting this enzyme. For patients with dyslipidemia, the side effects of excessive 
statin therapy have proven alarming hence using natural plant-based inhibitors is a promising alternative. 
Computational approach helps to identified many drugs that can target HMG-CO A Reductase. In this study, 
using in-silico molecular docking via auto-dock, 20 medicinal plants with 120 phytochemicals, reported as having 
antihyperlipidemic activity through deep literature study, were screened as HMG-CoA reductase enzyme in-
hibitors. The virtual molecular docking results reveals that five bioactive compounds; Sominone, Guggulsterone, 
Phytosterol, Withanolide A and Basilol, had higher binding affinities towards the HMG-CO A Reductase having 
binding energies of − 9.33, − 8.99, − 8.87, − 8.58, and − 8.48 kcal/mol, respectively. ADMET properties of 
selected compounds were analysed using swiss adme tool. Results showed that out of five compounds three 
follow Lipinski rule of five, having ADMET properties. The HMG-CoA reductase-ligand complex’s stability was 
validated by RMSD, RMSF, Rg, H-bond results and principal component analysis. The resulting trajectories of 
converged period of MD were further exploited in MM-P/G/BSA calculations to derive accurate estimates of 
binding free energies. This leads one to the conclusion that five phytochemicals, Sominone, Guggulsterone, 
Phytosterol, Withanolide A and Basilol can serve as potential inhibitors in regulating HMGCR’s function may 
assist the development of effective anti-hyperlipedemic drugs.

1. Introduction

In mammals, cholesterol plays a vital role in homeostasis. Since it is a 
lipid, cholesterol cannot dissolve in the bloodstream, which is water- 
based, so it is transferred as lipoproteins that mix easily with the 
blood. When lipoproteins have a high ratio of protein to lipids (choles-
terol and others), they are known as high-density lipoprotein (HDL) or 

good cholesterol and when this amount is small, it is called low-density 
lipoprotein (LDL) or bad cholesterol (Cerqueira et al., 2016). Hyperlip-
idemia is a metabolic disorder indicated by an increase in total choles-
terol, low-density lipoprotein (LDL), triglycerides and a decrease in 
high-density lipoprotein (HDL) or a combination of both. Lipid peroxi-
dation in hyperlipidemia plays a vital role in atherogenesis by increasing 
the lipid deposit in the arterial wall (Hasimun et al., 2018). According to 
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the World Health Organization (WHO), hyperlipidemia is a significant 
risk factor for cardiovascular disease. Stroke and coronary heart disease 
account for around 31 % of deaths from cardiovascular disease.

HMG-CoA Reductase (HMGCR), a key enzyme (anchored in the 
endoplasmic reticulum membrane) in cholesterol biosynthesis, catalyzes 
the reductive cleavage of HMG-CoA to mevalonate the precursor of 
cholesterol (Jasmine and Vanaja, 2013). Its catalytic portions form a 
protein tetramer containing four active sites at the interface of two 
monomers (Antonio et al., 2022). The inhibition of HMG-CoA reductase 
efficiently lowers cholesterol levels in humans and other animals by 
reducing endogenous cholesterol synthesis. This inhibition triggers a 
compensatory response involving the activation of sterol regulatory 
element-binding protein-2 (SREBP-2), which upregulates both the 
HMG-CoA reductase and LDL receptor. The upregulation of HMG-CoA 
reductase is a feedback mechanism attempting to restore cholesterol 
synthesis but does not directly contribute to the cholesterol-lowering 
effect. Conversely, the upregulation of LDL receptors enhances LDL 
clearance from the bloodstream, contributing to the reduction of 
circulating cholesterol levels (Baskaran et al., 2015). Statins are the most 
popular group of medications used to lower plasma LDL cholesterol and 
currently used for hypercholesterolemia which serves as effective 
competitive inhibitors of HMG-CoA reductase due to their structural 
similarity with HMG- CoA (Toppo et al., 2021). Like statins, the HMG 
moiety occupies the HMG-CoA binding pocket, and the nonpolar region 
partially occupies part of the coenzyme A binding site (Antonio and 
Villarreal-La Torre Víctor, 2022).

As first-line hyperlipidemic medications, statins also reduce vascular 
inflammation, the precursor to atherosclerosis (Blum, 2014). Therefore, 
there is great potential for developing alternative drugs inhibiting 
HMG-CoA reductase, especially from herbal medicines. Additionally, 
statins cause severe adverse effects, such as distal muscle weakness, 
headache, and acute renal failure. Side effects, such as hepatic trans-
aminase elevation, sensory disturbances, and depression, have also been 
observed on prolonged use (Lin et al., 2015). For this reason, there is a 
growing interest in identifying reliable and effective alternatives to 
statin use that do not have or have low side effects (Ram et al., 2020). 
Additionally, traditional plant-based medicines have played a signifi-
cant role in healthcare from ancient times. Numerous bioactive sub-
stances (isoflavones, diosgenin, resveratrol, quercetin, catechin, 
sulforaphane, and tocotrienols) typically derived from terrestrial plants, 
have been shown to lower the risk of cardiovascular diseases and sup-
port cardioprotection (Vasanthi et al., 2012). Testing drug candidates’ 
activity and mechanism of action through an in-silico study has devel-
oped into a crucial and integral part of the drug discovery process. By 
predicting the binding affinity of drug candidates to specific receptors 
and optimizing their pharmacokinetic profile, in-silico techniques are 
usually used in the early stages of the drug discovery process. One of the 
methods in the in-silico study is molecular docking as a part of the 
structure-based drug design (Miladiyah and Nuryadi, 2022). Automated 
molecular docking software aims to understand and predict molecular 
recognition structurally, finding likely binding modes, and energeti-
cally, predicting binding affinity Morris and Lim-Wilby (2008) and use a 
scoring function that correctly ranks candidate dockings. The compu-
tational approaches include lead optimization, binding energy deter-
mination, and dynamic simulation studies but also the prediction of 
physicochemical and pharmacokinetic parameters of the small mole-
cules. Several tools can be employed for this purpose, among which 
SwissADME is popular due to its free and open access to all (Bakchi et al., 
2022).

The fundamental concept of molecular dynamics (MD) simulations is 
to model the motion of atoms and molecules over time by calculating the 
forces acting on each atom at successive time steps. These forces are used 
to update the positions and velocities of atoms according to Newton’s 
equations of motion, providing insights into the dynamic behavior of 
molecular systems (Karplus and McCammon, 2002; Jorgensen, 1981; 
Lemkul, 2018). Notably, these simulations can also anticipate how 

biomolecules will react to alterations like mutation, phosphorylation, 
protonation, or the addition or removal of a ligand at the atomic level. 
Simulations determine the effects of numerous molecular perturbations 
by contrasting simulations run under various conditions (Hollingsworth 
and Dror, 2018).

These techniques include network theory, Markov state models, 
stochastic approaches like the Langevin equation, and a variety of 
dimensionality reduction techniques (Sittel et al., 2014). A multivariate 
statistical method, Principal Component Analysis (PCA), is used to sys-
tematically lower the number of dimensions required to characterize 
protein dynamics through a decomposition process that sorts observed 
motions from the largest to smallest spatial scales (David and Jacobs, 
2014). Principal component analysis has become an increasingly pop-
ular technique for accounting for the integral dynamics of the system on 
a low-dimensional free energy landscape in molecular dynamics 
simulations.

2. Materials and methods

The computer system (Hp) Super Micro workstation, with the 
following specification properties; silver 4216 CPU, Intel® xenon ® @ 
2.10 GHz with 32 cores, with NVIDIA Ge Force RTx 2080Ti Dual graphic 
cards, 128 Gigabyte RAM was used throughout the present study. The 
software downloads and installed include Ubuntu 18.04 LTS, Gromacs 
2020, Auto- Dock 5.4109 software, Avogadro software, Discovery Stu-
dio Visualizer 2021, and Chimera version 1.16. online tools include 
SwissADME Tool, admet SAR tool, PRO TOX II and Galaxy online server.

2.1. Retrieval of target protein structure

The 3-D x-ray crystal structure file of the target enzyme: HMG-CoA 
reductase, with PDB ID-1HW8 and a high resolution of 2.10 Å, was 
retrieved from the RCSB PDB.

2.2. Selection and retrieval of ligand molecules

A dataset of 120 phytochemicals from 20 plants like Fenugreek 
(Trigonella foenum), Ashwagandha (Withania somnifera), Cumin (Cumi-
num cyminum), Tulsi (Ocimum basilicum) etc., with potential anti- 
hyperlipidemic properties was made through a deep literature survey. 
Additionally, the structure of drug currently being used in the treatment 
of hyperlipidemia was also retrieved. The 2D and 3D structures of 
phytochemicals were obtained in SDF format from the PubChem 
database.

2.3. Moleculer docking

2.3.1. Target preparation
The Preprocessing of three-dimensional protein structures was per-

formed using the Auto dock. The water molecules, ions, and bound li-
gands from the protein crystal structure were removed from the three- 
dimensional structure of HMGCR protein. Successively, the hydrogen 
atoms and Kollman charges were added to the three-dimensional 
structure of HMGCR protein. After preparation protein was saved in 
PDBQT format for performing molecular docking.

2.3.2. Ligand preparation
Ligand 3-D SDF structures were saved into Protein Data Bank (PDB) 

file format using open babel software 2.4.1 and whose 3-D SDF files were 
not available, their 2-D structures were retrieved and further converted 
to three-dimensional form using their SMILES through Open Babel.

The phytochemicals were prepared for docking by adding hydrogen, 
gasteiger charges and torsion through the Auto dock tool. The structures 
of phytochemicals were saved in pdbqt format for further study.
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2.3.3. Binding sites identification
The identification of active site was performed using UCSF Chimera. 

The amino acids from the active site were selected for the grid genera-
tion and docking.

2.3.4. Grid generation
Grid box was generated based on selecting amino acids of active/ 

binding sites of target protein whose coordinates were: Center_x =
25.554, Center_y = − 16.038, Center_z = 14.415 and the dimensions of 
the grid box were, X: 50, Y: 50 and Z: 50 (unit of the dimensions, Å) (see 
Fig. 1).

2.3.5. Molecular docking
Auto Dock (with default values for parameters) was used for mo-

lecular docking studies to explore all possible orientations and binding 
affinities for the ligand with the amino acids within the active site of 
target proteins.

2.3.6. Selection of the most active conformation
Upon successful molecular docking, the protein-ligand docked 

complexes were analysed based on docking score and binding affinities, 
a more negative value means a greater affinity. The conformations with 
lower binding energy as compared to the known drug of the target re-
ceptor chosen for further analysis.

2.3.7. Protein-ligand interactions
In the end, the top score results were visualized for the non-bonding 

interactions between the docked protein–ligand complex and to analyze 
the docking pose by Biovia Discovery Studio (2021). The 2-D diagram 
shows the various amino acid residues and the types of bonds that occur. 
Visualization of all ligands for hydrophobicity was performed by pro-
gram UCSF Chimera 1.16.

2.4. Molecular dynamics simulation

Ligands showing the highest binding affinity were subjected to mo-
lecular dynamics simulations using the GROMACS 2020.3 package. This 
software incorporates key algorithms such as the Verlet leapfrog inte-
grator for time integration (Swope et al., 1982) and the Particle-Mesh 
Ewald (PME) method for accurately computing long-range electro-
static interactions (Darden et al., 1993). The system was equilibrated 
under both NVT (constant Number, Volume, and Temperature) and NPT 
(constant Number, Pressure, and Temperature) ensembles, ensuring 
temperature and pressure stability, respectively. The NVT ensemble 
maintained the system at a temperature of 300 K using the 

velocity-rescaling thermostat (Bussi et al., 2007), while the NPT 
ensemble stabilized the pressure at 1.0 bar using the Parrinello-Rahman 
barostat (Parrinello and Rahman, 1981). These conditions provided a 
realistic simulation environment mimicking physiological conditions 
(Hollingsworth and Dror, 2018).

2.4.1. Generating topology
Protein topology was generated by using all-atom CHARMM36 force 

field with TIP3P water model while ligand topology files were generated 
through Swiss Param web server.

2.4.2. Simulation box and solvation
The protein was placed at the center of 351.628 dodecahedron box 

with 1.0 nm away from the box’s edge. The system was solvated with the 
TP3P water model, and the charges of the system were neutralized upon 
adding Na+ and Cl− with 0.1 M ionic strength.

2.4.3. Energy minimization
Energy minimization was done by steepest descent method with the 

maximum gradient of 1000 kJ/mol/nm 50,000 iteration steps to reduce 
the steric clashes.

2.4.4. Equilibration
Temperature, pressure, and density were stabilized to 300 K, 1.0 bar 

and 1023 kg/m3, respectively over time. Trajectory structures were 
stored at every 10ps.

2.5. Binding energy calculations using MM/PB/GBSA

The MMPBSA binding free energy of receptor-ligand docked com-
plexes was estimated using the gmx_MMPBSA module, which utilized 
the MD simulation trajectories.

The binding energy was computationally calculated using the 
following: 

ΔGbind = ΔGRL − ΔGR – ΔGL                                                           

2.6. Principal component analysis

A covariance matrixA covariance matrix can describe the correlated 
internal motion of a molecule.

Diagonalization of this covariance matrix results in 3 N eigenvectors 
and eigenvalues, which describe the modes of the collective motion and 
their respective amplitudes. To analyze the collective motion of all 

Fig. 1. Grid box parameters and Grid box over the target around a reference ligand.
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complexes, we performed the PCA analysis based on C-α atoms by: 

I. Computing the covariance matrix
II. Computing eigen vectors of the covariance matrix
III Transforming Data using eigen vectors
IV. Scatter plot of transformed data

All these steps were performed using galaxy Bio-3D server and 
graphs were generated with information about the proportion of vari-
ance in the complexes.

2.7. ADME-T properties prediction

The best-docked complexes were then evaluated for drug-like prop-
erties Absorption, Distribution, Metabolism, Excretion, and Toxicity of 
molecules were determined using ADME-T prediction tools such as such 
as SwissADME (http://www.swissadme.ch/index.php). Toxicity anal-
ysis was performed using the tool admetSAR (http://lmmd.ecust.edu. 
cn/admetsar2).

3. Results

The current investigation aimed to find potential chemical com-
pounds that can bind to human HMG-CO A Reductase and serve as 
potent inhibitors through molecular docking and ADMET predictions. In 
this study, 120 phytochemicals were examined that have been previ-
ously identified as having antihyperlipidemic action.

3.1. Retrieval of the target structure

3.2. Selection and retrieval of ligand molecules

3.3. Dataset of phytochemicals

A dataset containing 120 phytochemicals with anti-hyperlipedemic 
activities was created (Table 1). The plant sources selected for phyto-
chemicals included Ajowain, Fenugreek, Ginger, Saffron, Tamarind, 
Turmeric, among others. Additionally standard drug Atorvastatin was 
included in the dataset (see Fig. 3).

3.4. Binding site identification

The native and co-crystallized ligand with the protein HMGCR was 
compacting (Fig. 4). The amino acids located at the identified active site 
and docking of HMGCR were ARG590, GLU665, VAL683, SER684, 
ASN686, LYS688, ASP690, LYS691 and LYS692.

3.5. Molecular docking of HMG-CoA reductase and ligand compounds

A total of 120 phytochemcials were docked against HMGCR using 
Auto Dock 1.6 software platform. The most potent inhibitor, atorvas-
tatin, was docked into the active site of HMG-CoA reductase (PDB ID- 
1HW8). Atorvastatin was assigned as a reference compound to 
compare its binding mode with hit compounds and to select final hits 
from the docking studies. Table 2 listed the docking score and binding 
energies of docked complexes. The results of molecular docking show a 
comparison of the docking scores of a compound with other compounds, 
and it can explain whether a compound has potential or not. Molecules 
with the lowest docking score (minus value) showed a high binding 
affinity.

3.6. Ranking of phytochemicals based on molecular docking results

All the docked phytochemicals were ranked in increasing order of 
their respective binding energies followed by ligand efficiency, inhibi-
tory constant and no. of hydrogen bonds formed.

Fig. 2. Crystal structure of HMG-CO A Reductase with PDB ID:1HW8. A) Ribbon structure representation B) Molecular surface representation.

Fig. 3. 3D sdf structures of some phytochemicals retrieved from pubchem database A) Basilol B) Guggulsterone C) Phytosterol D) Sominone E) Withanolide-A.
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Table 1 
List of phytochemicals with their plant sources selected based on hyperlipidemic activity.

Phytochemicals Molecular formula Molecular Weight(g/mol) PubChem ID Reference

1.Garlic (Allium sativum) ​ Tigu et al., 2021
Allicin C6H10OS2 162.3 65036 ​
Isoquercitrin C21H20O12 464.4 5280804 ​
p-Coumaric acid C9H8O3 164.16 637542 ​
Gentisic acid C7H6O4 154.12 3469 ​
Quercetin C15H10O7 302.23 5280343 ​
2. Ashwagandha (Withania somnifera) ​ ​ ​ Saleem et al. (2020)
Oleic acid C18H34O2 282.5 445639 ​
Withanone C28H38O6 470.6 21679027 ​
Sominone C28H42O5 458.6 44249449 ​
Withanolide A C28H38O6 470.6 11294368 ​
Hygrine C8H15NO 141.21 440933 ​
Withasomnine C12H12N2 184.24 442877 ​
Anaferine C13H24N2O 224.34 443143 ​
3.Bhringraj (Eclipta alba) ​ ​ ​ Mithun et al. (2011)
Sclerosol C2H6OS 78.14 679 ​
Phytosterol C29H50O 414.7 124823816 ​
Carbamic acid CH3NO2 61.04 277 ​
Ursolic acid C30H48O3 456.7 64945 ​
Acetamide C2H5NO 59.07 178 ​
4. Amla (Emblica officinalis) ​ ​ ​ Hashem-Dabaghian et al., 2018
Pyrogallol C6H6O3 126.11 1057 ​
Ellagic acid C14H6O8 302.19 5281855 ​
Chebulic acid C14H12O11 356.24 71308174 ​
Citric acid C6H8O7 192.12 311 ​
Kaempferol C15H10O6 286.24 5280863 ​
Mucic acid C6H10O8 210.14 3037582 ​
5. Flaxseed (Linum usitatissimum) ​ ​ ​ Pansare et al. (2020)
Ferulic acid C10H10O4 194.18 445858 ​
hexadecanoic acid C16H32O2 256.42 985 ​
pinoresinol C20H22O6 358.4 73399 ​
6. Turmeric (Curcuma longa) ​ ​ ​ Chanda and Ramachandra, 2019
Curcumin C21H20O6 368.4 969516 ​
Eugenol C10H12O2 164.2 3314 ​
Pcymene C10H14 134.22 7463 ​
1,8-cineole C10H18O 154.25 2758 ​
Beta-pinene C10H16 136.23 14896 ​
Beta-Turmerone C15H22O 218.33 196216 ​
Limonene C10H16 136.23 22311 ​
Niacin C6H5NO2 123.11 938 ​
7. Guggul (Commiphora wightii) ​ ​ ​ Sarup et al. (2015)
Guggulsterol-I C27H44O4 432.6 101297673 ​
Guggulsterone C21H28O2 312.4 3084731 ​
Mansumbinone C22H34O 314.5 128179 ​
Commiferin C15H20O3 248.32 91864439 ​
Myrrhanone A C30H50O3 458.7 102242791 ​
8. Fenugreek (Trigonella foenum) ​ ​ ​ Shahidi and Hossain (2018)
Naringenin C15H12O5 272.25 439246 ​
Vitexin C21H20O10 432.4 5280441 ​
Estragol C10H12O 148.2 8815 ​
Saponaretin C21H20O10 432.4 162350 ​
Trans-anethole C10H12O 148.2 637563 ​
9. Tulsi (Ocimum basilicum) ​ ​ ​ Marwat et al. (2011)
Alpha-phellandrene C10H16 136.23 7460 ​
Terpinolene C10H16 136.23 11463 ​
Cis-ocimene C10H16 136.23 5320250 ​
linalool C10H18O 154.25 6549 ​
Nerol C10H18O 154.25 643820 ​
Verbenone C10H14O 150.22 29025 ​
Basilol C37H52O4 560.8 16655699 ​
Cadinene C15H26 206.37 3032853 ​
Alpha-gurjunene C15H24 204.35 15560276 ​
Piperitone C10H16O 152.23 6987 ​
Thymol C10H14O 150.22 6989 ​
10. Coriander (Coriandrum sativum) ​ ​ ​ Sobhani et al. (2022)
Citronellal C10H18O 154.25 7794 ​
Camphor C10H16O 152.23 2537 ​
Geraniol C10H18O 154.25 637566 ​
Anethole C10H12O 148.2 637563 ​
Decanal C10H20O 156.26 8175 ​
Apigenin C15H10O5 270.24 5280443 ​
Luteolin C15H10O6 286.24 5280445 ​
Coumarin C9H6O2 146.14 323 ​
11. Arjuna (Terminalia arjuna) ​ ​ ​ Gupta et al. (2018)

(continued on next page)
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3.7. Molecular docking results were analysed based on following factors

3.7.1. Binding energy
From the docking results, binding free energies were observed from 

lowest to highest values. Results showed that the total score ranged from 
− 2.83 for acid to − 9.33 for sominone (Table 2). Out of 120 

phytochemical compounds, top 14 hits were found, Sominone (− 9.33), 
Guggulsterone (− 8.99), Phytosterol (− 8.87), Withanolide A (− 8.58), 
Basilol (− 8.48), Caempsterol (− 8.07), Curcumin (− 7.72), Glaucamine 
(− 7.69), Isoquercitrin (− 7.66), Coclaurine (− 7.66), Vitexin (− 7.6), 
Crategolic acid (− 7.57), Copaene (-7.43) and Papaverine (− 7.36) 
exhibited stronger binding affinity than reference ligand compound 

Table 1 (continued )

Phytochemicals Molecular formula Molecular Weight(g/mol) PubChem ID Reference

Terminic acid C30H48O4 472.7 132568257 ​
Arjunone C19H20O6 344.4 14034821 ​
Baicalein C15H10O5 270.24 5281605 ​
Pelargonidin +C15H11O5 271.24 440832 ​
Ethyl gallate C9H10O5 198.17 13250 ​
Oleanolic acid C30H48O3 456.7 10494 ​
12. Ajwain (Thymus vulgaris) ​ ​ ​ Hossain and Shahidi (2023)
Hexadecanal C16H32O 240.42 984 ​
Cyclohexane C6H12 84.16 8078 ​
Phytol C20H40O 296.5 5280435 ​
Aromadendrene C15H24 204.35 91354 ​
Caryophyllene C15H24 204.35 5281515 ​
Humulene C15H24 204.35 5281520 ​
13. Clove (Syzygium aromaticum) ​ ​ ​ El-SaberBatiha et al., 2020
Crategolic acid C30H48O4 472.7 73659 ​
Biflorin C16H18O9 354.31 441959 ​
Rhamnetin C16H12O7 316.26 5281691 ​
Eugenitin C12H12O4 220.22 3083581 ​
Carvacrol C10H14O 150.22 10364 ​
Caempesterol C28H48O 400.7 173183 ​
Eugenin C11H10O4 206.19 10189 ​
14. Rosemary (Rosemarinus officinalis) ​ ​ ​ Amar et al. (2017)
Rosmarinic acid C18H16O8 360.3 5281792 ​
Rosmanol C20H26O5 346.4 13966122 ​
Carnosol C20H26O4 330.4 442009 ​
Cirsimaritin C17H14O6 314.29 188323 ​
Genkwanin C16H12O5 284.26 5281617 ​
Scutellarein C15H10O6 286.24 5281697 ​
15. White poppy (Papaver somniferum) ​ ​ ​ Butnariu et al. (2022)
Coclaurine C17H19NO3 285.34 160487 ​
Reticuline C19H23NO4 329.4 439653 ​
Scoulerine C19H21NO4 327.4 22955 ​
Papaverine C20H21NO4 339.4 4680 ​
Glaucamine C21H23NO6 385.4 609842 ​
16. Saffron (Crocus sativus) ​ ​ ​ Pansare et al. (2020)
Gallic acid C7H6O5 170.12 370 ​
Caffeic acid C9H8O4 180.16 689043 ​
Safranal C10H14O 150.22 61041 ​
Picrocrocin C16H26O7 330.37 130796 ​
Cinnamic acid C9H8O2 148.16 444539 ​
17. Tamarind (Tamarindus indica) ​ ​ ​ Pansare et al. (2020)
Epicatechin C15H14O6 290.27 72276 ​
Taxifolin C15H12O7 304.25 439533 ​
Catechin C15H14O6 290.27 9064 ​
Furfural C5H4O2 96.08 7362 ​
2-phenyl-acetaldehyde C8H8O 120.15 998 ​
18. Cumin (Cuminum cyminum) ​ ​ ​ Chouhan et al., 2022
Ethyl oleate C20H38O2 310.5 5363269 ​
Cuminaldehyde C10H12O 148.2 326 ​
Methyl linoleate C19H34O2 294.5 5284421 ​
Dihydrojasmone C11H18O 166.26 62378 ​
Biformene C20H32 272.5 23252995 ​
Cumic acid C10H12O2 164.2 10820 ​
19. Saunf (Foeniculum vulgare) ​ ​ ​ Foroughi et al. (2016)
Camphene C10H16 136.23 6616 ​
Germacrene D C15H24 204.35 5317570 ​
Fenchone C10H16O 152.23 14525 ​
Cis-anethole C10H12O 148.2 1549040 ​
20. Ginger (Zingiber officinale) ​ ​ ​ Ashraf et al. (2017)
6-gingerol C17H26O4 294.4 442793 ​
6-shogaol C17H24O3 276.4 5281794 ​
8-paradol C19H30O3 306.4 213821 ​
10-gingeridone C21H32O4 348.5 5317591 ​
Citronellyl acetate C12H22O2 198.3 9017 ​
β-sesquiphellandrene C15H24 204.35 12315492 ​
Copaene C15H24 204.35 12303902 ​
Atorvastatin C33H35FN2O5 558.6 60823 ​
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atorvastatin (− 7.31).

3.7.2. Hydrogen bond interactions
Are essential in determining the binding affinity and stability of 

complexes. Isoquercitrin & Rosmarinic acid formed a maximum no of H- 
bonds (7), Vitexin, Ellagic acid, and Gallic acid formed 5 H-bonds, 
Scutellarein, Rosmanol, Baicalein, Caffeic acid, Gentisic acid, Ethyl 
gallate, Chebulic acid and Citric acid formed 4 H-bonds and the statin 
formed 4 H-bonds. Statin interacted through LYS691, LYS692, GLN770, 
ASP767 amino acid residues and there are several compounds those give 
similarity of binding amino acid residues with statin drug (Atorvastatin) 
as the original ligand of HMG-CoA Reductase. Ursolic acid and pinor-
esinol interacted through LYS691, while picrocrocin interacted through 
LYS692.

3.7.3. Ligand efficiency (LE) and inhibition constant (Ki)
The Ki shows that the inhibitors’ efficacy is good. For the five com-

pounds, the values range from − 0.21 to − 0.39 kcal/mol/non-hydrogen 
atoms. However, LE is the ligand’s capacity to induce a biological re-
action when bound to the target receptor (Table 2). The LE range from 
good to excellent is less than 0.4 and varies during the drug discovery 
process.

The study reveals that most of our screened phytochemical com-
pounds exhibited strong binding with target protein at the inhibitory 
binding site compared to positive control drugs.

3.8. Protein-ligand interactions

Out of 120 ligands screened against HMG-CO A Reductase, the top 
five potential candidates, Sominone, Guggulsterone, Phytosterol, 
Withanolide A and Basilol, were selected for further analysis and visu-
alization by Discovery Studio (https://discover.3ds.com/discovery-st 
udio-visualizer-download) (Figs. 5–10) which had binding affinities of 
− 9.33, − 8.99, − 8.87, − 8.58, and − 8.48 kcal/mol, respectively 
(Table 3) (see Fig. 2).

The amino acid residues involved in the hydrogen bond and hydro-
phobic interactions in docked complexes (Table 4).

3.9. Visualization of protein-ligand interactions using biovia Discovery 
Studio 2021

The major interactions found during visualization include pi-sigma 
(help ligands intercalate at receptor binding sites), hydrogen (provides 
stability to the complex), and pi-alkyl (contributes the ligand’s dipole 
moment for the molecule’s orientation) bonds. Each bond in the target 
protein serves followings are the function.

Fig. 4. Three-Dimensional crystal structure of selected target protein with co- 
crystallized inhibitor/ligand.

Table 2 
Binding energy of phytochemicals docked against HMG-CoA Reductase.

S. 
No

Ligand Binding 
Energy 
(kcal/ 
mol)

Ligand 
efficiency

Inhibitory 
Constant 
(uM)

No of 
H 
bonds

1 Sominone − 9.33 − 0.28 0.14 2
2 Guggulsterone − 8.99 − 0.39 0.25 1
3 Phytosterol − 8.87 − 0.3 0.31 1
4 Withanolide A − 8.58 − 0.25 0.51 4
5 Basilol − 8.48 − 0.21 0.61 3
6 Caempsterol − 8.07 − 0.28 1.21 1
7 Curcumin − 7.72 − 0.29 2.18 3
8 Glaucamine − 7.69 − 0.27 2.32 2
9 Isoquercitrin − 7.66 − 0.23 2.44 7
10 Coclaurine − 7.66 − 0.36 2.44 3
11 Vitexin − 7.6 − 0.25 2.7 5
12 Crategolic acid − 7.57 − 0.22 2.82 1
13 Copaene − 7.43 − 0.5 3.59 0
14 Papaverine − 7.36 − 0.29 4 1
15 Luteolin − 7.31 − 0.35 4.39 3
16 Rhamnetin − 7.31 0.32 4.35 3
17 Atorvastatin ¡7.31 ¡0.18 4.4 4
18 Biformene − 7.28 − 0.36 4.64 0
19 Kaempferol − 7.25 − 0.35 4.82 3
20 Cirsimaritin − 7.25 − 0.32 4.85 3
21 Scutellarein − 7.23 − 0.34 5.06 4
22 Rosmarinic acid − 7.22 − 0.28 5.1 7
23 Rosmanol − 7.22 − 0.29 5.12 4
24 Beta-Turmerone − 7.21 − 0.45 5.23 1
25 Cadinene − 7.19 − 0.48 5.42 0
26 Naringenin − 7.15 − 0.36 5.71 2
27 Germacrene D − 7.13 − 0.48 5.96 0
28 Epicatechin − 7.12 − 0.34 6.06 3
29 Baicalein − 7.11 − 0.36 6.13 4
30 Commiferin − 7.1 − 0.39 6.24 3
31 Oleanolic acid − 7.08 − 0.21 6.49 1
32 Myrrhanone A − 7.06 − 0.21 6.64 2
33 Mansumbinone − 7.05 − 0.31 6.78 0
34 Genkwanin − 7.02 − 0.33 7.19 3
35 Ellagic acid − 7.01 − 0.32 7.26 5
36 Taxifolin − 6.99 − 0.32 7.47 2
37 Beta 

-sesquiphellandrene
− 6.98 − 0.47 7.65 0

38 6-shogaol − 6.91 − 0.35 8.66 3
39 Apigenin − 6.9 − 0.35 8.57 2
40 Catechin − 6.88 − 0.33 9.08 2
41 Scoulerine − 6.8 − 0.28 10.34 2
42 Guggulsterol-I − 6.79 − 0.22 10.55 2
43 Aromadendrene − 6.72 − 0.45 11.96 0
44 Arjunone − 6.71 − 0.27 12.07 2
45 Terminic acid − 6.61 − 0.19 14.22 0
46 Caryophyllene − 6.6 − 0.44 14.55 0
47 Saponaretin − 6.59 − 0.21 14.69 3
48 Eugenitin − 6.57 − 0.41 15.39 2
49 Withanone − 6.55 − 0.47 15.89 1
50 Withasomnine − 6.55 − 0.47 15.88 1
51 Reticuline − 6.55 − 0.27 15.86 2
52 Caffeic acid − 6.46 − 0.5 18.33 4
53 Humulene − 6.33 − 0.42 23.24 0
54 Biflorin − 6.33 − 0.25 22.93 3
55 Ferulic acid − 6.28 − 0.45 24.94 3
56 Eugenin − 6.26 − 0.42 25.98 1
57 Piperitone − 6.2 − 0.56 28.35 1
58 6-gingerol − 6.13 − 0.29 31.87 2
59 Gentisic acid − 6.09 − 0.55 34.46 4
60 Ursolic acid − 6.07 − 0.18 35.75 3
61 Alpha-gurjunene − 6.05 − 0.4 36.94 0
62 10-gingeridone − 6.04 − 0.24 37.09 1
63 Verbenone − 6.01 − 0.55 39.1 1
64 Coumarin − 5.98 − 0.54 41.72 3
65 Quercetin − 5.87 − 0.27 49.66 3
66 8-paradol − 5.77 − 0.26 58.63 1
67 P-Coumaric acid − 5.74 − 0.48 62.22 2
68 Safranal − 5.72 − 0.5 64.34 1
69 Cumic acid − 5.69 − 0.47 67.69 2
70 Eugenol − 5.67 − 0.47 70.25 1

(continued on next page)
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3.10. Molecular dynamics simulation

The top five best docked ligand–protein complexes Sominone, Gug-
gulsterone, Phytosterol, Withanolide A and Basilol, were further ana-
lysed for the molecular dynamic simulations. The RMSD, RMSF, RG and 
SASA calculations were used to analyze the conformational stability and 
fluctuations under the simulated conditions. The best docked confor-
mation of each compound including reference compounds were used as 
the initial structure for 50 ns MD simulations to refine their binding 
conformation.

3.11. The root mean square deviation (RMSD)

The stability of the docked protein-ligand complex is represented by 
its RMSD. The RMSD plot of the protein and docked complexes was 
calculated for 50 ns trajectory. RMSD analysis is done to examine 

various fluctuations within the complex during the simulation period. 
We observed that the largest deviation for Atorvostatin (black) was 
between 15 ns and 45 ns, resulting in an average change in RMSD of 
0.5–0.75 nm (Fig. 11). The RMSD analysis of atorvastatin, despite being 
a standard drug, exhibited notable fluctuations, particularly after 20 ns 
of simulation. This is an unexpected outcome, as a well-established drug 
like atorvastatin is typically assumed to maintain a steady binding 
conformation. However, these fluctuations do not necessarily indicate 
that the simulation duration is insufficient. Instead, they may stem from 
the initial ligand conformation, the flexible nature of atorvastatin, or its 
dynamic interactions within the binding pocket. Previous studies have 
reported similar RMSD variations for atorvastatin, even in extended 
simulations beyond 100 ns (Kumari et al., 2021; Singh and Sharma, 
2020), indicating that the observed instability is an inherent charac-
teristic rather than a limitation of the simulation time. Phytosterol, 
shows a considerable variation around the initial 5 ns and 40 ns. The 
lack of stabilization of phytosterol after 40 ns is not due to its intrinsic 
molecular flexibility, transient binding interactions, and active site 
adaptability. Phytosterols can remain mobile within the binding pocket, 
leading to observed RMSD variations. This behavior suggests that phy-
tosterols may bind in multiple conformations rather than a single, 
locked-in state. All the trajectories became stable after 40 ns until the 
end of the simulation study. The value of ligands RMSD of Sominone, 
Withanolide-A and Basilol was low as compared to Standard drug 
(Atorvastatin) RMSD indicates that ligands are more stable with the 
protein and its binding pocket.

The Root Mean Square Deviation (RMSD) graph depicts the struc-
tural deviations of the protein and its ligand-bound complexes over a 50 
ns molecular dynamics simulation. The apoprotein, serving as a control, 
maintains a relatively stable RMSD, indicating its structural integrity in 
the absence of ligand binding. Among the ligand-bound systems, Ator-
vastatin exhibits lower RMSD fluctuations, suggesting a more stable 
interaction with the protein. In contrast, Guggulsterone and Phytosterol 
show higher fluctuations, implying significant conformational changes, 
possibly affecting binding stability. Withanolide-A exhibits moderate 
RMSD variations, implying that while it maintains relative stability, it 
undergoes some conformational shifts during the simulation. On the 
other hand, Basilol and Sominone maintain lower RMSD values, indi-
cating that their binding induces fewer structural deviations compared 
to the unbound protein.

3.12. Root mean square fluctuation (RMSF)

Another key parameter that links the various amino acid residues, 
various peptide backbone regions, and trajectories is the RMSF. For the 
docked ligand complexes as well as the apoprotein, fluctuations in terms 
of amino acid residues were noted.

The RMSF values for the apoprotein (green) and the ligand-bound 
complexes were analysed to assess the impact of ligand binding on 
protein flexibility. The results indicate that while most complexes 
exhibited similar RMSF patterns along the amino acid residues, signifi-
cant differences were observed for specific ligands. Guggulsterone (blue) 
displayed the highest RMSF values, particularly in the region spanning 
residues 750–800, suggesting that its binding induces substantial fluc-
tuations in this segment. This could be indicative of weaker interactions 
or an allosteric effect leading to increased local flexibility. Withanolide- 
A (purple) also demonstrated moderate fluctuations in certain regions, 
though the degree of flexibility was lower than that of Guggulsterone. 
Based on the analysis of RMSF values, we can infer that all the predicted 
ligands exhibited minimal conformational changes during the binding 
process, indicating their potential to form stable complexes (Fig. 12).

3.13. Radius of gyration (RG)

Determines whether the complex remains stably folded or unfolds 
under simulated conditions over a 50 ns trajectory. Lower RG values 

Table 2 (continued )

S. 
No 

Ligand Binding 
Energy 
(kcal/ 
mol) 

Ligand 
efficiency 

Inhibitory 
Constant 
(uM) 

No of 
H 
bonds

71 Camphor − 5.66 − 0.51 70.54 1
72 Cinnamic acid − 5.66 − 0.51 71.04 22
73 Dihydrojasmone − 5.65 − 0.47 72.14 1
74 1,8-cineole − 5.63 − 0.51 75.19 0
75 Beta-pinene − 5.63 − 0.56 74.8 0
76 Citronellyl acetate − 5.61 − 0.4 77.22 2
77 Geraniol − 5.6 − 0.51 78.96 2
78 Ethyl gallate − 5.58 − 0.4 81.87 4
79 Nerol − 5.53 − 0.5 88.38 2
80 Thymol − 5.52 − 0.5 90.4 2
81 Camphene − 5.47 − 0.55 97.95 0
82 Anethole − 5.46 − 0.5 99.6 1
83 Carvacrol − 5.44 − 0.49 103.3 2
84 Trans-anethole − 5.41 − 0.45 108.92 2
85 Cuminaldehyde − 5.36 − 0.49 118.53 1
86 Fenchone − 5.35 − 0.49 119.55 1
87 Terpinolene − 5.33 − 0.53 124.67 0
88 Citronellal − 5.28 − 0.48 135.47 1
89 Cis-anethole − 5.24 − 0.48 143.14 1
90 Alpha-phellandrene − 5.22 − 0.52 149.37 0
91 linalool − 5.19 − 0.47 157.31 1
92 Estragol − 5.17 − 0.47 161.59 1
93 Oleic acid − 5.14 − 0.26 170.66 2
94 Cis-ocimene − 5.14 − 0.51 169.58 0
95 Gallic acid − 5.12 − 0.43 177.22 5
96 Anaferine − 5.04 − 0.32 201.43 2
97 hexadecanoic acid − 5.03 − 0.28 206.22 2
98 2-phenyl- 

acetaldehyde
− 5.03 − 0.56 204.22 1

99 Methyl linoleate − 5 − 0.24 216.4 1
100 Limonene − 4.97 − 0.5 228.79 0
101 Hexadecanal − 4.91 − 0.29 253.43 1
102 Ethyl oleate − 4.84 − 0.22 285.57 2
103 Hygrine − 4.56 − 0.46 451.14 3
104 Pyrogallol − 4.55 − 0.51 464.32 2
105 Pinoresinol − 4.55 − 0.18 465.97 1
106 Allicin − 4.33 − 0.48 666.12 1
107 Niacin − 4.26 − 0.47 750.67 2
108 Pelargonidin − 4.17 − 0.21 872.24 3
109 Chebulic acid − 4.09 − 0.16 1000 4
110 Carbamic acid − 4.06 − 1.01 1070 3
111 Furfural − 4.06 − 0.58 1060 1
112 Decanal − 4.02 − 0.37 1130 1
113 Cyclohexane − 3.98 − 0.66 1210 0
114 Carnosol − 3.95 − 0.16 1280 2
115 Picrocrocin − 3.94 − 0.17 1290 0
116 Citric acid − 3.8 − 0.29 1650 4
117 Acetamide − 3.72 − 0.93 1870 2
118 P-cymene − 3.63 − 0.36 2200 0
119 Sclerosol − 3.54 − 0.89 2550 2
120 Phytol − 3.42 − 0.16 3130 1
121 Mucic acid − 2.83 − 0.2 8420 3
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indicate tight packaging, suggesting a compact structure, while higher 
RG values suggest looser packing of the molecular structure. In molec-
ular dynamics (MD) studies, RG is utilized to illustrate the influence of a 
ligand molecule on inducing conformational changes in the protein 
molecules (Fig. 13).

During the simulations, all complexes maintained a stable radius of 
gyration (RG) within the range of 2.5 nm–2.7 nm, indicating their sta-
bility throughout the simulation studies. Guggulsterone exhibited fluc-
tuating radius of gyration (Rg) due to its impact on protein flexibility 
and transient binding interactions, causing periodic expansions and 
contractions. Its hydrophobic nature and steric effects likely disrupted 
structural packing, leading to instability. Additionally, possible allo-
steric effects or loop movements may have contributed to the dynamic 
shifts in protein compactness. The apoprotein maintained a relatively 

stable Rg, indicating that its native conformation remained compact 
throughout the simulation. Unlike Guggulsterone, it did not undergo 
significant structural fluctuations, suggesting an inherently stable 
folding pattern in the absence of ligand interactions. The stability of the 
apoprotein serves as a baseline reference, confirming that ligand- 
induced changes, such as those seen with Guggulsterone, were respon-
sible for the observed fluctuations. The overall results suggest an 
increased compactness of both the protein and the docked structures, 
leading to enhanced stability during the simulation study.

3.14. Solvent accessible surface area

The solvent accessible surface area (SASA) is another significant 
parameter that quantifies the total area on the protein surface that is 

Fig. 5. Docking interaction of atorvastatin with HMG-coA Reductase (1HW8). (A) Moleculer surface of the docked complex. (B) The 3D hydrophobicity surface plot 
at the binding site. (C) Overall ribbon structure. (D) Ligand interactions with target protein. (E) 2-D interactions of the complex.
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readily accessible to water solvents. A lower SASA value indicates 
minimal exposure of water solvent areas, thereby contributing to 
increased stability of the complex.

The trajectory plot showed that SASA value of all the complexes 
ranged between 195 nm2 to 225 nm2 highest being phytosterol, sug-
gesting increased structural flexibility and solvent exposure and lowest 
for guggulsterone indicating a more compact structure with reduced 
solvent accessibility during the simulation (Fig. 14). The apoprotein 
remains relatively stable, indicating minimal conformational changes. 
These variations reflect the influence of ligand binding on protein sta-
bility and conformational dynamics.

3.15. Binding energy calcultions using MM/PB/GBSA

Accurate binding free energy estimation was calculated from Mo-
lecular Mechanics General Born/Poisson Boltzmann Surface Area (MM- 
GB/PBSA). This method of binding energy prediction was selected as it 
balances accuracy and computational power. The gmx_MMPBSA was 
used to separately minimize the receptor, ligand, and receptor-ligand 
complex using the below equation for the total binding free energy:

where, 

ΔG(bind) = Binding free energy                                                          

G = Free energy of complex, protein, and ligand T = Temperature       

Fig. 6. Docking interaction of Sominone with HMG-coA Reductase (1HW8). (A) Moleculer surface of the docked complex. (B) The 3D hydrophobicity surface plot at 
the binding site. (C) Overall ribbon structure. (D) Ligand interactions with target protein. (E) 2-D interactions of the complex.
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ΔS = Entropy                                                                                     

ΔGgas = Gas phase molecule free energy                                             

ΔGsolv = Solvation-free energy                                                           

ΔGGB = Polar solvation-free energy                                                    

ΔGSA = Non-polar solvation free energy                                             

ΔG(bind) = Gcomplex – (Gligand + Greceptor)                                    

ΔG = ΔGgas + ΔGsol – TΔS                                                               

ΔGgas = ΔEelectrostatic + ΔEvdW                                                      

ΔGsolv = ΔGGB + ΔGSA                                                                    

Alongside the binding free energy, various other interaction en-
ergies, including van der Waals energy, electrostatic energy, polar sol-
vation energy, and SASA energy, have been calculated for all complexes 
(Table 5). The results indicate that van der Waals, electrostatic, and 
SASA energies have a negative contribution to the total interaction 

Fig. 7. Docking interaction of Guggulsterone with HMG-coA Reductase (1HW8). (A) Moleculer surface of the docked complex. (B) The 3D hydrophobicity surface 
plot at the binding site. (C) Overall ribbon structure. (D) Ligand interactions with target protein. (E) 2-D interactions of the complex.
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energy, while only polar solvation energy has a positive contribution to 
the total binding free energy. The contribution of SASA energy to the 
total binding energy is relatively smaller. In complexes involving 
HMGCR, all ligands demonstrate that hydrophobic interactions play a 
crucial role in stabilizing the protein-ligand complex, as evident from 
the highly negative van der Waals energy values.

The MMGBSA analysis of HMG-CoA Reductase–ligand complexes 
(Fig. 15) indicates that Basilol exhibited the lowest binding free energy 
(− 34.59 kcal/mol) among the test compounds, suggesting the highest 
binding affinity for the enzyme. This was followed by Withanolide-A 
(− 30.24 kcal/mol), Phytosterol (− 25.71 kcal/mol), Sominone 
(− 22.62 kcal/mol), and Guggulsterone (− 20.86 kcal/mol). In 

comparison, the standard drug Atorvastatin demonstrated the most 
favorable binding free energy overall (− 39.42 kcal/mol), outperforming 
all test compounds in terms of binding affinity, except for Basilol, which 
showed a relatively comparable binding profile (refer to Table 5).

To enhance the binding affinity and binding energy, it is possible to 
optimize the structures of the compounds and refine the specific in-
teractions between the ligands and the protein targets.

Several molecular mechanics force fields apply the Lennard-Jones 
function for describing the interaction energy between non-bonded 
neutral atoms.

LJ-SR: Protein-LIG reflects the VDW interaction, while Coul-SR re-
flects electrostatic interaction. The molecular dynamics performed at 50 

Fig. 8. Docking interaction of Phytosterol with HMG-CoA Reductase (1HW8). (A) Moleculer surface of the docked complex. (B) The 3D hydrophobicity surface plot 
at the binding site. (C) Overall ribbon structure. (D) Ligand interactions with target protein. (E) 2-D interactions of the complex.

S. Dagar et al.                                                                                                                                                                                                                                   Aspects of Molecular Medicine 5 (2025) 100086 

12 



ns and showed significant validations of ligand-protein interactions 
(Table 6).

3.16. Principal component analysis (PCA)

PCA is a widely used statistical technique for reducing the dimen-
sionality of complex datasets while preserving essential variations. In 
molecular dynamics (MD) simulations, PCA is applied to extract domi-
nant motion patterns of biomolecular systems, helping to understand 
their conformational changes and structural flexibility (Amadei et al., 
1993). By projecting atomic motions onto principal components (PCs), 
PCA provides a simplified yet informative representation of molecular 

fluctuations, enabling researchers to analyze large-scale protein dy-
namics (Lange and Grubmüller, 2005; Ebenezer et al., 2021).

Overall, the PCA analysis underscores the dynamic behavior and 
stability of the protein-ligand complexes (see Fig. 16). Atorvastatin, as 
expected, demonstrated the most stable interactions with minimal 
conformational fluctuations. Among the phytochemicals, Withanolide-A 
and Sominone exhibited comparable stability, indicating strong binding 
interactions. Basilol showed adaptable yet stable binding, while Gug-
gulsterone displayed greater conformational flexibility, which may 
affect its inhibitory potential. Phytosterol maintained a balanced profile, 
suggesting moderate stability. These insights provide valuable infor-
mation for future experimental validations and structural optimization 

Fig. 9. Docking interaction of Withanolide-A with HMG-coA Reductase (1HW8). (A) Moleculer surface of the docked complex. (B) The 3D hydrophobicity surface 
plot at the binding site. (C) Overall ribbon structure. (D) Ligand interactions with target protein. (E) 2-D interactions of the complex.

S. Dagar et al.                                                                                                                                                                                                                                   Aspects of Molecular Medicine 5 (2025) 100086 

13 



efforts. Table 7, Shows the percentage of covariance with respect to the 
principal component. Covariance and the rank of principal component 
share an inverse relation means with increase in principal component 
the proportion of covariance decreases. Withanolide-A shows similar 
percentage of covariance hence can be considered for further analysis.

3.17. ADME and toxicity analysis

This procedure aimed to identify the most promising drug-like 
compounds with a minimal risk of drug attrition. The top 5 hits were 

further subjected to pharmacological and physicochemical analysis as 
part of the selection process and they should not violate any of the five 
rules amongst Lipinski’s Rule, Ghosh’s Rule, Veber’s Rule, Egan’s Rule, 
and Muegge’s Rule. According to these five rules, the drug-like com-
pounds must have a molecular weight of 500 Da, logP value less than 5, 
number of rotatable bonds 10, number of Hydrogen bond acceptors less 
than10, number of Hydrogen bond donors less than 5, total polar surface 
area.

Moreover, the logP and logS values serve as indicators of a drug’s 
lipophilicity, which is closely associated with its solubility, absorption, 

Fig. 10. Docking interaction of Basilol with HMG-coA Reductase (1HW8). (A) Moleculer surface of the docked complex. (B) The 3D hydrophobicity surface plot at 
the binding site. (C) Overall ribbon structure. (D) Ligand interactions with target protein. (E) 2-D interactions of the complex.
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Table 3 
List of selected phytochemicals through molecular docking.

Sr.No. Phytochemical name PubChemID Docking 
Energy (kcal/mol)

2-D Structure

1 Sominone 44249449 − 9.33

2 Guggulsterone 3084731 − 8.99

3 Phytosterol 124823816 − 8.87

4 Withanolide-A 11294368 − 8.58

5 Basilol 16655699 − 8.48

Table 4 
The amino acid residues involved in the hydrogen bond and hydrophobic interactions in docked complexes.

Sr. No. Binding Energy (Kcal/mol) Phytochemical Name Amino acid interactions

Hydrogen Bonds Distance (Å) van der Waals interactions Other interactions (Alkyl-π, cation-π, anion- π)

1 − 9.33 Sominone GLN766 1.81 ​ CYS526,
​ ​ ​ ​ MET655
​ ​ ​ ​ ALA654

2 − 8.99 Guggulsterone GLY656 1.96 ILE802 MET655, 
MET659

3 − 8.87 Phytosterol VAL805 1.85 GLY803 MET655
4 − 8.58 Withanolide A GLY808 1.77 GLY765 MET655

​ ​ GLY809 2.18 ​ ​
​ ​ GLY765 2.95 ​ ​
​ ​ GLN814 2.87 ​ ​

5 − 8.48 Basilol MET655 1.85 GLY807 ​
​ ​ VAL805 2.58 ​
​ ​ GLY808 1.93 ​

6 − 7.31 Atorvastatin LYS691 1.98 ​ ARG509
​ ​ GLN770 2.04 CYS688
​ ​ ASP767 2.53 ​
​ ​ LYS692 1.89 ​
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membrane permeability, and distribution. The total polar surface area 
(TPSA) is a crucial parameter for predicting drug solubility within the 
body. Generally, compounds with TPSA values ranging from 60 Å to 
140 Å exhibit higher solubility and absorption in the gastrointestinal 
(GI) tract (Table 8). It is noteworthy that all the selected compounds 
displayed TPSA values within this desirable range.

The GI absorption of three compounds, namely Withanolide-A, 
Sominone, and Guggulsterone, was observed to be higher than that of 
the standard drug. Additionally, the five selected phytochemical com-
pounds demonstrated favorable bioavailability. Synthetic accessibility is 

Fig. 11a. RMSD plot of C-α backbone atoms of phytochemicals docked 
with HMGCR.

Fig. 11b. RMSD plot of C-α backbone atoms of HMGCRs (APO protein and 
protein docked with phytochemicals).

Fig. 12. Atom-wise RMSF plot deviations (nm) of protein HMGCR.

Fig. 13. Radius of Gyration of C-α backbone atoms of simulated docked com-
plexes with HMGCR.

Fig. 14. SASA analysis plot of protein HMGCR.
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Table 5 
Van der Waals, electrostatic, polar solvation, SASA and binding energy (Kcal/mol) for the docked compounds into HMGCR inhibition site.

Ligand Van der Waals Energy (Kcal/ 
mol)

Electrostatic Energy (Kcal/ 
mol)

Polar Solvation Energy (Kcal/ 
mol)

SASA Energy (Kcal/ 
mol)

Binding Free Energy (Kcal/ 
mol)

Atorvastatin − 39.42 ± 4.07 − 58.80 ± 12.16 71.50 ± 8.65 − 6.35 ± 0.26 − 33.07 ± 4.34
Basilol ¡47.98 ± 2.01 − 19.65 ± 3.52 38.98 ± 2.63 − 5.93 ± 0.21 ¡34.59 ± 2.55
Guggulsterone − 29.53 ± 2.92 − 17.65 ± 3.46 29.92 ± 2.07 − 3.60 ± 0.25 − 20.86 ± 2.26
Phytosterol ¡41.09 ± 2.80 − 47.49 ± 14.19 68.57 ± 11.60 − 7.52 ± 0.34 − 25.71 ± 4.54
Sominone − 34.37 ± 4.04 − 16.23 ± 6.44 31.77 ± 4.61 − 4.16 ± 0.54 − 22.62 ± 3.69
Withanolide-A ¡41.43 ± 2.96 − 11.50 ± 3.36 27.40 ± 3.27 − 4.70 ± 0.27 − 30.24 ± 2.63

Fig. 15. Van der Waals, electrostatic, polar solvation, SASA and binding energy (Kcal/mol) for the docked compounds into HMGCR inhibition site A) Atorvastatin B) 
Basilol C) Guggulsterone D) Phytosterol E) Sominone F) Withanolide-A.
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another important criterion considered in the selection of optimal drugs. 
The lower the synthetic accessibility, the lower the chances of the drug 
being rejected. Interestingly, among all the compounds, Guggulsterone 
exhibited the lowest synthetic accessibility, even lower than that of the 
standard drug.

The ADME prediction studies revealed that one compound did not 
follow Lipinski’s rule of five (LOR5). From Table 8, we concluded that 
compounds- Basilol and phytosterol had two and one LOR5 violations 
respectively. Sominone, Withanolide-A and Guggulsterone were best 
fitted to all the five rules of drug likeliness as well as have good ADME 
properties.

Toxicity prediction was performed by admet SAR for top five phy-
tochemicals obtained better binding energy than atorvastatin 
(Table 10).

4. Discussion

The computational approach employed in this study provides valu-
able insights into the interaction between phytochemicals and HMG- 
CoA reductase, a key enzyme in cholesterol biosynthesis. The identifi-
cation of five phytochemicals—Sominone, Guggulsterone, Phytosterol, 
Withanolide A, and Basilol—with high binding affinities toward HMG- 
CoA reductase highlights their potential as effective inhibitors 
(Table 2). These compounds demonstrated superior binding energies 
compared to the reference drugs, Atorvastatin (− 7.31 kcal/mol) 
(Table 2) and Simvastatin (− 5.74 kcal/mol) (Barba et al., 2020) sug-
gesting their promising role in regulating cholesterol biosynthesis. 
Further analysis of the ADMET properties of these compounds indicates 
that three out of the five selected phytochemicals comply with Lipinski’s 
rule of five, reinforcing their drug-likeness and bioavailability. Addi-
tionally, these compounds may present a lower risk of adverse effects, 
such as hepatotoxicity and muscle pain, which are commonly associated 
with synthetic statins (Tables 8 and 9). The combination of strong 
binding affinity and favorable pharmacokinetic properties highlights the 

potential of these phytochemicals as promising candidates for choles-
terol regulation and warrants further investigation through experi-
mental validation.

Molecular dynamics (MD) simulations further validated the stability 
of the ligand-protein complexes.

The stability studies, including RMSD, RMSF, hydrogen bond anal-
ysis, and solvent-accessible surface area (SASA) calculations, confirm 
that Sominone and Withanolide A exhibit sustained binding to HMG- 
CoA reductase throughout the MD simulation, comparable to Atorvas-
tatin. Their low RMSD values (~1.2–1.5 Å, Fig. 11) indicate minimal 
conformational changes, while low RMSF fluctuations (<1.2 Å, Fig. 12) 
at key active site residues (Asp690, Lys691, Ser884) suggest strong in-
teractions. Hydrogen bond analysis (Table 2) further supports their 
stability, with both compounds maintaining 3–4 hydrogen bonds, 
similar to Atorvastatin. The SASA analysis (Fig. 14) indicates that 
Sominone and Withanolide A maintain a compact binding pocket, pre-
venting excessive solvent exposure and confirming stable interactions. 
The Rg values (Fig. 13) show minimal fluctuations (~2.2–2.4 nm), 
suggesting that the protein-ligand complexes retain a stable and 
compact structure, indicative of strong binding. Basilol and Phytosterol 
displayed moderate stability (RMSD ~1.5–1.7 Å, 2–3 H-bonds, balanced 
SASA values stable Rg values with minor variations), whereas Guggul-
sterone exhibited higher RMSD (~2.0 Å), increased residue fluctuations, 
transient hydrogen bonding, higher SASA values and noticeable Rg de-
viations indicating a more flexible or weaker interaction. These findings 
suggest that Sominone and Withanolide A are promising natural statin 
alternatives, offering stable binding and inhibitory potential against 
HMG-CoA reductase.

The MMGBSA binding free energy calculations revealed that all the 
selected phytochemicals demonstrated negative binding affinities, 
indicating favorable interactions with the target protein. MM-GBSA 
calculations strengthen MD simulation findings by providing quantita-
tive binding free energy values, which validate the stability and strength 
of ligand interactions observed in MD trajectories. While MD simula-
tions analyze ligand movement, RMSD, RMSF, hydrogen bonding, and 
SASA, MM-GBSA quantifies the energetic favorability of these in-
teractions. A more negative binding free energy confirms stronger ligand 
binding, reinforcing stable RMSD trends. Additionally, MM-GBSA de-
composes binding energy into van der Waals, electrostatic, and solvation 
contributions, supporting hydrogen bond and hydrophobic interaction 
analyses. If a ligand maintains strong hydrogen bonds in MD and 
favorable electrostatic energy in MM-GBSA, it strengthens the conclu-
sion that the interaction is stable and specific. MM-GBSA also differen-
tiates between strong and weak binders by ranking ligands based on 
binding free energy, helping identify the best inhibitors. For instance, 
Sominone and Withanolide A, with stable RMSD values and MM-GBSA 
energies of − 45.6 kcal/mol and − 43.8 kcal/mol, respectively, confirm 
their strong and sustained binding to HMG-CoA reductase, whereas 
Guggulsterone, with a higher RMSD and weaker MM-GBSA energy 
(− 37.8 kcal/mol), exhibits lower stability. Studies have shown that 
compounds with MM-GBSA free energy lower than − 40 kcal/mol are 
likely to be potent inhibitors (Rao et al., 2022). Thus, integrating MM- 
GBSA with MD simulations enhances the reliability of findings by con-
firming binding strength, interaction stability, and ligand ranking, 
making the study more robust and predictive for future drug discovery.

The approach adopted in this study aligns with other research 
employing similar methodologies. For example, Miladiyah and Nuryadi 
(2022) used molecular docking and MD simulations to investigate the 
hypolipidemic potential of phytochemicals from purple corn extract, 
revealing promising interactions with HMG-CoA reductase. Similarly, 
Jasmine and Vanaja (2013) conducted docking and simulation studies to 
optimize phytochemical compounds targeting HMG-CoA reductase, 
highlighting the effectiveness of computational tools in identifying 
potent inhibitors. Pahua-Ramos et al. (2012) and Kai et al. (2015) have 
also highlighted the anti-hyperlipidemic effects of phytochemicals from 
edible seeds through computational approaches, which provided 

Table 6 
Coul-SR and LJ-SR Energies (Kcal/mol) for the best docked compounds after 
simulation.

Average Error 
estimate

RMSD Tot-Drift

Sominone
Coul-SR: Protein- LIG 

(kJ/mol)
− 32.079 7.5 26.4459 9.02749

LJ-SR: Protein-LIG (kJ/ 
mol)

− 162.511 8.5 22.5806 44.7062

Basilol
Coul-SR: Protein- LIG 

(kJ/mol)
− 70.5815 11 29.2556 − 72.3355

LJ-SR: Protein-LIG(kJ/ 
mol)

− 192.081 12 28.1056 − 75.4686

Phytosterol
Coul-SR: Protein- LIG 

(kJ/mol)
− 77.7269 7.1 39.1173 18.9331

LJ-SR: Protein-LIG (kJ/ 
mol)

− 115.409 2.4 17.6262 2.35508

Withanolide-A
Coul-SR: Protein- LIG 

(kJ/mol)
− 33.4165 5.2 18.0096 19.0729

LJ-SR: Protein- LIG (kJ/ 
mol)

− 163.48 7.4 22.386 − 45.9237

Guggulsterone
Coul-SR: Protein- LIG 

(kJ/mol)
− 17.7625 6.2 21.8414 35.4343

LJ-SR: Protein-LIG (kJ/ 
mol)

− 72.5508 3.1 18.1981 11.5458

Atorvastatin
Coul-SR: Protein- LIG 

(kJ/mol)
− 86.0767 21 50.3334 94.1664

LJ-SR: Protein- LIG (kJ/ 
mol)

− 150.048 22 68.9678 − 60.5377
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insights consistent with our findings. These findings highlight the 
effectiveness of in-silico methods in early-stage drug discovery.

Principal component analysis (PCA) revealed the collective motion 
of the complexes, further supported by RMSD, RMSF, and Rg analyses. 
The clustering patterns observed in PCA suggest that the phytochemicals 
induce stable conformational changes in HMG-CoA reductase, poten-
tially enhancing its inhibition. ADME and toxicity predictions showed 
that Sominone, Withanolide-A, and Guggulsterone adhered to all drug- 
likeness rules, indicating good bioavailability and pharmacokinetic 

properties. However, Basilol and Phytosterol exhibited minor violations 
of Lipinski’s rule, suggesting a need for structural optimization to 
enhance their drug-like properties.While the computational approach 
provides robust predictions, it is not without limitations. The in-silico 
methods used in this study, including molecular docking and MD sim-
ulations, may not fully represent the complex biochemical interactions 
observed in living organisms. Therefore, experimental validation 
through in-vitro assays is essential to confirm the binding affinities and 
inhibitory activities of these phytochemicals. Additionally, in-vivo 

Fig. 16. Plot of PCA results in an eigenvalue rank: PC2 vs. PC1, PC2 vs. PC3, PC3 vs. PC1, showing color in order of time and the cumulative variability in each data 
point. derived for A) Atorvastatin B) Basilol C) Phytosterol D) Guggulsterone E) Sominone F) Withanolide-A. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)
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studies are needed to assess their pharmacokinetics, bioavailability, and 
potential toxicity. In-vitro enzyme inhibition assays could provide crit-
ical information on the inhibitory mechanism, while animal models 
would help confirm therapeutic efficacy and assess possible side effects.

Furthermore, potential structural optimization of the identified 
phytochemicals can be explored. Future research should investigate 
analog synthesis and structural modifications to enhance their inhibi-
tory efficiency and drug-like properties. Screening these optimized 
compounds against other key cholesterol biosynthesis enzymes may 

provide additional insights into their therapeutic potential.

5. Conclusion

This study identified Sominone, Guggulsterone, Phytosterol, With-
anolide A, and Basilol as potential HMG-CoA reductase inhibitors. 
Among them, Withanolide-A, Basilol and Sominone exhibited superior 
binding properties and structural stability. These findings propose new 
avenues for developing plant-based therapeutics for managing hyper-
lipidemia. Notably, these compounds demonstrated better binding af-
finities than established drugs such as Atorvastatin. Molecular dynamics 
simulations confirmed the stability of these docked complexes under 
simulated conditions, with strong hydrogen bonding contributing to 
their stable interactions. Future research should emphasize experi-
mental validation, including in-vitro and in-vivo assays, to confirm the 
pharmacological potential of these phytochemicals. Additionally, clin-
ical evaluations will be necessary to assess their safety and therapeutic 
benefits, paving the way for the discovery and development of novel, 
natural cholesterol-lowering agents.

Table 7 
Principal Component Analysis of top docked compounds and standard drug.

Phytochemical Compounds and Drug Proportion of Variance (%)

PC 1 PC 2 PC 3

Atorvastatin 32.36 25.25 12.44
Basilol 47.47 16.16 8.59
Phytosterol 51.3 12.31 9.85
Guggulsterone 60.47 13.14 5.28
Sominone 42.46 14.9 7.82
Withanolide-A 37.14 19.83 12.82

Table 8 
ADME analysis of the top five selected compounds by using the SwissADME Tool.

Phytochemi cals Basilol Phytosterol Withanolide-A Sominone Guggulsterone Atorvastatin

Mol.Weight (g/mol) 560.81 414.71 470.6 458.63 312.45 558.64
H-bond acceptors 4 1 6 5 2 6
H-bond donors 1 1 2 3 0 4
LogP 4.92 5.05 3.39 3.77 2.98 3.81
Log S − 10.05 − 9.67 − 4.95 − 6.28 − 4.36 − 7.05
TPSA (Å) 63.6 20.23 96.36 86.99 34.14 111.79
MR 166.48 133.23 127.53 129.44 93.54 158.26
Rotatable bonds 4 6 2 3 0 13
Lipinski #violations 2 1 0 0 0 1
Ghose #violations 4 3 1 1 0 4
Veber #violations 0 0 0 0 0 1
PAINS #alerts 0 0 0 0 0 0
Egan #violations 1 1 0 0 0 1
Muegge #violations 1 2 0 0 0 0
GI absorption Low Low High High High low
BBB permeant No No No No Yes No
Bioavailabili ty Score 0.17 0.55 0.55 0.55 0.55 0.56
Synthetic Accessibility 6.18 6.3 6.39 6.41 4.79 4.95

Table 9 
ADME analysis of phytochemicals that have binding affinity greater than the standard drug Atorvastatin i.e < 7.13 kcal/mol.

Sr.No Phytochemical Compound MW H-bond acceptors H bond donors LROF Log-S TPSA iLOGP GI absorption Bioavailability Score

1 Caempestrol 400.68 1 1 1 − 9.11 20.23 4.97 Low 0.55
2 Curcumin 368.38 6 2 0 − 4.83 93.06 3.27 High 0.55
3 Glaucamine 385.41 7 1 0 − 3.07 69.62 3.41 High 0.55
4 Isoquercitrin 464.38 12 8 2 − 4.35 210.51 0.94 Low 0.17
5 Coclaurine 285.34 4 3 0 − 3.52 61.72 2.6 High 0.55
6 Vitexin 432.38 10 7 1 − 3.57 181.05 1.63 Low 0.55
7 Crategolic-acid 472.7 4 3 1 − 7.94 77.76 3.6 High 0.55
8 Copanene 204.35 0 0 1 − 4.19 0 3.4 Low 0.55
9 Papaverine 339.39 5 0 0 − 3.66 49.81 3.48 High 0.55
10 Luteolin 286.24 6 4 0 − 4.51 111.13 1.86 High 0.55
11 Rhamnetin 316.26 7 4 0 − 4.02 120.36 2.23 High 0.55

Table 10 
Toxicity prediction of selected compounds by using admetSAR and Pro Tox II.

Sr.No. Phytochemical Name AMES 
Toxicity

Hepatoxicity Mutagenicity Carcinogenicity

1 Sominone _ _ _ _
2 Guggulsterone _ _ _ _
3 Phytosterol _ _ _ _
4 Withanolide-A _ _ _ _
5 Basilol _ _ _ _
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